TW200811196A - An anti-microorganism peptide - Google Patents

An anti-microorganism peptide Download PDF

Info

Publication number
TW200811196A
TW200811196A TW95130745A TW95130745A TW200811196A TW 200811196 A TW200811196 A TW 200811196A TW 95130745 A TW95130745 A TW 95130745A TW 95130745 A TW95130745 A TW 95130745A TW 200811196 A TW200811196 A TW 200811196A
Authority
TW
Taiwan
Prior art keywords
animal
peptide
pharmaceutical composition
oil
seq
Prior art date
Application number
TW95130745A
Other languages
Chinese (zh)
Other versions
TWI316944B (en
Inventor
Jenn-Kan Lu
zheng-hong Lai
Original Assignee
Yang Sherng Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Sherng Biotechnology Co Ltd filed Critical Yang Sherng Biotechnology Co Ltd
Priority to TW95130745A priority Critical patent/TW200811196A/en
Publication of TW200811196A publication Critical patent/TW200811196A/en
Application granted granted Critical
Publication of TWI316944B publication Critical patent/TWI316944B/zh

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

This invention discloses an anti-microorganism peptide that have the peptide sequence described as sequence table SEQ ID NO: 1. Those peptides can be used to effectively inhibit and kill microorganism, decrease pathogenic bacteria and cure diseases that may improve health statue of animals body. Furthermore, the immunity and against disease capabilities of animals can be enhanced for decreasing animal death and increasing animal livability and birth rate by inducing and coding the animal immune gene behaves.

Description

200811196 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種抗微生物胜肽’特別是指一種可抑制及殺死微生 物,並用以作為治療目的與增加個體健康之抗微生物胜肽。 【先前技術】200811196 IX. Description of the Invention: [Technical Field] The present invention relates to an antimicrobial peptide, which particularly refers to an antimicrobial peptide which inhibits and kills microorganisms and serves as a therapeutic purpose and increases the health of an individual. [Prior Art]

石斑魚為亞太地區重要的養殖錄之-,由於其肉將美,長久以來 位居水產品銷售之首’廣受台灣、麵、大陸、日本及東南亞地區之消費 者的喜愛。台灣石减繁養殖始於所5年,養財式可區分為海上箱網養 賴内陸鹹水組輕。簡年農铸絲署為推動纟賴為亞太水產種 苗中心,已將各類石喊繁養_為首要的施政項目亦是科技養殖的重點 (蔡,2_卜台灣石斑魚養殖已有將近2〇年的歷史,在1999 2〇〇2年獲利率 更高達20%,齡石喊為高轉倾魚種,且在台灣已是發展成熟並且 能穩定獲利的產業。 a。石斑魚的病害主要分為病毒與細_性兩類,病毒是目前危害石斑魚很 嚴重的病Φ,包括虹彩絲(iridGvims)與神轉死絲(丽__也_ 是為石斑魚易感染的兩種病毒;其中,神經壞死病毒(㈤誦s η纖& ^⑽ 黯)是目前石斑魚最為困擾的病毒,這種病毒的傳染能力迅速,致病力超 強,短時間内可以讓魚苗大量的死亡。 ^壞死病制於結病毒__姻十其沒有外細,構形為二十 a#合二^具錢股喊在魚苗_最容肢碱染,感染 時^使”、、备失去平衡能力,以螺旋 、 狄方式游冰,而且還會向不同方向衝撞; 2嚴002)…*在水面上,體側向上漂浮,有刺激時會突織速游動(劉, 細卤性毒害包括:愛待箠吒片 朽…此4〜^园、_、產氣單胞菌、鏈球菌和葡萄球 卤,延些細_類一直以來是養殖辈 優案者都會遇與問題,石斑魚亦容易遭受 5 200811196 絲’造成業者的損失。魚體被細菌感染的原因有許多,最容易發 *職為:飼養密度過高、魚隻大小差異大、殘食、《不當等, 是容易讓魚體產生傷口,導致細菌容易感染的因素;細菌性感染分 :王身性㈣以及局雜感染;全身性絲為細菌部位遍及每個組 =,局部性感染縣_只感染體表或是_。當石斑魚受到弧賊染時, 身體表面會出現白色斑點。隨著病情的嚴重,傷口潰爛、紅腫、鱗片脫落 和内臟的出血,最終導致魚隻死亡(劉,2002)。Grouper is an important breeding record in the Asia-Pacific region. Because of its beauty, it has long been the top seller of aquatic products and is widely loved by consumers in Taiwan, China, mainland China, Japan and Southeast Asia. Taiwan's stone reduction and breeding began in the past 5 years, and the style of raising money can be divided into the sea cage network to raise the inland salt water group. In order to promote the reliance on the Asia-Pacific Aquatic Seedlings Center, the Jiannian Agricultural Casting Department has already promoted various types of stone _ as the primary policy project is also the focus of science and technology farming (Cai, 2_b Taiwan grouper farming has nearly 2 〇 In the history of the year, in 1999, the interest rate was as high as 20%, and the age stone shouted as a high-turning fish species, and in Taiwan it is a mature and stable profitable industry. a. Grouper disease is mainly Divided into two types of viruses and fine _ sex, the virus is currently a serious disease of the grouper Φ, including iridescent silk (iridGvims) and the gods turn dead silk (Li __ also _ is two viruses susceptible to grouper; among them, Nervous necrosis virus ((5) 诵s η fiber & ^(10) 黯) is the most troubled virus of the current grouper. The virus has a rapid infection ability and is extremely virulence, allowing a large number of fish to die in a short period of time. Made in the knot virus __ marriage ten it has no external fine, the configuration is twenty a #合二^有钱股叫在鱼苗_most prosthetic alkali dyeing, infection when ^ make", ready to lose balance ability, to spiral, Di mode swims ice, and it will collide in different directions; 2 strict 002)...* on the surface On the body side, the body floats upwards, and when there is stimulation, it will swell and swim at a speed (Liu, fine halogen poisoning includes: love to wait for the smashing of the slabs... this 4~^ garden, _, Aeromonas, streptococci and grapes Ball halogen, some fine _ class has always been a problem with the breeding case, the grouper is also vulnerable to 5 200811196 silk 'caused the loss of the industry. There are many reasons for the fish body to be infected with bacteria, the most easy to issue * job: Feeding density is too high, fish size difference is large, residual food, "inappropriate, etc., is a factor that makes it easy for fish to produce wounds, which leads to bacterial infection; bacterial infection: king body (four) and complicated infection; systemic silk For the bacterial parts throughout each group =, local infection county _ only infected body surface or _. When the grouper is dyed by the arc thief, white spots appear on the surface of the body. As the condition is serious, the wound is ulcerated, red and swollen, scales fall off Bleeding with the internal organs eventually leads to the death of the fish (Liu, 2002).

