WO2008145074A2 - Secuencias de ácido nucleico y aminoácidos, y vacuna para el control de infestaciones por ectoparásitos en peces - Google Patents

Secuencias de ácido nucleico y aminoácidos, y vacuna para el control de infestaciones por ectoparásitos en peces Download PDF

Info

Publication number
WO2008145074A2
WO2008145074A2 PCT/CU2008/000003 CU2008000003W WO2008145074A2 WO 2008145074 A2 WO2008145074 A2 WO 2008145074A2 CU 2008000003 W CU2008000003 W CU 2008000003W WO 2008145074 A2 WO2008145074 A2 WO 2008145074A2
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
seq
fish
amino acid
infestations
Prior art date
Application number
PCT/CU2008/000003
Other languages
English (en)
French (fr)
Other versions
WO2008145074A3 (es
Inventor
Yamila Carpio Gonzalez
Mario Pablo Estrada Garcia
Original Assignee
Centro De Ingenieria Genetica Y Biotecnologia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Ingenieria Genetica Y Biotecnologia filed Critical Centro De Ingenieria Genetica Y Biotecnologia
Priority to US12/601,974 priority Critical patent/US9034338B2/en
Priority to EP08757900.9A priority patent/EP2168978B1/en
Priority to DK08757900.9T priority patent/DK2168978T3/da
Priority to CA2688587A priority patent/CA2688587C/en
Publication of WO2008145074A2 publication Critical patent/WO2008145074A2/es
Publication of WO2008145074A3 publication Critical patent/WO2008145074A3/es
Priority to US13/859,314 priority patent/US9034339B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0003Invertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/14Ectoparasiticides, e.g. scabicides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43509Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from crustaceans
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to the field of aquatic biotechnology, in particular with the sequence of a gene and the polypeptide it encodes, which constitute protective antigens against fish infestations by ectoparasites, vaccines comprising these antigens and Useful methods to induce an immune response in aquatic organisms against ectoparasites.
  • Sea lice constitute the most widespread marine pathogen in the last 30 years in the salmon industry, extending over the past 15 years to other fish species in culture and to wild salmonid populations (Pike, AW and Wadsworth , SL (2000). Advances in Parasitology 44: 233- 337, Ragias, V. et al. (2004). Aquaculture 242: 727-733).
  • a wide variety of chemical agents and drugs have been used to control infestations caused by sea lice. These include hydrogen peroxide, organophosphates, ivermectin and related compounds, such as emamectin benzoate, regulators of insect and pyrethrin shedding (MacKinnon, BM (1997). World Aquaculture 28: 5-10; Stone J., et al. (1999). J Fish Dis 22: 261-270). Treatments against sea lice can be classified in those administered by immersion baths, such as organophosphates and pyrethroids, and those that are administered orally, such as ivermectin. Immersion bath treatments are difficult, expensive and can have significant effects on fish growth after treatments (MacKinnon, BM (1997).
  • the cement protein produced in the salivary glands of ticks seems to be a good candidate to generate protection against several species of ticks (Adama, R. et al. (2005). Vaccine 23: 4329-4341) and , in turn, against opportunistic pathogens that employ them as hosts (Labuda, M. et al. (2006). PLoS Pathogens 2 (4): 251-259).
  • the present invention solves the aforementioned problem, by providing new nucleic acid and amino acid sequences, which are used in vaccine compositions against ectoparasite infestation in fish.
  • These vaccines comprise an immunologically effective amount of a desoribonucleic acid (DNA) fragment isolated from adults of Caligus rogercresseyi and / or a polypeptide encoded by said nucleic acid fragment, in a suitable adjuvant.
  • the new nucleic acid comprising the sequence identified as SEQ ID No.
  • my32 was isolated using degenerate oligonucleotides based on sequences similar to the 4D8 protein (or subolesina) found in different species of insects and arachnids: Drosophila melanogaster (GeneBank access number: AAN12062), D. pseudoobscura (GeneBank access number: EAL30734), Apis mellifera (GeneBank access number: XP_395252) and Ixodes scapular ⁇ s tick (GeneBank access number: AAV67031).
  • the isolated nucleic acid encodes a polypeptide, whose amino acid sequence is identified in this invention as SEQ ID No. 2, and hereafter referred to as MY32.
  • amino acid sequence where one or more amino acid residues have been removed, substituted and added to the amino acid sequence identified as SEQ ID No. 2, and which maintains its properties of inducing immune response against ectoparasites in fish
  • this new antigen offers several advantages over the methods described above, because the life cycle of the parasite is interrupted, since the presence of antibodies against this protein, and of effector cells of the immune system in the host, produces Ia decrease in the weight of the ectoparasite, and affects its reproduction, considerably reducing infestation rates, both due to the damage caused to the ectoparasite and the reduction in the population of caligids, in general. This is achieved with minimal environmental impact and risk to human consumption. In addition, as a result of the administration of the vaccine, the rates of infestation by opportunistic pathogens such as Piscirickettsia salmonis, which is an intracellular pathogen causing large losses in salmon farming, are reduced.
  • compositions comprising the polypeptide defined by the amino acid sequence identified as SEQ ID No. 2 stimulate the immune response of the IgM type in fish, cause damage to the ectoparasite and decrease the levels of lice infestation of sea.
  • the coding sequence for said polypeptide was obtained by Polymerase Chain Reaction (Polymerase Chain Reaction, abbreviated PCR) from complementary DNA (cDNA) of Caligus spp., Using degenerate oligonucleotides.
  • polypeptides that comprise in their polypeptide chain an amino acid sequence with at least 50% homology with the SEQ are also subject of the present invention. ID No.2, and that can produce an immune response against infestations of salmonids and other fish species by ectoparasites.
  • the nucleotide sequence encoding the aforementioned polypeptide was cloned into an expression vector in P. pastor ⁇ s, called pPS7.
  • the vector used in the genetic construction for the expression of the protein of interest in P. pastoris contains the AOX1 promoter of P. pastoris (pAOX1), the secretion signal of the sucrose invertase 2 of S. cerevisiae (spSUC 2) and Ia termination signal of the glyceraldehyde 3-phosphate dehydrogenase (GAPt) enzyme from S. cerevisiae.
  • pAOX1 the secretion signal of the sucrose invertase 2 of S. cerevisiae
  • GAPt glyceraldehyde 3-phosphate dehydrogenase
  • the vector also contains an origin of functional replication in Escherichia coli and the ampicillin resistance gene as a selection marker in bacteria.
  • the vectors used to generate recombinant strains of P. pastoris are generally integrative. Prior to transformation, plasmids should be linearized with a view to favoring homologous recombination by the AOX1 gene.
  • the MP36 strain of P. pastoris was used for extracellular production of recombinant proteins.
  • Said strain is an his3 auxotrophic mutant obtained at from the strain of P. pastoris BKM-90 (Patent application EP0438200), which after transformation with the expression vector acquires a HiS + phenotype (Yong V., et al. (1992). HIS-3 gene of Saccharomyces cerevisiae complement his mutation in yeast Pichia pastoris, Applied Biotechnology 9: 55-61).
  • the present invention also includes polypeptides comprising the sequence identified as SEQ ID No. 2, or a fragment, which is produced recombinantly, naturally or by chemical synthesis.
  • expression systems can be used in bacterial hosts, in yeasts other than P. pastoris and other systems for obtaining recombinant proteins that are known to persons versed in this field of the technique.
  • the gene of interest was also cloned into a pVAX vector marketed by Invitrogen.
  • This vector is specifically designed for the development of DNA vaccines and, with a minimum of sequence, allows high levels of recombinant protein expression, minimizing foreign genetic elements.
  • Said vector complies with the regulations of the United States Food and Drug Administration for the design of DNA vaccines.
  • a vaccine composition against infestations of salmonids and other fish species by ectoparasites comprising the polypeptide identified as SEQ ID No. 2, or a polypeptide with an amino acid sequence with at least 50% of homology with the SEQ. ID No.2.
  • one or more promiscuous T-cell epitopes were incorporated into the polypeptide identified as SEQ ID No. 2. Numerous studies have established the potential of promiscuous T-cell epitopes incorporated in chimeric peptides and proteins to increase immunogenicity (Kasmi KC. Et al. (2000). J Gen Virol 81: 729-35). These epitopes can be derived from natural immunogens of viral or bacterial origin. These natural epitopes can also be modified by additions, deletions or substitutions of one or multiple amino acids to obtain a candidate that can be tested for its ability to enhance the response to a specific antigen. The potential for the use of these epitopes in fish vaccines has been demonstrated (Kuzyk MA.
  • the effect of the polypeptide object of the present invention on the humoral immune response and the index of sea lice infestation was evaluated in experiments where the purified polypeptide, formulated in an oily adjuvant, was administered to the fish via injection.
  • the polypeptide identified as SEQ ID No. 2 was also effective when administered incorporated into the feed and in immersion baths.
  • the IgM-type humoral immune response of vaccinated animals was used as a criterion for successful immunization, and in decrease experiments with different species of ectoparasites the decrease in the number of parasites per fish was observed.
  • a vaccine composition against the infestations of salmonids and other fish species by ectoparasites, comprising nucleic acids containing the nucleotide sequence identified as SEQ ID No. 1, is part of the present invention.
