WO2008146929A9 - Abrasion-resistant steel sheet having excellent processability, and method for production thereof - Google Patents

Abrasion-resistant steel sheet having excellent processability, and method for production thereof Download PDF

Info

Publication number
WO2008146929A9
WO2008146929A9 PCT/JP2008/060096 JP2008060096W WO2008146929A9 WO 2008146929 A9 WO2008146929 A9 WO 2008146929A9 JP 2008060096 W JP2008060096 W JP 2008060096W WO 2008146929 A9 WO2008146929 A9 WO 2008146929A9
Authority
WO
WIPO (PCT)
Prior art keywords
wear
steel sheet
test
phase
resistant steel
Prior art date
Application number
PCT/JP2008/060096
Other languages
French (fr)
Japanese (ja)
Other versions
WO2008146929A1 (en
Inventor
室田康宏
石川操
渡邉好紀
鈴木伸一
鹿内伸夫
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020097021902A priority Critical patent/KR101165654B1/en
Priority to BRPI0812277-6A2A priority patent/BRPI0812277A2/en
Priority to CA2685710A priority patent/CA2685710C/en
Priority to EP08764952.1A priority patent/EP2154262B1/en
Priority to CN2008800161928A priority patent/CN101688283B/en
Priority to AU2008255706A priority patent/AU2008255706B2/en
Priority to US12/600,891 priority patent/US20100147424A1/en
Priority to MX2009012820A priority patent/MX2009012820A/en
Publication of WO2008146929A1 publication Critical patent/WO2008146929A1/en
Publication of WO2008146929A9 publication Critical patent/WO2008146929A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention is used in the fields of construction, civil engineering, mining, etc., for example, power shovels, bulldozers, hoppers, buckets. Suitable for materials such as industrial machines such as buckets and transporting machines where wear or abrasion due to contact with earth and sand is a problem.
  • BACKGROUND OF THE INVENTION 1 Field of the Invention The present invention relates to abrasion resistant steel and a method for producing the same, and particularly to a material having excellent bending formability.
  • steel materials with excellent wear resistance are used to extend the service life. It is known that the abrasion resistance property of steel is improved by increasing the hardness, and a large amount of alloying elements such as Cr and Mo are required for parts that require wear resistance. Steel materials that have been hardened by heat treatment such as quenching have been used.
  • Japanese Patent Application Laid-Open No. Sho 62-1-4 2 7 2 6 contains C: 0.1 0-0.19%, contains appropriate amounts of Si and Mn, and C eq is 0.3.
  • the steel limited to 5 to 0.44% is directly quenched after hot rolling, or re-heated to 90 to 95 ° C and then quenched, at 300 to 500 ° C.
  • JP-A-6 3-1 6 9 3 5 9 includes C: 0.1 0 to 0.20% and adjusts Si, Mn, P, S, N, and A 1 to appropriate amounts. , Or further to steel containing one or more of Cu, Ni, Cr, Mo, B after hot rolling and directly quenching, or after rolling and allowing to cool, then reheating and quenching 340HB (Brinell hardness) A method of manufacturing a wear-resistant thick steel plate that imparts the above hardness has been proposed.
  • Japanese Patent Laid-Open No. 1 1 4 2 0 2 3 includes C: 0.07 to 0.17%, and adjusts Si, Mn, P, S, N, and A1 to appropriate amounts, Alternatively, steel containing one or more of Cu, Ni, Cr, Mo, and B is either quenched immediately after hot rolling, or once cooled to room temperature and then reheated and quenched. A method for producing a wear-resistant steel sheet having a surface hardness of 3 2 1 HB or more and a bending workable steel sheet has been proposed.
  • solute C in order to increase the hardness of the hardened structure, it is generally necessary to increase the amount of solute C in the steel material.
  • an increase in the amount of solute C causes a decrease in weldability, bending workability, etc.
  • a decrease in bending workability restricts the bending work required as a member and limits the use conditions.
  • Japanese Patent No. 3 0 8 9 8 8 2 discloses C: 0. 1 to 0 to 0.4 5%, Si, Mn, P, S, and N are adjusted to appropriate amounts, and Ti: 0.1 to 1.0 to 1.0%, with an average particle size of 0.5 / zm or more T i C precipitates or T i C and T i N, the composite precipitates with T i S includes a 40 0 / mm 2 or more, T i * Ca 0.0 A wear-resistant steel having an excellent surface property of 5% or more and less than 0.4% has been proposed.
  • Japanese Patent Laid-Open No. 4 1 6 1 6 discloses that C: 0.05 to 0.4: 5%, S i: 0.1 to 1.0%, Mn: 0.1 to 1.
  • Manufacture of wear-resistant steel plates with improved bending workability by containing 0%, T i: 0.05 to 1.5%, and having a surface hardness of 40 1 or less in terms of Brinellhardness A method has been proposed.
  • the surface hardness is regulated to 401 or less in terms of Brinell hardness in order to ensure bending workability, but the amount of alloying elements added is large. Therefore, the tensile strength exceeds 7 8 OMPa, and sufficient bending workability is not achieved from the viewpoint of reducing the load during processing.
  • Japanese Patent Laid-Open Nos. 62-14-272 6 Japanese Patent Laid-Open No. 63-1 693 559, Japanese Patent Laid-Open No. 1-14 2 023, Japanese Patent Laid-Open No. Hei 4 1 4 1 6 1 6 It is essential to perform heat treatment on the wear-resistant steel described in No. 6 publication, leaving problems in terms of production period and production cost.
  • the present invention provides a method for producing a wear-resistant steel plate that can be produced without being subjected to heat treatment while being hot-rolled, and that has excellent wear resistance and bendability.
  • the inventors have an influence on wear-resistant plugs and bending workability.
  • it has a component system containing Ti and C, and has a microstructure of base metal force.
  • S Ferrite and pearlite structure as-rolled ) Is a complex structure (base phase), and a hard second phase (hard phase : Ti-based carbide) in the matrix. It has been found that by dispersing, it is possible to reduce the processing load during bending while maintaining wear resistance, that is, it is possible to improve bending workability.
  • the present invention has been made on the basis of the further findings based on the obtained knowledge.
  • Mass 0 /. C 0.05 to 0.35%, S i: 0.05 to 1.0%, Mn: 0.1 to 2.0%, T i: 0.1 to 1.2% , AI: 0.1% or less, Cu: 0.1-1.0%, Ni: 0.1-2.0%, Cr: 0.1-1.0%, Mo: 0.0%, 1.0%, W: 0.05 ⁇ ; 1.0%, B: 0. 0 0 0 3 to 0.0 0 3 0% 1 type or 2 types or more A wear-resistant steel sheet having an excellent workability consisting of the balance Fe and inevitable impurities, wherein DI * represented by the formula (1) is less than 60.
  • the wear-resistant steel sheet according to 3, wherein the hard phase has a dispersion density of 400 pieces / mm 2 or more. 5. After hot rolling a steel slab having the composition described in 1 or 2, it is cooled to 400 ° C or less at a cooling rate of 3 or less in 2 to produce a wear-resistant steel plate with excellent workability. Manufacturing method.
  • the rolling reduction at 920 ° C. or lower is set to 30% or more, and the rolling end temperature is set to 900 or lower, and wear resistance with excellent workability according to 5, Steel manufacturing method.
  • the hard phase is preferably a Ti-based carbide such as T i C, and is contained in T i C, (Nb T i) C, (VT i) C, or T i C.
  • T i C Ti-based carbide
  • Nb T i Nb T i
  • VT i T i C
  • T i C T i C
  • An example is a solution in which Mo and W are dissolved.
  • a wear-resistant steel sheet having improved bending workability without degrading the wear resistance can be obtained after hot rolling without being subjected to heat treatment.
  • Reasonable production such as shortening the production period, is possible and has a remarkable industrial effect.
  • Figure 1 A graph showing the effect of Ti addition on wear resistance.
  • Fig. 2 Diagram showing the effect of Ti addition on tensile properties (yield strength: Y S, tensile strength: T S).
  • Figure 3 Diagram showing the effect of D I * on wear resistance.
  • Figure 4 Diagram showing the effect of D I * on tensile properties (yield strength: YS, tensile strength: TS).
  • Ti carbide is formed as a hard second phase (hereinafter also referred to as a hard phase), and is an effective element for improving wear resistance. 0 Containing 5% or more is required.
  • C is specified in the range of 0.05 to 0.35%. In addition, Preferably it is 0.15 to 0.32%.
  • Ti, together with C, is an important element in the present invention, and is an essential element that forms carbides as a hard phase that contributes to improved wear resistance. In order to obtain such an effect, a content of 0.1% or more is required.
  • Fig. 1 shows the effect of Ti addition on wear resistance
  • Fig. 2 shows the effect of Ti addition on tensile properties (yield strength: Y S, tensile strength: TS).
  • the vertical axis shows the wear resistance ratio of the rubber wheel abrasion test compared to the abrasion weight loss of mild steel (S S 400).
  • the wear resistance is as high as that of general wear-resistant steel, and TS is reduced to 80 OMPa or less. In other words, it is possible to improve workability while having the same wear characteristics as the conventional wear-resistant steel plate subjected to quenching heat treatment.
  • the test steel in the rubber wheel wear test is massy. 0.3% 3% C— 0.35% S i-0.82% Mn-0.05-1. After rolling a steel slab containing 2% T i to 19 mm t, cooling rate: It was produced by air cooling at 0.5 ° CZ S.
  • the obtained steel sheet was subjected to a tensile test and an abrasion test.
  • J I S 5 test specimens were collected and subjected to a tensile test in accordance with the provisions of J I S Z 2201, and the tensile properties (tensile strength: TS, yield strength: YS) were obtained.
  • the abrasion test is performed by a rubber wheel abrasion test in accordance with ASTM G 65, and the test result is determined by the ratio of the wear amount of mild steel (SS 400) to the wear amount of each test steel plate. Organized as wear ratio. The larger the wear resistance ratio, the better the wear characteristics.
  • As a comparative test the same test as described above was performed for wear-resistant steel sheets produced by general heat treatment. The results obtained are shown in Fig. 1 and Fig. 2 for conventional steel.
  • the general wear-resistant steel sheet is: 0.15 mass3 ⁇ 4C— 0.35raass% Si— 1.50 mass% Mn— 0.13 mass% Cr-0.13 mass% Mo-0.01 mass% Ti-0.0010 mass% B
  • This steel is a material that has been hot-rolled and then reheated to 900 ° C and then subjected to a quenching heat treatment, and it has a Brinell hardness of about 400 HB.
  • the hard phase (Ti carbide) becomes coarse, and cracks occur starting from the coarse hard phase during bending. Therefore, it is limited to the range of ⁇ ⁇ . 1 to 1.2%, preferably 0.1 to 0.8%.
  • Si is an effective element as a deoxidizing element, and in order to obtain such an effect, it needs to be contained in an amount of 0.05% or more.
  • Si is an effective element that contributes to high hardness by solid solution strengthening by solid solution strengthening, but inclusion exceeding 1.0% lowers ductility and toughness.
  • problems such as an increase in inclusion content occur. For this reason, 1 is preferably limited to a range of 0.05 to 1.0%. More preferably, it is 0.05 to 0.40%.
  • Mn is an effective element that contributes to high hardness by solid solution strengthening, and in order to obtain such an effect, it needs to contain 0.1% or more. On the other hand, if the content exceeds 2.0%, weldability is lowered. For this reason, Mn is preferably limited to a range of 0.1 to 2.0%. More preferably, it is 0.1 to 1.6%.
