WO2008145515A1 - Kraftstoffinjektor mit geringem verschleiss - Google Patents

Kraftstoffinjektor mit geringem verschleiss Download PDF

Info

Publication number
WO2008145515A1
WO2008145515A1 PCT/EP2008/055899 EP2008055899W WO2008145515A1 WO 2008145515 A1 WO2008145515 A1 WO 2008145515A1 EP 2008055899 W EP2008055899 W EP 2008055899W WO 2008145515 A1 WO2008145515 A1 WO 2008145515A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fuel injector
injector
damping
bore
Prior art date
Application number
PCT/EP2008/055899
Other languages
English (en)
French (fr)
Inventor
Paulo Jorge Ferreira Goncalves
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP08759582.3A priority Critical patent/EP2156047B1/de
Publication of WO2008145515A1 publication Critical patent/WO2008145515A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Definitions

  • the invention is based on known fuel injectors for injecting fuel into a combustion chamber of an internal combustion engine.
  • These fuel injectors may in particular be fuel injectors for high-pressure accumulator injection systems, which are also referred to as common rail injectors.
  • fuel from a high-pressure accumulator (rail) is supplied to the fuel injectors via a high-pressure inlet, and the injection of the fuel, i. the opening of the fuel injector, is usually controlled by an actuator, such as a magnetic or piezoelectric actuator.
  • One advantage of the common-rail injectors is that the injection behavior can be controlled very precisely via the actuator, so that even complex, for combustion particularly favorable injection curves can be realized. This makes it possible to realize internal combustion engines with extremely low pollutant emission.
  • pressure oscillations in the common rail system can have undesirable or damaging effects on the operating behavior of the overall system and of the internal combustion engine. In addition, these can also reduce the durability of the entire system and individual injectors. For example, pressure oscillations in the high-pressure range with an amplitude of approx. 300 bar are in many cases an everyday occurrence.
  • a high-pressure line between huiien an injector and a common rail proposed, which degrades the pressure waves resulting from actuation of the injector in whole or in part.
  • the high-pressure line has a first section and a second section, which are connected in parallel with one another.
  • DE 103 07 871 A1 contributes to the improvement of the vibration behavior and to the elimination of pressure oscillations. Nevertheless, DE 103 07 871 A1 leaves room for further improvements, in particular since the proposed high-pressure line is structurally comparatively complex and as a rule only dampens pressure oscillations within a narrow frequency range due to the fixedly predetermined aspect ratios.
  • the invention is essentially based on the idea of providing at least one further, separate vibration damping bore in addition to a high-pressure bore which is usually present in common-rail injectors and extends essentially parallel to the injector axis.
  • This vibration damping bore comprises a damping channel extending essentially parallel to the injector axis in the injector housing.
  • the vibration damping behavior according to the invention is not based, as in DE 103 07 871 Al, on a superposition of back and forth waves. As a result, an attenuation within a wide frequency range can be realized.
  • the damping behavior is based on known systems rather on a "parallel circuit" of a damping channel, with a corresponding resistance to pressure waves and a corresponding volume of liquid.
  • the vibration damping bore is located between a high-pressure region, in particular a high-pressure chamber, which is adjacent to the control chamber (for example, a high-pressure annulus, which surrounds the control chamber).
  • a high-pressure chamber which is adjacent to the control chamber (for example, a high-pressure annulus, which surrounds the control chamber).
  • the vibration damping bore can be substantially the same length and extend substantially parallel to a high-pressure bore, which conveys fuel under high pressure into the nozzle chamber so that it can be injected from there through injection openings in the combustion chamber.
  • the vibration damping bore comprises at least one throttle element, wherein two or more throttle elements are preferred.
  • the throttle element may comprise a first throttle element connecting the damping channel and the high-pressure chamber (in particular the high-pressure annular space).
  • the throttle element may comprise a second throttle element connecting the damping channel and the nozzle chamber.
  • the throttle elements have a cross section with a diameter between 0.1 and 0.8 mm, in particular between 0.2 and 0.5 and particularly preferably at 0.3 mm.
  • cross-sections of at least 1.0 mm, in particular at least 1.5 mm and particularly preferably of approximately 2.0 mm have proved to be advantageous.
  • the latter value represents a compromise that can be realized in practice between the highest possible volume of fluid for the damping (inertial mass) and the space requirement of the damping channel in the injector body.
  • the damping channel In order to be able to provide the highest possible damping volume as an "inertial mass,” it is preferable for the damping channel to have a length of at least 40 mm, in particular of at least 60 mm and particularly preferably of 90 mm Fuel injectors can be implemented without their outer dimensions would have to be changed.
  • the fuel injector in one of the embodiments described above allows vibration damping of pressure oscillations within a wide frequency range.
  • the wear of the fuel injector can be significantly reduced, and the life of the common rail systems can be significantly improved.
  • FIG. 2 shows a system response in the frequency space of a common rail system to its own injection and a neighboring injection
  • Figure 3 shows cumulative wear for a single injector system and an entire common rail system with multiple active injectors
  • Figure 4 shows an embodiment of a common rail injector according to the present invention
  • Figure 5 shows a transmission behavior of a common rail injector according to the prior
  • Figure 6 simulated wear of common rail injectors with different wear reducing measures.
  • FIG. 1 shows a characteristic operating behavior of a commercially available common rail injector as a time characteristic.
  • the upper curve (reference numeral 110) shows the pressure curve in bar, and the lower curve (reference symbol 112) the force, the nozzle needle or the injection valve member (hereinafter referred to as needle force), plotted in Newtons. Shown is the time course over a full injection cycle of a six-cylinder engine.
  • the operating behavior of the injection system can be divided into two areas: on the one hand into the area (denoted by reference numeral 114 in FIG. 1), in which the response to the own injection dominates, and into a second area (in FIG 1 with reference numeral 116), in which the influence of the neighboring injec- Li ⁇ nen uweei weighs.
  • the boundary between the two areas is approximately 0.027 sec.
  • the oscillation behavior for example the oscillation of the needle force 112
  • the vibration behavior is dominated by the injection of the considered fuel injector.
  • the vibration behavior is triggered by neighboring injections, that is to say by injections of adjacent fuel injectors of the internal combustion engine. This area of unfamiliarized vibrations is commonly referred to as the "telephony" area or “telephony” area.
  • Fig. 2 a possible cause of the effects described above is shown.
  • the gradients of the system responses that is to say the derivatives I of the needle force (see curve 112 in Fig. 1), are plotted in the frequency domain in arbitrary units. While curve 118 represents the system response to its own injection, curve 120 shows the system response to neighbor injections.
  • the system response 120 of the neighboring injections shows a multiplicity of further excitation frequencies. This means that the nozzle needle or the injection valve member of a Kraftstoff ⁇ njektors reacts very sensitive to suggestions by neighboring injections and has a much more pronounced vibration behavior.
  • Fig. 3 the result of such a wear model is graphically illustrated.
  • the Y-axis 122 shows the accumulated wear
  • the X-axis 124 symbolizes the time.
  • the time is plotted over a complete injection cycle of a six-cylinder engine.