  • a method is provided to prevent and treat infestations by different species of ectoparasites by administering the polypeptide identified as SEQ ID No. 2, or a polypeptide with an amino acid sequence with at least 50% of homology with the SEQ. ID No.2, in a vaccine composition that induces immune response in aquatic organisms against the different species of ectoparasites, and / or decreases the involvement of pathogens and diseases associated with these infestations.
  • the polypeptide identified as SEQ ID No. 2 was fused to one or two promiscuous T epitopes. These polypeptides, purified and formulated in an oily adjuvant, were administered to the fish via injection. The decrease in the number of parasites per fish compared to the group injected with the polypeptide identified as SEQ ID No. 2 and the group injected with PBS in a challenge experiment was used as a success criterion of immunization.
  • the composition comprising the MY32 polypeptide is administered by injection, in a dose range between 0.1-10 ⁇ g / g of the vaccinated animal.
  • the vaccine composition is administered in feed formulations in a dose range between 0.1-300 ⁇ g / g of feed, or by immersion baths in a dose range between 0.01-1 mg / L of water.
  • This invention also includes the use of the nucleotide sequence identified as SEQ ID No. 1, alone or in combination with the polypeptide for which it encodes, to manufacture a vaccine composition comprising naked DNA to induce immune response in aquatic organisms against the different species of ectoparasites, and / or decrease the involvement by pathogens and diseases associated with these infestations.
  • a naked DNA vaccine was evaluated containing the cDNA of the isolated Caligus spp. Gene, and the combination of puffed polypeptide / naked DNA, and good results were obtained in terms of induction of antibodies of type IgM and decrease in the number of parasites per fish.
  • FIG. 1 Humoral immune response obtained with different doses of purified MY32 recombinant protein, administered by intraperitoneal injection to 35 g salmon.
  • the graph shows the geometric mean of antibody titres (MGT) over time.
  • the experimental groups are: A. Purified MY32 recombinant protein: 0.5 ⁇ g / g weight; B. Purified MY32 recombinant protein: 1 ⁇ g / g weight; C. Negative control: Phosphate Buffered Saline, abbreviated PBS, in oily adjuvant.
  • Figure 2. Humoral immune response with different doses of purified MY32 polypeptide, administered orally to 35 g salmon.
  • the graph shows the geometric mean of antibody titres (MGT) over time.
  • the experimental groups are: A.
  • the fish were immunized with an intramuscular injection containing 25 ⁇ g of the plasmid carrying the my32 gene of C. rogercresseyi (group A) or with 25 ⁇ g of the plasmid plus the polypeptide at a concentration of 0.5 ⁇ g / g in weight (B Group). Control fish were injected with the expression vector only (group C).
  • FIG. 1 Controlled challenge trial in salmon (Salmo salar), previously immunized via immersion and infested with C. rogercresseyi.
  • the graph shows the average number of parasites per fish over time.
  • the experimental groups are: A: Plasmid containing the my32 gene at a dose of 0.01 mg / L; B: MY32 polypeptide at a dose of 0.1 mg / L of water; C: Negative control.
  • the coding sequence for the aforementioned MY32 polypeptide was obtained by PCR from the Caligus rogercresseyi cDNA, with degenerate oligonucleotides designed from the sequences reported for subolesina in different arthropods.
  • the oligonucleotides used were:
  • Oligonucleotides that hybridize with the 5 'ATG GC (TVC) TG (T / C) GC (T / C / G / A) AC (T / C / A / G) (T / C) T (T / C) fragment AA (A / G) ATG GC (T / C) TG (T / C) GC (T / C / G / A) AC (T / C / A / G) (T / C) T (A / G) AA (A / G) ATG GC (G / A) TG (T / C) GC (T / C / G / A) AC (T / C / A / G) (T / C) T (T / C) AA (A / G) ATG GC (G / A) TG (T / C) GC (T / C / G / A) AC (T / C / A
  • Example 2 Construction of the expression vector in Pichia pastoris containing the coding sequence for the MY32 polypeptide, transformation of strain MP36 and expression of the protein.
  • the my32 gene was amplified by PCR using specific oligonucleotides.
  • the specific oligonucleotides incorporate a histidine tail at the 3 'end of the protein, to facilitate immunoidentification and purification thereof.
  • the PCR product was treated with the polynucleotide kinase enzyme with the objective of phosphorylate the ends of the gene and facilitate its cloning into the expression vector.
  • the expression vector in P. pastoris pPS7 was enzymatically digested with the restriction endonuclease Neo I, treated with nuclease S1 and subjected to an alkaline phosphatase treatment for the dephosphorylation of the ends and the insertion of the gene encoding the polypeptide of interest .
  • the recombinant plasmid obtained was called pPS7-my32.
  • the plasmids Prior to transformation, the plasmids were linearized with the restriction enzyme Pvu II.
  • the MP36 strain of P. pastoris was transformed by electroporation with the recombinant expression vector. Said strain is a auxotrophic mutant his3 that after the transformation acquires a His + phenotype.
  • the transforming clones identified by Dot Blot were analyzed by Southern Blot to determine in which the integration had occurred.
  • the gene of interest is under the regulation of the AOX1 promoter, which is inducible by methanol.
  • the protein was obtained at high levels in periplasm. It was solubilized and purified by metal ion affinity chromatography using a Ni-NTA matrix (Quiagen), obtaining the protein at 95% purity.
  • Example 3 Construction of the eukaryotic cell expression vector containing the my32 gene for a naked DNA vaccine. The my32 gene was extracted from the pGEM T easy vector (Promega) by an EcoR I digestion.
  • the dynamics of the humoral response of the IgM type was evaluated by means of the ELISA technique, over a period of 90 days, demonstrating high antibody titers in the 2 doses tested. (Fig. 1).
  • Example 5 Controlled challenge trial, with Caligus rogercresseyi infestation in salmon (Salmo salar) previously immunized intraperitoneally.
  • Example 6 Experiment to measure the humoral immune response with different doses of purified MY32 polypeptide, administered orally.
  • the oral formulation was prepared by inclusion of the MY32 polypeptide in the basal diet.
  • the fish belonging to the negative control group were fed a basal diet.
  • the fish were fed once a day, for 5 days.
  • the experimental groups, of 50 fish each, were:
  • the oral formulation was prepared by including the MY32 polypeptide in the basal diet, at a dose of 1 ⁇ g / g of feed.
  • the negative control of the experiment constituted fish fed a basal diet. The fish were fed once a day, for 5 days with: A: I think it contained purified MY32 protein, formulated at 1 ⁇ g / g of feed B: Negative control: I think it didn't contain MY32 After that time, the salmon were infested extensively with an average of 90-95 sea lice per fish, approximately.
  • Example 8 Immunization of salmon with the naked DNA of the sequence coding for the my32 gene, and evaluation of the infestation by Caligus rogercresseyi.
  • One hundred and fifty salmon (Salmo coho) with an average weight of 35 g were distributed in two groups of 50 fish each.
  • the fish were immunized with an intramuscular injection of 25 ⁇ g of the plasmid containing the my32 gene of C. rogercresseyi (group A) or with 25 ⁇ g of the plasmid plus the polypeptide at a concentration of 0.5 ⁇ g / g of weight (group B) .
  • These fish showed higher levels of IgM in weeks 4 and 7 after vaccination, with statistical significance, compared to the fish injected with the control expression vector (group C).
  • Example 9 Controlled challenge trial in salmon (Salmo salar), previously immunized via immersion and infested with C. rogercresseyi. One hundred and fifty salmon with an average weight of 30 g were distributed in three groups, of 50 fish each.
  • the water level of the tanks was lowered, and in one case the plasmid pVAXmy32 was administered, which contains the coding sequence for the MY32 polypeptide, to another group of the purified protein, and to a third group (control). I added saline.
  • the immersion treatment was performed for 90 minutes.
  • the experimental groups, of 50 fish each, were: A: Plasmid pVAXmy32, which contains the my32 gene, was administered at a dose of 0.01 mg / L of water.
  • the MY32 polypeptide was administered at a dose of 0.1 mg / L of water.
  • Example 10 Controlled challenge trial, with Caligus rogercresseyi infestation in salmon ⁇ Salmo salar) previously immunized intraperitoneally with the MY32 protein and the protein fused to promiscuous T-cell epitopes.
  • mice Five hundred salmon with an average weight of 35 g were distributed in five groups, of 100 fish each. The fish were injected intraperitoneally in week 0 of the experiment.
  • the experimental groups were: Group 1: MY32 protein adjuvant in the oily adjuvant Montanide 888, at a dose of 1 ⁇ g / g in weight.
  • Group 2 Protein MY32-epitope ttP2 from tetanus toxoid (830-844 QYIKANSKFIGITEL; GenBank X04436) adjuvant in the oily adjuvant Montanide 888, at a dose of 1 ⁇ g / g of weight
  • Groups 3 Protein MY32-epitope of virus T of measles (288-302 LSEIKGVIVHRLEGV; GenBank M81903) adjuvant in the oily adjuvant Montanide 888, at a dose of 1 ⁇ g / g in weight.
  • Group 4 MY32-epitope ttP2 protein from tetanus toxoid / measles virus T cell epitope in adjuvant Montanide 888, at a dose of 1 ⁇ g / g.
  • Group 5 The negative control was injected with PBS adjuvant in Montanide 888. Two weeks later, the salmon were extensively infested with an average of 100 parasites per fish, in the copepodid stage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Insects & Arthropods (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Peptides Or Proteins (AREA)
  • Fodder In General (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La presente invención está relacionada con el aislamiento y clonaje de un gen, la obtención por vía recombinante de Ia proteína para Ia cual codifica, y el empleo de dicho antígeno en una preparación vacunal como proteína purificada y/o ADN desnudo, para inducir respuesta inmune en organismos acuáticos contra las diferentes especies de ectoparásitos, entre ellos los conocidos por piojos de mar, y los patógenos asociados a estas infestaciones. Las preparaciones vacunales, administradas por vía oral, por baños de inmersión o por inyección, demostraron su efectividad al producir respuesta inmune humoral de tipo IgM, y disminuir el número de parásitos por pez en los peces vacunados.