  • a 1 acts as a deoxidizing element, and such an effect is recognized at a content of 0.0 20% or more, but a large content exceeding 0.1% is the cleanliness of steel. Reduce (cleanness). For this reason, A 1 is limited to 0 .. 1% or less. It is preferable.
  • Cu is an element that improves hardenability by dissolving in solid solution. To obtain this effect, Cu must be contained in an amount of 0.1% or more. On the other hand, if the content exceeds 1.0%, hot workability is lowered. For this reason, Cu is preferably limited to the range of 0.1 to 1.0%. More preferably, the content is 0.1 to 0.5%.
  • Ni is an element that improves the hardenability by dissolving it in a solid solution, and such an effect becomes remarkable when it is contained in an amount of 1% or more. On the other hand, if the content exceeds 2.0%, the material cost increases remarkably. Therefore, Ni is preferably limited to a range of 0.1 to 2.0%. More preferably, the content is 0.1 to 1.0%.
  • Cr has the effect of improving hardenability. To obtain such an effect, it needs to be contained in an amount of 0.1% or more. However, if it exceeds 1.0%, the weldability is lowered. Let For this reason, it is preferable that O is limited to the range of 0.1 to 1.0%. More preferably, the content is 0.1 to 0.8%. More preferably, it is 0.4 to 0.7%.
  • Mo is an element that improves hardenability. In order to obtain such an effect, the content of 0.05% or more is required. On the other hand, if it exceeds 1.0%, the weldability is lowered. Therefore, Mo is preferably limited to the range of 0.05 to 1.0%. More preferably, it is 0.05 to 0.40%.
  • W 0.05-: L.
  • 0% w is an element that improves hardenability. In order to obtain such an effect, the content of 0.05% or more is required. On the other hand, if the content exceeds 1.0%, the weldability is lowered. Therefore, W is preferably limited to a range of 0.05 to 1.0%. More preferably, it is 0.05 to 0.40%. Since Mo and W are dissolved in TiC, they also have the effect of increasing the amount of hard phase.
  • B is an element that segregates at the grain boundary and strengthens the grain boundary to effectively contribute to the improvement of toughness. In order to obtain such an effect, 0.000% or more Must be included. On the other hand, if it exceeds 0.0 0 30%, the weldability is lowered. For this reason, B is preferably limited to the range of 0.0 0 0 3 to 0.0 0 30%. More preferably, it is 0.0 0 0 3 to 0.0 0 15%.
  • DI * hardenability index value
  • DI * 33.85 X (0.1 XC *) ° ⁇ 5 X (0.7 XS i + 1)
  • X (3. 3 3 XMn + 1)
  • X (0.35 XC u + 1)
  • X (0.36 XN i + 1)
  • X (2. 16 XC r + 1)
  • X (3 XM o * + 1)
  • X 1.5 XW * + 1)
  • C * C 1/4 X (T i-4 8/1 4 N)
  • M o * M o X (1 — 0.5.5 X (T i- 4 8/1 4 ⁇ ))
  • W * W (1 — 0.5. 5 (T i — 4 8/1 4 N)).
  • Fig. 3 shows the effect of DI * on wear resistance
  • Fig. 4 shows the effect of DI * on tensile properties (yield strength: YS, tensile strength: TS).
  • the vertical axis shows the wear resistance ratio comparing the amount of wear in the rubber wheel wear test with the amount of wear of mild steel (SS 400). The higher the wear resistance ratio, the better the wear characteristics. From Fig. 3 and Fig. 4, when DI * force is less than S 60, tensile strength: Despite the low strength of TS of less than 800 MPa, wear amount is generally wear resistant steel It is recognized that
  • DI * 60 or more
  • the wear resistance is excellent, but the tensile strength is 80 Above OMP a, workability is inferior. If DI * is greater than 60, it is presumed to be a ferrite and bainite structure.
  • the test steel is 0.34% C— 0.22% S i-0.55% Mn-0.22% T i in addition to Cu, Ni, Cr, Mo.
  • a steel piece containing one or more of W and having a DI * of 40 to 120 was rolled to 8 mm t and then air-cooled (cooling rate: 1.2 ° CZs).
  • the obtained steel sheet was subjected to a tensile test and an abrasion test.
  • JISZ2201 JIS5 test specimens were collected and subjected to a tensile test to determine tensile properties (tensile strength TS, yield strength YS).
  • the rubber wheel wear test was conducted in accordance with AS TMG 65, and the test results were organized as the wear resistance ratio of the ratio of wear of mild steel (S S 400) to that of each steel plate.
  • the above-mentioned components are basic components, and excellent wear resistance can be obtained.
  • a hard second phase is formed, which contributes to the wear resistance.
  • Nb and V can be contained as selective elements.
  • Nb When Nb is added in combination with T i, it forms a composite carbide of T i and Nb ((N b T i) C), which is dispersed as a hard second phase and is effective in improving wear resistance. It is an element that contributes to In order to obtain such an effect of improving wear resistance, a content of 0.005% or more is required. On the other hand, if the content exceeds 1.0%, the hard second phase (Ti, Nb composite carbide) becomes coarse and cracks starting from the hard second phase (Ti, Nb composite carbide) during bending. Will occur. For this reason, when Nb is added, Nb is preferably limited to a range of 0.005 to 1.0%. More preferably, the content is 0.1 to 0.5%.
  • V When added in combination with T i, V, like Nb, forms a composite carbide of T i and V ((VT i) C), disperses it as a high-quality second phase, It is an element that contributes to effective wear resistance. In order to obtain such an effect of improving wear resistance, 0.0 0 Containing 5% or more is required.
  • V is preferably limited to a range of 0.05 to 1.0%. More preferably, the content is 0.1 to 0.5%.
  • the amount of N added exceeds 0.01%, the ratio of N in the carbonitride increases and the hardness of the hard second phase decreases, but there is a concern that the wear resistance may deteriorate.
  • the amount of N added is not more than 0.0. 1%.
  • the metal structure is a structure in which the ferrite phase is a base phase and a hard phase (hard second phase) is dispersed in the base phase.
  • the base phase means 90% or more by volume ratio, and in the steel sheet according to the present invention, the two phases of ferrite and perlite occupy 90% or more of the whole.
  • the ferrite phase preferably has a volume fraction of 70% or more and a ferrite phase with an equivalent circle diameter and an average particle diameter of 20 ⁇ .
  • the base phase has a Brinell hardness of 300 or less.
  • the hard phase is preferably a Ti carbide such as TiC, and Mo and W are solid in TiC, (NbTi) C, (VTi) C, or TiC.
  • the melted material can be exemplified.
  • the size of the hard phase is not particularly limited, but is preferably about 0.5 ⁇ m or more and 50 ⁇ m or less from the viewpoint of wear resistance. Further, the dispersion density of the hard phase is preferably 400 pieces / "mm 2 or more from the viewpoint of wear resistance.
  • the average equivalent diameter of the obtained circle-equivalent diameters is taken as the size of the hard phase (average particle size) in the steel sheet.
  • the wear-resistant steel sheet according to the present invention is obtained by melting a molten steel having the above-described composition by a known melting method, and by using a continuous forging method or an ingot-disintegrating rolling method, It is preferable to use a material.
  • the steel material is immediately hot-rolled without being cooled, or after being cooled, re-heated to 9500-125 ° C and then hot-rolled to obtain a steel plate having a desired thickness. . After hot rolling, it is cooled at an average cooling rate of 2 ° C / s or less without heat treatment.
  • the hot rolling conditions are not particularly limited as long as the steel sheet can have a desired size and shape.
  • the surface temperature of the steel sheet is 9 2 0. It is necessary that the rolling reduction at 30 ° C. or less is 30% or more and the rolling end temperature is 90 ° C. or less.
  • the wear-resistant steel sheet according to the present invention does not need to be heat-treated after hot rolling, and can be used for various applications that require bending while hot rolling.
  • Example Molten steel with the composition shown in Table 1 is melted in a vacuum melting furnace to form a small steel ingot (50 kg) (steel material), then heated to 1 0 50 0 to 1 2 5 0 and hot rolled To give a test steel plate with a thickness of 6 to 100 mm. Each steel plate was subjected to microstructure observation, tensile test, wear test, Charpy impact test, and bend test.
  • the specimens for tissue observation were corroded by nital, and at a position 1 mm below the surface layer, an optical microscope (magnification ratio: 400 times) was used. Identification, ferrite grain diameter, and the size and number of hard phases were measured. In the observation field of view, the structure occupying 90% or more was the base phase, and the size of the hard phase was the average particle size obtained by the method described above.
  • JISZ 2 201 JIS No. 5 test specimens were collected and subjected to a tensile test in accordance with the provisions of JISZ 2 24 1, tensile properties (yield strength: YS, tensile strength: TS). Tensile strength (T S) ⁇ 80 OMPa and yield strength (Y S) ⁇ 60 0 MPa are within the scope of the present invention.
  • test piece was t (plate thickness) X 20 X 7 5 (mm), and the rubber wheel abrasion test was performed using abrasive sand in accordance with the regulations of AS TM G 65. After the test, the amount of wear of the test piece was measured.
  • the larger the wear resistance ratio, the better the wear resistance, and the scope of the present invention was set to 4.0 or more.
  • the test piece that has been ground from one side and reduced to a thickness of 25 mm is used.
  • Table 2 shows the results of microstructure observation, tensile test, and wear test.
  • Examples of the present invention (steel plate Nos. 1 to 6, steel plates No. 8, 9) have a tensile strength (TS) ⁇ 80 OMPa and a yield strength (YS) ⁇ 60 OMPa, It is a steel plate with excellent wear resistance.
  • the Charpy absorbed energy was 27 J or more when the rolling finishing temperature was 900 ° C or lower.
  • the comparative example is inferior in bending workability as compared with the present invention example, or even if the wear resistance is equivalent, YS and TS are high, so that the bending workability is inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Disclosed is an abrasion-resistant steel sheet which is suitable for a member that contacts with dirt such as a power shovel and has excellent processability in bending. Also disclosed is a method for producing the steel sheet. Specifically disclosed is a steel sheet which comprises the following components (by mass): C: 0.05 to 0.35%, Si: 0.05-1.0%, Mn: 0.1 to 2.0%, Ti: 0.1 to 1.2% and Al: 0.1% or less, further comprises at least one member selected from 0.1 to 1.0% of Cu, 0.1 to 2.0% of Ni, 0.1 to 1.0% of Cr, 0.05 to 1.0% of Mo, 0.05 to 1.0% of W and 0.0003 to 0.0030% of B (by mass), has a DI* value represented by the formula below of less than 60, and optionally comprises one or two members selected from 0.005 to 1.0% of Nb and 0.005 to 1.0% of V (by mass), with the remainder being Fe and inevitable impurities: DI* = 33.85x(0.1xC*)0.5x(0.7xSi+1)x(3.33xMn+1)x (0.35xCu+1)x(0.36xNi+1)x(2.16xCr+1)x(3xMo*+1)x(1.5xW*+1) (1) [wherein C* = C-1/4x(Ti-48/14N); Mo* = Mox(1-0.5x(Ti-48/14N)); and W* = Wx(1-0.5x(Ti-48/14N))].