持魚體中免疫反應,因此疫苗無法有效的讓魚體_增加免疫能力。非但 如此,這些疫苗巾有五成以上社之病賴,這方式到目前都讓業者 —石斑魚為台灣經濟養殖魚種,但在魚苗時期容易被疾病所困擾,導致 =年產量不穩^,目前各種研究都是利用疫苗的方式,來增加魚體的免疫 此力’然而’使用疫麵產生的免疫能力不佳,常需要追加施打疫苗來維 質疑疫苗的安全性。由此可知,研究魚類免疫系統與找尋魚類自體抗菌物 質有其必要性。 抗微生物胜肽(antimicrobial peptides,AMPs)普遍存在於植物與動物 中’屬於内生型免疫系統中的一環。抗微生物胜肽通常是小分子的陽離子, 由帶正電荷的胺基酸組成(Hancock and Lehrer,1998)。魚類的抗微生物胜 肽,從鯊魚的角鯊胺(squalamine)被發現後(Moore et al·,1993),目前許多魚 類的抗微生物胜肽也被發表。 抗微生物胜狀根據化學結構分為三大類,第一類為兩性α-螺旋 (amphipathic (x-helix),因為結構的關係也稱為線性胜肽(linear peptides),結 構中由於沒有半胱氨酸殘基(cysteine residues),因此無雙硫鍵形成;第二類 則是形成分子内雙硫鍵(interamolecular disulfide bond),此類抗微生物胜肽 含有半胱氨酸殘基(cysteine residues),可產生雙硫鍵(disulfide bond)因而形成 髮夾狀 β-摺板(hairpin-like β-sheet)及 et-螺旋 β-摺板混合(a-helix-p-sheet mix) 6 200811196 兩種結構(Bulet et al·,1999),弟二類為膽氣酸和/或甘氨酸過度保留區 (overpresentation proline and/or glycine residues),此種微生物胜肽含有高度 脯氨酸(pr〇line-rich)之胜肽,從分子的大小又可以分為短鏈(sh〇士chain)及長 鏈(long-chain) 〇 在目前抗微生物胜肽的研究上發現,抗微生物胜肽可以對革蘭氏陽性 * 囷、革蘭氏陰性囷、真鹵及原生動物都有破壞之能力(Powers and Hancock, .2003);除了對抗微生物之外,抗微生物胜肽亦可能與發育(development)、 動物脫殼(molting)及生殖(reproduction)有關聯;但目前的研究中並未揭示抗 _ 微生物胜肽和動植物的免疫因子調控有任何相關可能性。 抗微生物胜肽之抗微生物的機制分為兩大類,第一類為胜肽脂質交互 作用(peptide-lipid interaction),其中可細分為筒狀穿鑿模式(ba3Tei-stave mode) 和地毯狀覆蓋模式(carpet m〇de) (Shai,1999)。筒狀穿鑿模式以兩性α-螺旋 (α-helix)抗菌肽捲成筒狀插入膜内,利用抗微生物胜肽疏水性(hydr〇ph〇bic) 端與菌的細胞膜接觸,另一親水性(hydr〇philic)端互相面對面,則為抗微生 物胜肽的親水性端面向中心點,以聚合體的方式在膜上形成孔洞,來造成 菌體内外滲透壓不平行,導致菌體死亡(邱,2001)。另外,地毯狀覆蓋模式 Φ 則是在帶正電之抗微生物胜肽與帶負電菌體細胞膜結合後,抗微生物胜肽 的親水性:¾¾與膜上之磷脂質(phospholipids head groups)或水分子反應,抗微 w 生物胜狀經過翻轉後,導致疏水性端的部分包圍一部分菌體的膜,進而把 此膜構造移除’破壞菌體膜的結構而使病原菌死亡(楊,2〇〇4)。 抗微生物機制的第二類為間接由受體傳達辨識過程(Recept〇r_mediated reeognitioii processes) ’有些抗微生物胜肽可能與原核生物之去氧核醣核酸 (deoxyribonucleic acid)、自溶素(aut〇iySins)和細胞通透能力(pemieabil奶 關了以抑制真菌孢子的萌芽及菌絲的延長與分枝(Thevissenetal·,1997)。 另外有文獻指出’抗微生物胜肽與原核生物核酸結合的能力,因而抑制蛋 7 200811196 白質的產生(Powers and Hancock,2003)。 由此可見,上述習用動物抗微生物的方式仍有諸多缺失,實非一良善 之設計者,而亟待加以改良。 ° 本案發明人餅上述f肋物鎌生物的方办物生的各項缺點,乃 亟思加以改良創新,並經多年苦心孤詣潛心研究後,終於成功研發完成本 ▲ 件一種抗微生物胜肽。 $ . 【發明内容】 本發明之目的即在於提供-種抗微生物胜肽,以減少動鐘内之病原 φ 菌,達到治療效果,並提升動物體的健康狀態。 本發明之次-目的係在_供-種賴編碼如上述發明目的抗微生物 胜肽的核苷酸片段。 本發明之另-目的係姐·峨死微錄之組合物,該組合 物包含一藥學有效量之胜肽片段,以及一藥學上可接受之載劑。 本發明之又-目_在於提供-觀能增加動物免疫力之免疫 誘導劑(immune elicitors)的方法。 本發明之再一目的係在於提供一種增加動物抗病力的方法,以將一免 φ 疫誘導劑口服投予至動物體内。 了達成上述發明目的之抗微生物胜肽,包含一如序列表SEq id NO: 1 y 所示之胺基酸序列。 由於本發明之抗微生物胜肽係為一種抗菌肽(antimicrobial peptide, AMP),抗菌肽係為一種廣泛分布於各動植物免疫系統中的胜肽片段;因 此,本發明之抗微生物胜肽可取自天然的動物,尤其是水生動物,或以習 知化學合成法合成,亦可以習知分子生物學方法製備。 本發明亦包含一種用以編碼如上述抗微生物胜肽的核苷酸片段,該核 苷酸片段具有如序列表SEQ IDNO:2所示之核苷酸序列。 8 200811196 本發明更提供一種用以殺死微生物的醫藥組合物,該組合物包含: 一藥學有效量之胜肽片段;以及 一藥學上可接受之載劑。 其中該胜肽片段具有如序列表SEqIDN〇:〗所示之胺基酸序列。 其中該組合物之形式可為包埋物、浸泡液、飼料、飼料添加物、口服 -液、注射疫苗、貼片、粉末、錠劑、注射液體、懸浮液、外用液、滴劑、 ,擦劑、塗劑、乳霜、油膏、軟膏、糊狀劑、膠以及凝膠等。 其中該載劑可為賦形劑、稀釋劑、增稠劑、填充劑、結合劑、崩解劑、 # ’間滑劑、油脂或非油脂的基劑、介面活性劑、懸浮劑、膠凝劑、辅助劑、 防腐劑、抗氧化劑、穩定劑、著色劑、香料等。 其中該潤滑劑包含但不限於甘油及油類(如:花生油、蓖麻油)。 其中該基劑包含碳氫化合物(hydrocarbons),該碳氫化合物包含但不限 於硬石蠟、軟石躐、石躐油、甘油、蜂壞、金屬皂、天然油(如:杏仁油、 玉米油、花生油、蓖麻油或撖欖油)、羊毛脂及其衍生物、脂肪酸(如〔硬脂 酸或油酸)或其組合物。 其中該介面活性劑包括陰離子介面活性劑、陽離子介面活性劑、非離 • 子介面活性劑,該介面活性劑包含但不限於山梨醇酐酯(sorbitanesters)、聚 氧化乙烯(polyoxyethylene)及其衍生物(如:聚氧化乙烯脂肪酸酯 一 Ρ〇~οχ^Μ咖崎 acid esters)、聚羧乙烯(c毗oxyp〇lyme~^^ 物(如:卡伯漢樹脂carbopol)。 其中該懸浮劑包含但不限於天然樹酯(natural gums)、纖維素(Cellul〇se) 衍生物無機物質(如:silicaceous silicas)、聚乙二醇 540 (polyethylene glycol 540)、聚乙二醇 3350 及丙二醇(propyl glycol)等。 其中該膠凝劑包含任何用於藥學上形成膠體的膠凝劑,該膠凝劑包含 但不限於纖維素(Cellulose)衍生物(如:曱基纖維素(methyl cdlul〇se)、經基 9 200811196 乙基纖維素(hydroxyethyl cellulose)以及羧甲基纖維素(carb〇Xymethyl cellulose)等)、乙烯基聚合物(vinyl p〇]lymers)(如··聚乙烤醇&〇lyvinyl alcohds)、dyvinyl pynOlid〇nes)、聚羧乙烯(carboxyp〇lymethyl_ (如·卡伯漢樹脂carbopol)、果膠、膠類(gums)(如··阿拉伯樹膠、黃蓍膠 (tragacanth) ^ ^^(alginates) > ^||(agar) > ^(gelatin)carrageenates) 〇 其中i亥醫藥組合物係以口服、浸泡、注射、塗抹或貼片的方式投予至 . 人體及動物體内。 其中該動物可為畜產動物或水生動物;當為畜產動物時,較佳者為牛、 着羊、誠豬’更佳者為雞Hjc生動物gf,較佳者為魚類,更佳者為養 殖魚類;在此所稱之養殖魚類係指可藉由人工飼養之魚類,較佳為水產養 比目魚(halibut)、鮭魚(salmon)、鳟魚㈣ut)、鯰魚 魚(goldfish)、吳郭魚(tilapia)與斑馬魚(zebraflsh)等,但並不僅限於此。 本發明更進-步提供-種用以篩選能增加動物免疫力之免疫誘導劑 (immune elicitors)的方法,包含: 步驟-將所欲篩選之免疫誘導劑與一飼料混合,藉以獲得一混合物; • 轉二對一動物口服投予該混合物,亦可使用浸泡方式投予該混合 物; u 步驟三檢測該動物體内如序列表SEQ ID N0: i所示之胜肽片段的表 現量;以及 , 縛四以該祖片段的表現量高低來判斷該免疫誘導劑對該動物抗 病的影響。 其中該步驟三中’該胜肽片段之檢測方法的種類在本發明幢沒有特 別的限制,所屬技術領域中具有通常知識者可藉由任何方法檢測該胜狀片 段的表現量,例如:膠體電泳、西方墨點法、免疫反應鱗,並不僅限 200811196 於此孩胜肽片&之檢測亦可藉由檢測能編碼該胜狀片段之版从的表現 量來判定’該mRNA的序列如由序列表seqidn〇:2所示之核魏序列所 轉錄而成的賴;該咖八表現量的檢赃,例如北方墨點法,但並不僅 限於此。 本發明所述之動物,可域產動誠水生祕;當為畜產動物時,較 么者為牛羊I隹或豬’更佳者為雞;當為水生動物時,較佳者為魚類, •更佳者為養殖魚類;在此所稱之養殖魚類係指可藉由人工飼養之魚類,較 仏為水產養殖業者所養殖之魚類,例如:石斑魚㈣叩沉)、賴(c〇㈣、網 • 魚(Seabream)、比目魚(祕叫、經魚㈣咖)、鳟魚⑽ M,#.(carp) > (goldfish) > ^$P,#,(tilapia)i|M^/fx(zeb^ , 限於此。 本發明又進一步提供一種增加動物抗病力的方法,包含: 步驟A提供藥學有效s之免疫誘導劑,該免疫誘導劑係可誘導動物 體產生如序列表SEQIDN0:1所示之抗微生物胜肽; 步驟B提供一動物;以及 步驟C將該免疫誘導劑投予至該動物的體内。 • 其帽免疫麟_可細上述—種肋_能增加動物免疫力之免 疫誘導劑(immimeelidtors)的方法,以序列表SEQidn〇:丨胜肽表現量或以 、序列表SEQIDNO:2mRNA基因表現量多募篩選能增加制勿免疫力之免疫 誘導劑的方法,所篩選出之免疫誘導劑。 其中該免疫誘導劑可進一步包含一藥學上可接受之載劑。 其中該胜肽片段可取自天然的動物尤其是水生動物體中,或以習知化 學合成法合成,亦可以習知分子生物學方法製備,分子生物學方法如下: 步驟a提供如序列表SEQ ID N0:2所示之核芽酸片段· 步驟b提供一表現載體; 200811196 步驟C將該核苷酸片段與該表現載體重組為一重組表現載體; 步驟d將该重組表現載體送入宿主細胞中;以及 步驟e使該宿主細胞表現該胜肽片段。 其中主細胞可以係大腸桿菌(五⑺")、酵母菌及動物細胞,但不僅 限於此。 * 以大腸桿菌(五· co/z·)為例,可選定大腸桿菌(五· co/〇系統的表現質體後, « 再選定該表現質體中適當的限制酶切位(restriction enzyme site),以該限制酶 男切该表現質體’亦以该限制酶剪切含有可編碼本發明之胜肽片段的核苦 拳 酸序列之核苷酸片段,將前述經限制酶剪切後的表現質體及核苷酸片段進 行接合反應(ligation),接著將含有可編碼本發明之胜肽片段的核苷酸序列之 大腸桿菌(五.w")糸統表現質體轉形(transform)入大腸桿菌(五· co")菌體中, 該大腸桿菌(五· co/z·)可為五· co/f BL21™ (DE3) pLysS,轉形可用電轉形 (electro-transformation)或熱休克(heat shock)等任何習知轉形技術來進行,轉 形後用誘導物(inducer)誘導大腸桿菌(五·⑺/ζ·)表現本發明之胜肽片段,誘導 物可為異丙基硫代半乳糖(isopropylthiogalactoside,IPTG)等習知誘導物。 以酵母菌為例,則可選定酵母菌系統的表現質體及該表現質體中適當 φ 的限制酶切位後,以該限制酶剪切該表現質體,亦以該限制酶剪切含有可 編碼本發明之胜肽片段的核苷酸序列之核苷酸片段,將以限制酶剪切後的 一 表現質體及核苷酸片段進行接合反應,接著將含有可編碼本發明之胜肽片 段的核普酸序列之酵母滷系統的表現質體轉形入酵母菌中,轉形可用任何 習知轉形技術來進行’例如可先去除酵母菌的細胞壁,使酵母菌形成原生 質球狀體(spheroplast)再進行轉形,或是用鹼性陰離子(如:Licl或处⑶加 上熱休克來處理酵母菌以進行轉形,轉形後用誘導物誘導酵母菌表現本發 明之胜肽片段,誘導物可為IP1X}等習知誘導物。 以動物細胞為例,可選定動物細胞系統的表現質體及該表現質體中適 12 200811196 當的限制酶切位後,以該限制酶剪切該表現質體,亦以該限制酶剪切含有 可編碼本發明之胜肽片段的核苷酸序列之核苷酸片段,將以限制酶剪切後 的表現質體及核苷酸片段進行接合反應,接著將含有可編碼本發明之胜肽 片段的核苷酸序列之動物細胞系統的表現質體轉染(transinfecti〇n)入動物細 胞中,該動物細胞可為昆蟲細胞或哺乳動物細胞,轉染可用任何習知轉染 技術來進行,如用微脂粒感染法(lip0fecti〇n)或填酸釣(calcium 法 • 來表現本發明之胜肽片段。 此外,為使以本發明之抗微生物的方法處理之動物的抵抗疾病能力可 馨 有效k幵,满述之免疫誘導劑可經由口服、浸泡或注射的方式投予至該動 物的體内;口服可以係直接口服或添加於飼料中,當以口服方式投予時, 為避免該免疫誘導劑於通過該動物的消化道時,被消化道中的消化液所破 壞’該免疫誘導劑可進一步藉由習知技術將其進行微包埋處理,以增強其 抵抗消化液的能力;該注射方式則包括靜脈注射(intravenous injecti〇n,iv)、 肌肉注射(Intramuscular injection,IM)及腹腔注射(intraperitoneal injection,IP) 等,但並不僅限於此;當以靜脈注射方式投予至動物體内時,為使其能發 揮最大的效果。 φ 本發明之組合物或胜肽,可促進動物抵抗病原菌入侵,因此可增加動 物抗病力,提昇動物的健康狀態。 本發明之組合物或胜肽還可做為外用防腐劑、殺菌劑之用。 【實施方式】 實施例1本發明之抗微生物胜肽(AMP)片段的製備 首先依Chomczynski及Sacchi的方法(1987)從龍膽石斑(EpzV^p/^/奶 ⑼/α加)的鰓絲組織分離總RNA (total RNA);接下來,從10pg總RNA 合成cDNA’使用含有200 U Molony鼠類血癌病毒反轉錄酶(Molony murine leukemia virus reverse transcriptase)、1 mM dNTP、160 U RNase 抑制劑 13 200811196 (inhibitor)及1·6 pg隨機引子(random primer)的IX反轉錄緩衝液,在42。(:進 行轉錄30分鐘。接者以聚合酶連鎖反應(p〇iymerase chain reacti〇n,pcr)放 大(amplify)抗微生物胜肽(AMP)基因,PCR係使用含有20μ§反轉錄產物、 0.5 U Taq DNA聚合酶及1 正反向AMP引子的80μ11Χ PCR緩衝液,正 向AMP引子具有如SEQ ID NO: 3所示之核苷酸序列,反向AMP引子具有 ^ 如SEQ iD ΝΟ: 4所示之核苷酸序列,pCR係於DNA溫度循環反應器 • (thermal cycler)進行’ PCR步驟為在55 °C緩冷配對(annealing)l分鐘30秒, 在 72 C 延長(extension)l 分鐘 30 秒,在 94 °C 變性(denaturation)l 分鐘,共 _ 35個循環(cycle) ; PCR反應終止後,取15 μΐ的PCR產物以2%洋菜膠體 (agarose gel)作電泳分析,接著進行溴乙烯(ethidimn bromide)染色。 純化的PCR產物會被選殖進M13mpl8或pBluescript的*Smal位置,並 會以雙去氧核醣鏈停止法(dideoxynucleotide chain termination)定序,AMP基 因經定序後得到如序列表SEQ ID NO : 2所示的序列;由序列表SEQ ID NO : 2所示的序列可知,經龍膽石斑鰓絲中選殖出的抗微生物胜肽(AMp) cDNA序列,具有494個核苷酸,其中轉譯區域(c〇ding regi〇n)由204核苷 酸所組成,如圖一所示,經演譯(deduced)後得到具有67個胺基酸之抗微生 φ 物胜肽(AMP),其序列如序列表SEQ ID NO: 1所示。 另一方面,將純化的PCR產物與表現載體pET31b(+)分別以限制酶 ^ j/>vNI剪切,再將剪切後的PCR產物及pET31b(+)進行接合反應,將接合 反應後所得含有PCR產物的pET31b(+)轉形至表現宿主E. cWBL21™ (DE3) pLysS中’在37 °C下以200rpm振盪培養,並以不同濃度的IPTG進行誘導 (induce),結果以1 mM iptg誘導的效果最好。以12% SDS-PAGE分析, 發現E. coli BL2FM (DE3) pLysS所表現的AMP胜肽位於不可溶蛋白部分, 其分子量約為2.7kDa,如圖二所示,西方墨潰法亦證明其確為AMP胜肽。 將所得不可溶蛋白部分以組胺酸親和層析法(His · Bind® chromatography)進 200811196 行純化,接著以溴化氰(CNBr)進行剪切,藉此可得到純化的AMp胜肽。 