Description

SECUENCIAS DE ÁCIDO NUCLEICO Y AMINOÁCIDOS, Y VACUNA PARA EL CONTROL DE INFESTACIONES POR ECTOPARÁSITOS EN PECES.
Campo de Ia técnica La presente invención se relaciona con el campo de Ia biotecnología acuática, en particular con Ia secuencia de un gen y el polipéptido que este codifica, que constituyen antígenos protectores contra las infestaciones de peces por ectoparásitos, vacunas que comprenden estos antígenos y los métodos útiles para inducir una respuesta inmune en organismos acuáticos contra ectoparásitos.
Estado de Ia técnica anterior
Los piojos de mar (Copepoda, Caligidae) constituyen el patógeno marino más expandido en los últimos 30 años en Ia industria salmonera, extendiéndose en los últimos 15 años a otras especies de peces en cultivo y a las poblaciones salvajes de salmónidos (Pike, A.W. y Wadsworth, S. L. (2000). Advances in Parasitology 44:233- 337, Ragias, V. et al. (2004). Aquaculture 242: 727-733). Existen 3 géneros importantes: Pseudocaligus, Caligus y Lepeophtheirus.
Respecto a Ia producción de salmónidos en el hemisferio norte, una de las especies, Lepeophtheirus salmonis, es Ia responsable de los mayores brotes de Ia enfermedad en las granjas de salmónidos. Este parásito, sólo en el 2004, fue responsable, por pérdidas directas e indirectas en Ia acuicultura mundial, de 100 millones de dólares estadounidenses (Johnson, S. C, et al. (2004). Zool Studies 43: 8-19). Todos los estadios del piojo de mar, en los cuales este se encuentra adherido al huésped, se alimentan del mucus, Ia piel y la sangre del mismo. La adhesión y alimentación del piojo de mar produce lesiones que varían en su naturaleza y severidad, en dependencia de Ia especie de piojo de mar, su abundancia, los estadios del desarrollo presentes y los diferentes huéspedes (Johnson, S. C et al., "Interactions between sea lice and their hosts". En: Host-Parasite Interactions. Editors: G. Wiegertjes and G. Flik, Garland Science/Bios Science Publications, 2004, pp. 131-160). En el hemisferio sur, Caligus rogercresseyi es el calígido que afecta, en mayor medida, Ia industria del cultivo del salmón en Chile (González, L. y Carvajal, J. (2003). Aquaculture 220: 101-117).
En los casos en los cuales la enfermedad es severa, como los observados en el salmón del Atlántico (Salmo salar), cuando los peces son infectados por un alto número de L. salmonis, se aprecian áreas extensivas de piel erosionadas y hemorrágicas en Ia cabeza y Ia parte trasera del pez, y puede ser vista un área distintiva de erosión y hemorragia sub-epidermal en la región perianal (Grimnes, A. et al. (1996). J Fish Biol 48: 1179- 1194). Los llamados piojos de mar pueden causar cambios fisiológicos en sus huéspedes, que incluyen el desarrollo de una respuesta de stress, Ia reducción de las funciones inmunes, fallo en Ia osmorregulación y Ia muerte, si no se trata la infección (Johnson, S. C, et al. (2004). Zool Studies 43: 8- 19). Una amplia variedad de agentes químicos y fármacos han sido utilizados para controlar las infestaciones producidas por los piojos de mar. Entre estos se incluye el peróxido de hidrógeno, organofosforados, ivermectina y compuestos relacionados, como el benzoato de emamectina, reguladores de Ia muda de insectos y piretrinas (MacKinnon, B. M. (1997). World Aquaculture 28: 5-10; Stone J., et al. (1999). J Fish Dis 22: 261-270). Los tratamientos contra los piojos de mar pueden ser clasificados en aquellos administrados por baños de inmersión, como los organofosforados y los piretroídes, y aquellos que son administrados oralmente, como por ejemplo Ia ivermectina. Los tratamientos por baños de inmersión son difíciles, costosos y pueden tener efectos significativos sobre el crecimiento del pez después de los tratamientos (MacKinnon, B. M. (1997). World Aquaculture 28: 5-10). Los agentes químicos empleados en los tratamientos por baños de inmersión no son efectivos contra todos los estadios de piojos de mar encontrados en los peces. Hasta el presente, el uso de tratamientos orales como SLICE(R) (benzoato de emamectina) es el predominante en Ia industria salmonera. A diferencia de los químicos administrados por baños, SLICE(R) provee de una corta protección contra Ia re-infección. Este tratamiento, aunque más fácil de aplicar que los baños, es también caro y, al igual que estos, requiere de un tiempo antes de que los animales puedan ser destinados al consumo humano (Stone J., et al. (1999). J Fish Dis 22: 261-270). Como se ha visto en las plagas y parásitos terrestres, hay evidencias que sugieren el desarrollo de resistencia en L. salmonis a algunos de estos tratamientos, especialmente en las poblaciones tratadas frecuentemente (Denholm, I. (2002). Pest Manag Sci 58: 528-536). Con el objetivo de reducir los costos y de reducir los riesgos ambientales asociados a estos tratamientos, se hace necesario el desarrollo de nuevas vías para el control de las infestaciones de peces por piojos de mar, como el desarrollo de vacunas contra estos parásitos.
La experiencia con parásitos terrestres ha demostrado que, para que una vacuna sea exitosa debe consistir en uno o más antígenos poco representados, ocultos para el sistema inmune del hospedero, y de baja o ninguna homología con proteínas del mismo. Los piojos de mar son ectoparásitos que se alimentan del mucus, Ia piel y la sangre del huésped y, por tanto, tienen solo un contacto limitado con el sistema inmune del mismo (Boxaspen, K. (2006). ICES Journal of Marine Science 63: 1304- 1316). En estos casos Ia supresión de Ia respuesta inmune del huésped es debido a Ia producción de proteínas inmunomoduladoras por el parásito en el sitio de adhesión y alimentación (Wikel, S. K., et al., "Arthropod modulation of host immune responses". En: The Immunology of Host-Ectoparasitic Arthropod Relationships. Editors: Wikel, S. K., CAB Int., 1996, pp. 107-130). Estas proteínas se han investigado, para usarlas como candidatos vacunales para el control de las infestaciones por piojos de mar. Estas han sido patentadas, y se han realizado ensayos in vitro para ver sus efectos sobre las funciones inmunes del huésped (Solicitud de Patente No. WO2006010265: RECOMBINANT VACCINES AGAINST CALlGID COPEPODS (SEA LlCE) AND ANTIGEN SEQUENCES THEREOF). Entre estas moléculas que se han estudiado se encuentran las tripsinas, proteínas semejantes a Ia vitelogenina, proteínas de adhesión al huésped, entre otras (Johnson, S. C1 et al. (2004). Zool Studies 43: 8-19; Boxaspen, K. (2006). ICES Journal of Marine Science 63: 1304-1316).
De manera general, las vacunas son más seguras que los tratamientos químicos, tanto para los peces como para el ambiente. No obstante, hasta el momento no existe una vacuna comercialmente disponible contra los piojos de mar. Se han producido vacunas experimentales contra L. salmonis empleando los extractos del animal completo. Estas vacunas no han demostrado ser protectoras debido a que su administración resulta en cambios menores en Ia fecundidad de L. salmonis (Grayson T.H., et al. (1995). J Fish Biol 47: 85-94). Debido al poco conocimiento de los mecanismos y Ia patología de Ia infestación de los salmones por el piojo de mar, Ia identificación de blancos para Ia prevención y el tratamiento de esta infestación no ha sido exitosa. Esto ha dificultado enormemente el progreso de las investigaciones relacionadas con vacunas recombinantes, y Ia realidad es que hasta el presente no se ha desarrollado una vacuna exitosa contra estos ectoparásitos. Por tanto, existe una necesidad de antígenos efectivos que formen parte de una vacuna contra Ia infestación por piojos de mar.
En otros artrópodos, como las garrapatas, se han identificado genes involucrados en la reproducción y la alimentación de garrapatas de diferentes géneros (Almazán et al. (2003). Vaccine 21 :1492-1501 ), mediante el empleo de inmunización con librerías de expresión. Los resultados basados en experimentos de ácido ribonucleico de interferencia (ARN interferencia) (de La Fuente et al. (2005). Parasitol Res. 96:137-141 ) e inmunización (Almazán et al. (2005). Vaccine 23: 4403- 4416) sugieren que estos genes serían buenos candidatos para el desarrollo de vacunas contra las diferentes especies de garrapatas que infestan a los mamíferos. Entre otras, Ia proteína del cemento que se produce en las glándulas salivales de las garrapatas parece ser un buen candidato para generar protección contra varias especies de garrapatas (Adama, R. et al. (2005). Vaccine 23: 4329-4341 ) y, a su vez, contra patógenos oportunistas que emplean a estas como huéspedes (Labuda, M. et al. (2006). PLoS Pathogens 2(4): 251-259).
Explicación de Ia invención