Description

明細書  Specification
加工性に優れた耐磨耗鋼板およびその製造方法 技術分野  Abrasion-resistant steel plate with excellent workability and manufacturing method thereof
本発明は、 建設 (construction)、 土木 (civil engineering)、 鉱山 (mining)等 の分野で使用される、 例えば、 パワーショベル(power shovels), ブルドーザー (bulldozers) 、 ホ ッパ一 (hoppers) 、 バケ ツ ト (buckets) な どの産業機械 (industrial machine)や運搬機器 (transporting machine 等で、 土砂 (earth and sand)との接触による磨耗(wear or abrasion)が問題となるような部材用として 好適な耐磨耗鋼板(abrasion resistant steel)およびその製造方法に係り、 特に、 曲げ加工性(bending formability)に優れるものに関する。 背景技術  The present invention is used in the fields of construction, civil engineering, mining, etc., for example, power shovels, bulldozers, hoppers, buckets. Suitable for materials such as industrial machines such as buckets and transporting machines where wear or abrasion due to contact with earth and sand is a problem. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to abrasion resistant steel and a method for producing the same, and particularly to a material having excellent bending formability.
土、 砂等による磨耗を受ける部材には、 長寿命化のため、 耐磨耗性に優れた鋼 材が使用される。 鋼材の耐磨耗性(abrasion resistant property)は、 高硬度化 することにより、向上することが知られ、耐磨耗性が要求される部材には、 C r、 M o等の合金元素を大量に添加した鋼材に焼入等の熱処理を施し、 高硬度化した 鋼材が使用されてきた。  For materials subject to wear due to soil, sand, etc., steel materials with excellent wear resistance are used to extend the service life. It is known that the abrasion resistance property of steel is improved by increasing the hardness, and a large amount of alloying elements such as Cr and Mo are required for parts that require wear resistance. Steel materials that have been hardened by heat treatment such as quenching have been used.
例えば、 特開昭 6 2— 1 4 2 7 2 6号公報には、 C : 0. 1 0-0. 1 9 %を 含み、 S i、 Mnを適正量含有し、 C e qを 0. 3 5〜0. 44%に限定した鋼 を、 熱間圧延後、 直接焼入れし、 あるいは 9 0 0〜9 5 0°Cに再加 したのち焼 入れし、 3 0 0〜 5 0 0 °Cで焼戻し、 鋼板表面硬さを 3 0 0 H V (Vickers hardness)以上とする耐磨耗鋼板の製造方法が提案されている。  For example, Japanese Patent Application Laid-Open No. Sho 62-1-4 2 7 2 6 contains C: 0.1 0-0.19%, contains appropriate amounts of Si and Mn, and C eq is 0.3. The steel limited to 5 to 0.44% is directly quenched after hot rolling, or re-heated to 90 to 95 ° C and then quenched, at 300 to 500 ° C. There has been proposed a method for producing a wear-resistant steel sheet having a tempering and steel sheet surface hardness of 300 HV (Vickers hardness) or more.
特開昭 6 3 - 1 6 9 3 5 9号公報には、 C : 0. 1 0〜0. 20 %を含み、 S i、 Mn、 P、 S、 N、 A 1を適正量に調整し、 あるいは更に C u、 N i、 C r、 Mo、 Bの 1種以上を含有する鋼に、 熱間圧延後、 直接焼入れするか、 あるいは 圧延後、 放冷した後、 再加熱して焼入れし、 340HB (Brinell hardness) 以 上の硬さを付与する、 耐磨耗厚鋼板の製造方法が提案されている。 JP-A-6 3-1 6 9 3 5 9 includes C: 0.1 0 to 0.20% and adjusts Si, Mn, P, S, N, and A 1 to appropriate amounts. , Or further to steel containing one or more of Cu, Ni, Cr, Mo, B after hot rolling and directly quenching, or after rolling and allowing to cool, then reheating and quenching 340HB (Brinell hardness) A method of manufacturing a wear-resistant thick steel plate that imparts the above hardness has been proposed.
特開平 1一 1 4 2 0 2 3号公報には、 C : 0. 0 7〜0. 1 7 %を含み、 S i、 Mn、 P、 S、 N、 A 1を適正量に調整し、 あるいは更に C u、 N i、 C r、 M o、 Bの 1種以上を含有する鋼に、 熱間圧延後、 直ちに焼入れするか、 あるいは 一旦室温まで空冷した後に、再加熱して焼入れし、表面硬さが 3 2 1 HB以上で、 曲げ加工性に れた鋼板とする耐磨耗鋼板の製造方法が提案されている。  Japanese Patent Laid-Open No. 1 1 4 2 0 2 3 includes C: 0.07 to 0.17%, and adjusts Si, Mn, P, S, N, and A1 to appropriate amounts, Alternatively, steel containing one or more of Cu, Ni, Cr, Mo, and B is either quenched immediately after hot rolling, or once cooled to room temperature and then reheated and quenched. A method for producing a wear-resistant steel sheet having a surface hardness of 3 2 1 HB or more and a bending workable steel sheet has been proposed.
特開昭 6 2 - 1 4 2 7 2 6号公報、 特開昭 6 3— 1 6 9 3 5 9号公報および、 特開平 1— 1 4 20 2 3号公報に記載された技術は、 合金元素を多量に添加して、 固溶 ¾Sィヒ、 so丄 id solution hardening)、 変態 ■ (匕 (transformation hardening)、 析出硬化(precipitation hardening)等を活用して、 高硬度化することで、 耐磨 耗特性を向上させている。 しかし、 合金元素を多量に添加して、 固溶硬化、 変態 硬化、 析出硬化等を活用して、 高硬度化した場合には、 溶接性(voidability)、 加工性(formability)が低下するようになり、 更に製造コストが高騰する。  The techniques described in Japanese Patent Application Laid-Open Nos. Sho 6 2-1 4 2 7 2 6, Japanese Patent Application Laid-Open No. 6 3-1 6 9 3 5 9, and Japanese Patent Application Laid-Open No. 1-14 20 2 3 By adding a large amount of elements, solid solution ¾Sig, so 丄 id solution hardening), transformation ■ (匕 (transformation hardening), precipitation hardening (precipitation hardening), etc. are used to increase the hardness. However, when a large amount of alloying elements are added and solid solution hardening, transformation hardening, precipitation hardening, etc. are used to increase the hardness, weldability (voidability) and processing are improved. As a result, the formability deteriorates and the manufacturing cost increases.
ところで、 耐磨耗性が要求される部材の場合、 使用条件によっては、 表面およ ぴ表面近傍のみを高硬度化して、 耐磨耗性を向上させるだけでも良い場合があり、 このような場合に用いられる鋼材は、 C r、 Mo等.の合金元素を多量に添加する 必要はなく、 焼入れ処理等の熱処理を施して、 表面および表面近傍のみを焼入れ 組織 (hardened structure)とすること力 S考えられる。  By the way, in the case of a member that requires wear resistance, depending on the usage conditions, it may be necessary to increase the hardness of only the surface and the vicinity of the surface to improve the wear resistance. It is not necessary to add a large amount of alloying elements such as Cr, Mo, etc. to the steel used in the steel, and it is possible to apply a heat treatment such as quenching to form a hardened structure only on the surface and the vicinity of the surface. Conceivable.
しかし、 焼入れ組織の高硬度化のためには、 一般に、 鋼材の固溶 C量を増加さ せる必要があるが、 固溶 C量の増加は、 溶接性の低下、 曲げ加工性の低下などを 招き、 特に曲げ加工性の低下は部材として必要な曲げ加工が制限され使用条件が 限定される。  However, in order to increase the hardness of the hardened structure, it is generally necessary to increase the amount of solute C in the steel material. However, an increase in the amount of solute C causes a decrease in weldability, bending workability, etc. In particular, a decrease in bending workability restricts the bending work required as a member and limits the use conditions.
このため、 過度に高硬度化を図ることなく、 耐磨耗特性を向上きせることが可 能な耐磨耗鋼板が要望され、特許 3 0 8 9 8 8 2号公報には、 C: 0. 1 0〜0. 4 5 %を含み、 S i、 Mn、 P、 S、 Nを適正量に調整し、 さらに T i : 0. 1 0〜 1. 0%含有し、 平均粒径 0. 5 /z m以上の T i C析出物あるいは T i Cと T i N、 T i Sとの複合析出物を 40 0個/ mm2以上を含み、 T i *カ 0. 0 5 %以上 0. 4%未満とする表面性状に優れた耐磨耗鋼が提案されている。 For this reason, there is a demand for a wear-resistant steel sheet that can improve the wear resistance without excessively increasing the hardness. Japanese Patent No. 3 0 8 9 8 8 2 discloses C: 0. 1 to 0 to 0.4 5%, Si, Mn, P, S, and N are adjusted to appropriate amounts, and Ti: 0.1 to 1.0 to 1.0%, with an average particle size of 0.5 / zm or more T i C precipitates or T i C and T i N, the composite precipitates with T i S includes a 40 0 / mm 2 or more, T i * Ca 0.0 A wear-resistant steel having an excellent surface property of 5% or more and less than 0.4% has been proposed.
更に、 特開平 4一 4 1 6 1 6号公報には、 C : 0. 0 5〜 0. 4: 5 %、 S i : 0. 1〜 1. 0 %、 Mn : 0. 1〜 1. 0 %、 T i : 0. 0 5〜 1. 5 %を含有 し、表面硬度をブリネル硬さ(Brinellhardness)で 40 1以下とすることにより、 曲げ加工性を向上させた耐磨耗鋼板の製造方法が提案されている。  Furthermore, Japanese Patent Laid-Open No. 4 1 6 1 6 discloses that C: 0.05 to 0.4: 5%, S i: 0.1 to 1.0%, Mn: 0.1 to 1. Manufacture of wear-resistant steel plates with improved bending workability by containing 0%, T i: 0.05 to 1.5%, and having a surface hardness of 40 1 or less in terms of Brinellhardness A method has been proposed.
特許 3 0 8 9 8 8 2号公報、 特開平 4 -4 1 6 1 6号公報に記載された技術に よれば、 凝固時に粗大な T i Cを主体とする析出物を生成させ、 過度に高硬度化 させることなく安価に耐磨耗性を向上させることが可能である。  According to the techniques described in Japanese Patent No. 3 0 8 9 8 8 2 and Japanese Patent Application Laid-Open No. 4 -4 1 6 16, a precipitate mainly composed of coarse Ti C is generated during solidification, and excessively It is possible to improve the wear resistance at low cost without increasing the hardness.
しかしながら、 特許 3 0 8 9 8 8 2号公報に記載された技術では、 焼入れ熱処 理を実施し、組織を焼入れのままのマルテンサイ ト組織(martensitic structure) としているため、 強度が高く、 その結果、 曲げ加工時の変形抵抗(deformation resistance)が高くなるため、 曲げ加工が容易であるとは云い難く、 曲げ加工性 に問題を残していた。  However, in the technology described in Japanese Patent No. 3 0 8 9 8 8 2, quenching heat treatment is performed and the structure is made into a martensitic structure as it is quenched. Since deformation resistance at the time of bending increases, it is difficult to say that bending is easy, leaving a problem in bending workability.
特開平 4一 4 1 6 1 6号公報に記載された技術は、 曲げ加工性を確保するため、 表面硬度をブリネル硬さで 40 1以下に規定しているが、 合金元素の添加量が多 いため、引張強度は 7 8 OMP aを超え、加工時の荷重を低減させる観点からは、 十分な曲げ加工性が達成されているわけではない。  In the technique described in Japanese Patent Laid-Open No. 4 1 6 1 6, the surface hardness is regulated to 401 or less in terms of Brinell hardness in order to ensure bending workability, but the amount of alloying elements added is large. Therefore, the tensile strength exceeds 7 8 OMPa, and sufficient bending workability is not achieved from the viewpoint of reducing the load during processing.
また、 特開昭 6 2— 1 4 2 7 2 6号公報、 特開昭 6 3 - 1 6 9 3 5 9号公報、 特開平 1— 14 2 0 2 3号公報、 特開平 4一 4 1 6 1 6号公報のいずれに記載の 耐磨耗鋼でも熱処理を実施することが必須であり、 製造ェ期、 製造コス ト (.production cost)面で課題を残していに。  In addition, Japanese Patent Laid-Open Nos. 62-14-272 6, Japanese Patent Laid-Open No. 63-1 693 559, Japanese Patent Laid-Open No. 1-14 2 023, Japanese Patent Laid-Open No. Hei 4 1 4 1 6 1 6 It is essential to perform heat treatment on the wear-resistant steel described in No. 6 publication, leaving problems in terms of production period and production cost.
そこで、 本発明は、 熱間圧延のままで、 熱処理を施さずに製造可能で、 耐磨耗 性おょぴ曲げ加工性に優れた耐磨耗鋼板おょぴその製造方法を提供することを 目的とする。 発明の開示  Therefore, the present invention provides a method for producing a wear-resistant steel plate that can be produced without being subjected to heat treatment while being hot-rolled, and that has excellent wear resistance and bendability. Objective. Disclosure of the invention
発明者らは、 上記した目的を達成するために、 耐磨耗栓と曲げ加工性に影響す る各種要因について、 鋭意研究を重ね、 T i と Cを含有する成分系を有し、 金属 組織(microstructure of base metal)力 S圧延のままのフェライ ト一ノ ーライ ト組 織 (ferrite and pearlite structure)の ¾合組織 (complex structureノを基地相 (base phase)とし、 力つ、 マトリクス (matrix)中に硬質な第二相 (second phase) (硬質相(hard phase) : T i系炭化物) を分散させることにより、 耐磨耗性を確 保したまま、 曲げ加工時の加工荷重低減が可能、 つまり、 曲げ加工性の改善が可 能であることを見出した。 In order to achieve the above-mentioned objectives, the inventors have an influence on wear-resistant plugs and bending workability. As a result of diligent research on various factors, it has a component system containing Ti and C, and has a microstructure of base metal force. S Ferrite and pearlite structure as-rolled ) Is a complex structure (base phase), and a hard second phase (hard phase : Ti-based carbide) in the matrix. It has been found that by dispersing, it is possible to reduce the processing load during bending while maintaining wear resistance, that is, it is possible to improve bending workability.