  • the injections of the individual injectors are designated by the reference numeral 126.
  • a curve 128, in which only the own injection is taken into account and a wear curve 130 in which also adjacent injections are taken into account, which thus symbolize a fully activated system of an internal combustion engine.
  • one significant approach of the present invention is to reduce the sensitivities of a fuel injector to higher frequencies through geometric changes in the high pressure fluid system. Accordingly, a measure is proposed which is able to minimize the transmission behavior of the input pressure on the needle force in terms of its gain with respect to the natural frequencies.
  • the fuel injector 132 has an injector housing 134, which is modularly composed of a plurality of modules held together by a union nut 136. iii an injection valve element 140 is accommodated, which is mounted movably parallel to the injector axis 142.
  • the injection valve member 140 is surrounded by a nozzle chamber 144 and closes at its lower end injection openings 146.
  • the nozzle chamber 144 communicates with a high-pressure bore 148 in connection, which extends substantially parallel to the injector 142, ie with an angular deviation of about 4 °.
  • the high-pressure bore 148 communicates with a high-pressure inlet 150 and can be acted upon by this from a high-pressure accumulator (common rail), which is not shown in Fig. 4, with high-pressure fuel.
  • the injection valve member 140 is acted upon by a nozzle spring 152 with a closing force. Furthermore, the injection valve member 140 is in communication with a control piston 154, above which a control chamber 156 is located.
  • the control chamber 156 is surrounded by a high pressure annulus 158, which in turn communicates with the high pressure bore 148.
  • the high-pressure annulus 158 is connected to the control chamber 156 via a control chamber throttle element 160.
  • the pressure in the control chamber 156 is controlled in this embodiment by a solenoid valve 162, via which a relief hole 164, which is also equipped with a throttle element, can be closed or released. Thereby, the relief hole 164 and thus the control chamber 156 is disconnected from a low pressure drain 166 and connected thereto.
  • the solenoid valve 162 If the solenoid valve 162 is opened, the pressure in the control chamber 156 drops, and the control piston 154 and thus the injection valve member 140 move upwards and release the injection opening 146. This starts the injection process. If the solenoid valve 162 is closed, high pressure prevails in the control chamber 156, so that the injection valve member 140 is pressed into its valve seat, the injection openings 146 being closed.
  • a damping measure according to the invention is implemented in order to dampen these pressure fluctuations.
  • a vibration damping hole 168 is provided, wel- a uampfungskanal 170 has.
  • This damping channel 170 extends essentially the same length to the high-pressure bore 148 through the injector body 134 and likewise runs essentially parallel to the injector axis 142. The angle deviations from the parallelism substantially correspond to the angular deviations of the high-pressure bores 148.
  • the vibration damping bore 168 connects the high-pressure annulus 158 to the nozzle chamber 144.
  • the damping passage 170 in this exemplary embodiment is connected via an annular space throttle 172 and to the nozzle space 144 via a nozzle space throttle 174.
  • the fluidic oscillation behavior of the fuel injector 132 can be modified in a simple manner (that is, only by additional implementation of the damping channel 170 and the throttles 172, 174) in a targeted manner.
  • the natural frequencies of the vibration system can be detuned and the sensitivity of the system to external stimulation can be significantly reduced.
  • a length of the damping channel 170 of 90 mm and a diameter of approximately 2 mm have proven to be suitable.
  • Throttles 172, 174 each have a diameter of 0.3 mm in this exemplary embodiment.
  • the vibration damping bore 168 thus represents a total of a second fluidic
  • High pressure system which is arranged parallel to the high pressure bore 148.
  • Vibration damping is essentially caused by the combination of the inert fluidic mass within the damping channel 170 and the throttles 172, 174, which is similarly describable as electrical damping in an RC resonant circuit.
  • the damping measure shown in FIG. 4 changes the transmission behavior of the fuel injector 132 in a positive sense. 5
  • a transfer function for a standard injector (trace 176) is compared with a transfer function 178 of an injector having a vibration damping bore 168.
  • the transmission function ⁇ is plotted in dB, which is the quotient of the derivative of the needle force and the derivative of the rail pressure. The application takes place in the frequency domain.
  • the two curves 176, 178 correspond to a fuel injector 132 according to FIG. 4, wherein curve 176 represents a fuel injector without the vibration damping bore 168 (ie without damping channel 170, without annular space throttle 172 and without nozzle space throttle 174), while curve 178 represents a fuel injector 132 according to FIG. 4 with the above elements, ie with a vibration damping hole 168.
  • the peaks in the transfer functions are also significantly minimized, so that overall a broadband attenuation in the entire frequency range is recorded.
  • the sensitivity of the fuel injector 132 against pressure fluctuations is significantly minimized.
  • the amplitude responses due to the vibration damping bore 168 have been significantly reduced.
  • vibration damping bore 168 According to the exemplary embodiment in FIG. 4, clear advantages over known vibration damping measures result, such as the measure described in DE 103 07 871 A1. There is overall a vibration damping recorded in the entire frequency range, so that the vibration measure, for example, is not specifically set to a specific operating point of the entire injector system or the internal combustion engine. This is a considerable advantage, as this, for example, the flexibility and applicability of the vibration damping system is extended not only with respect to different Injektortypen or types of machines, but also with respect to the efficiency of the individual operating points of the internal combustion engine.
  • the vibration damping bore 168 is integrated directly in the injector housing 134, which saves additional measures outside of the fuel injector. The absorption damping is thus additional components or components within the fuel injector 132 itself.
  • the bar 182 designates a fuel injector 132 with a so-called “Rail Injector Throttle” (RIT) with a diameter of 1.1 mm.
  • RIT Rotary Injector Throttle
  • This throttling element RIT which is likewise known from the prior art, is arranged in the high-pressure inlet 150. in the rail exit in front of the high-pressure line leading to the injector, and already causes a certain damping of pressure oscillations in the rail, thus already reducing the wear of the fuel injector by approx.
  • the beam 184 illustrates a vibration damping measure according to the invention, for example the vibration damping bore 168 shown in FIG. 4 or its effect. It can be clearly seen that the vibration damping bore 168 reduces the overall wear from 100% to approx. 66%.
  • the invention thus provides a way to efficiently reduce wear on fuel injectors 132 by simple additional damping measures.
  • the damping measures can be implemented, in particular, in fuel injectors 132, in which the distance between the control chamber 150 and the nozzle chamber 144 is high, so that a sufficient volume of fluid and a sufficient discharge path through the damping channel 170 can be provided here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird ein Kraftstoffinjektor (132) zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine vorgeschlagen. Der Kraftstoffinjektor (132) umfasst ein Einspritzventilglied (140), einen mit einem Hochdruckzulauf (150) in Verbindung stehenden Düsenraum (144) und einen eine Hubbewegung des Einspritzventilglieds (140) steuernden Steuerraum (156). Der Druck in dem Steuerraum (156) kann durch ein aktorgesteuertes Ventil (162) geschaltet werden. Zwischen zwei mit dem Hochdruckzulauf (150) in Verbindung stehenden Punkten ist dabei eine zusätzliche Schwingungsdämpfungsbohrung (168) vorgesehen. Diese umfasst ein sich im Injektorgehäuse (134) im Wesentlichen parallel zur Injektorachse (142) erstreckenden Dämpfungskanal (170).