實施例2不同動物的抗微生物胜肽(AMP)序列之比對 在已知的物種中’抗微生物胜肽皆屬於小分子的胜肽,將本發明實施 例1中所選殖出的抗微生物胜肽,與其他魚類之抗微生物胜肽胺基酸序列 進行比對,比對結果如圖三所示,本發明之抗微生物胜肽與點帶石斑的抗 微生物胜肽胺基酸序列最為相近,而在其他魚種則是與鱸魚和比目魚較為 •相近,而在抗微生物胜肽的分類上,各物種間均各成一類,但在相同物種 裡抗ii肽的類型也不相同,不論脊椎動物或是無脊椎動物,都難以找到一 馨 定的規則性。 本發明之抗微生物胜肽具有67個胺基酸(如序列表SEQ ID N〇: j所 不)’其中包含訊息胜肽(signal peptide)、成熟胜肽(mature peptide)及 prodomain,其3D立體結構如圖四所示。訊息胜肽具有如序列表seq id n〇: 5所示之胺基酸序列,主要在細胞内訊息傳遞時產生功能進行切割,剩下 成熟胜肽與prodomain。成熟胜肽具有如序列表SEQ ID no: 6所示之胺基 酸序列,是主要與病菌作用的位置,帶有電荷可與細菌的細胞膜做結合, 目刖可能之鳩p作用模式為筒狀穿鑿模式(barrel_stave m〇de)以a_hdix抗菌 參肽捲成筒狀插入細細膜内,利用抗菌肽疏水性端與菌的細胞膜接觸,另 一親水性端互相面對面,則為抗菌肽的親水性端面向中心點,以聚合體的 -方式顧上形祕洞,來造成赫内特雜不平行,導致賭死亡(邱, „ 2001)。地毯狀覆蓋模式(carpetmode)(Shai,1999)。帶正電之抗菌肽與帶負電 之細菌細胞膜結合後,親水性端無反應,抗g肽經過翻轉後導致疏水性 的部分,包圍部分細菌細胞膜進而把此麟造移除,破壞菌體膜的結構使 知病原菌死亡(揚,2GG4)。造成細菌的死亡,有效的抵抗病原菌產生内 免疫。The immune response in the fish body, so the vaccine can not effectively make the fish body _ increase immunity. Not only that, these vaccines have more than 50% of the disease, which has so far allowed the industry-grouper to be a farmed fish species in Taiwan, but it is easily plagued by diseases during the fry, resulting in an unstable annual output. Various studies use vaccines to increase the immunity of fish. 'However, the immune power generated by the use of the epidemic is not good, and additional vaccines are often needed to question the safety of the vaccine. It can be seen that it is necessary to study the fish immune system and to find the fish's own antibacterial substances. Antimicrobial peptides (AMPs) are ubiquitous in plants and animals and are part of the endogenous immune system. Antimicrobial peptides are typically small molecule cations composed of a positively charged amino acid (Hancock and Lehrer, 1998). The anti-microbial peptide of fish, which was discovered from shark squalamine (Moore et al., 1993), is also published in many fish. Antimicrobial traits are classified into three major categories according to their chemical structure. The first type is amphipathic (x-helix), because the structural relationship is also called linear peptides, and there is no cysteine in the structure. Cysteine residues, thus no disulfide bond formation; the second type is the formation of intramolecular disulfide bonds, such antibacterial peptides contain cysteine residues, Producing a disulfide bond to form a hairpin-like β-sheet and an a-helix-p-sheet mix 6 200811196 Bulet et al., 1999), the second class is the overpronation and/or glycine residues, which are highly pr〇line-rich. Peptides can be divided into short-chain (sh gentleman chain) and long-chain from the size of the molecule. In the current research on antimicrobial peptides, the antimicrobial peptide can be positive for Gram*. Gram-negative cockroaches, real brines and protozoa Bad ability (Powers and Hancock, .2003); in addition to fighting microbes, antimicrobial peptides may also be associated with development, animal molting, and reproduction; but in current research There are no related possibilities for the regulation of anti-microbial peptides and immune factors of animals and plants. The antimicrobial mechanisms of antimicrobial peptides fall into two broad categories, the first being peptide-lipid interactions, in which It can be subdivided into a ba3Tei-stave mode and a carpet-like cover pattern (Shai, 1999). The tubular piercing mode is rolled into a tubular shape with an amphoteric α-helix (α-helix) antimicrobial peptide. Insert into the membrane, use the hydrophobic peptide hydr〇ph〇bic end to contact the cell membrane of the bacteria, and the other hydrophilic (hydr〇philic) end face to face, then the hydrophilic end of the antimicrobial peptide is centered Point, in the form of a polymer to form holes in the membrane, causing the osmotic pressure inside and outside the bacteria to be non-parallel, resulting in bacterial death (Qiu, 2001). In addition, the carpet-like coverage pattern Φ is positively charged with positive electricity. After the peptide binds to the negatively charged cell membrane, the hydrophilicity of the antimicrobial peptide: 3⁄43⁄4 reacts with the phospholipids head groups or water molecules, and the anti-micro w bio-success is turned over, resulting in a hydrophobic end portion. The membrane surrounding a part of the cells is removed, and the membrane structure is removed to destroy the structure of the bacterial membrane and cause the pathogen to die (Yang, 2, 4). The second category of antimicrobial mechanisms is Recept〇r_mediated reeognitioii processes. 'Some anti-microbial peptides may be associated with deoxyribonucleic acid and autolysin (aut〇iySins). And cell permeability (pemieabil milk is used to inhibit the germination of fungal spores and the elongation and branching of mycelium (Thevissenetal, 1997). There is also a literature pointing out that 'the ability of anti-microbial peptides to bind to prokaryotic nucleic acids, thus inhibiting Egg 7 200811196 White matter production (Powers and Hancock, 2003). It can be seen that there are still many defects in the anti-microbial methods of the above-mentioned animals, which is not a good designer, but needs to be improved. ° The inventor of the present invention The shortcomings of the ribs and scorpions are improved and innovated, and after years of painstaking research, they finally succeeded in research and development of an anti-microbial peptide. The purpose is to provide an anti-microbial peptide to reduce the pathogenic bacteria in the moving clock, to achieve therapeutic effects, and The health state of the animal. The second aspect of the present invention is a nucleotide fragment encoding an antimicrobial peptide such as the above-mentioned object of the invention. The other object of the present invention is a composition of a micro-recorded The composition comprises a pharmaceutically effective amount of a peptide fragment, and a pharmaceutically acceptable carrier. The invention further provides a method for providing an immune elicitors capable of increasing the immunity of an animal. A further object of the present invention is to provide a method for increasing the disease resistance of an animal, which comprises orally administering an AIDS inhibitor to an animal. The antimicrobial peptide comprising the above object of the invention comprises an orderly List SEq id NO: amino acid sequence shown by 1 y. Since the antimicrobial peptide of the present invention is an antimicrobial peptide (AMP), the antimicrobial peptide is a broadly distributed in the immune system of various animals and plants. Peptide fragments; therefore, the antimicrobial peptides of the present invention can be obtained from natural animals, especially aquatic animals, or synthesized by conventional chemical synthesis methods, or can be prepared by conventional molecular biological methods. Also included is a nucleotide fragment encoding an antimicrobial peptide as described above, the nucleotide fragment having a nucleotide sequence as shown in SEQ ID NO: 2 of the Sequence Listing. 