La presente invención resuelve el problema antes mencionado, al proveer de nuevas secuencias de ácidos nucleicos y aminoácidos, que se emplean en composiciones vacunales contra la infestación por ectoparásitos en peces. Estas vacunas comprenden una cantidad inmunológicamente efectiva de un fragmento de ácido desorribonucleico (ADN) aislado a partir de adultos de Caligus rogercresseyi y/o un polipéptido codificado por dicho fragmento de ácido nucleico, en un adyuvante adecuado. El nuevo ácido nucleico que comprende Ia secuencia identificada como SEQ ID No. 1 , denominado en este documento my32, se aisló empleando oligonucleótidos degenerados basados en secuencias similares a la proteína 4D8 (o subolesina) encontrada en diferentes especies de insectos y arácnidos: Drosophila melanogaster (Número de acceso al GeneBank: AAN12062), D. pseudoobscura (Número de acceso al GeneBank: EAL30734), Apis mellifera (Número de acceso al GeneBank: XP_395252) y la garrapata Ixodes scapularís (Número de acceso al GeneBank: AAV67031 ). A nivel de ADN solo existe homología en una corta región de 56 nucleótidos comprendidos entre Ia base 476 y Ia base 532 de la secuencia aislada y los nucleótidos del 321 al 377 del gen 4D8 de Rhipicephalus sanguineus. A nivel de secuencia aminoacídica, Ia secuencia del nuevo antígeno presenta muy baja homología (<43%) con las secuencias antes mencionadas y otras reportadas en el GeneBank (http://www.ncbi.nlm.nih.gov/Genbank/). El ácido nucleico aislado codifica para un polipéptido, cuya secuencia de aminoácidos se identifica en esta invención como SEQ ID No. 2, y se denomina en lo adelante MY32. Es también objeto de la presente invención, una secuencia de aminoácidos donde uno o varios residuos aminoacídicos se han eliminado, sustituido y añadido a Ia secuencia de aminoácidos identificada como SEQ ID No. 2, y que mantiene sus propiedades de inducir respuesta inmune contra los ectoparásitos en peces.
Como resultado principal, se encontró que el nuevo gen my32 y/o Ia proteína para Ia cual codifica dicho gen (SEQ ID No. 2), expresada de forma recombinante en Ia levadura Pichia pastoris, produce una respuesta inmune humoral, de tipo IgM, provocando daños de importancia en el desarrollo y reproducción de los ectoparásitos. También se observó una disminución significativa de los índices de infestación por piojos de mar en los peces, en experimentos de reto. El uso de este nuevo antígeno ofrece varias ventajas sobre los métodos anteriormente descritos, debido a que se interrumpe el ciclo de vida del parásito, ya que Ia presencia de anticuerpos contra esta proteína, y de células efectoras del sistema inmune en el huésped, produce Ia disminución del peso del ectoparásito, y afecta la reproducción del mismo, disminuyendo considerablemente los índices de infestación, tanto por el daño que Ie ocasiona al ectoparásito como por Ia reducción de Ia población de calígidos, en general. Esto se logra con un mínimo afectación ambiental y de riesgo para el consumo humano. Además, producto de Ia administración de Ia vacuna, se reducen los índices de infestación por patógenos oportunistas como Piscirickettsia salmonis, que es un patógeno intracelular que causa pérdidas cuantiosas en Ia salmonicultura. Los efectos causados por el uso de este nuevo gen, y de Ia proteína para Ia cual codifica, resultan sorprendentes e inesperados, de acuerdo a Io planteado por algunos autores que consideran que Ia sangre del huésped no constituye una parte importante de Ia dieta del piojo de mar (15-25% del tejido que consume), y que Ia hembra no ingiere mayor cantidad de sangre en comparación con los machos como ocurre en los parásitos terrestres que se alimentan de este fluido (Bricknell, I. R et al. (2004). Caligus 8: 6; Wagner, G. N. y McKinley, R.S. (2004). J. Fish. Biol. 64:1027- 1038). En Ia actualidad, son muy escasos los conocimientos que se tienen sobre los mecanismos moleculares involucrados en la digestión del piojo de mar, y no resulta obvio que Ia fisiología de los crustáceos sea similar a Ia de los arácnidos (Raynard, R.S. et al. (2002). Pest Management Science 58: 569-575).
En una materialización de Ia presente invención, las composiciones que comprenden el polipéptido definido por Ia secuencia de aminoácidos identificada como SEQ ID No. 2 estimulan Ia respuesta inmune de tipo IgM en peces, provocan daños en el ectoparásito y disminuyen los niveles de infestación por piojos de mar. La secuencia codificante para dicho polipéptido se obtuvo mediante Reacción en Cadena de Ia Polimerasa (del inglés Polymerase Chain Reaction, abreviado PCR) a partir de ADN complementario (ADNc) de Caligus spp., empleando oligonucleótidos degenerados. Sin embargo, son también objeto de Ia presente invención polipéptidos que comprenden en su cadena polipeptídica una secuencia de aminoácidos con al menos un 50% de homología con Ia SEQ. ID No.2, y que pueden producir respuesta inmune contra las infestaciones de salmónidos y otras especies de peces por ectoparásitos.
En una realización particular de Ia invención, se clonó la secuencia de nucleótidos codificante del polipéptido antes mencionado en un vector de expresión en P. pastorís, denominado pPS7. El vector utilizado en Ia construcción genética para Ia expresión de Ia proteína de interés en P. pastoris contiene el promotor AOX1 de P. pastoris (pAOX1 ), la señal de secreción de Ia sucrosa invertasa 2 de S. cerevisiae (spSUC 2) y Ia señal de terminación de Ia enzima gliceraldehído 3-fosfato deshidrogenasa (GAPt) de S. cerevisiae. Está presente, además, una secuencia de ADN cromosomal de P. pastoris correspondiente a Ia región 3'AOX, necesaria para la recombinación de homólogos con Ia levadura y el gen HIS3 de S. cerevisiae, que constituye el marcador de selección en levaduras. El vector contiene, además, un origen de replicación funcional en Escherichia coli y el gen de resistencia a ampicilina como marcador de selección en bacterias. Los vectores usados para generar cepas recombinantes de P. pastoris son integrativos, generalmente. Previo a Ia transformación, los plasmidios deben ser linealizados con vistas a favorecer Ia recombinación homologa por el gen AOX1.
La cepa MP36 de P. pastoris fue utilizada para la producción extracelular de las proteínas recombinantes. Dicha cepa es un mutante auxotrófico his3 obtenido a partir de Ia cepa de P. pastoris BKM-90 (Solicitud de patente EP0438200), Ia cual luego de Ia transformación con el vector de expresión adquiere un fenotipo HiS+ (Yong V., et al. (1992). HIS-3 gene of Saccharomyces cerevisiae complement his mutation in yeast Pichia pastoris. Biotecnología Aplicada 9: 55-61 ). La presente invención también incluye polipéptidos que comprenden Ia secuencia identificada como SEQ ID No. 2, o un fragmento, que se produce de forma recombinante, natural o por síntesis química. En Ia obtención del polipéptido de interés pueden emplearse sistemas de expresión en hospederos bacterianos, en levaduras diferentes a P. pastoris y otros sistemas para Ia obtención de proteínas recombinantes que son conocidos por las personas versadas en este campo de Ia técnica.
En una materialización de Ia invención, se clonó además el gen de interés en un vector pVAX comercializado por Invitrogen. Este vector está específicamente diseñado para el desarrollo de vacunas de ADN y, con un mínimo de secuencia, permite altos niveles de expresión de las proteínas recombinantes, minimizando los elementos genéticos extraños. Dicho vector cumple con las normas de Ia Administración de Medicamentos y Alimentos de Estados Unidos para el diseño de vacunas de ADN. Es también objeto de Ia presente invención, una composición vacunal contra las infestaciones de salmónidos y otras especies de peces por ectoparásitos, que comprendan el polipéptido identificado como SEQ ID No. 2, o un polipéptido con una secuencia de aminoácidos con al menos un 50% de homología con la SEQ. ID No.2. Como parte de esta invención, se incorporaron al polipéptido identificado como SEQ ID No. 2, uno o más epitopes de células T promiscuos. Numerosos estudios han establecido el potencial de los epitopes de células T promiscuos incorporados en péptidos quiméricos y proteínas para incrementar Ia inmunogenicidad (El Kasmi KC. et al. (2000). J Gen Virol 81 :729-35). Estos epitopes pueden derivarse de ¡nmunógenos naturales de origen viral o bacteriano. Estos epitopes naturales también pueden modificarse por adiciones, deleciones o sustituciones de uno o múltiples aminoácidos para obtener un candidato que puede ser testado para su habilidad de potenciar Ia respuesta a un antígeno específico. Se ha demostrado el potencial del empleo de estos epitopes en vacunas de peces (Kuzyk MA. et al. (2001 ) Vaccine 19: 2337-2344). El efecto del polipéptido objeto de Ia presente invención sobre Ia respuesta inmune humoral y el índice de infestación por piojos de mar fue evaluado en experimentos donde se administró a los peces vía inyección el polipéptido purificado, formulado en un adyuvante oleoso. El polipéptido identificado como SEQ ID No. 2 también fue efectivo cuando se administró incorporado en el pienso y en baños de inmersión. Se utilizó como criterio de éxito de Ia inmunización Ia respuesta inmune humoral de tipo IgM de los animales vacunados, y en experimentos de reto con diferentes especies de ectoparásitos se apreció Ia disminución del número de parásitos por pez. Forma parte de Ia presente invención una composición vacunal contra las infestaciones de salmónidos y otras especies de peces por ectoparásitos, que comprenda ácidos nucleicos que contienen Ia secuencia de nucleótidos identificada como SEQ ID No. 1.