Description

Titel
Kraftstoffinjektor mit geringem Verschleiß
Stand der Technik
Die Erfindung geht aus von bekannten Kraftstoffinjektoren zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine. Bei diesen Kraftstoffinjektoren kann es sich insbesondere um Kraftstoffinjektoren für Hochdruck-Speichereinspritzsysteme handeln, welche auch als Common-Rail-Injektoren bezeichnet werden. Dabei wird Kraftstoff aus einem Hochdruckspeicher (Rail) den Kraftstoffinjektoren über einen Hochdruckzulauf zugeleitet, und die Injektion des Kraftstoffs, d.h. das Öffnen des Kraftstoffinjektors, wird in der Regel durch einen Aktor, beispielsweise einen Magnet- oder Piezoaktor, gesteuert.
Ein Vorteil der Common-Rail-Injektoren besteht darin, dass das Einspritzverhalten über den Aktor sehr präzise gesteuert werden kann, sodass sich auch komplexe, für die Verbrennung besonders günstige Einspritzverläufe realisieren lassen. Dadurch lassen sich Brennkraftma- schinen mit äußerst geringer Schadstoffemission realisieren.
Eine bei Common-Rail-Rraftstoffinjektoren in der Praxis auftretende unliebsame Erscheinung ist jedoch das Problem der Druckschwingungen. Druckschwingungen im Common- Rail- System können unerwünschte bis schädigende Auswirkungen auf das Betriebsverhalten des Gesamtsystems und der Brennkraftmaschine haben. Zudem können diese auch die Haltbarkeit des Gesamtsystems sowie einzelner Injektoren vermindern. So sind Druckschwin- gungen im Hochdruckbereich mit einer Amplitude von ca. 300 bar in vielen Fällen ein alltägliches Ereignis.
Die Druckschwingungen führen jedoch in der Praxis zu Düsensitzverschleiß und zu einer Mengenungenauigkeit, insbesondere bei Mehrfacheinspritzungen. Daher wird versucht, die- sen Druckschwingungen mit Dämpfungsmaßnahmen, wie beispielsweise Drosseln und Men- genstromventilen, entgegenzuwirken.
Ein Beispiel einer derartigen Maßnahme zur zumindest teilweisen Eliminierung von Druckschwingungen ist in DE 103 07 871 Al offenbart. Dabei wird eine Hochdruckleitung zwi- huiien einem injektor und einem Common-Rail vorgeschlagen, welche die beim Betätigen des Injektors entstehenden Druckwellen ganz oder teilweise abbaut. Die Hochdruckleitung weist einen ersten Abschnitt und einen zweiten Abschnitt auf, welche zueinander parallel geschaltet sind.
Die in DE 103 07 871 Al gezeigte Anordnung trägt zur Verbesserung des Schwingungsverhaltens und zur Eliminierung von Druckschwingungen bei. Dennoch lässt die DE 103 07 871 Al Raum für weitere Verbesserungen, insbesondere da die vorgeschlagene Hochdruckleitung vom Aufbau her vergleichsweise komplex ist und aufgrund der fest vorgegebenen Längenverhältnisse in der Regel nur Druckschwingungen innerhalb eines schmalen Frequenzbereichs dämpft.
Offenbarung der Erfindung
Die Erfindung beruht im Wesentlichen auf der Idee, zusätzlich zu einer in Common-Rail- Injektoren üblicherweise vorhandenen, sich im Wesentlichen parallel zur Injektorachse erstreckenden Hochdruckbohrung mindestens eine weitere, separate Schwingungsdämp- fungsbohrung vorzusehen. Diese Schwingungsdämpfungsbohrung umfasst einen sich im Injektorgehäuse im Wesentlichen parallel zur Injektorachse erstreckenden Dämpfungskanal. Unter „im Wesentlichen parallel" sind dabei hier und im Folgenden auch leichte Abweichungen von der Parallelität zu verstehen, vorzugsweise Abweichungen von nicht mehr als 20°, besonders bevorzugt von nicht mehr als 5°.
Im Gegensatz zur DE 103 07 871 Al wird somit vorgeschlagen, das Schwingungsdämp- fungselement in den Injektorkörper selbst zu verlagern. Die zusätzliche Bohrung kann ohne größeren konstruktiven Aufwand realisiert werden und ist daher auch fertigungstechnisch leicht implementierbar.
Weiterhin beruht das Schwingungsdämpfungsverhalten gemäß der Erfindung nicht, wie in der DE 103 07 871 Al, auf einer Überlagerung von hin- und rücklaufenden Wellen. Dadurch ist eine Dämpfung innerhalb eines weiten Frequenzbereichs realisierbar. Das Dämpfungsverhalten beruht gegenüber bekannten Systemen vielmehr auf einer „Parallelschaltung" eines Dämpfungskanals, mit einem entsprechenden Widerstand für Druckwellen und einem entsprechenden Flüssigkeitsvolumen.
Dabei ist es besonders bevorzugt, wenn die Schwingungsdämpfungsbohrung sich zwischen einem Hochdruckbereich, insbesondere einem Hochdruckraum, welcher dem Steuerraum benachbart ist (beispielsweise einem Hochdruck-Ringraum, welcher den Steuerraum um- giυi;, uiiu uem Düsenraum erstreckt. Beispielsweise kann in diesem Fall die Schwingungs- dämpfungsbohrung im Wesentlichen gleich lang sein und sich im Wesentlichen parallel erstrecken zu einer Hochdruckbohrung, welche Kraftstoff unter Hochdruck in den Düsenraum befördert, damit dieser von dort durch Einspritzöffnungen in den Brennraum einge- spritzt werden kann.
Besonders bevorzugt ist es dabei, wenn die Schwingungsdämpfungsbohrung mindestens ein Drosselelement umfasst, wobei zwei oder mehr Drosselelemente bevorzugt sind. Insbesondere kann das Drosselelement ein den Dämpfungskanal und den Hochdruckraum (insbeson- dere den Hochdruck-Ringraum) verbindendes erstes Drosselelement umfassen. Weiterhin kann das Drosselelement ein den Dämpfungskanal und den Düsenraum verbindendes zweites Drosselelement umfassen. Diese Implementierung der Drosselelemente ist auch fertigungstechnisch vergleichsweise einfach implementierbar, da in diesem Fall beispielsweise lediglich eine im Wesentlichen parallel zur Injektorachse verlaufende Bohrung für den Dämpfungskanal und zwei schräg dazu verlaufende Bohrungen für die Drosselelemente implementiert werden müssen.