本発明は得られた知見を基に、 更に検討を加えてなされたもので、 すなわち、 本発明は、  The present invention has been made on the basis of the further findings based on the obtained knowledge.
1. 質量0 /。で、 C : 0. 0 5〜0. 3 5%、 S i : 0. 0 5〜 1. 0%、 Mn : 0. 1〜 2. 0 %、 T i : 0. 1〜 1. 2 %、 A I : 0. 1 %以下、 更に、 C u : 0. 1〜 1. 0 %、 N i : 0. 1〜 2. 0 %、 C r : 0. 1〜 1. 0 %、 M o : 0. 0 5〜; 1. 0 %、 W : 0. 0 5〜; 1. 0%、 B : 0. 0 0 0 3〜0. 0 0 3 0%の 1種または 2種以上を含有し、 (1 ) 式で示される D I *が 6 0未満であ り、 残部 F eおよび不可避的不純物からなる加工性に優れた耐磨耗鋼板。 1. Mass 0 /. C: 0.05 to 0.35%, S i: 0.05 to 1.0%, Mn: 0.1 to 2.0%, T i: 0.1 to 1.2% , AI: 0.1% or less, Cu: 0.1-1.0%, Ni: 0.1-2.0%, Cr: 0.1-1.0%, Mo: 0.0%, 1.0%, W: 0.05 ~; 1.0%, B: 0. 0 0 0 3 to 0.0 0 3 0% 1 type or 2 types or more A wear-resistant steel sheet having an excellent workability consisting of the balance Fe and inevitable impurities, wherein DI * represented by the formula (1) is less than 60.
D I * = 3 3. 8 5 X (0. 1 X C *) °" 5 X (0. 7 X S i + 1 ) X ( 3. 3 3 XMn + 1 ) X (0. 3 5 X C u + 1 ) X (0. 3 6 XN i + 1 ) X (2. 1DI * = 3 3. 8 5 X (0. 1 XC *) ° " 5 X (0. 7 XS i + 1) X (3. 3 3 XMn + 1) X (0. 3 5 XC u + 1) X (0. 3 6 XN i + 1) X (2.1
6 X C r + 1 ) X (3 ΧΜο * + 1) X ( 1. 5 XW* + 1) ( 1 ) 但し、 C * = C— 1Z4 X (T i— 4 8/ 1 4 N)、 Mo * =Mo X (1— 0. 5 X (T i - 4 8 / 1 4 N))、 W* =WX ( 1一 0. 5 X (T i一 4 8/1 4N)) C, S i , Mn, C , N i, C r , Mo, W, T i , Nは含有量 (mass%) 2. 更に、 mass%で N b : 0. 0 0 5〜 1. 0%、 V : 0. 0 0 5〜 1. 0 %の 1種または 2種を含有することを特徴とする 1記載の耐磨耗鋼板。 6 XC r + 1) X (3 ΧΜο * + 1) X (1.5 XW * + 1) (1) However, C * = C— 1Z4 X (T i— 4 8/1 4 N), Mo * = Mo X (1—0.5 X (T i-4 8/1 4 N)), W * = WX (1 1 0.5 X (T i 1 4 8/1 4N)) C, S i, Mn, C, Ni, Cr, Mo, W, Ti, and N are contained (mass%) 2. Further, mass% is Nb: 0. 0 0 5 to 1.0%, V: 0. 2. The wear-resistant steel plate according to 1, which contains 1 or 2 types of 0 0 to 1.0%.
3. 更に、 金属組織が、 フェライ トーパーライ ト相を基地相とし、 該基地相中に 硬質相が分散していることを特徴とする 1または 2に記載の耐磨耗鋼板。  3. The wear-resistant steel sheet according to 1 or 2, wherein the metallographic structure has a ferrite phase as a matrix phase and a hard phase is dispersed in the matrix phase.
4. 更に、 前記硬質相の分散密度が、 4 0 0個/ mm2以上であることを特徴と する 3に記載の耐磨耗鋼板。 5. 1または 2記载の組成を有する鋼片を熱間圧延後、 2で 3以下の冷却速度 で 400°C以下まで冷却することを特徴とする加工性に優れた耐磨耗鋼板の製 造方法。 4. The wear-resistant steel sheet according to 3, wherein the hard phase has a dispersion density of 400 pieces / mm 2 or more. 5. After hot rolling a steel slab having the composition described in 1 or 2, it is cooled to 400 ° C or less at a cooling rate of 3 or less in 2 to produce a wear-resistant steel plate with excellent workability. Manufacturing method.
6. 更に、 熱間圧延での、 920°C以下での圧下率を 30%以上とし、 圧延終了 温度を 9 00で以下とすることを特徴とする 5記載の加工性に優れた耐磨耗鋼 の製造方法。  6. Further, in hot rolling, the rolling reduction at 920 ° C. or lower is set to 30% or more, and the rolling end temperature is set to 900 or lower, and wear resistance with excellent workability according to 5, Steel manufacturing method.
なお、 ここで、 上記の硬質相は、 T i Cなどの T i系炭化物とすることが好ま しく、 T i C、 (Nb T i ) C、 (VT i ) C、 あるいは T i C中に Mo、 Wが固 溶したものが例示できる。  Here, the hard phase is preferably a Ti-based carbide such as T i C, and is contained in T i C, (Nb T i) C, (VT i) C, or T i C. An example is a solution in which Mo and W are dissolved.
本発明によれば、 耐磨耗性を劣化させること無く曲げ加工性を向上した耐磨耗 鋼板が熱間圧延後、 熱処理を施さずに得られるので、 熱処理コス ト低減おょぴ、 製造ェ期短縮などの合理的な生産が可能で産業上格段の効果を奏する。 図面の簡単な説明  According to the present invention, a wear-resistant steel sheet having improved bending workability without degrading the wear resistance can be obtained after hot rolling without being subjected to heat treatment. Reasonable production, such as shortening the production period, is possible and has a remarkable industrial effect. Brief Description of Drawings
図 1 : 耐磨耗性に及ぼす T i添加量の影響を示す図。  Figure 1: A graph showing the effect of Ti addition on wear resistance.
図 2 : 引張特性 (降伏強さ(yield strength) : Y S, 引張強さ(tensile strength) : T S) に及ぼす T i添加量の影響を示す図。  Fig. 2: Diagram showing the effect of Ti addition on tensile properties (yield strength: Y S, tensile strength: T S).
図 3: 耐磨耗性に及ぼす D I *の影響を示す図。  Figure 3: Diagram showing the effect of D I * on wear resistance.
図 4: 引張特性 (降伏強さ : YS, 引張強さ : TS) に及ぼす D I *の影響 を示す図。 発明を実施するための最良の形態  Figure 4: Diagram showing the effect of D I * on tensile properties (yield strength: YS, tensile strength: TS). BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る耐磨耗鋼板で成分組成、 金属組織を規定した理由について説明す る。  The reason why the component composition and the metal structure are defined in the wear-resistant steel sheet according to the present invention will be described.
(成分組成) 以下の%表示は、 いずれも massy。とする。  (Ingredient composition) All percentages below are massy. And
C : 0. 05〜0. 35%  C: 0.05-0.35%
Cは、 金属組織においてマトリタスの硬度を向上させて耐磨耗性を向上させる とともに、硬質な第二相(以下、硬質相ともいう) としての T i炭化物を形成し、 耐磨耗性の向上に、 有効な元素であり、 このような効果を得るためには、 0. 0 5 %以上の含有を必要とする。 C improves the wear resistance by improving the hardness of Matritas in the metal structure At the same time, Ti carbide is formed as a hard second phase (hereinafter also referred to as a hard phase), and is an effective element for improving wear resistance. 0 Containing 5% or more is required.
一方、 ◦. 3 5 %を超える Cの含有は、 硬質相としての炭化物が粗大になり、 曲げ加工時に炭化物を起点として割れが発生する。このため、 Cは 0. 05〜0. 35%の範囲に規定した。 なお、 好ましくは 0. 1 5〜0. 32%である。  On the other hand, ◦ When C content exceeds 35%, the carbide as the hard phase becomes coarse, and cracking occurs starting from the carbide during bending. For this reason, C is specified in the range of 0.05 to 0.35%. In addition, Preferably it is 0.15 to 0.32%.
T i : 0. 1〜 1. 2 %  T i: 0.1 to 1.2%
T iは、 Cとともに本発明における重要な元素であり、 耐磨耗性向上に寄与す る硬質相としてで i炭化物を形成する必須の元素である。 このような効果を得る ためには、 0. 1 %以上の含有を必要とする。  Ti, together with C, is an important element in the present invention, and is an essential element that forms carbides as a hard phase that contributes to improved wear resistance. In order to obtain such an effect, a content of 0.1% or more is required.
図 1に耐磨耗性に及ぼす T i添加量の影響を、 図 2に引張特性 (降伏強さ : Y S, 引張強さ : TS) に及ぼす T i添加量の影響を示す。 図 1において縦軸はラ バーホイール磨耗試験(rubber wheel abrasion test)における磨耗量を軟鋼(mild steel) (S S 400) の磨耗減量(abrasion weight loss)と比較した耐磨耗比を 示す。  Fig. 1 shows the effect of Ti addition on wear resistance, and Fig. 2 shows the effect of Ti addition on tensile properties (yield strength: Y S, tensile strength: TS). In Fig. 1, the vertical axis shows the wear resistance ratio of the rubber wheel abrasion test compared to the abrasion weight loss of mild steel (S S 400).
T i添加量が 0. 1 %以上で、 耐磨耗性が一般的な耐磨耗鋼と同程度以上の特 性が得られ、 かつ、 TSが 80 OMP a以下まで低下している。 すなわち、 従来 の焼入れ熱処理をした耐磨耗鋼板と同等の磨耗特性を有しつつ、 加工性を改善す ることが可能となる。  When the Ti addition amount is 0.1% or more, the wear resistance is as high as that of general wear-resistant steel, and TS is reduced to 80 OMPa or less. In other words, it is possible to improve workability while having the same wear characteristics as the conventional wear-resistant steel plate subjected to quenching heat treatment.
ラバーホイール磨耗試験における供試鋼は、 massy。で、 0. 3 3%C— 0. 3 5 % S i - 0. 82 %Mn - 0. 05〜 1. 2%T iを含む鋼片を、 1 9 mm t に圧延後、 冷却速度: 0. 5°CZ Sで空冷して製造した。 The test steel in the rubber wheel wear test is massy. 0.3% 3% C— 0.35% S i-0.82% Mn-0.05-1. After rolling a steel slab containing 2% T i to 19 mm t, cooling rate: It was produced by air cooling at 0.5 ° CZ S.
得られた鋼板について、 引張試験おょぴ、 磨耗試験を実施した。 引張試験は、 J I S Z 2201の規定に準拠して、 J I S 5号試験片を採取して引張試験を実 施し、 引張特性 (引張強さ : TS、 降伏強さ : YS) を求めた。  The obtained steel sheet was subjected to a tensile test and an abrasion test. In the tensile test, J I S 5 test specimens were collected and subjected to a tensile test in accordance with the provisions of J I S Z 2201, and the tensile properties (tensile strength: TS, yield strength: YS) were obtained.
磨耗試験は、 ASTM G 6 5に準拠したラバーホイール磨耗試験によって実 施し、 試験結果を軟鋼 (S S 400) の磨耗量と各供試鋼板の磨耗量の比を耐磨 耗比として整理した。耐磨耗比が大きいほど、磨耗特性に優れていることを示す。 比較試験として、 一般的な熱処理で製造する耐磨耗鋼板についても上記と同様 の試験を実施した。 得られた結果を、 図 1と図 2に従来鋼で示す。 ここでいう、 一般的な耐磨耗鋼板とは、 0. 1 5mass¾C— 0.35raass%Si— 1.50 mass%Mn— 0.13 mass%Cr-0.13 mass%Mo-0.01 mass%Ti-0.0010 mass%Bの組成の鋼板を熱間圧延し た後、 900°Cに再加熱後、 焼入れ熱処理を施した材料であり、 ブリネル硬さで 4 0 0 HB程度の鋼板をさす。 The abrasion test is performed by a rubber wheel abrasion test in accordance with ASTM G 65, and the test result is determined by the ratio of the wear amount of mild steel (SS 400) to the wear amount of each test steel plate. Organized as wear ratio. The larger the wear resistance ratio, the better the wear characteristics. As a comparative test, the same test as described above was performed for wear-resistant steel sheets produced by general heat treatment. The results obtained are shown in Fig. 1 and Fig. 2 for conventional steel. Here, the general wear-resistant steel sheet is: 0.15 mass¾C— 0.35raass% Si— 1.50 mass% Mn— 0.13 mass% Cr-0.13 mass% Mo-0.01 mass% Ti-0.0010 mass% B This steel is a material that has been hot-rolled and then reheated to 900 ° C and then subjected to a quenching heat treatment, and it has a Brinell hardness of about 400 HB.
一方、 T iの含有量が、 1. 2%を越える含有は、 硬質相 (T i系炭化物) が 粗大化し、 曲げ加工時に粗大な硬質相を起点として割れが発生する。 このため、 Τ ΗΐΟ. 1〜 1. 2 %、 好ましくは、 0. 1〜0. 8 %の範囲に限定した。  On the other hand, if the Ti content exceeds 1.2%, the hard phase (Ti carbide) becomes coarse, and cracks occur starting from the coarse hard phase during bending. Therefore, it is limited to the range of Τ ΗΐΟ. 1 to 1.2%, preferably 0.1 to 0.8%.
S i : 0. 0 5〜 1. 0 %  S i: 0.0 5 to 1.0%
S iは、 脱酸元素(deoxidizing element)として有効な元素であり、 このよう な効果を得るためには 0. 0 5 %以上の含有を必要とする。 また、 S iは、 鋼に 固溶して固溶強化により高硬度化に寄与する有効な元素であるが、 1. 0%を超 える含有は、 延性(ductility)、 靭性(toughness)を低下させ、 さらに介在物量 (inclusion content)が増加するなどの問題を生じる。 このため、 1は0. 0 5〜 1. 0 %の範囲に限定することが好ましい。 なお、 より好ましくは 0. 0 5 〜 0. 40 %である。  Si is an effective element as a deoxidizing element, and in order to obtain such an effect, it needs to be contained in an amount of 0.05% or more. In addition, Si is an effective element that contributes to high hardness by solid solution strengthening by solid solution strengthening, but inclusion exceeding 1.0% lowers ductility and toughness. In addition, problems such as an increase in inclusion content occur. For this reason, 1 is preferably limited to a range of 0.05 to 1.0%. More preferably, it is 0.05 to 0.40%.
M n : 0. 1〜 2. 0 %  M n: 0.1 to 2.0%
Mnは、 固溶強化により高硬度化に寄与する有効な元素であり、 このような効 果を得るためには、 0. 1 %以上の含有を必要とする。 一方、 2. 0 %を超える 含有は、 溶接性を低下させる。 このため、 Mnは 0. 1〜 2. 0 %の範囲に限定 することが好ましい。 なお、 より好ましくは 0. 1〜 1. 6 0 %である。  Mn is an effective element that contributes to high hardness by solid solution strengthening, and in order to obtain such an effect, it needs to contain 0.1% or more. On the other hand, if the content exceeds 2.0%, weldability is lowered. For this reason, Mn is preferably limited to a range of 0.1 to 2.0%. More preferably, it is 0.1 to 1.6%.