8 200811196 The present invention further provides a method for killing A pharmaceutical composition for dead microorganisms, the composition comprising: a pharmaceutically effective amount of a peptide fragment; and a pharmaceutically acceptable carrier, wherein the peptide fragment has an amino acid as shown in the sequence listing SEqIDN〇: The composition may be in the form of an embedding, soaking liquid, feed, feed additive, oral-liquid, vaccination, patch, powder, lozenge, injection liquid, suspension, external solution, drops, , liniments, paints, creams, ointments, ointments, pastes, gels, gels, etc. Wherein the carrier can be an excipient, a diluent, a thickener, a filler, a binder, a disintegrant, a # 'slip agent, a grease or a non-greasy base, an surfactant, a suspending agent, and a gel. Agents, adjuvants, preservatives, antioxidants, stabilizers, colorants, perfumes, and the like. The lubricant includes, but is not limited to, glycerin and oils (eg, peanut oil, castor oil). Wherein the base comprises hydrocarbons, including but not limited to hard paraffin, soft stone, stone oil, glycerin, bee bad, metal soap, natural oil (eg almond oil, corn oil, peanut oil) , castor oil or eucalyptus oil), lanolin and its derivatives, fatty acids (such as [stearic acid or oleic acid) or combinations thereof. Wherein the surfactant comprises an anionic surfactant, a cationic surfactant, and a non-ionic surfactant, the surfactant including but not limited to sorbitanes, polyoxyethylene and derivatives thereof (eg: polyoxyethylene fatty acid ester Ρ〇 χ χ χ χ χ χ acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy oxy But not limited to natural gums, cellulose (Cellul〇se) derivative inorganic substances (such as: silicaceous silicas), polyethylene glycol 540 (polyethylene glycol 540), polyethylene glycol 3350 and propylene glycol (propyl glycol) Wherein the gelling agent comprises any gelling agent for pharmaceutically forming a colloid, the gelling agent comprising, but not limited to, a cellulose (Cellulose) derivative (eg, methyl cdlul〇se, Meridian 9 200811196 hydroxyethyl cellulose, carboxymethyl cellulose (carbazole Xymethyl cellulose, etc.), vinyl polymer (vinyl p〇] lymers) (eg······························ Alcohds), dyvi Nyl pynOlid〇nes), carboxyp〇lymethyl_ (such as carbopol), pectin, gums (such as gum arabic, tragacanth ^ ^^ (alginates) > ^||(agar) > ^(gelatin)carrageenates) iIihai pharmaceutical composition is administered orally, immersed, injected, smeared or patched to humans and animals. It may be a livestock animal or an aquatic animal; when it is a livestock animal, it is preferably a cow, a sheep, a good pig. The better one is a chicken Hjc animal gf, preferably a fish, and more preferably a farm fish; The term "farmed fish" refers to fish that can be raised by hand, preferably halibut, salmon, squid, squid, goldfish, tilapia and zebra. Fish (zebraflsh), etc., but not limited to this. The present invention further provides a method for screening immune elicitors capable of increasing immunity of an animal, comprising: Step-mixing the immune inducer to be screened with a feed to obtain a mixture; • the two-to-one animal is orally administered with the mixture, and the mixture can also be administered by soaking; u. Step 3 detects the amount of the peptide in the animal as shown in SEQ ID NO: i of the Sequence Listing; The effect of the immune inducer on the disease resistance of the animal was judged by the amount of expression of the progenitor fragment. The type of the detection method of the peptide fragment in the third step is not particularly limited in the present invention, and those skilled in the art can detect the expression amount of the fragment by any method, for example, colloidal electrophoresis. Western dot method, immune response scale, not limited to 200811196. The detection of this peptide tablet can also be determined by detecting the amount of expression from the plate encoding the segment. The sequence table seqidn〇: 2 is the transcription of the nuclear Wei sequence; the check of the performance of the coffee eight, such as the northern ink dot method, but not limited to this. The animal of the present invention can produce the water and the secret of the water; when it is a livestock animal, the chicken or the pig is better; the chicken is better; when it is a aquatic animal, the fish is preferred. • Better known as farmed fish; the term “farmed fish” as used herein refers to fish that can be reared by aquaculture, such as: grouper (four) sinking), Lai (c〇 (four), Net • Fish (Seabream), Halibut (secret, fish (four) coffee), squid (10) M, #.(carp) > (goldfish) >^$P,#,(tilapia)i|M^/fx (zeb^, limited to this. The present invention still further provides a method for increasing disease resistance of an animal, comprising: Step A provides an immunologically inducing agent for pharmaceutically effective s, the immune inducing agent is capable of inducing production of an animal such as SEQ ID NO: 1 in the Sequence Listing The antimicrobial peptide is shown; Step B provides an animal; and Step C, the immune inducer is administered to the animal. • The cap is immune to the lining - the rib can increase the immunity of the animal. Method for immunization-inducing agents (immimeelidtors), in the sequence of SEQidn〇: 丨 peptide expression or sequence, SERI The DNO: 2 mRNA gene expression multi-screening method can increase the immunity-inducing agent, and the immune-inducing agent can be further selected. The immune-inducing agent can further comprise a pharmaceutically acceptable carrier. Peptide fragments can be obtained from natural animals, especially aquatic objects, or synthesized by conventional chemical synthesis methods, or can be prepared by conventional molecular biological methods. The molecular biological methods are as follows: Step a provides SEQ ID NO: a nuclear morphic acid fragment shown in Figure 2. Step b provides a performance vector; 200811196 Step C: Recombining the nucleotide fragment with the expression vector into a recombinant expression vector; Step d: delivering the recombinant expression vector into a host cell; Step e causes the host cell to express the peptide fragment. The main cell may be Escherichia coli (five (7)"), yeast and animal cells, but is not limited thereto. * Taking Escherichia coli (five co/z·) as an example After selecting the plastids of E. coli (five co/〇 system, « re-select the appropriate restriction enzyme site in the plastid, and the restriction enzyme male The expression plastid 'also cleaves the nucleotide fragment containing the nuclear bitter acid sequence encoding the peptide fragment of the present invention with the restriction enzyme, and performs the cleavage of the plastid and the nucleotide fragment by the restriction enzyme Engagement, followed by transformation of the Escherichia coli (f. w") plastid containing the nucleotide sequence encoding the peptide fragment of the present invention into Escherichia coli (five co") In the microbial cells, the Escherichia coli (five co/z·) may be pentacco/f BL21TM (DE3) pLysS, and any conventional knowledge such as electro-transformation or heat shock may be used for transformation. The transformation technique is carried out, and after transformation, the E. coli (five (7)/ζ·) is induced by an inducer to express the peptide fragment of the present invention, and the inducer may be isopropylthiogalactoside (IPTG). Etc. Taking yeast as an example, the plastid of the yeast system and the restriction cleavage site of the appropriate φ in the plastid can be selected, and the plastid is cleaved by the restriction enzyme, and the restriction enzyme is also used to shear the plastid. A nucleotide fragment encoding a nucleotide sequence of the peptide fragment of the present invention, which will undergo a ligation reaction with a plastid and a nucleotide fragment after restriction enzyme cleavage, and then will contain a peptide encoding the present invention. The expression of the nucleotide sequence of the yeast acid sequence of the fragment is transformed into the yeast, and the transformation can be carried out by any conventional transformation technique. For example, the cell wall of the yeast can be removed first, and the yeast can form a protoplast spheroid. (spheroplast) is further transformed, or the yeast is treated with a basic anion (such as Licl or (3) plus heat shock for transformation, and after transformation, the yeast is induced by the inducer to