Como parte de Ia presente invención se provee de un método para prevenir y tratar las infestaciones por diferentes especies de ectoparásitos mediante Ia administración del polipéptido identificado como SEQ ID No. 2, o un polipéptido con una secuencia de aminoácidos con al menos un 50% de homología con Ia SEQ. ID No.2, en una composición vacunal que induce respuesta inmune en organismos acuáticos contra las diferentes especies de ectoparásitos, y/o disminuye la afectación por patógenos y enfermedades asociadas a estas infestaciones. El polipéptido identificado como SEQ ID No. 2 fue fusionado a uno o dos epitopes T promiscuos. Estos polipéptidos, purificados y formulados en un adyuvante oleoso, fueron administrados a los peces vía inyección. Se utilizó como criterio de éxito de la inmunización Ia disminución del número de parásitos por pez en comparación con el grupo inyectado con el polipéptido identificado como SEQ ID No. 2 y el grupo inyectado con PBS en un experimento de reto.
En una materialización de Ia invención, Ia composición que comprende el polipéptido MY32 se administra por inyección, en un rango de dosis entre 0,1-10 μg/ g de peso del animal vacunado. En otras realizaciones de Ia invención, Ia composición vacunal se administra en formulaciones de pienso en un rango de dosis entre 0,1-300 μg/g de pienso, o mediante baños de inmersión en un rango de dosis entre 0,01-1 mg/L de agua.
Esta invención también incluye el uso de Ia secuencia de nucleótidos identificada como SEQ ID No. 1 , sola o en combinación con el polipéptido para el cual codifica, para fabricar una composición vacunal que comprende ADN desnudo para inducir respuesta inmune en organismos acuáticos contra las diferentes especies de ectoparásitos, y/o disminuir Ia afectación por patógenos y enfermedades asociadas a estas infestaciones. En una materialización de Ia invención, se evaluó una vacuna de ADN desnudo conteniendo el ADNc del gen aislado de Caligus spp., y Ia combinación de polipéptido puñficado/ADN desnudo, y se obtuvieron buenos resultados en términos de inducción de anticuerpos de tipo IgM y disminución del número de parásitos por pez.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Respuesta inmune humoral obtenida con diferentes dosis de proteína recombinante MY32 purificada, administrada por inyección intraperitoneal a salmones de 35 g. El gráfico muestra Ia media geométrica de los títulos de anticuerpos (MGT) en el tiempo. Los grupos experimentales son: A. Proteína recombinante MY32 purificada: 0,5 μg/g de peso; B. Proteína recombinante MY32 purificada: 1 μg/g de peso; C. Control negativo: Buffer fosfato salino (en inglés Phosphate Buffered Saline, abreviado PBS) en adyuvante oleoso. Figura 2. Respuesta inmune humoral con diferentes dosis del polipéptido MY32 purificado, administrado por vía oral a salmones de 35 g. El gráfico muestra Ia media geométrica de los títulos de anticuerpos (MGT) en el tiempo. Los grupos experimentales son: A. Pienso que contiene proteína MY32 a una dosis de 0,5 μg/g de pienso; B. Pienso que contiene proteína MY32 a una dosis de 1 μg/g de pienso; C. Control negativo: pienso que no contiene proteína MY32. Figura 3. Ensayo de reto controlado en salmones (Salmo salar) previamente inmunizados con el polipéptido MY32 purificado, administrado a una dosis de 1 μg/g de pienso. Los peces se infestaron con Lepeophtheirus salmonis. Los grupos experimentales son: A: Pienso que contiene proteína MY32 a una dosis de 1 μg/g de pienso; B: Control negativo: pienso que no contiene proteína MY32. Figura 4. Efecto sobre el número de parásitos/pez de Ia inmunización de salmones con el ADN codificante para el polipéptido MY32 o con Ia combinación ADN/proteína purificada. Los peces fueron inmunizados con una inyección intramuscular que contenía 25 μg del plasmidio que porta el gen my32 de C. rogercresseyi (grupo A) o con 25 μg del plasmidio más el polipéptido a una concentración de 0,5 μg/g de peso (grupo B). Los peces controles fueron inyectados con el vector de expresión solamente (grupo C).
Figura 5. Ensayo de reto controlado en salmones (Salmo salar), previamente inmunizados vía inmersión e infestados con C. rogercresseyi. El gráfico muestra el número de parásitos promedio por pez en el tiempo. Los grupos experimentales son: A: Plasmidio que contiene el gen my32 a una dosis de 0,01 mg/L; B: Polipéptido MY32 a una dosis de 0,1 mg/L de agua; C: Control negativo.
Ejemplos de realización Ejemplo 1. Aislamiento y clonaje del gen my32
La secuencia codificante para el polipéptido MY32 antes mencionado fue obtenida por PCR a partir del ADNc de Caligus rogercresseyi , con oligonucleótidos degenerados diseñados a partir de las secuencias reportadas para la subolesina en diferentes artrópodos. Los oligonucleótidos empleados fueron:
Oligonucleótidos que hibridan con el fragmento 5' ATG GC(TVC) TG(T/C) GC(T/C/G/A) AC(T/C/A/G) (T/C)T(T/C) AA(A/G) ATG GC(T/C) TG(T/C) GC(T/C/G/A) AC(T/C/A/G) (T/C)T(A/G) AA(A/G) ATG GC(G/A) TG(T/C) GC(T/C/G/A) AC(T/C/A/G) (T/C)T(T/C) AA(A/G) ATG GC(G/A) TG(T/C) GC(T/C/G/A) AC(T/C/A/G) (T/C)T(A/G) AA(A/G) Oligonucleótidos que hibridan con el fragmento 3' TT(A/C)AC(A/G)AA(A/C/G/T)G(T/C)(A/G)TC(A/G)TA(C/T)TG(C/T)TC TT(G/T)AC(A/G)AA(A/C/G/T)G(T/C)(A/G)TC(A/G)TA(C/T)TG(C/T)TC El ADN amplificado se clonó en un vector comercializado por Ia firma Promega, pGEM Teasy vector, y se secuenció de forma automática empleando el juego de reactivos Thermo Sequenase Premixed cycle Sequencer Kit (Amersham Pharmacia) de acuerdo a las recomendaciones del fabricante.
Ejemplo 2. Construcción del vector de expresión en Pichia pastoris que contiene Ia secuencia codificante para el polipéptido MY32, transformación de la cepa MP36 y expresión de Ia proteína.
El gen my32 fue amplificado por PCR empleando oligonucleótidos específicos. Los oligonucleótidos específicos incorporan una cola de histidina en el extremo 3' de Ia proteína, para facilitar la inmunoidentificación y la purificación de la misma. El producto de PCR fue tratado con Ia enzima polinucleótido quinasa con el objetivo de fosforilar los extremos del gen y facilitar su clonaje en el vector de expresión. El vector de expresión en P. pastoris pPS7 fue digerido enzimáticamente con Ia endonucleasa de restricción Neo I, tratado con nucleasa S1 y sometido a un tratamiento con fosfatasa alcalina para Ia desfosforilación de los extremos y Ia inserción del gen que codifica para el polipéptido de interés. El plasmidio recombinante obtenido fue denominado pPS7-my32.
Previo a la transformación, los plasmidios fueron linealizados con Ia enzima de restricción Pvu II. La cepa MP36 de P. pastoris fue transformada mediante electroporación con el vector de expresión recombinante. Dicha cepa es un muíante auxotrófico his3 que luego de Ia transformación adquiere un fenotipo His+.
Los clones transformantes identificados mediante Dot Blot fueron analizados por Southern Blot para determinar en cuales había ocurrido Ia integración. El gen de interés está bajo Ia regulación del promotor AOX1 , el cual es inducible por metanol. La proteína fue obtenida a altos niveles en periplasma. Fue solubilizada y purificada mediante cromatografía de afinidad a iones metálicos empleando una matriz de Ni- NTA (Quiagen), obteniéndose Ia proteína a un 95% de pureza. Ejemplo 3. Construcción del vector de expresión en células eucariontes que contiene el gen my32 para una vacuna de ADN desnudo. El gen my32 fue extraído del vector pGEM T easy (Promega) mediante una digestión EcoR I. El inserto purificado mediante QiaQuick kit (Qiagen, Hamburg, Germany) fue ligado en el vector pVAX (Invitrogen), previamente digerido con EcoR I. El ADN recombinante utilizado en el experimento de inmunización fue purificado mediante el kit Endo Free Plasmid Mega kit (Qiagen, Hamburg, Germany). Ejemplo 4. Experimento para medir Ia respuesta inmune humoral con diferentes dosis de proteína recombinante W1Y32 purificada administrada por inyección intraperitoneal.