Dabei hat es sich als besonders vorteilhaft für die Dämpfungseigenschaften erwiesen, wenn die Drosselelemente einen Querschnitt mit einem Durchmesser zwischen 0,1 und 0,8 mm, insbesondere zwischen 0,2 und 0,5 und besonders bevorzugt bei 0,3 mm aufweisen. Für den Dämpfungskanal haben sich Querschnitte von mindestens 1,0 mm, insbesondere mindestens 1,5 mm und besonders bevorzugt von ca. 2,0 mm als vorteilhaft erwiesen. Letzterer Wert stellt einen in der Praxis gut realisierbaren Kompromiss zwischen einem möglichst hohen Flüssigkeitsvolumen für die Dämpfung (träge Masse) und der Raumbedarf des Dämpfungs- kanals im Injektorkörper dar.
Um ein möglichst hohes Dämpfungsvolumen als „träge Masse" bereitstellen zu können, ist es bevorzugt, wenn der Dämpfungskanal eine Länge von mindestens 40 mm, insbesondere von mindestens 60 mm und besonders bevorzugt von 90 mm aufweist. Damit ist der Dämp- fungskanal in heute kommerzielle Kraftstoffinjektoren implementierbar, ohne dass deren Außenabmessungen verändert werden müssten.
Der Kraftstoffinjektor in einer der oben beschriebenen Ausführungsformen ermöglicht eine Schwingungsdämpfung von Druckschwingungen innerhalb eines weiten Frequenzbereichtes. Damit lässt sich der Verschleiß des Kraftstoffinjektors erheblich vermindern, und die Lebensdauer der Common-Rail- Systeme lassen sich erheblich verbessern.
Kurze Beschreibung der Zeichnungen -A-
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Es zeigen
Figur 1 einen Druck- und Kraftverlauf für ein Common-Rail- System;
Figur 2 eine Systemantwort im Frequenzraum eines Common-Rail- Systems auf eine eigene Einspritzung und eine Nachbareinspritzung;
Figur 3 einen kumulierten Verschleiß für ein Ein-Injektor- System und ein gesamtes Common-Rail-System mit mehreren aktiven Injektoren;
Figur 4 ein Ausführungsbeispiel eines Common-Rail-Injektors gemäß der vorliegenden Erfindung;
Figur 5 ein Übertragungsverhalten eines Common-Rail-Injektors gemäß dem Stand der
Technik im Vergleich zu einem erfindungsgemäßen Common-Rail-Injektor und
Figur 6 simulierter Verschleiß von Common-Rail-Injektoren mit verschiedenen Verschleiß reduzierenden Maßnahmen.
Anhand der Figuren 1 bis 3 sollen zunächst Verschleißeffekte in Kraftstoffinjektoren und deren Ursachen skizziert werden. Die dadurch gewonnenen Erkenntnisse stellen die Grundlage für einen erfindungsgemäßen Kraftstoffinjektor dar, welcher anschließend in den Figuren 4 bis 6 anhand eines Ausführungsbeispiels erläutert wird.
In der Figur 1 ist ein charakteristisches Betriebsverhalten eines kommerziell erhältlichen Common-Rail-Injektors als Zeitverlauf dargestellt. Dabei zeigt die obere Kurve (Bezugszeichen 110) den Druckverlauf in Bar, und die untere Kurve (Bezugszeichen 112) die Kraft auf, die Düsennadel bzw. das Einspritzventilglied (im Folgenden als Nadelkraft bezeichnet), aufgetragen in Newton. Dargestellt ist der Zeitverlauf über einen vollen Injektionszyklus eines Sechszylinder-Motors.
Es lässt sich erkennen, dass das Betriebsverhalten des Einspritzsystems in zwei Bereiche aufgeteilt werden kann: zum Einen in den Bereich (in Fig. 1 mit Bezugsziffer 114 bezeichnet), in dem die Antwort auf die eigene Einspritzung dominiert, und in einen zweiten Bereich (in Fig. 1 mit Bezugsziffer 116 bezeichnet), in welchem der Einfluss der Nachbarinjek- Liυnen uυei wiegt. In Fig. 1 verläuft die Grenze zwischen den beiden Bereichen ungefähr bei 0,027 s.
Innerhalb des ersten Bereichs 114 wird das Schwingungsverhalten, beispielsweise die Schwingung der Nadelkraft 112, dominiert durch die eigene Einspritzung des betrachteten Kraftstoffϊnjektors. Im zweiten Bereich 116 hingegen wird das Schwingungsverhalten ausgelöst durch Nachbarinjektionen, also durch Injektionen benachbarter Kraftstoffϊnjektoren der Brennkraftmaschine. Dieser Bereich der fremdominierten Schwingungen wird üblicherweise auch als „Telefonie"-Bereich bzw. Bereich der „Telefonie"-Effekte bezeichnet.
Die Telefonie-Effekte, also Effekte der Schwingung in einem Kraftstoffϊnjektor, welche durch Nachbarinjektionen ausgelöst werden, haben einen massiven Einfluss auf den Verschleiß der Kraftstoffϊnjektoren. Untersuchungen haben ergeben, dass die eigene Einspritzung lediglich eine Gesamtbelastung pro Zyklus von 1/3 an Verschleiß verursacht, im Ge- gensatz zu dem Einfluss der Nachbarinjektionen, welche einen Anteil von ca. 2/3 am Verschleiß haben.
In Fig. 2 ist eine mögliche Ursache der oben beschriebenen Effekte aufgezeigt. Dabei sind die Gradienten der Systemantworten, also die Ableitungen I der Nadelkraft (vgl. Kurve 112 in Fig. 1) im Frequenzraum in willkürlichen Einheiten aufgetragen. Während die Kurve 118 die Systemantwort auf eine eigene Injektion darstellt, zeigt die Kurve 120 die Systemantwort auf Nachbarinjektionen.
Dabei ist deutlich zu erkennen, dass sowohl bei der eigenen Einspritzung 118 als auch bei Nachbarinjektionen 120 im Wesentlichen zwei Hauptfrequenzen angeregt werden, nämlich eine erste Frequenz bei ca. 650 Hz und eine zweite Frequenz bei ca. 3,2 KHz. Diese Eigenfrequenzen sind in beiden Kurven 118, 120 als steile Peaks (Maxima) zu erkennen.
Darüber hinaus zeigt die Systemantwort 120 der Nachbarinjektionen, also der Telefonie- Effekte, eine Vielzahl weiterer Anregungsfrequenzen. Dies bedeutet, dass die Düsennadel bzw. das Einspritzventilglied eines Kraftstoffϊnjektors sehr empfindlich auf Anregungen durch Nachbarinjektionen reagiert und ein wesentlich ausgeprägteres Schwingungsverhalten aufweist.
Diese erhöhte Empfindlichkeit, d.h. ausgeprägtere Systemantwort bzw. Kraftgradient, gegenüber einer Rail-seitigen Anregung durch Nachbarinjektionen hat einen erheblichen Einfluss auf das Verschleißverhalten der Kraftstoffinjektoren. Zwar sind, wie aus Kurve 112 in Fig. 1 hervorgeht, die Schwingungsamplituden, welche durch Nachbarinjektionen verursacht werden, kleiner als die Schwingungsamplituden im Bereich der eigenen Einspritzun- gen i i4. LJLCb Könnte zunächst einen niedrigeren Verschleiß vermuten lassen. Maßgeblich für den Verschleiß sind jedoch die Gradienten dieser Kräfte, welche in Fig. 2 dargestellt sind und die Verschleiß leistung charakterisieren. Aufgrund dieser höheren Gradienten durch die Telefonie-Effekte weisen die Nachbarinjektionen 120 einen höheren Anteil in den akkumu- lierten berechneten Verschleißwerten auf.