express the peptide fragment of the present invention. The inducer may be a known inducer such as IP1X}. In the case of an animal cell, the expression plastid of the animal cell system and the restriction cleavage site of the plastid may be selected. Cut the quality And ligating the nucleotide fragment containing the nucleotide sequence encoding the peptide fragment of the present invention with the restriction enzyme, and performing the ligation reaction on the plastid and the nucleotide fragment after the restriction enzyme cleavage, and then An animal cell system containing a nucleotide sequence encoding a peptide fragment of the present invention is transfected into an animal cell, which may be an insect cell or a mammalian cell, and any transfection may be used. Conventional transfection techniques are carried out, such as by lipofectin (lip0fecti〇n) or by acid fishing (calcium method) to represent the peptide fragments of the present invention. Furthermore, in order to be treated by the antimicrobial method of the present invention The animal's ability to resist disease can be effective, and the immune-inducing agent can be administered to the animal by oral, soaking or injection; oral administration can be directly orally or added to the feed, orally. In the case of administration, in order to prevent the immune inducing agent from being destroyed by the digestive juice in the digestive tract when passing through the digestive tract of the animal, the immune inducing agent can be further microscopically carried out by a conventional technique. Buried to enhance its ability to resist digestive juice; the injection method includes intravenous (intravenous injecti〇n, iv), intramuscular injection (IM) and intraperitoneal injection (IP), but not only It is limited to this; when it is administered intravenously to animals, it can exert the maximum effect. φ The composition or peptide of the present invention can promote the animal to resist the invasion of pathogenic bacteria, thereby increasing the disease resistance of the animal. The health of the animal can be improved. The composition or peptide of the present invention can also be used as a preservative for external use and a fungicide. [Embodiment] Example 1 Preparation of the antimicrobial peptide (AMP) fragment of the present invention is firstly based on Chomczynski And Sacchi's method (1987) to isolate total RNA from the silk tissue of gentian grouper (EpzV^p/^/milk (9)/α plus); next, synthesize cDNA from 10pg total RNA using 200 U Molony murine leukemia virus reverse transcriptase, 1 mM dNTP, 160 U RNase inhibitor 13 200811196 (inhibitor) and 1·6 pg random primer IX reverse transcription buffer, 42. (: Transcription was carried out for 30 minutes. The anti-microbial peptide (AMP) gene was amplified (amplify) by polymerase chain reaction (p〇iymerase chain reacti〇n, PCR), and the PCR system used 20 μ§ reverse transcription product, 0.5 U 80μ11Χ PCR buffer of Taq DNA polymerase and 1 forward and reverse AMP primer, the forward AMP primer has the nucleotide sequence shown in SEQ ID NO: 3, and the reverse AMP primer has ^ as shown in SEQ iD: 4 The nucleotide sequence, pCR is in the DNA temperature cycle reactor • (thermal cycler) 'PCR step for annealing at 55 °C for 1 minute 30 seconds, at 72 C extension (extension) l minutes 30 seconds Denaturation for 1 minute at 94 °C for a total of _ 35 cycles. After the PCR reaction was terminated, 15 μΐ of the PCR product was analyzed by electrophoresis with 2% agarose gel, followed by vinyl bromide. (ethidimn bromide) staining. The purified PCR product will be cloned into the *Smal position of M13mpl8 or pBluescript, and will be sequenced by the dideoxynucleotide chain termination method. The AMP gene will be sequenced after sequencing. List the sequence shown in SEQ ID NO: 2; The sequence shown in SEQ ID NO: 2 shows that the anti-microbial peptide (AMp) cDNA sequence selected from the gentian scutellaria has 494 nucleotides, of which the translation region (c〇ding regi〇) n) consisting of 204 nucleotides, as shown in Figure 1, after derivation, an anti-micro-[[lambda]) peptide (AMP) with 67 amino acids is obtained, the sequence of which is SEQ ID NO On the other hand, the purified PCR product was cleaved with the expression vector pET31b(+) with restriction enzymes j/>vNI, and the cleavage PCR product and pET31b(+) were ligated. The PCR product-containing pET31b(+) obtained after the ligation reaction was transformed into the expression host E. cWBL21TM (DE3) pLysS, and cultured at 37 ° C with shaking at 200 rpm, and induced with different concentrations of IPTG (induce) The results were best induced by 1 mM iptg. The 12% SDS-PAGE analysis showed that the AMP peptide represented by E. coli BL2FM (DE3) pLysS was located in the insoluble protein fraction, and its molecular weight was about 2.7 kDa. As shown in the second, the Western ink collapse method also proves that it is indeed an AMP peptide. The obtained insoluble protein fraction was purified by histidine acid chromatography (His·Bind® chromatography) into 200811196, followed by shearing with cyanogen bromide (CNBr), whereby a purified AMp peptide was obtained. Example 2 Ratio of Antimicrobial Peptide (AMP) Sequences of Different Animals In the known species, 'antimicrobial peptides are all peptides of small molecules, and the antibiotics selected in the first embodiment of the present invention are The peptide is compared with the antimicrobial peptide amino acid sequence of other fishes, and the alignment result is shown in FIG. 3, and the antimicrobial peptide and the spotted grouped antimicrobial peptide amino acid sequence of the present invention are the most Similar, while in other fish species, it is similar to squid and flounder, and in the classification of antimicrobial peptides, each species is a different type, but the types of anti-ii peptides are different in the same species, regardless of Vertebrates or invertebrates are hard to find a regular rule. The antimicrobial peptide of the present invention has 67 amino acids (as shown in the sequence listing SEQ ID N: j). It contains a signal peptide, a mature peptide and a prodomain, and its 3D stereo The structure is shown in Figure 4. The message peptide has an amino acid sequence as shown in the sequence table seq id n〇: 5, which mainly functions to cleave during intracellular message transmission, leaving the mature peptide and prodomain. The mature peptide has an amino acid sequence as shown in SEQ ID NO: 6 of the Sequence Listing, and is a position mainly interacting with the pathogen, and has a charge to bind to the cell membrane of the bacteria, and it is possible that the mode of action of p is cylindrical. The piercing mode (barrel_stave m〇de) is inserted into the thin membrane with the a_hdix antibacterial reference peptide, and the hydrophilic end of the antibacterial peptide is contacted with the cell membrane of the bacteria, and the other hydrophilic end faces each other, which is the hydrophilicity of the antibacterial peptide. The end-facing point, in the form of a polymer - takes into account the shape of the hole, causing the Hernite to be non-parallel, leading to gambling death (Qiu, „2001). Carpetmode (Shai, 1999). When the positively charged antimicrobial peptide binds to the negatively charged bacterial cell membrane, the hydrophilic end does not react, and the anti-g peptide turns over to cause a hydrophobic portion, which surrounds part of the bacterial cell membrane and then removes the lining, destroying the structure of the bacterial membrane. Let the pathogens die (Yang, 2GG4), cause the death of bacteria, and effectively resist the pathogens to produce internal immunity.