A 1 : 0. 1 %以下  A 1: 0.1% or less
A 1は、 脱酸元素(deoxidizing element)として作用し、 このような効果は、 0. 0 0 20 %以上の含有で認められるが、 0. 1 %を超える多量の含有は、 鋼 の清浄度(cleanness)を低下させる。 このため、 A 1は 0.. 1 %以下に限定する ことが好ましい。 A 1 acts as a deoxidizing element, and such an effect is recognized at a content of 0.0 20% or more, but a large content exceeding 0.1% is the cleanliness of steel. Reduce (cleanness). For this reason, A 1 is limited to 0 .. 1% or less. It is preferable.
C u : 0. :!〜 1. 0 %、 N i : 0. 1〜 2. 0 %、 C r : 0. 1〜:; . 0 %、 M o : 0. 0 5〜; I. 0%、 W : 0. 0 5〜1. 0%、 B : 0. 0003 ~ 0. 0030 %の 1種または 2種以上  C u: 0. ~ 1.0%, Ni: 0.1 ~ 2.0%, Cr: 0.1 ~ :; .0%, Mo: 0.05 ~; I. 0%, W: 0.0 5 to 1.0%, B: 0.0003 to 0.0003%, 1 type or 2 or more types
C u : 0. 1〜 1. 0 % .  C u: 0.1 to 1.0%.
C uは、 固溶することにより焼入れ性(hardenability)を向上させる元素であ り、 この効果を得るためには 0. 1 %以上の含有を必要とする。 一方、 1. 0% を超える含有は、 熱間加工性を低下させる。 このため、 Cuは 0. 1〜1. 0% の範囲に限定することが好ましい。 なお、 より好ましくは 0. 1~0. 5%であ る。  Cu is an element that improves hardenability by dissolving in solid solution. To obtain this effect, Cu must be contained in an amount of 0.1% or more. On the other hand, if the content exceeds 1.0%, hot workability is lowered. For this reason, Cu is preferably limited to the range of 0.1 to 1.0%. More preferably, the content is 0.1 to 0.5%.
N i : 0. 1〜 2. 0 %  N i: 0.1 to 2.0%
N iは、 固溶することにより焼入れ性を向上させる元素であり、 このような効 果はひ. 1 %以上の含有で顕著となる。 一方、 2. 0%を越える含有は、 材料コ ス トを著しく上昇させる。 このため、 N iは 0. 1〜2. 0%の範囲に限定する ことが好ましい。 なお、 より好ましくは 0. 1〜1. 0%である。  Ni is an element that improves the hardenability by dissolving it in a solid solution, and such an effect becomes remarkable when it is contained in an amount of 1% or more. On the other hand, if the content exceeds 2.0%, the material cost increases remarkably. Therefore, Ni is preferably limited to a range of 0.1 to 2.0%. More preferably, the content is 0.1 to 1.0%.
C r : 0. 1〜 1. 0 %  C r: 0.1 to 1.0%
C rは、 焼入れ性を向上させる効果を有し、 このような効果を得るためには、 0. 1 %以上の含有を必要とするが、 1. 0%を超える含有は、 溶接性を低下さ せる。 このため、 〇 は0. 1〜1. 0 %の範囲に限定十ることが好ましい。 な お、 より好ましくは 0. 1〜0. 8%である。 さらに好ましくは 0. 4〜0. 7% である。  Cr has the effect of improving hardenability. To obtain such an effect, it needs to be contained in an amount of 0.1% or more. However, if it exceeds 1.0%, the weldability is lowered. Let For this reason, it is preferable that O is limited to the range of 0.1 to 1.0%. More preferably, the content is 0.1 to 0.8%. More preferably, it is 0.4 to 0.7%.
Mo : 0. 05〜; L. 0%  Mo: 0.05-; L. 0%
Moは、 焼入れ性を向上させる元素である。 このような効果を得るためには、 0. 05 %以上の含有を必要とする。 一方、 1. 0%を越えて含有すると溶接性 を低下させる。 そのため、 Moは 0. 05〜1. 0 %の範囲に限定することが好 ましい。 なお、 より好ましくは、 0. 05〜0. 40%である。  Mo is an element that improves hardenability. In order to obtain such an effect, the content of 0.05% or more is required. On the other hand, if it exceeds 1.0%, the weldability is lowered. Therefore, Mo is preferably limited to the range of 0.05 to 1.0%. More preferably, it is 0.05 to 0.40%.
W: 0. 05〜: L . 0 % wは、焼入れ性を向上させる元素である。このような効果を得るためには、 0. 0 5 %以上の含有を必要とする。 一方、 1 . 0 %を越えて含有すると溶接性を低 下させる。そのため、 Wは 0. 0 5 ~ 1 . 0 %の範囲に限定することが好ましい。 なお、 より好ましくは、 0. 0 5〜0. 4 0 %である。 なお、 M oや Wは、 T i Cに固溶するため、 硬質相の量を増加させる効果も有する。 W: 0.05-: L. 0% w is an element that improves hardenability. In order to obtain such an effect, the content of 0.05% or more is required. On the other hand, if the content exceeds 1.0%, the weldability is lowered. Therefore, W is preferably limited to a range of 0.05 to 1.0%. More preferably, it is 0.05 to 0.40%. Since Mo and W are dissolved in TiC, they also have the effect of increasing the amount of hard phase.
B : 0. 0 0 0 3〜0. 0 0 3 0 %  B: 0. 0 0 0 3 to 0.0 0 3 0%
Bは、 粒界(grain boundary)に偏析し、 粒界を強化して、 靭性向上に有効に寄 与する元素であり、 このような効果を得るためには、 0. 0 0 0 3 %以上の含有 が必要である。 一方、 0. 0 0 3 0 %を超える含有は、 溶接性を低下させる。 こ のため、 Bは、 0. 0 0 0 3 ~ 0. 0 0 3 0 %の範囲に限定することが好ましい。 なお、 より好ましくは、 0. 0 0 0 3〜0. 0 0 1 5 %である。  B is an element that segregates at the grain boundary and strengthens the grain boundary to effectively contribute to the improvement of toughness. In order to obtain such an effect, 0.000% or more Must be included. On the other hand, if it exceeds 0.0 0 30%, the weldability is lowered. For this reason, B is preferably limited to the range of 0.0 0 0 3 to 0.0 0 30%. More preferably, it is 0.0 0 0 3 to 0.0 0 15%.
D I * < 6 0  D I * <6 0
本発明で D I * (焼入れ性指標値(hardenability index)) は、 D I * = 3 3 . 8 5 X ( 0. 1 X C *) °· 5 X ( 0. 7 X S i + 1 ) X ( 3. 3 3 XMn + 1 ) X ( 0. 3 5 X C u + 1 ) X ( 0 . 3 6 X N i + 1 ) X ( 2. 1 6 X C r + 1 ) X ( 3 X M o * + 1 ) X ( 1 . 5 XW* + 1 )、 ここで C * = C一 1 / 4 X (T i - 4 8 / 1 4 N), M o * =M o X ( 1 — 0. 5 X (T i - 4 8 / 1 4 Ν)) W* =W ( 1 — 0. 5 X (T i — 4 8 / 1 4 N)) で定義し、 D I *く 6 0とする。 ここで、 C, S i, Mn , C u, N i, C r , M o , W, T i , Nは含有量 (mass%) である。 図 3に、 耐磨耗性に及ぼす D I *の影響を、 図 4に引張特性 (降伏強 さ : Y S , 引張強さ : T S ) に及ぼす D I *の影響を示す。 図 3において縦軸は ラバーホイール磨耗試験における磨耗量を軟鋼 (S S 4 0 0 ) の磨耗量と比較し た耐磨耗比を示す。 耐磨耗比が大きいほど、 磨耗特性に優れていることを示す。 図 3および, 図 4より、 D I *力 S 6 0未満の場合、 引張強さ : T Sが 8 0 0 M P a以下と低強度であるにもかかわらず、 磨耗量が一般的な耐磨耗鋼と同程度で. あることが認められる。 In the present invention, DI * (hardenability index value) is DI * = 33.85 X (0.1 XC *) ° · 5 X (0.7 XS i + 1) X (3. 3 3 XMn + 1) X (0.35 XC u + 1) X (0.36 XN i + 1) X (2. 16 XC r + 1) X (3 XM o * + 1) X ( 1.5 XW * + 1), where C * = C 1/4 X (T i-4 8/1 4 N), M o * = M o X (1 — 0.5.5 X (T i- 4 8/1 4 Ν)) W * = W (1 — 0.5. 5 (T i — 4 8/1 4 N)). Here, C, Si, Mn, Cu, Ni, Cr, Mo, W, Ti, and N are contents (mass%). Fig. 3 shows the effect of DI * on wear resistance, and Fig. 4 shows the effect of DI * on tensile properties (yield strength: YS, tensile strength: TS). In Fig. 3, the vertical axis shows the wear resistance ratio comparing the amount of wear in the rubber wheel wear test with the amount of wear of mild steel (SS 400). The higher the wear resistance ratio, the better the wear characteristics. From Fig. 3 and Fig. 4, when DI * force is less than S 60, tensile strength: Despite the low strength of TS of less than 800 MPa, wear amount is generally wear resistant steel It is recognized that
—方、 D I *が 6 0以上では、 磨耗性には優れているものの、 引張強さが 8 0 OMP a以上で、 加工性に劣る。 D I *が 60以上の場合、 フェライ ト -ベイナ ィ 卜組織(ferrite and bainite structure)となるためと推測される。 -On the other hand, when DI * is 60 or more, the wear resistance is excellent, but the tensile strength is 80 Above OMP a, workability is inferior. If DI * is greater than 60, it is presumed to be a ferrite and bainite structure.
ラバーホイール磨耗試験における供試鋼は、 m a s s %で 0. 34%C— 0. 22 % S i - 0. 55 %Mn - 0. 22 % T iに更に C u、 N i、 C r、 Mo、 Wの 1種あるいは 2種以上含み、 D I *が 40〜 1 20の鋼片を、 8 mm tに圧 延後、 空冷 (冷却速度: 1. 2°CZs) して製造した。  In the rubber wheel wear test, the test steel is 0.34% C— 0.22% S i-0.55% Mn-0.22% T i in addition to Cu, Ni, Cr, Mo. A steel piece containing one or more of W and having a DI * of 40 to 120 was rolled to 8 mm t and then air-cooled (cooling rate: 1.2 ° CZs).
得られた鋼板について、 引張試験および、 磨耗試験を実施した。 引張'試験は、 J I S Z 220 1の規定に準拠して、 J I S 5号試験片を採取して引張試験を実 施し、 引張特性 (引張強さ TS、 降伏強さ YS) を求めた。  The obtained steel sheet was subjected to a tensile test and an abrasion test. In the tensile test, in accordance with the provisions of JISZ2201, JIS5 test specimens were collected and subjected to a tensile test to determine tensile properties (tensile strength TS, yield strength YS).
ラバーホイール磨耗試験は AS TMG 65に準拠して実施し、 試験結果は軟鋼 (S S 400) の磨耗量と各鋼板の磨耗量の比を耐磨耗比として整理じた。  The rubber wheel wear test was conducted in accordance with AS TMG 65, and the test results were organized as the wear resistance ratio of the ratio of wear of mild steel (S S 400) to that of each steel plate.
上記した成分が基本成分で優れた耐磨耗性が得られるが、 本発明では、 更に耐 磨耗性を向上させるため、 硬質な第二相を形成し、 耐磨耗性に寄与する元素であ る Nb, Vを選択元素として含有することができる。  The above-mentioned components are basic components, and excellent wear resistance can be obtained. In the present invention, in order to further improve the wear resistance, a hard second phase is formed, which contributes to the wear resistance. Nb and V can be contained as selective elements.
N b : 0. 005〜: L . 0 %、  N b: 0.005 ~: L. 0%,
Nbは、 T i と複合して添加することにより、 T i、 Nbの複合炭化物 ((N b T i ) C) を形成し、 硬質な第二相として分散し、 耐磨耗性向上に有効に寄与 する元素である。 このような耐磨耗性向上効果を得るためには、 0. 005%以 上の含有を必要とする。 一方、 1. 0%を越える含有は、 硬質な第二相 (T i、 Nbの複合炭化物) が粗大化し、 曲げ加工時に硬質な第二相 (T i、 Nbの複合 炭化物) を起点として割れが発生する。 このため、 添加する場合は、 Nbは 0. 005〜1. 0%の範囲に限定することが好ましい。 なお、 より好ましくは 0. 1〜0. 5%である。  When Nb is added in combination with T i, it forms a composite carbide of T i and Nb ((N b T i) C), which is dispersed as a hard second phase and is effective in improving wear resistance. It is an element that contributes to In order to obtain such an effect of improving wear resistance, a content of 0.005% or more is required. On the other hand, if the content exceeds 1.0%, the hard second phase (Ti, Nb composite carbide) becomes coarse and cracks starting from the hard second phase (Ti, Nb composite carbide) during bending. Will occur. For this reason, when Nb is added, Nb is preferably limited to a range of 0.005 to 1.0%. More preferably, the content is 0.1 to 0.5%.
V : 0. 005〜1. 0%  V: 0.005 to 1.0%
Vは、 T i と複合して添加することにより、 Nbと同様に、 T i、 Vの複合炭 化物 ((VT i ) C) を形成レ、 硗質な第二相として分散し、 耐磨耗性向上に有 効に寄与する元素である。 このような耐磨耗性向上効果を得るためには、 0. 0 0 5 %以上の含有を必要とする。 When added in combination with T i, V, like Nb, forms a composite carbide of T i and V ((VT i) C), disperses it as a high-quality second phase, It is an element that contributes to effective wear resistance. In order to obtain such an effect of improving wear resistance, 0.0 0 Containing 5% or more is required.
一方、 1 . 0 %を超える含有は、 硬質な第二相 (T i、 Vの複合炭化物) が粗 大化し、 曲げ加工時に硬質な第二相 (T i、 Vの複合炭化物) を起点として割れ が発生する。 このため、 添加する場合は、 Vは 0. 0 0 5〜1 . 0 %の範囲に限 定することが好ましい。 なお、 より好ましくは 0. 1〜0. 5 %である。  On the other hand, if the content exceeds 1.0%, the hard second phase (Ti, V composite carbide) coarsens, and the second phase (Ti, V composite carbide) is the starting point during bending. Cracking occurs. For this reason, when V is added, V is preferably limited to a range of 0.05 to 1.0%. More preferably, the content is 0.1 to 0.5%.
なお、 N bと Vを複合して 加する場合には、 硬質な第二相が (N b VT i ) Cとなるだけで、 同様に耐磨耗性を向上させる効果を有する。 なお、 Nを含有す る場合には、 炭化物の他に、 炭窒化物が形成される場合もあるが、 同様の効果が 得られる。  When Nb and V are added in combination, only the hard second phase becomes (N b VT i) C, which has the same effect of improving wear resistance. When N is contained, carbonitrides may be formed in addition to carbides, but similar effects can be obtained.