Für die Berechnung des Verschleißes lassen sich verschiedene physikalische Modelle generieren, auf die hier nicht im Detail eingegangen werden soll. In Fig. 3 ist das Ergebnis eines derartigen Verschleißmodells grafisch veranschaulicht. Dabei zeigt die Y-Achse 122 den akkumulierten Verschleiß, wohingegen die X-Achse 124 die Zeit symbolisiert. Aufgetragen ist die Zeit über einen vollständigen Injektionszyklus eines Sechszylinder-Motors. Dabei sind jeweils symbolisch die Injektionen der einzelnen Injektoren mit der Bezugsziffer 126 bezeichnet.
Wiederum sind zwei Kurven dargestellt: eine Kurve 128, bei welcher lediglich die eigene Injektion berücksichtigt wird, und eine Verschleißkurve 130 bei welcher auch Nachbarinjektionen berücksichtigt werden, welche also ein vollständig aktiviertes System einer Brennkraftmaschine symbolisieren.
Die Kurve 128, bei welcher lediglich ein einzelner Injektor während eines Injektionszyklus aktiv ist, zeigt den erwarteten, im Wesentlichen flachen Verlauf. Die Kurve 130, bei welcher auch die Nachbarinjektionen berücksichtigt sind, zeigt jedoch ein charakteristisches Stufenbild, bei welchem nicht nur bei der eigenen Injektion am Anfang des Zyklus ein Verschleiß auftritt, sondern auch bei jeder nachfolgenden Injektion durch benachbarte Injektoren. Dies ist das Ergebnis der in Fig. 2 dargestellten Systemantwort des nicht aktivierten Injektors auf Injektionen durch Nachbarinjektoren.
Wie oben beschrieben, beruht ein wesentlicher Ansatz der vorliegenden Erfindung darauf, die Empfindlichkeiten eines Kraftstoffinjektors gegenüber höheren Frequenzen durch geo- metrische Veränderungen des Hochdruck-Fluidsystems zu verkleinern. Dementsprechend wird eine Maßnahme vorgeschlagen, welche in der Lage ist, das Übertragungsverhalten der Eingangsgröße Druck auf die Nadelkraft hinsichtlich seiner Verstärkung bzgl. der Eigenfrequenzen zu minimieren.
In Fig. 4 ist ein Ausführungsbeispiel eines erfindungsgemäßen Kraftstoffinjektors 132 dargestellt. Der Kraftstoffinjektor 132 weist ein Injektorgehäuse 134 auf, welches modular aus mehreren, durch eine Überwurfmutter 136 zusammengehaltenen Modulen zusammengesetzt ist. iii einem uuj>eiimodul 138 ist ein Einspritzventilglied 140 aufgenommen, welches parallel zur Injektorachse 142 beweglich gelagert ist. Das Einspritzventilglied 140 ist von einem Düsenraum 144 umgeben und verschließt an seinem unteren Ende Einspritzöffnungen 146. Der Düsenraum 144 steht mit einer Hochdruckbohrung 148 in Verbindung, welche sich im Wesentlichen parallel zur Injektorachse 142 erstreckt, d.h. mit einer Winkelabweichung von ca. 4°. Die Hochdruckbohrung 148 steht mit einem Hochdruckzulauf 150 in Verbindung und kann über diesen aus einem Hochdruckspeicher (Common-Rail), welcher in Fig. 4 nicht dargestellt ist, mit unter hohem Druck stehenden Kraftstoff beaufschlagt werden.
Das Einspritzventilglied 140 wird durch eine Düsenfeder 152 mit einer Schließkraft beaufschlagt. Weiterhin steht das Einspritzventilglied 140 in Verbindung mit einem Steuerkolben 154, oberhalb dessen sich ein Steuerraum 156 befindet. Der Steuerraum 156 ist von einem Hochdruck-Ringraum 158 umgeben, welcher wiederum mit der Hochdruckbohrung 148 in Verbindung steht. Der Hochdruck-Ringraum 158 ist mit dem Steuerraum 156 über ein Steuerraum-Drosselelement 160 verbunden.
Der Druck im Steuerraum 156 wird in diesem Ausführungsbeispiel durch ein Magnetventil 162 gesteuert, über welches eine Entlastungsbohrung 164, welche ebenfalls mit einem Drosselelement ausgestattet ist, verschlossen bzw. freigegeben werden kann. Dadurch wird die Entlastungsbohrung 164 und damit der Steuerraum 156 von einem Niederdruckablauf 166 getrennt bzw. mit diesem verbunden.
Wird das Magnetventil 162 geöffnet, so sinkt der Druck im Steuerraum 156, und der Steu- erkolben 154 und damit das Einspritzventilglied 140 bewegen sich nach oben und geben die Einspritzöffnung 146 frei. Damit beginnt der Einspritzvorgang. Wird das Magnetventil 162 geschlossen, so herrscht im Steuerraum 156 hingegen Hochdruck, sodass das Einspritzventilglied 140 in seinen Ventilsitz gepresst wird, wobei die Einspritzöffnungen 146 verschlossen sind.
Die oben beschriebenen Systemanregungen des Fluidsystems des Kraftstoffinjektors 132 durch Nachbarinjektionen werden somit in dem Ausführungsbeispiel gemäß Fig. 4 durch den Hochdruckzulauf 150 angeregt, welcher mit dem Common-Rail in Verbindung steht. Die Druckschwankungen breiten sich durch die Hochdruckbohrung 148 aus und verursachen somit, wie oben beschrieben, typische Druckschwingungen im Düsenraum 144 und im Hochdruck-Ringraum 158 mit Amplituden von typischerweise bis zu 300 bar.
Bei dem in Fig. 4 dargestellten Ausführungsbeispiel des Kraftstoffinjektors 132 ist eine erfindungsgemäße Dämpfungsmaßnahme implementiert, um diese Druckschwankungen zu dämpfen. Zu diesem Zweck ist eine Schwingungsdämpfungsbohrung 168 vorgesehen, wel- une einen uampfungskanal 170 aufweist. Dieser Dämpfungskanal 170 erstreckt sich im Wesentlichen auf gleicher Länge zur Hochdruckbohrung 148 durch den Injektorkörper 134 und verläuft ebenfalls im Wesentlichen parallel zur Injektorachse 142. Die Winkelabweichungen von der Parallelität entsprechen dabei im Wesentlichen den Winkelabweichungen der Hoch- druckbohrungen 148.
Die Schwingungsdämpfungsbohrung 168 verbindet den Hochdruck-Ringraum 158 mit dem Düsenraum 144. Zu diesem Zweck ist der Dämpfungskanal 170 in diesem Ausführungsbei- spiel über eine Ringraumdrossel 172 und mit dem Düsenraum 144 über eine Düsenraum- drossel 174 verbunden.