Prodomain具有如序列表SEQ m N〇:7所示之胺基酸序列,其功能則 15 200811196 是中和成熟胜肽的電荷,當在成熟胜肽不需要與外來病原菌作用時使成熟 胜肽不具有活性’以免傷害到宿主本身(Yin βία/_,2⑽6)。成熟胜肽帶正電會 與帶負電的細菌細胞膜作用,而在生物體本身細胞膜也為帶負電,抗菌肽 無法專一性的辨#忍何為外來病源函與生物體本身,所以需要prodomain來中 和抗菌肽的電荷,以免造成生物體的傷害。 ^ 實施例3龍膽石斑抗菌肽結構及極性分析 . 使用 Kyte-Doolittle hydropathy blots 程式分析 SEQ ID NO: 6 AMP 成熟 胜月太’顯示弟7到16胺基酸後具有明顯疏水性及親水性 • (hydrophilic)交錯的區域(如圖四、圖五及附件一所示)。在使用國家衛生研 究院巨分子序列分析軟體中protein analysis之HelicalWheel指令分析疏水性 及親水性胺基酸的分佈以及3-D結構圖,可以發現龍膽石斑抗微生物胜肽 所形成α螺旋(a helix)會有明顯疏水性及親水性的分部(如圖五及附件一所 示),該抗微生物胜肽屬於兩性(amphipathic)分子,為傳統的抗微生物胜肽 (Hancock and Lehrer,1998) 〇 由本實施例可推測龍膽石斑抗微生物胜肽的殺菌機制為筒狀穿鑾模式 或是地毯狀覆蓋模式,因為龍膽石斑抗微生物胜肽結構為α螺旋帶正電, _ 當在殺病原菌細胞膜作用的時候,抗菌肽需要為兩性分子,才能順利把病 原菌的膜產生孔洞,造成滲透壓不平衡使病原菌死亡(Shai,。ExpASy -Proteomics軟體分析後在第30至35胺基酸位置上的N-myristoylation site _主要功此在於使蛋白質醯化與C-14飽和脂肪酸結合,推測為抗菌肽與細胞 膜上的私月曰貝結合用(Towler et aL,1998)。由3D立體結構圖預測可得知,龍 膽石斑AMP分為三個部分,而在成熟胜肽的部分為α_Μχ結構(如圖四所 示),屬於第一類的兩性抗微生物胜肽,推測可能為本發明抗微生物胜肽主 要為與細菌的細胞膜作用位置。 實施例4抗微生物胜肽(AMP)之mRNA在石斑魚體内的分布 200811196 本實驗以即時定量聚合酶連鎖反應(real-timequantitativePCR)技術,分 析抗微生物胜肽(AMP)基因在龍膽石斑各組織之表現模式。利用榮光染劑 SYBR green I可鑲嵌在DNA雙股凹槽上,經由鹵素燈激發而產生螢光的 特性,债測其螢光值的量。當SYBRgreenI沒有鑲嵌在雙股DNA上時, 螢光背景值非常低;當SYBRgreenI開始鑲嵌在PCR放大的標的基因片 I又上B守,瑩光值訊號也會相對的提局。如無非特異性引子的結合,或基因 • 組DNA (genomic DNA)的污染等干擾影響,PCR反應合成標的基因之 DNA的合成狀態,可區分為:(!)兩倍倍增的幾何級數倍增期(ge〇metric • phase);⑺反應物不足時,基因合成非兩倍倍增的線性增加期(linearphase); 以及(3)最後反應物耗盡、失效,達反應終點的高原期(plateau phase)。因此 要偵測標的基因在組織器官的表現量,必須在PCR反應的幾何級數倍增期 (geometric phase)定量才具有意義。Reai-time quantitative pCR 的原理就是利 用不同濃度模板在相同PCR反應條件下,含有高濃度模板的反應會較快達 到幾何級數倍增期,相對的,低濃度的模板則較慢達到,將定義達到幾何 級數倍增期中點的臨界PCR循環數目定為CT (thresh〇ldcyde),亦即CT值 會Ik模板浪度降低而升高。利用不同濃度標準品在同步定量PCR反應的 ⑩值,由軟體計算緣製標準曲線與回歸公式,以内插法換算待測樣品内含有 軚的基因絕對表現量。同時若要得到熔解曲線(MeltingCurve),則在標的基 •因放大循環後進行熔解溫度(melting temperature) 66°c-99°c的連續螢光偵 測’分析轉曲_結果可_㈣子是砂自行有互獅現象,或是引 子的專一性,以更正確的幫助了解實驗定量的正確性。 41抽取點帶石斑各組織之總RNA (tote丨RNA) 为別取點帶石斑之腦、總絲、眼、心臟、頭腎、肝臟、脾、腸、胃、 肌肉液皮膚組織,加入1〇倍體積之Trjz〇i reagent (如命^叫u.s.A.), 用贺刀先將組織剪碎再用均質棒打碎,加入1/s體積的氯仿㈣〇r〇f_), 17 200811196 強力搖晃30秒,置於室溫下靜置l〇分鐘,在4°C下i2〇〇〇Xg離心15分 鐘,吸取上清液至新的微量離心管中,加入TRIzol reagent等量體積的異丙 醇(isopropanol)均勻混合,置於室溫下靜置1〇分鐘,在4°C下12000xg離心 15分鐘;將RNA溶解在20μ1 DEPC水中,置於55°C下溶解10分鐘,然後 儲存在-80°C冰箱中備用,以測量RNA濃度與純度比值。 4·2 反轉錄酶反應(Reverse Transcription) 將萃取出來的RNA每管定量至5 pg之total RNA並進行反轉錄酶反應。 4·3即時定量聚合酶連鎖反應(real-time quantitative PCR) 專一性引子(Primer)根據SEQ ID NO: 1設計AMP基因部分cDNA序 列,利用LightCyclerProbeDesignprogmm設計即時定量聚合酶連鎖反應專 一性引子(primer),AMP 基因分別利用 real-time qmititative PCR AMP 專一性 引子A3及A4 (其序列分別如序列表SEQ ID NO: 8及SEQ ID NO: 9所示) 進行 real-time quntitative PCR。 4·4即時定量聚合酶連鎖反應(reai_time qmititative PCR) 4·4·1標準曲線製備 4·4·1·1 小量質體備製(Mmi-preparaticm) 將SEQ ID NO: 1定序且確定含有Mx基因與AMP基因部分cDNA序 列之菌種由-80°C冰箱中取出,培養於30 ml的LB/Ampicillin培養液 (Luria-Bertanimedium)中,以37°C震盪培養至隔夜約16小時後,取出菌液 並進行小量質體製備。 取出隔夜培養之菌液1 ml置入1.5〇11微量離心管中,於4。(:下以 12,000xg 離心 5 分鐘,倒掉上清液,加入 150 μΐ Solution I (50 mM glucose、 25 mM Tris-HCl pH 8·0、10 mM EDTA pH 8.0)重新懸浮菌體,加入 200 μΐ 新鮮配製的Solutionll (0.:2NNaOH、l% SDS),置於冰上10分鐘,加入150μ1 Solution III (3 M potassium acetate、10% glacial acetic acid),置於冰上 5 分 18 200811196 鐘,於4 °C下以12,000xg離心5分鐘,收集上清液至新的微量離心管中, 加入等量體積的飽和酴(phenol)與氣仿(chloroform),強力搖晃30秒,置於 室溫下靜置10分鐘,在4 °C下以12,000xg離心15分鐘。 收集上清液至新的微量離心管中,加入兩倍體積的95 %冰酒精,混合 均勻置於-20 °C下20分鐘,於4 °C下以12,000xg離心5分鐘,倒掉上清液 * 留下沉殿物,以70 %酒精洗滌沉殿物兩次,然後真空乾燥離心沉澱物,將 , 沉澱物溶於20μ1無菌水中,存於-20°C備用。 4·4·1·2質體DNA濃度和純度的計算 Ρ 以分光光度計測量OD260,計算質體DNA的濃度的標準為1 OD260 = 50 pg of DNA / ml,其公式為 50 pg X dilute factor X A260= pg / ml。質體 DNA 純度以OD260 / OD280的比值介於1·6〜1·8之間為較純的DNA。 待質體DNA濃度計算出來後,將質體DNA濃度調整至1 μ§/μ1,並依 10倍稀釋方式由ΗΤ1連續稀釋至1(Τ9,稀釋後將質體DNA存於-20°C備用。 4.4.1.3製備標準曲線 分別由10_4-104之稀釋後質體溶液中取3 μΐ置於反應毛細管中,再分別 加入 2·4 μΐ MgCl2、1 μΐ SYBR、real-time quntitative PCR AMP 專一性引子 φ A3及A4 (其序列分別如序列表SEQ ID NO: 8及SEQ ID NO: 9所示)各〇·5 μΐ、12.6 μΐ無菌水’最後總體積為20 μΐ ;將反應毛細管置入及時定量分析 . 儀(LightCycler 1.2)中,設定以下條件反應:95°C解離10分鐘;95°C解離0 秒;64°C黏合10秒;72°C合成15秒;解離、黏合、合成步驟重複40個循 環後降溫至40°C後持續升溫至95°C,以解離反應後產物並連續偵測螢光 值。反應後彳貞測結果以LightCycler Software 3.5 program分析後製作標準曲 線。 4·4·2·1龍膽石斑各組織即時定量聚合酶連鎖反應偵測 取3 μΐ實施例4.2所製得之反轉錄酶反應(RT)產物置於反應毛細管中,分 200811196 別加入2·4 μΐ MgCl2、1 μΐ SYBR、real-time qimtitative PCR AMP專一性引子 A3及A4 (其序列分別如序列表SEQ ID NO: 8&SEQ ID N〇: 9所示)各〇·5 μ卜12.6 μΐ無菌水,最後總體積為2〇 μΐ。將反應毛細管置入及時定量分析儀 (LightCyderl.2)中,設定以下條件反應:95°C解離10分鐘;; 64°C黏合5秒;72°C合成15秒;解離、黏合、合成步驟重複4〇個循環後降溫 • 至40°C後持續升溫至95°C,以解離反應後產物並連續偵測螢光值。反應後 - 偵測結果以LightCycler Software 3·5 program配合標準曲線分析,分析後所得Prodomain has an amino acid sequence as shown in the Sequence Listing SEQ m N〇:7, and its function is 15 200811196 is to neutralize the charge of the mature peptide, so that when the mature peptide does not need to interact with the foreign pathogenic bacteria, the mature peptide is not It has activity 'to avoid harm to the host itself (Yin βία/_, 2(10)6). The positive peptide will positively interact with the negatively charged bacterial cell membrane, while the cell membrane of the organism itself is also negatively charged. The antimicrobial peptide cannot be uniquely identified. It is a foreign source and the organism itself, so it needs prodomain. And the charge of the antibacterial peptide, so as not to cause damage to the organism. ^ Example 3 gentian zebra antibacterial peptide structure and polarity analysis. Analysis of SEQ ID NO: 6 using Kyte-Doolittle hydropathy blots program AMP mature Shengyuetai 'shows 7 to 16 amino acids with significant hydrophobicity and hydrophilicity • (hydrophilic) staggered areas (as shown in Figure 4, Figure 5 and Annex 1). The alpha helix formed by the gentian grouper antimicrobial peptide can be found by analyzing the distribution of hydrophobic and hydrophilic amino acids and the 3-D structure diagram using the HelicalWheel instruction of protein analysis in the National Institutes of Health macromolecule sequence analysis software. a helix) has a distinctly hydrophobic and hydrophilic fraction (as shown in Figure 5 and Annex 1), which belongs to the amphipathic molecule and is a traditional antimicrobial peptide (Hancock and Lehrer, 1998). 〇 From this example, it can be inferred that the bactericidal mechanism of the gentian zebra microbial peptide is a cylindrical puncturing mode or a carpet-like covering mode, because the gentian plaque antimicrobial peptide structure is α-helix positively charged, _ When killing the cell membrane of the pathogen, the antibacterial peptide needs to be an amphiphilic molecule in order to smoothly create pores in the membrane of the pathogenic bacteria, resulting in an imbalance of osmotic pressure to cause the pathogen to die (Shai, ExpASy-Proteomics software analysis after the 30th to 35th amino acid The position of the N-myristoylation site _ mainly contributes to the binding of protein deuteration to C-14 saturated fatty acids, presumably as antibacterial peptides and erythrocytes on the cell membrane. Combined use (Towler et aL, 1998). It can be known from the 3D stereogram prediction that gentian plaque AMP is divided into three parts, while the part of the mature peptide is α_Μχ structure (as shown in Figure 4). The first type of amphoteric antimicrobial peptide, presumably may be the position of the antimicrobial peptide of the present invention mainly with the cell membrane of the bacteria. Example 4 Distribution of the mRNA of the antimicrobial peptide (AMP) in the grouper 200811196 Real-time quantitative polymerase chain reaction (real-time quantitative PCR) technique was used to analyze the expression pattern of the antimicrobial peptide (AMP) gene in various tissues of gentian grouper. The SYBR green I can be embedded in the DNA double-strand groove. Fluorescence is generated by halogen lamp emission, and the amount of fluorescence is measured by debt. When SYBRgreenI is not embedded in double-stranded DNA, the background value of fluorescence is very low; when SYBRgreenI starts to be embedded in the amplified gene fragment of PCR amplification On the B-keeper, the fluorescent