但し、 N添加量が 0. 0 1 %を超える場合には、 炭窒化物中の Nの割合'が増加 し、 硬質第二相の硬度が低下するが、 耐磨耗性の劣化が懸念される。 従って、 N 添加量は 0. 0. 1 %以下とする.ことが好ましい。  However, when the amount of N added exceeds 0.01%, the ratio of N in the carbonitride increases and the hardness of the hard second phase decreases, but there is a concern that the wear resistance may deteriorate. The Therefore, it is preferable that the amount of N added is not more than 0.0. 1%.
(金属組織)  (Metal structure)
本発明に係る耐磨耗鋼板は、 金属組織を、 フェライ トーパーライ ト相を基地相 とし、 当該基地相中に硬質相 (硬質な第二相) が分散した組織とする。 基地相と は体積率で 9 0 %以上有することを意味しており、 本発明に係る鋼板は、 フェラ ィ トとパーライ トの 2つの相が全体の 9 0 %以上を占めている。  In the wear-resistant steel sheet according to the present invention, the metal structure is a structure in which the ferrite phase is a base phase and a hard phase (hard second phase) is dispersed in the base phase. The base phase means 90% or more by volume ratio, and in the steel sheet according to the present invention, the two phases of ferrite and perlite occupy 90% or more of the whole.
更に、 そのうち、 フェライ ト相の体積率は 7 0 %以上であり、 且つ、 円相当径 で平均粒径 2 0 μ η のフェライ ト相であることが望ましい。 基地相は加工性を考 盧して、 ブリネル硬度で 3 0 0 ΗΒ以下とすることが好ましい。  Further, among them, the ferrite phase preferably has a volume fraction of 70% or more and a ferrite phase with an equivalent circle diameter and an average particle diameter of 20 μη. In consideration of workability, it is preferable that the base phase has a Brinell hardness of 300 or less.
硬質相としては、 T i Cなどの T i系炭化物とすることが好ましく、 T i C、 (N b T i ) C、 (VT i ) C、 あるいは T i C中に M o、 Wが固溶したものが 例示できる。  The hard phase is preferably a Ti carbide such as TiC, and Mo and W are solid in TiC, (NbTi) C, (VTi) C, or TiC. The melted material can be exemplified.
なお、 硬質相の大きさは、 特に限定しないが、 耐磨耗性の観点からは、 0. 5 μ m以上 5 0 μ m以下程度とすることが好ましい。 また、 硬質相の分散密度は、 耐磨耗性の観点から、 4 0 0個/" mm 2以上とすることが好ましい。 The size of the hard phase is not particularly limited, but is preferably about 0.5 μm or more and 50 μm or less from the viewpoint of wear resistance. Further, the dispersion density of the hard phase is preferably 400 pieces / "mm 2 or more from the viewpoint of wear resistance.
尚、 硬質相の大きさは、 各硬質相の面積を測定し、 同面積から円相当直径を算 出し、 得られた円相当直径を算術平均して平均値をその鋼板における硬質相の大 きさ (平均粒径) とする。 For the size of the hard phase, measure the area of each hard phase and calculate the equivalent circle diameter from the same area. The average equivalent diameter of the obtained circle-equivalent diameters is taken as the size of the hard phase (average particle size) in the steel sheet.
(製造方法)  (Production method)
本発明に係る耐磨耗鋼板は、上記した組成の溶鋼を、公知の溶製方法で溶製し、 連続铸造法あるいは造塊一分解圧延法により、 所定寸法のスラブ(slab)等の鋼素 材とすることが好ましい。  The wear-resistant steel sheet according to the present invention is obtained by melting a molten steel having the above-described composition by a known melting method, and by using a continuous forging method or an ingot-disintegrating rolling method, It is preferable to use a material.
硬質相を所定の大きさおょぴ個数に調整するためには、 例えば、 連続鎳造法を 用いた場合、 厚み 2 0 0〜4 0 0 mmの铸片の 1 5 0 0〜 1 2 0 0 °Cの温度域に おける冷却速度 0 . 2〜 1 0 °CZ sの範囲と成るように冷却を調整することが好 ましい。  In order to adjust the number of hard phases to a predetermined size, for example, when the continuous forging method is used, 1 5 0 0 to 1 2 0 of a piece having a thickness of 200 to 400 mm It is preferable to adjust the cooling so that the cooling rate in the temperature range of 0 ° C is in the range of 0.2 to 10 ° CZ s.
なお、 造塊法を用いる場合にも、 インゴッ ト(ingot)の大きさおょぴ冷却条件 を、 硬質相を所望の大きさおょぴ個数になるように、 調整する必要があることは いうまでもない。  Even when using the ingot-making method, it is necessary to adjust the ingot size and cooling conditions so that the desired number of hard phases can be obtained. Not too long.
次いで、 鋼素材を、 冷却することなく、 直ちに熱間圧延し、 または冷却後、 9 5 0〜 1 2 5 0 °Cに再加熱したのち、 熱間圧延し、 所望の板厚の鋼板とする。 熱 間圧延後は、 熱処理することなく、 平均冷却速度 2 °C/ s以下で冷却する。  Next, the steel material is immediately hot-rolled without being cooled, or after being cooled, re-heated to 9500-125 ° C and then hot-rolled to obtain a steel plate having a desired thickness. . After hot rolling, it is cooled at an average cooling rate of 2 ° C / s or less without heat treatment.
冷却速度が 2で Z sを超えると、 フェライ ト -パーライ ト組織が得られず、 引 張強さが 8 0 O M P a以上となり、 鋼板曲げ加工時の加工荷重が上昇し、 加工性 が劣化する。 従って、 2 °CZ s以下とする。  When the cooling rate is 2 and exceeds Z s, a ferrite-perlite structure cannot be obtained, the tensile strength becomes 80 OMPa or more, the processing load during steel plate bending increases, and the workability deteriorates. Therefore, it should be 2 ° CZ s or less.
なお、 熱間圧延条件は、 所望の寸法形状の鋼板とすることができればよく、 と くに限定しないが、 鋼板として具備すべき性能である、 靭性を考慮すると、 鋼板 の表面温度で、 9 2 0 °C以下での圧下率を 3 0 %以上とし、 且つ、 圧延終了温度 を 9 0 0 °C以下とすることが必要である。  The hot rolling conditions are not particularly limited as long as the steel sheet can have a desired size and shape. However, considering the toughness, which is a performance to be provided as a steel sheet, the surface temperature of the steel sheet is 9 2 0. It is necessary that the rolling reduction at 30 ° C. or less is 30% or more and the rolling end temperature is 90 ° C. or less.
本癸明に係る耐磨耗鋼板は、 熱間圧延後に熱処理を実施する必要が無く、 熱間 圧延のままで曲げ加工を必要とする種々の用途に使用可能である。 実施例 表 1に示す組成の溶鋼を、 真空溶解炉で溶製し、 小型鋼塊 (5 0 k g) (鋼素 材) とした後、 1 0 5 0〜 1 2 5 0 に加熱し、 熱間圧延を施して板厚 6〜 1 0 0 mmの供試鋼板とし 。各供試鋼板について組織観察、引張試験(tensile test), 磨耗試験、 シャルピー衝撃試験(Charpy impact test)、 曲げ試験(bend test)を 実施した。 The wear-resistant steel sheet according to the present invention does not need to be heat-treated after hot rolling, and can be used for various applications that require bending while hot rolling. Example Molten steel with the composition shown in Table 1 is melted in a vacuum melting furnace to form a small steel ingot (50 kg) (steel material), then heated to 1 0 50 0 to 1 2 5 0 and hot rolled To give a test steel plate with a thickness of 6 to 100 mm. Each steel plate was subjected to microstructure observation, tensile test, wear test, Charpy impact test, and bend test.
(組織観察)  (Tissue observation)
組織観察用試験片は、 研磨後、 ナイタール (nital) 腐食して、 表層下 1 mm の位置について、 光学顕微鏡(optical microscope) (倍率(magnification ratio) : 4 0 0倍) を用いて、 組織の同定, フェライ ト粒径(ferrite grain diameter)および硬質相の大きさ、 個数を測定した。 なお、 観察視野において、 9 0%以上を占める組織を基地相とし、 硬質相の大きさは、 前述の方法により求 めた平均粒径とした。  After polishing, the specimens for tissue observation were corroded by nital, and at a position 1 mm below the surface layer, an optical microscope (magnification ratio: 400 times) was used. Identification, ferrite grain diameter, and the size and number of hard phases were measured. In the observation field of view, the structure occupying 90% or more was the base phase, and the size of the hard phase was the average particle size obtained by the method described above.
(引張試験) (Tensile test)
J I S Z 2 2 0 1の規定に準拠して、 J I S 5号試験片を採取し、 J I S Z 2 24 1の規定に準拠して引張試験を実施し、 引張特性 (降伏強さ : Y S、 引張 強さ : T S) を求めた。 引張強さ (T S) < 8 0 OMP a、 降伏強さ (Y S) < 6 0 0 MP aを本発明範囲とする。  In accordance with the provisions of JISZ 2 201, JIS No. 5 test specimens were collected and subjected to a tensile test in accordance with the provisions of JISZ 2 24 1, tensile properties (yield strength: YS, tensile strength: TS). Tensile strength (T S) <80 OMPa and yield strength (Y S) <60 0 MPa are within the scope of the present invention.
(磨耗試験) (Abrasion test)
試験片は t (板厚) X 2 0 X 7 5 (mm) とし、 AS TM G 6 5の規定に 準拠して、 ラバーホイール磨耗試験を、 磨耗砂(abrasive sand)を使用して実施 した。 試験後、 試験片の磨耗量を測定した。  The test piece was t (plate thickness) X 20 X 7 5 (mm), and the rubber wheel abrasion test was performed using abrasive sand in accordance with the regulations of AS TM G 65. After the test, the amount of wear of the test piece was measured.
試験結果は、 軟鋼 (S S 4 0 0) 板の磨耗量を基準 (1. 0) として、 耐磨耗 比 = (軟鋼板の磨耗量) / (各鋼板の磨耗量) で評価した。 耐磨耗比が大きいほ ど、 耐磨耗性に優れていることを意味し、 本発明範囲は耐磨耗比: 4. 0以上と した。  The test results were evaluated using the wear resistance ratio = (abrasion amount of mild steel plate) / (abrasion amount of each steel plate) with the wear amount of mild steel (S S 400) as the standard (1.0). The larger the wear resistance ratio, the better the wear resistance, and the scope of the present invention was set to 4.0 or more.
(シャルビー衝擊試験)  (Charby impact test)
J I S Z 2202の規定に準拠し、 板厚方向 1·Ζ4の位置から、 L方向に V ノッチ衝撃試験片を採取し、 J I S Z 2 24 2の規定に準拠し、 試験温度 0 でシャ/レピー衝撃試験を実施し、 シャルピー吸収エネルギー(Charpy absorbed energy)を求めた。 試験本数は 3本とし、 平均値を求めた。 Conforms to the JISZ 2202 standard, from the position of the plate thickness direction 1Ζ4 to the L direction Notch impact test specimens were collected and subjected to a Sha / Repe impact test at a test temperature of 0 in accordance with JISZ 2 24 2 to determine Charpy absorbed energy. The number of tests was three, and the average value was obtained.
(曲げ試験) (Bending test)
J I S Z 2 2 04の規定に準拠し、 幅は 5 0 mmで、 供試鋼板の板厚が 4 5 mm以上の場合は、 片面側より研削して板厚 2 5 mmに減厚した試験片を採取し、 供試鋼板の板厚が 4 5mm未満の場合は板厚ままの試験片を採取し、 J I S Z 2 24 8の規定に準拠し、 曲げ試 を実施した。 曲げ試験は押し曲げ法で曲げ半 径を r = l . 5 tとして実施した。  If the width is 50 mm and the thickness of the test steel plate is 45 mm or more, the test piece that has been ground from one side and reduced to a thickness of 25 mm is used. When the thickness of the test steel plate was less than 45 mm, a specimen with the same thickness was taken and a bending test was performed in accordance with the provisions of JISZ 2 24 8. The bending test was carried out by the push bending method with the bending radius set to r = 1.5 t.
表 2に組織観察、 引張試験、 磨耗試験の結果を示す。 本発明例 (鋼板 N o . 1 〜6、 鋼板 N o . 8, 9) は、 引張強さ (T S) < 8 0 OMP a , 降伏強さ (Y S) < 6 0 OMP aにも関わらず、 耐磨耗性が非常に優れた鋼板となっている。 また、 シャルピー吸収エネルギーは、 圧延仕上温度が 9 0 0°C以下の場合は 2 7 J以上であった。 一方、 比較例は、 本発明例に比較して耐磨耗性が劣るか、 耐 磨耗性は同等であっても Y S、 T Sが高いため、 曲げ加工性に劣る。 Table 2 shows the results of microstructure observation, tensile test, and wear test. Examples of the present invention (steel plate Nos. 1 to 6, steel plates No. 8, 9) have a tensile strength (TS) <80 OMPa and a yield strength (YS) <60 OMPa, It is a steel plate with excellent wear resistance. The Charpy absorbed energy was 27 J or more when the rolling finishing temperature was 900 ° C or lower. On the other hand, the comparative example is inferior in bending workability as compared with the present invention example, or even if the wear resistance is equivalent, YS and TS are high, so that the bending workability is inferior.
Figure imgf000017_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000018_0001
注 1:*印本発明範囲外 Note 1: * mark outside the scope of the present invention
注 2:耐磨耗比(軟鋼板の磨耗量)/ (各鋼板の磨耗量) (本発明範囲:耐磨耗比 4.0以上) Note 2: Wear resistance ratio (abrasion amount of mild steel sheet) / (abrasion amount of each steel sheet) (Invention scope: wear resistance ratio of 4.0 or more)
Figure imgf000019_0002
Figure imgf000019_0002
Figure imgf000019_0001
Figure imgf000019_0001
(本発明範囲:耐磨耗比 4.0以上)  (Invention scope: wear resistance ratio of 4.0 or more)
注 2: vEo(J):試験温度 0。Cでのシャルビ-衝撃吸収 Iネルキ'- (J) Note 2: vEo (J): Test temperature 0. Charbi in C-Shock absorption I Nerki '-(J)