Durch die in Fig. 4 dargestellte Dämpfungsmaßnahme lässt sich auf einfache Weise (d.h. lediglich durch zusätzliche Implementierung des Dämpfungskanals 170 und der Drosseln 172, 174) das fluidische Schwingungsverhalten des Kraftstoffinjektors 132 gezielt modifi- zieren. Insbesondere lassen sich auf diese Weise die Eigenfrequenzen des Schwingungssystems verstimmen und die Empfindlichkeit des Systems gegenüber einer Anregung von außen deutlich reduzieren.
Dabei haben sich in dem in Fig. 4 dargestellten Ausführungsbeispiel eine Länge des Dämp- fungskanals 170 von 90 mm und ein Durchmesser von ca. 2 mm als geeignet erwiesen. Die
Drosseln 172, 174 weisen in diesem Ausführungsbeispiel jeweils Durchmesser von 0,3 mm auf. Die Schwingungsdämpfungsbohrung 168 stellt somit insgesamt ein zweites fluidisches
Hochdrucksystem dar, welches parallel zur Hochdruckbohrung 148 angeordnet ist. Eine
Schwingungsdämpfung wird im Wesentlichen durch die Kombination der trägen fluidischen Masse innerhalb des Dämpfungskanals 170 und die Drosseln 172, 174 bewirkt, was auf ähnliche Weise beschreibbar ist wie eine elektrische Dämpfung in einem RC-Schwingkreis.
Die in Fig. 4 dargestellte Dämpfungsmaßnahme verändert das Übertragungsverhalten des Kraftstoffinjektors 132 im positiven Sinne. In Fig. 5 ist eine Übertragungsfunktion für einen Standardinjektor (Kurve 176) mit einer Übertragungsfunktion 178 eines Injektors mit einer Schwingungsdämpfungsbohrung 168 verglichen. Aufgetragen ist dabei jeweils die Übertragungsfunktion η in dB, welches sich als Quotient der Ableitung der Nadelkraft und der Ableitung des Rail-Drucks ergibt. Die Auftragung erfolgt im Frequenzraum.
Die beiden Kurven 176, 178 entsprechen dabei einem Kraftstoffinjektor 132 gemäß Fig. 4, wobei Kurve 176 einen Kraftstoffinjektor ohne die Schwingungsdämpfungsbohrung 168 (d.h. ohne Dämpfungskanal 170, ohne Ringraumdrossel 172 und ohne Düsenraumdrossel 174) darstellt, Kurve 178 hingegen einen Kraftstoffinjektor 132 gemäß Fig. 4 mit den genannten Elementen, also mit einer Schwingungsdämpfungsbohrung 168. Das in Fig. 5 dargestellte Diagramm, welches auch als Bode-Diagramm bezeichnet wird, zeigt deutlich zwei Effekte der Schwingungsdämpfungsmaßnahme: zum einen verschieben sich die als charakteristische Spitzen in den Kurven 176, 178 gekennzeichneten Eigenfre- quenzen durch die Schwingungsdämpfungsmaßnahme hin zu kleineren Frequenzen. Zum anderen werden die Spitzen in den Übertragungsfunktionen auch deutlich minimiert, so dass insgesamt eine breitbandige Dämpfung im gesamten Frequenzbereich zu verzeichnen ist. Damit ist die Empfindlichkeit des Kraftstoffinjektors 132 gegenüber Druckschwankungen deutlich minimiert. Insbesondere in dem für das Verschleißverhalten von Kraftstoffinjekto- ren besonders relevanten Betriebsfrequenzbereich zwischen 100 Hz und 4 KHz sind die Amplitudenantworten durch die Schwingungsdämpfungsbohrung 168 deutlich vermindert worden.
Somit ergeben sich durch die Schwingungsdämpfungsbohrung 168 gemäß dem Ausfüh- rungsbeispiel in Fig. 4 deutliche Vorteile gegenüber bekannten Schwingungsdämpfungs- maßnahmen, wie beispielsweise der in DE 103 07 871 Al dargestellten Maßnahme. Es ist insgesamt im gesamten Frequenzbereich eine Schwingungsdämpfung zu verzeichnen, sodass die Schwingungsmaßnahme beispielsweise nicht spezifisch eingerichtet ist auf einen bestimmten Betriebspunkt des gesamten Injektorsystems bzw. der Brennkraftmaschine. Dies ist ein erheblicher Vorteil, da hierdurch beispielsweise die Flexibilität und Einsetzbarkeit des Schwingungsdämpfungssystems nicht nur bezüglich verschiedener Injektortypen bzw. Maschinentypen erweitert wird, sondern auch bezüglich der Effizienz für die einzelnen Betriebspunkte der Brennkraftmaschine. Zudem ist die Schwingungsdämpfungsbohrung 168 unmittelbar im Injektorgehäuse 134 integriert, was zusätzliche Maßnahmen außerhalb des Kraftstoffinjektors erspart. Die Absorptionsdämpfung erfolgt also zusätzliche Bauteile oder Komponenten innerhalb des Kraftstoffinjektors 132 selbst.
In Fig. 6 sind schließlich Ergebnisse von Verschleißsimulationen dargestellt. Gezeigt sind dabei drei verschiedene Situationen: der Balken 180 zeigt den Verschleiß für eine Mehr- facheinspritzung ohne jegliche Dämpfungsmaßnahme, d.h. ohne irgendeine Dämpfung zwischen Common-Rail und Düsenraum 144. Diese Situation, welche auch als „DC" (direct connection) bezeichnet wird, wurde willkürlich auf 100% gesetzt.
Der Balken 182 bezeichnet demgegenüber einen Kraftstoffinjektor 132 mit einer sog. „Rail Injector Throttle" (RIT), mit einem Durchmesser von 1,1 mm. Dieses Drosselelement RIT, welches ebenfalls aus dem Stand der Technik bekannt ist, ist im Hochdruckzulauf 150 angeordnet, und zwar im Railausgang vor der zum Injektor führenden Hochdruckleitung, und bewirkt bereits eine gewisse Dämpfung von Druckschwingungen im Rail. Somit sinkt bereits durch diese Maßnahme der Verschleiß des Kraftstoffinjektors um ca. 20%. Der Balken 184 veranschaulicht hingegen eine Schwingungsdämpfungsmaßnahme gemäß der Erfindung, beispielsweise die in Fig. 4 dargestellte Schwingungsdämpfungsbohrung 168 bzw. deren Auswirkung. Deutlich ist zu erkennen, dass durch die Schwingungsdämpfungs- bohrung 168 der Gesamtverschleiß von 100% auf ca. 66% reduziert wird.
Die Erfindung zeigt somit einen Weg auf, um effizient den Verschleiß an Kraftstoffinjekto- ren 132 durch einfache zusätzliche Dämpfungsmaßnahmen zu reduzieren. Die Dämpfungs- maßnahmen lassen sich insbesondere in Kraftstoffinjektoren 132 implementieren, in denen der Abstand zwischen dem Steuerraum 150 und dem Düsenraum 144 hoch ist, sodass hier ein ausreichendes Flüssigkeitsvolumen und eine ausreichende Entlastungsstrecke durch den Dämpfungskanal 170 bereit gestellt werden können.