signal will also be relatively raised. If there is no combination of non-specific primers or the interference of genomic DNA, the PCR reaction synthesizes the DNA of the target gene. The state of synthesis can be distinguished as: (!) twice the multiplication of the geometric progression doubling period (ge〇metric • phase); (7) when the reactants are insufficient, the gene synthesis is not a linear multiplication period of double doubling; (3) The last reactant is depleted and fails, reaching the plateau phase of the reaction end point. Therefore, to detect the amount of the target gene in the tissue and organ, it must be quantified in the geometric phase of the PCR reaction. significance. The principle of Reai-time quantitative pCR is to use different concentration templates under the same PCR reaction conditions, the reaction containing high concentration template will reach the geometric multiplication period faster, and the lower concentration template will be reached slowly, which will be defined. The number of critical PCR cycles at the midpoint of the geometric progression multiplication period is determined as CT (thresh〇ldcyde), that is, the CT value increases as the Ik template is reduced. Using the 10 values of the simultaneous quantitative PCR reaction of different concentration standards, the standard curve and the regression formula were calculated by software, and the absolute expression of the gene containing 軚 in the sample to be tested was converted by interpolation. At the same time, if a melting curve (MeltingCurve) is to be obtained, the melting temperature of the target temperature is 66°c-99°c after the target base is amplified. The analysis of the curve _ results can be _ (four) is The sand itself has a mutual lion phenomenon, or the specificity of the primer, to more accurately help to understand the correctness of the experimental quantitative. 41 extraction of total RNA (tote丨RNA) from the various spots of the grouper. For the brain, total silk, eye, heart, head kidney, liver, spleen, intestine, stomach, muscle fluid skin tissue of the group 1〇 volume of Trjz〇i reagent (such as life called usA), use the knife to first cut the tissue and then use a homogenized rod to break, add 1 / s volume of chloroform (four) 〇r〇f_), 17 200811196 strong shaking After 30 seconds, let stand at room temperature for 1 minute, centrifuge at i2〇〇〇Xg for 15 minutes at 4 °C, aspirate the supernatant into a new microcentrifuge tube, add TRIzol reagent equal volume of isopropanol (isopropanol) was uniformly mixed, allowed to stand at room temperature for 1 minute, centrifuged at 12000 x g for 15 minutes at 4 ° C; the RNA was dissolved in 20 μl of DEPC water, dissolved at 55 ° C for 10 minutes, and then stored at -80 The °C refrigerator was used to measure the ratio of RNA concentration to purity. 4·2 Reverse Transcription The extracted RNA was quantified to 5 pg of total RNA per tube and subjected to reverse transcriptase reaction. 4. 3 real-time quantitative PCR specific primer (Primer) designed AMP gene partial cDNA sequence according to SEQ ID NO: 1, using LightCyclerProbeDesignprogmm to design real-time quantitative polymerase chain reaction specificity primer The AMP gene was subjected to real-time quntitative PCR using real-time qmititative PCR AMP specific primers A3 and A4 (the sequences of which are shown in SEQ ID NO: 8 and SEQ ID NO: 9, respectively). 4·4 real-time quantitative polymerase chain reaction (reai_time qmititative PCR) 4·4·1 standard curve preparation 4·4·1·1 small amount of plastid preparation (Mmi-preparaticm) SEQ ID NO: 1 is sequenced and determined The strain containing the partial cDNA sequence of the Mx gene and the AMP gene was taken out in a -80 ° C refrigerator, cultured in 30 ml of LB/Ampicillin medium (Luria-Bertanimedium), and cultured at 37 ° C for about 16 hours overnight. , remove the bacterial solution and prepare a small amount of plastid. Take 1 ml of the overnight culture solution and place it in a 1.5〇11 microcentrifuge tube at 4. (: Centrifuge at 12,000 xg for 5 minutes, pour off the supernatant, resuspend the cells by adding 150 μM Solution I (50 mM glucose, 25 mM Tris-HCl pH 8·0, 10 mM EDTA pH 8.0), and add 200 μΐ. Freshly prepared Solutionll (0.:2NNaOH, 1% SDS), placed on ice for 10 minutes, added 150μ1 Solution III (3 M potassium acetate, 10% glacial acetic acid), placed on ice for 5 minutes 18 200811196 clock, Centrifuge at 12,000 xg for 5 minutes at 4 °C, collect the supernatant into a new microcentrifuge tube, add an equal volume of saturated phenol and chloroform, shake vigorously for 30 seconds, and let it stand at room temperature. Allow to stand for 10 minutes, centrifuge at 12,000 xg for 15 minutes at 4 ° C. Collect the supernatant into a new microcentrifuge tube, add twice the volume of 95% iced alcohol, mix and mix at -20 °C for 20 minutes. Centrifuge at 12,000xg for 5 minutes at 4 °C, pour off the supernatant*, leave the sinking material, wash the sediment twice with 70% alcohol, then dry the precipitate by vacuum drying, and dissolve the precipitate in 20μ1 In sterile water, store at -20 °C for later use. 4·4·1·2 Calculation of plastid DNA concentration and purity Ρ Splitting The photometer measures OD260, and the standard for calculating the concentration of plastid DNA is 1 OD260 = 50 pg of DNA / ml, which is 50 pg X dilute factor X A260 = pg / ml. The purity of plastid DNA is based on the ratio of OD260 / OD280. Between 1·6 and 1·8 is a relatively pure DNA. After the plastid DNA concentration is calculated, the plastid DNA concentration is adjusted to 1 μ§/μ1, and serially diluted from ΗΤ1 to 1 by 10-fold dilution. (Τ9, after dilution, store the plastid DNA at -20 °C for use. 4.4.1.3 Prepare the standard curve by taking 3 μΐ of the diluted plastid solution of 10_4-104 into the reaction capillary, and then add 2·4 respectively. Μΐ MgCl2, 1 μΐ SYBR, real-time quntitative PCR AMP specific primers φ A3 and A4 (the sequences are shown in SEQ ID NO: 8 and SEQ ID NO: 9, respectively) 〇·5 μΐ, 12.6 μΐ sterile The final total volume of water was 20 μΐ; the reaction capillary was placed in a timely quantitative analysis. In the instrument (LightCycler 1.2), the following conditions were set: 95°C dissociation for 10 minutes; 95°C dissociation for 0 seconds; 64°C for 10 seconds. ; synthesis at 72 ° C for 15 seconds; dissociation, bonding, synthesis steps repeated 40 cycles, then cooled to 40 ° C and continued to heat up to 95 C, to the reaction product after dissociation and continuously detect fluorescence value. After the reaction, the results of the measurement were analyzed by LightCycler Software 3.5 program to prepare a standard curve. 4·4·2·1 gentian grouper tissue real-time quantitative polymerase chain reaction detection 3 μΐ The reverse transcriptase reaction (RT) product obtained in Example 4.2 was placed in the reaction capillary, and was added to 200811196. · 4 μΐ MgCl2, 1 μΐ SYBR, real-time qimtitative PCR AMP-specific primers A3 and A4 (the sequences are shown in SEQ ID NO: 8 & SEQ ID N: 9 respectively) 〇·5 μ Bu 12.6 Μΐ sterile water, the final total volume is 2〇μΐ. The reaction capillary was placed in a timely quantitative analyzer (LightCyderl. 2), and the following conditions were set: dissociation at 95 ° C for 10 minutes; bonding at 64 ° C for 5 seconds; synthesis at 72 ° C for 15 seconds; repetition of dissociation, bonding, and synthesis steps After 4 cycles, the temperature is lowered. • After 40 °C, the temperature is continuously raised to 95 °C to dissociate the product after the reaction and continuously detect the fluorescence value. After the reaction - the detection results were analyzed with LightCycler Software 3·5 program in conjunction with the standard curve.