Se tomaron tres grupos de salmón del Atlántico (Salmo salar), de 35 g de peso y se les aplicaron diferentes dosis del polipéptido de interés purificado, en adyuvante oleoso, por inyección intraperitoneal. Los grupos experimentales, de 50 peces cada uno, fueron:
A. Proteína recombinante MY32 purificada: 0,5 μg/g de peso
B. Proteína recombinante MY32 purificada: 1 μg/g de peso C. Control negativo: PBS 1x en adyuvante oleoso.
Se evaluó Ia dinámica de Ia respuesta humoral de tipo IgM mediante Ia técnica de ELISA, en un período de 90 días, demostrándose altos títulos de anticuerpos en las 2 dosis ensayadas. (Fig. 1 ).
Ejemplo 5. Ensayo de reto controlado, con infestación por Caligus rogercresseyi en salmones (Salmo salar) previamente inmunizados por vía intraperitoneal.
Doscientos salmones de un peso promedio de 35 g se distribuyeron en dos grupos, de 100 peces cada uno. Los salmones del primer grupo se inyectaron por vía intraperitoneal con Ia proteína purificada en Ia semana 0 del experimento, a una dosis de 1 μg/g de peso, adyuvada en el adyuvante oleoso Montanide 888. El control negativo fue inyectado con PBS adyuvado en Montanide 888. Dos semanas después, los salmones fueron infestados extensivamente con un promedio de 100 parásitos por pez, en el estadio de copepodid. A los 60 días se contó el número de parásitos por pez, encontrándose una reducción del número de estos en más del 80% (Tabla 1 ) en el grupo tratado con el polipéptido purificado, comparado con el control negativo. Se les extrajo suero a estos animales en las semanas 0, 4 y 8 y se evaluaron mediante la técnica de ELISA para IgM contra MY32, encontrándose altos títulos en las semanas 4 y 8 (datos no mostrados).
Tabla 1. Efecto de Ia inyección intraperitoneal con Ia proteína purificada MY32 sobre el número de parásitos por pez, a los 28 y 60 días después de Ia inyección.
Figure imgf000013_0001
Ejemplo 6. Experimento para medir Ia respuesta inmune humoral con diferentes dosis del polipéptido MY32 purificado, administrado por vía oral.
Se tomaron tres grupos de juveniles de salmón del Atlántico {Salmo salar) de 35 g de peso promedio. La formulación oral fue preparada por inclusión del polipéptido MY32 en Ia dieta basal. Los peces pertenecientes al grupo control negativo fueron alimentados con dieta basal. Los peces fueron alimentados una vez al día, por 5 días. Los grupos experimentales, de 50 peces cada uno, fueron:
A. Pienso que contenía proteína MY32 purificada a una dosis de 0,5 μg/g de pienso
B. Pienso que contenía proteína MY32 purificada a una dosis de 1 μg/g de pienso C. Control negativo: Pienso que no contenía proteína MY32
Mediante Ia técnica de ELISA, se evaluó Ia dinámica de la respuesta humoral de tipo IgM en un período de 90 días, demostrándose altos títulos de anticuerpos para las dosis ensayadas (Fig. 2). Ejemplo 7. Ensayo de reto controlado en salmones (Salmo salar) previamente inmunizados con el polipéptido MY32 purificado, e infestados con Lepeophtheirus salmonis.
Doscientos salmones de un peso promedio de 35 g se distribuyeron en dos grupos, de 100 peces cada uno. La formulación oral fue preparada por inclusión del polipéptido MY32 en la dieta basal, a una dosis de 1 μg/g de pienso. El control negativo del experimento Io constituyeron peces alimentados con dieta basal. Los peces fueron alimentados una vez al día, por 5 días con: A: Pienso que contenía proteína purificada MY32, formulada a 1 μg/g de pienso B: Control negativo: Pienso que no contenía MY32 Después de ese tiempo, los salmones fueron infestados extensivamente con un promedio de 90-95 piojos de mar por pez, aproximadamente. Se siguió el experimento mediante el conteo semanal de parásitos por 6 semanas, demostrándose que los peces tratados tenían un menor número de parásitos en comparación a los controles negativos (Fig. 3). Se les extrajo suero a estos animales en Ia semana 4 y 8, y se evaluaron mediante Ia técnica de ELISA para IgM contra el polipéptido administrado, encontrándose altos títulos de anticuerpos.
Ejemplo 8. Inmunización de salmones con el ADN desnudo de Ia secuencia codificante para el gen my32, y evaluación de Ia infestación por Caligus rogercresseyi. Ciento cincuenta salmones (Salmo coho) de un peso promedio de 35 g se distribuyeron en dos grupos de 50 peces cada uno. Los peces fueron inmunizados con una inyección intramuscular de 25 μg del plasmidio conteniendo el gen my32 de C. rogercresseyi (grupo A) o con 25 μg del plasmidio más el polipéptido a una concentración de 0,5 μg/g de peso (grupo B). Estos peces mostraron niveles superiores de IgM en las semanas 4 y 7 después de Ia vacunación, con significación estadística, comparados con los peces inyectados con el vector de expresión control (grupo C). Después de 4 semanas fueron incorporados a los estanques peces infestados con 100 piojos de mar/pez, como promedio. Se siguió el experimento mediante el conteo semanal de parásitos por 12 semanas, demostrándose que los peces tratados tenían un menor número de parásitos, en comparación a los controles negativos, con una disminución del índice de infestación en un 70% cuando se usó el ADN solo, y de un 95% cuando se utilizó el ADN en combinación con Ia proteína, en comparación con el control negativo (Fig. 4). Ejemplo 9. Ensayo de reto controlado en salmones (Salmo salar), previamente inmunizados vía inmersión e infestados con C. rogercresseyi. Ciento cincuenta salmones de un peso promedio de 30 g se distribuyeron en tres grupos, de 50 peces cada uno. Para el tratamiento de inmersión se bajó el nivel del agua de los tanques, y se administró en un caso el plasmidio pVAXmy32, que contiene Ia secuencia codificante para el polipéptido MY32, a otro grupo Ia proteína purificada, y a un tercer grupo (control) se Ie añadió solución salina. El tratamiento de inmersión se realizó por 90 minutos. Los grupos experimentales, de 50 peces cada uno, fueron: A: Se Ie administró el plasmidio pVAXmy32, que contiene el gen my32, a una dosis de 0,01 mg/L de agua.
B: Se Ie administró el polipéptido MY32, a una dosis de 0,1 mg/L de agua.
C: Control negativo, solución salina.
Después de tres semanas post-vacunación, los salmones fueron infestados extensivamente con un promedio de 90-95 piojos de mar (C. rogercresseyi) por pez, aproximadamente. Se siguió el experimento mediante el conteo semanal de parásitos por 12 semanas, demostrándose que los peces tratados tanto con el plasmidio que contiene el gen my32, como con el polipéptido MY32, tenían un menor número de parásitos, en comparación a los peces tratados con el control negativo (Fig. 5).
Ejemplo 10. Ensayo de reto controlado, con infestación por Caligus rogercresseyi en salmones {Salmo salar) previamente inmunizados por vía intraperitoneal con Ia proteína MY32 y Ia proteína fusionada a epitopes promiscuos de células T.
Quinientos salmones de un peso promedio de 35 g se distribuyeron en cinco grupos, de 100 peces cada uno. Los peces se inyectaron por vía intraperitoneal en Ia semana 0 del experimento. Los grupos experimentales fueron: Grupo 1 : Proteína MY32 adyuvada en el adyuvante oleoso Montanide 888, a una dosis de 1 μg/g de peso. Grupo 2: Proteína MY32-epitope ttP2 del toxoide tetánico (830-844 QYIKANSKFIGITEL; GenBank X04436) adyuvada en el adyuvante oleoso Montanide 888, a una dosis de 1 μg/g de peso Grupos 3: Proteína MY32-epitope de células T del virus del sarampión (288-302 LSEIKGVIVHRLEGV; GenBank M81903) adyuvada en el adyuvante oleoso Montanide 888, a una dosis de 1 μg/g de peso. Grupo 4: Proteína MY32-epitope ttP2 del toxoide tetánico/ epitope de células T del virus del sarampión adyuvada en el adyuvante oleoso Montanide 888, a una dosis de 1 μg/g de peso. Grupo 5: El control negativo fue inyectado con PBS adyuvado en Montanide 888. Dos semanas después, los salmones fueron infestados extensivamente con un promedio de 100 parásitos por pez, en el estadio de copepodid. A los 60 días se contó el número de parásitos por pez, encontrándose una reducción del número de estos en más del 95% (Tabla 2) en el grupo tratado con el polipéptido purificado fusionado a los dos epitopes promiscuos de células T, comparado con el control negativo. Se les extrajo suero a estos animales en las semanas 0, 4 y 8 y se evaluaron mediante Ia técnica de ELISA para IgM contra MY32, encontrándose altos títulos en las semanas 4 y 8 (datos no mostrados) en todos los grupos inmunizados con Ia proteína o la proteína fusionada a epitopes promiscuos de células T. El mayor título se encontró en el grupo tratado con el polipéptido purificado fusionado a los dos epitopes promiscuos de células T. Tabla 2. Efecto de Ia inyección intraperitoneal con Ia proteína purificada MY32 y Ia proteína fusionada a epitopes promiscuos de células T, sobre el número de parásitos por pez, a los 28 y 60 días después de Ia inyección.
Figure imgf000017_0001