Claims

請求の範囲 The scope of the claims
1. 質量0/。で、 C : 0. 0 5〜0. 3 5 %、 S i : 0. 0 5〜; L . 0%、 Mn : 0. 1〜2. 0%、 T i : 0. 1〜1. 2%、 A 1 : 0. 1 %以下、 更に、 C u : 0. 1〜 1. 0 %、 N i ': 0. 1〜 2. 0 %、 C r : 0. 1〜 1. 0 %、 M o : 0. 0 5〜1. 0 %、 W : 0. 0 5〜1. 0 %、 B : 0. 0 0 0 3〜0. 0 0 31. Mass 0 /. C: 0.05 to 0.35%, Si: 0.05 to L; 0%, Mn: 0.1 to 2.0%, Ti: 0.1 to 1.2 %, A 1: 0.1% or less, C u: 0.1 to 1.0%, N i ': 0.1 to 2.0%, C r: 0.1 to 1.0%, Mo: 0.05 to 1.0%, W: 0.05 to 1.0%, B: 0.0 0 0 3 to 0.0 0 3
0 %の 1種または 2種以上を含有し、 (1 ) 式で示される D I *が 6 0未満であ り、 残部 F eおよび不可避的不純物からなる耐磨耗鋼板。 A wear-resistant steel sheet containing 1% or 2 or more of 0%, wherein D I * represented by the formula (1) is less than 60, and the balance is Fe and inevitable impurities.
D I * = 3 3. 8 5 X (0. 1 X C *) 。· 5 X (0. 7 X S i + 1 ) X (3. 3 3 XMn + 1 ) X (0. 3 5 X C u + 1 ) X (0. 3 6 X N i + 1 ) X (2. 1DI * = 3 3. 8 5 X (0. 1 XC *). 5 X (0. 7 XS i + 1) X (3.3 3 XMn + 1) X (0. 3 5 XC u + 1) X (0. 3 6 XN i + 1) X (2.1
6 X C r + 1 ) X ( 3 XMo * + 1 ) X (1. 5 XW* + 1 ) ( 1 ) 但し、 C * = C - 1/4 X (Τ Ϊ - 4 8/ 1 4 Ν), Mo * =M o X ( 1— 0 · 5 X (T i —4 8Z l 4 N))、W* =WX ( 1 - 0. 5 X (T i — 4 8/ 1 4 N))、 ここで、 C, S i , Mn , C u, N i , C r , Mo , W, T i , Nは含有量 (質 量0 /0) 6 XC r + 1) X (3 XMo * + 1) X (1.5 XW * + 1) (1) However, C * = C-1/4 X (Τ Ϊ-4 8/1 4 Ν), Mo * = M o X (1-0 0 5 X (T i --4 8Z l 4 N)), W * = WX (1-0.5.5 X (T i-4 8/1 4 N)), here in, C, S i, Mn, C u, N i, C r, Mo, W, T i, N content (mass 0/0)
2. 更に、 質量%でN b : 0. 0 0 5〜 1. 0 %、 V: 0. 0 0 5〜 1. .0 % の 1種または 2種を含有する請求項 1記載の耐磨耗鋼板。 2. The abrasion resistance according to claim 1, further comprising one or two of Nb: 0.05 to 1.0% and V: 0.05 to 1.0% in mass%. Worn steel sheet.
3. 更に、 金属組織が、 フェライ トーパーライ ト相を基地相とし、 該基地相中 に硬質相が分散している請求項 1または 2に記載の耐磨耗鋼板。 3. The wear-resistant steel sheet according to claim 1 or 2, wherein the metallographic structure has a ferrite phase as a matrix phase, and a hard phase is dispersed in the matrix phase.
4. 更に、 前記硬質相の分散密度が、 4 0 0個/ mm2以上である請求項 3に 記載の耐磨耗鋼板。 4. The wear-resistant steel plate according to claim 3, wherein the dispersion density of the hard phase is 400 pieces / mm 2 or more.
5. 請求項 1または 2記載の組成を有する鋼片を熱間圧延後、 2°C/ s以下の 冷却速度で 4 0 0°C以下まで冷却する耐磨耗鋼板の製造方法。 5. A method for producing a wear-resistant steel sheet, wherein a steel slab having the composition according to claim 1 or 2 is hot-rolled and then cooled to 400 ° C. or lower at a cooling rate of 2 ° C / s or lower.
6 . 更に、 熱間圧延での、 9 2 0で以下での圧下率を 3 0 %以上とし、 圧延終 了温度を 9 0 0で以下とする請求項 5記載の加工性に優れた耐磨耗鋼の製造方 法。 6. Further, in hot rolling, the rolling reduction at 9 20 or less is 30% or more, and the rolling end temperature is 90 or less and the wear resistance is excellent in workability according to claim 5. A method for producing worn steel.
PCT/JP2008/060096 2007-05-29 2008-05-26 Abrasion-resistant steel sheet having excellent processability, and method for production thereof WO2008146929A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020097021902A KR101165654B1 (en) 2007-05-29 2008-05-26 Abrasion-resistant steel sheet having excellent processability, and method for production thereof
BRPI0812277-6A2A BRPI0812277A2 (en) 2007-05-29 2008-05-26 STEEL RESISTANT TO EXCELLENT ABRASION IN CONFORMING CAPACITY AND ITS PRODUCTION METHOD.
CA2685710A CA2685710C (en) 2007-05-29 2008-05-26 Abrasion resistant steel excellent in formability and production method thereof
EP08764952.1A EP2154262B1 (en) 2007-05-29 2008-05-26 Abrasion-resistant steel sheet having excellent processability, and method for production thereof
CN2008800161928A CN101688283B (en) 2007-05-29 2008-05-26 Abrasion-resistant steel sheet having excellent processability, and method for production thereof
AU2008255706A AU2008255706B2 (en) 2007-05-29 2008-05-26 Abrasion resistant steel excellent in formability and production method thereof
US12/600,891 US20100147424A1 (en) 2007-05-29 2008-05-26 Abrasion-resistant steel excellent in formability and production method thereof
MX2009012820A MX2009012820A (en) 2007-05-29 2008-05-26 Abrasion-resistant steel sheet having excellent processability, and method for production thereof.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007142003 2007-05-29
JP2007-142003 2007-05-29
JP2008-113529 2008-04-24
JP2008113529A JP5380892B2 (en) 2007-05-29 2008-04-24 Wear-resistant steel plate with excellent workability and method for producing the same