Claims

Ansprüche
1. Kraftstoffϊnjektor (132) zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, umfassend ein Einspritzventilglied (140), einen mit einem Hoch- druckzulauf (150) in Verbindung stehenden Düsenraum (144) und einen eine Hubbewegung des Einspritzventilgliedes (140) steuernden Steuerraum (156), wobei der Druck in dem Steuerraum (156) durch ein aktorgesteuertes Ventil (162) geschaltet werden kann, dadurch gekennzeichnet, dass zwischen zwei mit dem Hochdruckzulauf (150) in Verbindung stehenden Punkten eine zusätzliche Schwingungsdämpfungsboh- rung (168) vorgesehen ist, wobei die Schwingungsdämpfungsbohrung (168) einen sich im Injektorgehäuse (134) im Wesentlichen parallel zur Injektorachse (142) erstreckenden Dämpfungskanal (170) umfasst.
2. Kraftstoffinjektor (132) nach dem vorhergehenden Anspruch, wobei die Schwingungs- dämpfungsbohrung (168) sich zwischen einem mit dem Steuerraum (156) benachbarten
Hochdruckraum, insbesondere einem Hochdruck-Ringraum (158), und dem Düsenraum (144) erstreckt.
3. Kraftstoffinjektor (132) nach einem der beiden vorhergehenden Ansprüche, wobei die Schwingungsdämpfungsbohrung (168) weiterhin mindestens ein Drosselelement (172,
174) umfasst.
4. Kraftstoffinjektor (132) nach den beiden vorhergehenden Ansprüchen, wobei das Drosselelement (172, 174) ein den Dämpfungskanal (170) und den Hochdruckraum verbin- dendes erstes Drosselelement (172) umfasst.
5. Kraftstoffinjektor (132) nach den Ansprüchen 2 und 3 oder nach Anspruch 4, wobei das Drosselelement (172, 174) ein den Dämpfungskanal (170) und den Düsenraum (144) verbindendes zweites Drosselelement (174) umfasst.
6. Kraftstoffinjektor (132) nach einem der drei vorhergehenden Ansprüche, wobei das Drosselelement (172, 174) einen Querschnitt mit einem Durchmesser von 0,1 bis 0,8 mm, insbesondere von 0,2 bis 0,5 mm und besonders bevorzugt von 0,3 mm aufweist.
7. Kraftstoffinjektor (132) nach einem der vorhergehenden Ansprüche, wobei der Dämpfungskanal (170) einen zylindrischen Kanal mit einem Durchschnitt von mindestens 1,0 mm, insbesondere von mindestens 1,5 mm und besonders bevorzugt von 2,0 mm umfasst.
8. Kraftstoffϊnjektor (132) nach einem der vorhergehenden Ansprüche, wobei der Dämpfungskanal (170) eine Länge von mindestens 40 mm, insbesondere von mindestens 60 mm und besonders bevorzugt von 90 mm aufweist.
9. Kraftstoffinjektor (132) nach einem der vorhergehenden Ansprüche, wobei der Kraftstoffinjektor (132) eine sich im Wesentlichen parallel zur Injektorachse (142) erstreckende Hochdruckbohrung (148) umfasst, welche mit dem Hochdruckzulauf (150), dem Steuerraum (156) und dem Düsenraum (144) in Verbindung steht, wobei sich der Dämpfungskanal (170) im Wesentlichen parallel zur Hochdruckbohrung (148) erstreckt.
PCT/EP2008/055899 2007-06-01 2008-05-14 Kraftstoffinjektor mit geringem verschleiss WO2008145515A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08759582.3A EP2156047B1 (de) 2007-06-01 2008-05-14 Kraftstoffinjektor mit geringem verschleiss