Claims

REIVINDICACIONESSECUENCIAS DE ÁCIDO NUCLEICO Y AMINOÁCIDOS, Y VACUNA PARA EL CONTROL DE INFESTACIONES POR ECTOPARÁSITOS EN PECES.
1. Un ácido nucleico aislado que comprende Ia secuencia identificada como SEQ ID No. 1.
2. Un ácido nucleico que codifica para un polipéptido que comprende a) Ia secuencia de aminoácidos identificada como SEQ ID No. 2, ó b) una secuencia de aminoácidos donde uno o varios residuos aminoacídicos se han eliminado, sustituido y añadido a Ia secuencia de aminoácidos identificada como SEQ ID No. 2, y que mantiene sus propiedades de inducir respuesta inmune contra los ectoparásitos en peces.
3. Un polipéptido que comprende Ia secuencia de aminoácidos identificada como SEQ ID No. 2.
4. Un polipéptido que comprende en su cadena polipeptídica una secuencia de aminoácidos con al menos un 50% de homología con Ia SEQ. ID No.2.
5. Una composición vacunal contra las infestaciones de salmónidos y otras especies de peces por ectoparásitos, que comprende el polipéptido identificado como SEQ ID No. 2, o un polipéptido con una secuencia de aminoácidos con al menos un 50% de homología con Ia SEQ. ID No.2.
6. Una composición vacunal según Ia reivindicación 5, caracterizada porque el polipéptido o un fragmento del mismo es obtenido por vía recombinante o por síntesis química.
7. Una composición vacunal contra las infestaciones de salmónidos y otras especies de peces por ectoparásitos, que comprende ácidos nucleicos que contienen Ia secuencia de nucleótidos identificada como SEQ ID No. 1.
8. Uso del polipéptido identificado como SEQ ID No. 2, o un polipéptido con una secuencia de aminoácidos con al menos un 50% de homología con Ia SEQ. ID
No.2, para fabricar una composición vacunal para inducir respuesta inmune en organismos acuáticos contra las diferentes especies de ectoparásitos, y/o disminuir Ia afectación por patógenos y enfermedades asociadas a estas infestaciones.
9. Uso del polipéptido según Ia reivindicación 8, caracterizado porque Ia composición vacunal se administra por inyección en un rango de dosis entre 0,1- 10 μg/ g de peso del animal vacunado.
10. Uso del polipéptido según Ia reivindicación 8, caracterizado porque Ia composición vacunal se administra en formulaciones de pienso en un rango de dosis entre 0,1-300 μg/g de pienso.
11. Uso del polipéptido según Ia reivindicación 8, caracterizado porque la composición vacunal se administra mediante baños de inmersión en un rango de dosis entre 0,01-1 mg/L de agua.
12. Uso de Ia secuencia de nucleótidos identificada como SEQ ID No. 1 , sola o en combinación con el polipéptido para el cual codifica, para fabricar una composición vacunal que comprende ADN desnudo para inducir respuesta inmune en organismos acuáticos contra las diferentes especies de ectoparásitos, y/o disminuir Ia afectación por patógenos y enfermedades asociadas a estas infestaciones.
13. Un polipéptido de fusión que comprende: 1 ) Ia secuencia de aminoácidos identificada como SEQ ID No. 2 o una secuencia de aminoácidos con al menos un 50% de homología con Ia SEQ. ID No.2, y 2) un péptido que potencie las propiedades antigénicas de dicha secuencia en una composición vacunal para Ia inducción de respuesta inmune en organismos acuáticos contra las diferentes especies de ectoparásitos, y/o disminución de Ia afectación por patógenos y enfermedades asociadas a estas infestaciones.
14. El polipéptido de fusión de Ia reivindicación 13 donde el péptido que potencia las propiedades antigénicas comprende, al menos, un epitope de células T promiscuo.
PCT/CU2008/000003 2007-05-31 2008-05-30 Secuencias de ácido nucleico y aminoácidos, y vacuna para el control de infestaciones por ectoparásitos en peces WO2008145074A2 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/601,974 US9034338B2 (en) 2007-05-31 2008-05-30 Nucleic acid and amino acid sequences, and vaccine for the control of ectoparasite infestations in fish
EP08757900.9A EP2168978B1 (en) 2007-05-31 2008-05-30 Amino acid and nucleic acid sequences and vaccine to control ectoparasite infestations in fish
DK08757900.9T DK2168978T3 (da) 2007-05-31 2008-05-30 Aminosyre- og nukleinsyresekvenser og vaccine til bekæmpelse af ektoparasitinfestationer hos fisk
CA2688587A CA2688587C (en) 2007-05-31 2008-05-30 My32 nucleic acid and amino acid sequences, and vaccine to control sea lice infestations in fish
US13/859,314 US9034339B2 (en) 2007-05-31 2013-04-09 Nucleic acid and amino acid sequences, and vaccine for the control of ectoparasite infestations in fish