Publications (2)

Publication Number Publication Date
WO2008146929A1 WO2008146929A1 (en) 2008-12-04
WO2008146929A9 true WO2008146929A9 (en) 2009-11-12

Family

ID=40075158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060096 WO2008146929A1 (en) 2007-05-29 2008-05-26 Abrasion-resistant steel sheet having excellent processability, and method for production thereof

Country Status (12)

Country Link
US (1) US20100147424A1 (en)
EP (1) EP2154262B1 (en)
JP (1) JP5380892B2 (en)
KR (1) KR101165654B1 (en)
CN (1) CN101688283B (en)
AU (1) AU2008255706B2 (en)
BR (1) BRPI0812277A2 (en)
CA (1) CA2685710C (en)
CL (1) CL2008001542A1 (en)
MX (1) MX2009012820A (en)
PE (1) PE20090342A1 (en)
WO (1) WO2008146929A1 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458624B2 (en) * 2009-03-25 2014-04-02 Jfeスチール株式会社 Wear-resistant steel plate with excellent workability and method for producing the same
FR2960883B1 (en) 2010-06-04 2012-07-13 Vallourec Mannesmann Oil & Gas LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH STRENGTH RESISTANCE TO SULFIDE-CONTAMINATED CRACKING
KR101253897B1 (en) * 2010-12-23 2013-04-16 주식회사 포스코 Steel sheet for oil sands slurry transportation system having excellent wear resistance and corrosion resistance and method for manufacturing the same
KR101271781B1 (en) * 2010-12-23 2013-06-07 주식회사 포스코 Steel sheet for oil sands slurry transportation system having excellent wear resistance, corrosion resistance and low temperature toughness, and method for manufacturing the same
CN102296234A (en) * 2011-09-07 2011-12-28 柳州钢铁股份有限公司 Abrasion-resistant steel plate and production device and production method thereof
JP5375981B2 (en) * 2012-01-10 2013-12-25 Jfeスチール株式会社 Wear-resistant welded steel pipe with excellent weld crack resistance and method for producing the same
KR101382833B1 (en) * 2012-03-16 2014-04-08 주식회사 포스코 Steel sheet for oil sands slurry pipe having excellent erosion resistance and method for manufacturing the same
KR101382790B1 (en) * 2012-03-16 2014-04-08 주식회사 포스코 Steel sheet for oil sands slury pipe having excellent erosion resistance and low temperature toughness and method for manufacturing the same
KR101382675B1 (en) 2012-03-19 2014-04-07 주식회사 포스코 Low alloy hot-rolled steel sheet having excellent wear-resistant and workability and method for manufacturing the same
CN102876993A (en) * 2012-10-24 2013-01-16 章磊 High-strength corrosion-resisting steel material and manufacturing method thereof
KR101461741B1 (en) * 2012-12-21 2014-11-14 주식회사 포스코 Thick hot rolled steel plate for steel pipe and steel pipe produced therefrom having excellent impact toughness and method for manufacturing thereof
CN103898420A (en) * 2012-12-25 2014-07-02 隆英(金坛)特钢科技有限公司 Wear-resisting steel plate and manufacturing method thereof
CN103272848B (en) * 2013-05-20 2015-12-02 浙江朋诚科技有限公司 A kind of fast mill roll shaft
CN103272851A (en) * 2013-05-20 2013-09-04 浙江朋诚科技有限公司 High-speed mill roller box
CN103266270A (en) * 2013-05-23 2013-08-28 江苏久联冶金机械制造有限公司 Boron-containing iron-based wear-resistant material
CN103409695B (en) * 2013-08-16 2015-04-08 洛阳钢丰机械制造有限公司 Composite material pouring-casted bucket and its production technology and production device
CN103469077B (en) * 2013-09-30 2015-12-02 济钢集团有限公司 A kind of high silicon rolled sheet material and preparation technology thereof
CN104561823B (en) * 2013-10-09 2016-12-07 宝钢特钢有限公司 A kind of deep-draw superhigh intensity steel hot rolled steel plate and manufacture method
MX2016009700A (en) 2014-01-28 2016-09-22 Jfe Steel Corp Wear-resistant steel plate and process for producing same.
CN103882331A (en) * 2014-02-25 2014-06-25 南通东方科技有限公司 High-strength and high-wear-resistant supporting wheel for large type excavator
JP6298898B2 (en) * 2014-10-17 2018-03-20 新日鐵住金株式会社 Rolled steel for cracking connecting rod
CN105779885B (en) * 2014-12-23 2018-03-27 上海梅山钢铁股份有限公司 A kind of wear-resistant hot rolling sheet metal and its manufacture method with excellent machinability
CN105018848A (en) * 2015-08-05 2015-11-04 启东市佳宝金属制品有限公司 Abrasion-resistant alloy
CN105063497B (en) * 2015-09-17 2017-10-17 东北大学 A kind of high-wear resistance easy processing low alloy wear resistance steel plate and its manufacture method
CN105349896B (en) * 2015-10-28 2017-03-22 安徽省三方新材料科技有限公司 Preparation method for low-alloy excavator bucket tooththereof
CN105220077B (en) * 2015-11-11 2017-05-10 武汉钢铁(集团)公司 High surface quality hot rolled steel plate for manufacturing excavator bucket and manufacturing method
CN105779895A (en) * 2016-04-22 2016-07-20 柳州凯通新材料科技有限公司 Manganese-tungsten-titanium wear-resisting cast steel and machining process thereof
CN105671438B (en) * 2016-04-22 2018-06-29 柳州凯通新材料科技有限公司 A kind of manganese-tungsten-titanium alloy steel and its processing technology
CN105695878A (en) * 2016-04-22 2016-06-22 柳州凯通新材料科技有限公司 Manganese-tungsten-titanium wear-resistant cast steel and preparation method thereof
CN105695861B (en) * 2016-04-22 2018-04-24 柳州凯通新材料科技有限公司 A kind of wear-resisting Rolling compund steel plate
CN108034940B (en) * 2017-11-24 2020-08-25 宁波祥福机械科技有限公司 Turbine supercharging rotor shaft and preparation method thereof
CN108588573A (en) * 2018-04-28 2018-09-28 江苏恒加机械工程有限公司 A kind of production technology of metallic support
CN109881120A (en) * 2019-03-15 2019-06-14 重庆明高机械制造有限公司 A kind of husky bucket of digging
CN110387499A (en) * 2019-06-27 2019-10-29 扬州市海纳源科技服务有限责任公司 It is a kind of to mix low-alloyed metal material and preparation method
CN112442635B (en) * 2020-11-13 2022-03-29 唐山钢铁集团高强汽车板有限公司 High-performance low-alloy high-strength steel plate with strength of above 800MPa and preparation method thereof
CN112553543A (en) * 2020-11-30 2021-03-26 攀钢集团研究院有限公司 Bainite-based wear-resistant steel and production method thereof
CN112813362B (en) * 2020-12-14 2023-03-28 内蒙古科技大学 Manufacturing method of high-strength steel and high-strength steel track shoe
CN114774799B (en) * 2022-03-02 2023-04-18 河钢乐亭钢铁有限公司 Wear-resistant round bar for agricultural machinery and production method thereof
CN114737136B (en) * 2022-03-30 2023-05-16 鞍钢股份有限公司 Production method of high-strength high-toughness hot continuous rolling thin steel plate with Brinell hardness of 400HBW
CN115612923B (en) * 2022-09-13 2023-11-14 攀钢集团攀枝花钢铁研究院有限公司 Wear-resistant steel with good forming and welding performances and production method thereof
CN115558864B (en) * 2022-10-19 2023-10-24 湖南华菱涟源钢铁有限公司 High-strength steel plate and preparation method thereof
CN115838897A (en) * 2022-11-18 2023-03-24 莱芜钢铁集团银山型钢有限公司 Martensite wear-resistant corrosion-resistant steel pipe for 415 HB-level sediment conveying pipeline and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142726A (en) 1985-12-18 1987-06-26 Kobe Steel Ltd Manufacture of wear resistant steel sheet having satisfactory weldability
JPS63169359A (en) 1986-12-29 1988-07-13 Sumitomo Metal Ind Ltd Thick steel plate having high toughness and wear resistance
JPH01142023A (en) 1987-11-30 1989-06-02 Kobe Steel Ltd Manufacture of wear-resistant steel plate having superior bendability
JPH04228536A (en) * 1990-06-06 1992-08-18 Nkk Corp Steel excellent in wear resistance
JPH0441616A (en) * 1990-06-06 1992-02-12 Nkk Corp Production of low-hardness water-resistant steel excellent in wear resistance and bendability
US5284529A (en) * 1990-06-06 1994-02-08 Nkk Corporation Abrasion-resistant steel
JPH0834684B2 (en) * 1990-11-30 1996-03-29 財団法人鉄道総合技術研究所 Magnetic levitation vehicle propulsion device
JP3089882B2 (en) * 1993-03-09 2000-09-18 日本鋼管株式会社 Abrasion-resistant steel having excellent surface properties and method for producing the same
JPH04308058A (en) * 1991-04-02 1992-10-30 Nkk Corp Steel having superior wear resistance
JPH05239591A (en) * 1992-02-27 1993-09-17 Nkk Corp Steel excellent in wear resistance
JP4239257B2 (en) * 1998-11-02 2009-03-18 Jfeスチール株式会社 Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
JP3940301B2 (en) * 2002-02-27 2007-07-04 新日本製鐵株式会社 Blasting weathering high-strength steel plate with excellent bending resistance and method for producing the same
FR2847272B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
WO2005021816A1 (en) * 2003-09-01 2005-03-10 Sumitomo Metal Industries, Ltd. Non-heat treated steel for soft nitriding
JP5017937B2 (en) * 2005-12-28 2012-09-05 Jfeスチール株式会社 Wear-resistant steel plate with excellent bending workability
JP4899874B2 (en) * 2007-01-12 2012-03-21 Jfeスチール株式会社 Wear-resistant steel plate with excellent workability and method for producing the same

Also Published As

Publication number Publication date
KR20090123006A (en) 2009-12-01
JP2009007665A (en) 2009-01-15
AU2008255706A1 (en) 2008-12-04
CL2008001542A1 (en) 2008-09-05
BRPI0812277A2 (en) 2014-11-18
CA2685710C (en) 2012-07-31
CN101688283A (en) 2010-03-31
CA2685710A1 (en) 2008-12-04
JP5380892B2 (en) 2014-01-08
AU2008255706B2 (en) 2011-10-13
PE20090342A1 (en) 2009-03-29
CN101688283B (en) 2012-02-01
WO2008146929A1 (en) 2008-12-04
EP2154262B1 (en) 2018-03-07
US20100147424A1 (en) 2010-06-17
EP2154262A4 (en) 2016-01-20
EP2154262A1 (en) 2010-02-17
MX2009012820A (en) 2009-12-15
KR101165654B1 (en) 2012-07-16

Similar Documents

Publication Publication Date Title
WO2008146929A9 (en) Abrasion-resistant steel sheet having excellent processability, and method for production thereof
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP6007847B2 (en) Wear-resistant thick steel plate having low temperature toughness and method for producing the same
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP6235221B2 (en) Wear-resistant thick steel plate having low temperature toughness and hydrogen embrittlement resistance and method for producing the same
KR100918321B1 (en) High tensile strength steel material having excellent delayed fracture resistance property
JP4735167B2 (en) Method for producing wear-resistant steel sheet with excellent low-temperature toughness
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP4735191B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP4899874B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
WO2010055609A1 (en) Thick steel sheet having high strength and method for producing same
JP6540764B2 (en) Wear-resistant steel plate and method of manufacturing the same
JP5683327B2 (en) Wear-resistant steel plate with excellent low-temperature toughness
JP2012031511A (en) Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties
TWI742812B (en) Wear-resistant steel plate and manufacturing method thereof
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP5348392B2 (en) Wear resistant steel
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP5017937B2 (en) Wear-resistant steel plate with excellent bending workability
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP2007262429A (en) Wear-resistant steel sheet excellent in bendability
JP3443544B2 (en) High strength precipitation hardening martensitic stainless steel
JP2020132912A (en) Wear-resistant thick steel plate
JP2007277590A (en) Wear resistant steel sheet having excellent bending workability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880016192.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008255706

Country of ref document: AU

Ref document number: 3531/KOLNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20097021902

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2685710

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2008255706

Country of ref document: AU

Date of ref document: 20080526

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12600891

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/012820

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2008764952

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: PI0812277

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091130