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007025617.7 2007-06-01
DE200710025617 DE102007025617A1 (de) 2007-06-01 2007-06-01 Kraftstoffinjektor mit geringem Verschleiß

Publications (1)

Publication Number Publication Date
WO2008145515A1 true WO2008145515A1 (de) 2008-12-04

Family

ID=39865567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/055899 WO2008145515A1 (de) 2007-06-01 2008-05-14 Kraftstoffinjektor mit geringem verschleiss

Country Status (3)

Country Link
EP (1) EP2156047B1 (de)
DE (1) DE102007025617A1 (de)
WO (1) WO2008145515A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644590B2 (en) 2014-01-31 2017-05-09 Cummins Inc. Fuel injection pressure pulsation dampening system
DE102016209546A1 (de) 2016-06-01 2017-12-07 Robert Bosch Gmbh Kraftstoffeinspritzventil
DE102017126642A1 (de) 2017-11-13 2019-05-16 Volkswagen Aktiengesellschaft Vorrichtung zur Reduzierung von Druckwellenschwingungen in einer Einspritzvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19842067A1 (de) * 1998-09-15 2000-03-16 Daimler Chrysler Ag Kraftstoffeinspritzanlage für eine Dieselbrennkraftmaschine
EP1612401A1 (de) * 2004-06-30 2006-01-04 C.R.F. Società Consortile per Azioni Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10060811A1 (de) * 2000-12-07 2002-06-13 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE10060812A1 (de) * 2000-12-07 2002-06-13 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE10121892A1 (de) * 2001-05-05 2002-11-07 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10121891A1 (de) * 2001-05-05 2002-11-07 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10307871A1 (de) 2003-02-25 2004-09-02 Robert Bosch Gmbh Hochdruckleitung für eine Kraftstoffeinspritzanlage
DE102004007342A1 (de) * 2004-02-14 2005-09-01 Robert Bosch Gmbh Hydrauliksystem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19842067A1 (de) * 1998-09-15 2000-03-16 Daimler Chrysler Ag Kraftstoffeinspritzanlage für eine Dieselbrennkraftmaschine
EP1612401A1 (de) * 2004-06-30 2006-01-04 C.R.F. Società Consortile per Azioni Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine

Also Published As

Publication number Publication date
DE102007025617A1 (de) 2008-12-04
EP2156047A1 (de) 2010-02-24
EP2156047B1 (de) 2014-07-16

Similar Documents

Publication Publication Date Title
AT509877B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102007000080B4 (de) Kraftstoffeinspritzdüse und Kraftstoffeinspritzvorrichtung
DE4340305C2 (de) Kraftstoffeinspritzdüse für eine Brennkraftmaschine
AT503660B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP2049787A1 (de) Injektor für ein kraftstoffeinspritzsystem
EP2516839A1 (de) Brennstoffeinspritzeinrichtung
EP1342005B1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
DE112006002281T5 (de) Einspritzvorrichtung für ein einzelnes Strömungsmittel mit Ratenformungsfähigkeit
EP2387661B1 (de) Kraftstoffinjektor für brennkraftmaschinen
WO2001052916A2 (de) Einspritzeinrichtung und verfahren zum einspritzen von fluid
EP2156047B1 (de) Kraftstoffinjektor mit geringem verschleiss
EP1117921B1 (de) Einspritzvetil für ein Common-Rail Kraftstoffsystem
DE19938169A1 (de) Kraftstoffeinspritzeinrichtung
AT9288U1 (de) Hydraulische vorrichtung mit zumindest einem druckspeicher
DE10132246A1 (de) Kraftstoffinjektor mit hochdruckfestem Zulauf
EP2807367B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE10307002A1 (de) Kraftstoffeinspritzdüse und Pumpe-Düse-Einheit
WO2003027485A1 (de) Kraftstoffeinspritzsystem mit hydraulisch von der zuleitung entkoppeltem injektor
DE102008041561A1 (de) Kraftstoffinjektor sowie Auslegungsverfahren für einen Kraftstoffinjektor
WO2010023133A1 (de) Einspritzventil und fluidzuführsystem mit einspritzventil
DE102004016508A1 (de) Common-Rail-System
DE10358861A1 (de) Einspritzdüse
DE102019220172A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine
DE102007005574A1 (de) Injektor zum Einspritzen von Kraftstoff in Brennräume von Brennstoffmaschinen
DE10326506A1 (de) Vorrichtung zum Einspritzen von Kraftstoff mit hubstabilisiertem Einspritzventilglied

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008759582

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08759582

Country of ref document: EP

Kind code of ref document: A1