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU20070124A CU23634A1 (es) 2007-05-31 2007-05-31 Secuencias de ácido nucleico y aminoácidos, y vacuna para el control de infestaciones por ectoparásitos en peces
CU2007-0124 2007-05-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/601,974 A-371-Of-International US9034338B2 (en) 2007-05-31 2008-05-30 Nucleic acid and amino acid sequences, and vaccine for the control of ectoparasite infestations in fish
US13/859,314 Continuation-In-Part US9034339B2 (en) 2007-05-31 2013-04-09 Nucleic acid and amino acid sequences, and vaccine for the control of ectoparasite infestations in fish

Publications (2)

Publication Number Publication Date
WO2008145074A2 true WO2008145074A2 (es) 2008-12-04
WO2008145074A3 WO2008145074A3 (es) 2009-01-29

Family

ID=39736946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2008/000003 WO2008145074A2 (es) 2007-05-31 2008-05-30 Secuencias de ácido nucleico y aminoácidos, y vacuna para el control de infestaciones por ectoparásitos en peces

Country Status (8)

Country Link
US (2) US9034338B2 (es)
EP (2) EP2168978B1 (es)
CA (1) CA2688587C (es)
CL (1) CL2008001596A1 (es)
CU (1) CU23634A1 (es)
DK (1) DK2168978T3 (es)
TR (1) TR201909448T4 (es)
WO (1) WO2008145074A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041260A1 (es) 2010-09-28 2012-04-05 Centro De Ingenieria Genetica Y Biotecnologia Composicion vacunal para el control de las infestaciones por ectoparasitos.

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3033759C (en) * 2016-08-17 2022-06-14 Pharmaq As Sea lice vaccine
GB201902425D0 (en) * 2019-02-22 2019-04-10 Benchmark Animal Health Ltd Sea lice antigens and vaccines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438200A1 (en) 1990-01-16 1991-07-24 Centro De Ingenieria Genetica Y Biotecnologia Method for the expression of heterologous genes in the yeast Pichia pastoris, expression vectors and transformed microorganisms
WO2006010265A1 (en) 2004-07-28 2006-02-02 National Research Council Of Canada Recombinant vaccines against caligid copepods (sea lice) and antigen sequences thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU23016A1 (es) * 2002-01-24 2005-01-25 Ct Ingenieria Genetica Biotech Método para la estimulación del crecimiento y resimétodo para la estimulación del crecimiento y resistencia a enfermedades en organismos acuáticos y fstencia a enfermedades en organismos acuáticos y formulación veterinaria ormulación veterinaria
AU2006249441A1 (en) * 2005-05-26 2006-11-30 Eli Lilly And Company Improved fish production
TW200801034A (en) * 2005-10-05 2008-01-01 Intervet Int Bv Novel sea lice vaccine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438200A1 (en) 1990-01-16 1991-07-24 Centro De Ingenieria Genetica Y Biotecnologia Method for the expression of heterologous genes in the yeast Pichia pastoris, expression vectors and transformed microorganisms
WO2006010265A1 (en) 2004-07-28 2006-02-02 National Research Council Of Canada Recombinant vaccines against caligid copepods (sea lice) and antigen sequences thereof

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
ADAMA, R. ET AL., VACCINE, vol. 23, 2005, pages 4329 - 4341
AIMAZAN ET AL., VACCINE, vol. 21, 2003, pages 1492 - 1501
AIMAZAN ET AL., VACCINE, vol. 23, 2005, pages 4403 - 4416
BOXASPEN, K., ICES JOURNAL OF MARINE SCIENCE, vol. 63, 2006, pages 1304 - 1316
BRICKNELL, I.R ET AL., CALIGUS, vol. 8, 2004, pages 6
DE LA FUENTE ET AL., PARASITOL RES., vol. 96, 2005, pages 137 - 141
DENHOLM, PEST MANAG SCI, vol. 58, 2002, pages 528 - 536
EI KASMI KC. ET AL., J GEN VIROL, vol. 81, 2000, pages 729 - 35
GONZAIEZ, L.; CARVAJAL, J., AQUACULTURE, vol. 220, 2003, pages 101 - 117
GRAYSON T.H. ET AL., J FISH BIOL, vol. 47, 1995, pages 85 - 94
GRIMNES, A. ET AL., J FISH BIOL, vol. 48, 1996, pages 1179 - 1194
JOHNSON, S. C ET AL.: "Interactions between sea lice and their hosts", 2004, GARLAND SCIENCE/BIOS SCIENCE PUBLICATIONS, pages: 131 - 160
JOHNSON, S.C. ET AL., ZOOL STUDIES, vol. 43, 2004, pages 8 - 19
KUZYK MA. ET AL., VACCINE, vol. 19, 2001, pages 2337 - 2344
LABUDA, M. ET AL., PLOS PATHOGENS, vol. 2, no. 4, 2006, pages 251 - 259
MACKINNON, B. M., WORLD AQUACULTURE, vol. 28, 1997, pages 5 - 10
PIKE, A.W.; WADSWORTH, S.L., ADVANCES IN PARASITOLOGY, vol. 44, 2000, pages 233 - 337
RAGIAS, V. ET AL., AQUACULTURE, vol. 242, 2004, pages 727 - 733
RAYNARD, R.S. ET AL., PEST MANAGEMENT SCIENCE, vol. 58, 2002, pages 569 - 575
STONE J. ET AL., J FISH DIS, vol. 22, 1999, pages 261 - 270
WAGNER, G.N.; MCKINLEY, R.S., J. FISH. BIOL., vol. 64, 2004, pages 1027 - 1038
WIKEL, S. K. ET AL.: "Arthropod modulation of host immune responses". En: The Immunology of Host-Ectoparasitic Arthropod Relationships", 1996, pages: 107 - 130
YONG V. ET AL.: "HIS-3 gene of Saccharomyces cerevisiae complement his mutation in yeast Pichia pastoris", BIOTECNOLOGFA APLICADA, vol. 9, 1992, pages 55 - 61

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041260A1 (es) 2010-09-28 2012-04-05 Centro De Ingenieria Genetica Y Biotecnologia Composicion vacunal para el control de las infestaciones por ectoparasitos.
CN103153336A (zh) * 2010-09-28 2013-06-12 遗传工程与生物技术中心 用于控制外寄生物感染的疫苗组合物
CN103153336B (zh) * 2010-09-28 2015-08-19 遗传工程与生物技术中心 用于控制外寄生物感染的疫苗组合物
RU2585226C2 (ru) * 2010-09-28 2016-05-27 Сентро Де Инхеньерия Хенетика И Биотекнолохия Вакцинная композиция для борьбы с заражениями эктопаразитами

Also Published As

Publication number Publication date
TR201909448T4 (tr) 2019-07-22
EP2168978A2 (en) 2010-03-31
US9034339B2 (en) 2015-05-19
US20130280290A1 (en) 2013-10-24
CA2688587A1 (en) 2008-12-04
WO2008145074A3 (es) 2009-01-29
DK2168978T3 (da) 2019-07-15
CU23634A1 (es) 2011-02-24
EP3263594A1 (en) 2018-01-03
CA2688587C (en) 2019-05-07
EP2168978B1 (en) 2019-05-01
US9034338B2 (en) 2015-05-19
CL2008001596A1 (es) 2009-09-25
US20100221271A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
Dalton et al. Parasite vaccines—a reality?
ES2575156T3 (es) Vacunas recombinantes contra copépodos caligidae (piojo de mar) y sus secuencias antigénicas
WO2012041260A1 (es) Composicion vacunal para el control de las infestaciones por ectoparasitos.
US9034339B2 (en) Nucleic acid and amino acid sequences, and vaccine for the control of ectoparasite infestations in fish
DK3003346T3 (en) FISH VACCINE
ES2717441T3 (es) Vacuna contra Cooperia
US20220088160A1 (en) Sea lice antigens and vaccines
Zhu et al. Identification and characterization of a cDNA clone-encoding antigen of Eimeria acervulina
US20210061866A1 (en) Sea lice antigens and vaccines
Esteves Plathylemimth fatty acid binding proteins as candidate vaccines
WO2014020218A1 (es) Vacuna frente a infestaciones provocadas por artrópodos hematófagos
Malchiodi et al. Oral Vaccination with
Carroll Babesia microti Recombinant DNA Vaccine as a Model for Babesia bovis Prevention
TW200811196A (en) An anti-microorganism peptide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757900

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2688587

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008757900

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12601974

Country of ref document: US