數據單位為μ#μ1,接著除以質體的鹼基對數目,再除以鹼基對分子量66〇 _ dalton以換算成mole/μΐ,乘以6.02Χ1023得copies/μΐ。實驗所得的數據,以SAS (Statistic Alalysis System)軟體,運用單變量分析(〇ne_way analysis Qf variance) ’利用Duncan’s MultipleRange Tes比較各因子間顯著差異程度(p < 0.05),所得數據以平均土標準偏差(Mean 土 SD)表示;本發明中所有amp基 因表現分析均使用此方法。 請參閱圖六,由AMP基因在各組織間之表現模式實驗結果顯示,龍膽 石斑在腦、心臟、肝臟、脾臟、腸、胃、肌肉、血液、總絲、眼睛、頭腎、 皮膚及鰭均有AMP基因的表現;頭腎的表現量最高,其次是脾臟、鰓絲、 φ 血液。這些組織都具有血液流動相關組織,進一步證明AMP基因可能是由 血球細胞所分泌。在比目魚的AMP研究指出,鰓在魚類中也是一個重要的 • 免疫器官(Murray以乂·,2003);而由本實施例之結果顯示,AMP基因在鰓絲 有明顯的表現(如圖六所示),因此在本發明接下來的實施例中,將以鰓絲作 纛 為分析AMP基因表現的指標性組織。 實施例5注射仿病毒核酸之藥品polyinosinic-polycytidylic acid (po丨yI:C) 至龍膽石斑内,分析其抗微生物胜肽(AMP)基因表現情形 將龍膽石斑魚分成四組,每組分別注射不同濃度之仿病毒核酸藥品 polyinosinic-polycytidylic acid (polyI:C),以每公克魚體重(BW)為單位,每公 200811196 克魚體重注射藥品之體積為200μ1,各組poly I:C的注射濃度分別為 Opg/gBW (對照組)、ipg/gBW、2pg/gBW、5pg/gBW,溶劑為石斑魚之 PBS, 以肌肉注射,注射在背部肌肉。24小時後使用150ppm的MS-222 (Ethyl 3-amino-benzoatemethanesulfonatesolt),讓魚麻醉降低刺激;分別取總絲、 頭腎、脾臟、腦、血液、肝、皮膚等七個組織,利用TRIzol reagent萃取t〇tal ‘ 咖八’保存於-80°C冰箱,以進行即時定量聚合酶連鎖反應(reai_time • quantitative PCR)分析AMP基因表現模式。 各組織在注射不同濃度之poly I:C 24小時後的AMP基因表現如圖七所 Φ 示;以總絲作為分析amp基因表現的指標性組織來看,以每克魚體重注射 2pgpolyI:C之處理組的AMP基因表現量最高。 針對母克魚體重注射2μ§ poly I:C之處理組,分別在注射後12小時、 24小時、48小時、72小時取其頭腎、腦、脾臟、肝臟、血液、皮膚和鰓絲 之total RNA ’利用即時定量聚合酶連鎖反應(reaptime qUantitative pcR)分析 AMP基因表現模式,結果如圖八所示,在72小時的長時間處理下,鰓絲 與頭腎的AMP基因表現均比對照組高,推測因為生物體誘導的抗微生物胜 肽是免疫的第一道防線,當外來物質進入生物體内時,抗微生物胜肽(AMp) • 基因可能也會被諫導來對抗外來物。 實施例6注射不同濃度之脂多醣類(Hpopolysaccharide,LPS)至龍膽石斑 ♦ 内,分析其抗微生物胜肽(AMP)基因表現情形 , 將龍膽石斑魚分成四組,每組分別注射不同濃度之LPS,以每公克魚 體重(BW)為單位,每公克魚體重分別注射〇呢(對照組)、5呢、1〇昭、15吨 的LPS ’母公克魚體重的注射物中添加2〇〇μΐ不完全佐劑(Freund’sinc〇mpiete adjuvant),注射方式為腹腔注射。24小時後使用15〇ppm的MS_222 (Ethyl 3_amino_benzc>atemethanesulfonatesolt),讓魚麻醉降低刺激;分別取頭腎、 腦、脾臟、肝臟、血液和鰓絲等組織,利用TRIz〇1 reagent萃取t〇tal⑽八, 21 200811196 保存於_80°C冰箱’以進行即時定量聚合酶連鎖反應(real_time啊麻― PCR)分析AMP基因表現模式。 各組織在注射不同濃度之LPS 24小時後的AMP基因表現如圖九所示, AMP基因在鰓絲組織與頭腎組織在各濃度的Lps下,均較對照組均有明顯 增加表現量(Ρ<0·05),顯示AMP基因在不同組織所誘導躲現量不相同。 以腹腔注射母克魚體重15μ§的LPS,分別在24小時、48小時、96小 •時、132小時進行採樣,探討頭腎、腦、脾臟、肝臟、血液和鰓絲之AMP 基因表現量。如圖十所示,結果顯示總絲組織之A^p基因在你小時才會 φ 有明顯的增加表現量;而脾臟和頭腎均在24小時即有明顯的增加表現量。 由此可以推論,生物體各種器官的免疫反應速度不盡相同,且會因為受到 刺激的位置不同,而改變免疫產生的組織。在Kim (2_5)的研究中發現比 目魚在不同組織被LPS誘導下,產生免疫反應的時間也會相對不同,而且 長時間下有些組織的表現量會降低。 實施例7改變環境因子鹽度後龍膽石斑抗微生物胜肽(AMp)基因表現情 形之分析 將龍膽石斑魚分成一對照組及一實驗組,對照組為純海水(鹽度為 馨 35%。),而實驗組則每天鹽度減少10%。,處理三天使實驗組鹽度為5%。,放 置24小時後,使用150 ppm的MS_222 (Ethyl - methanesulfonate solt),讓魚麻醉降低刺激;分別取總絲、頭腎、脾臟、腦、 • 血液、肝、皮膚等組織,利用TRIzol reagent萃取1;(^1反^八,保存於-8〇。0 冰相,以進行即時定量聚合酶連鎖反應(real_time qUantitatiVe PCR)分析AMP 基因表現模式。 如圖十一所示,實驗組在低鹽度環境下,其amp基因在頭腎、皮膚、 血液、總絲等組織中有明顯的增加表現量。可見在鹽度改變的時候會免疫 基因會被誘導,進而增加魚類的免疫能力,改變鹽度為5%。時,推測會刺激 22 200811196 龍膽石斑内生型免疫系統,使龍膽石斑不易受到病原菌感染或發病,使得 龍膽石斑較不容易受到細菌和病毒感染。 魚類免疫緊迫包括:鹽度改變、溫度改變、溶氧不足、化學藥品污染 等,使魚產生許多生理上的改變,對環境的緊迫作出反應。當環境出現緊 迫時,魚類的生理、外表、組織和細胞都會產生免疫反應(Barton and .Blanchard,2〇〇ι)。本實施例結果進一步確認,可藉由改變養殖環境鹽度以 . 提高AMP基因之表現量,進一步增強龍膽石斑抗病毒與抗細菌性感染的能 力;本概念可應用於養殖業,以提升魚體免疫力及抗病能力,達到減少死 _ 亡,提尚存活率與產量等目的。 實施例8化學合成石斑抗微生物胜肽對各病原菌之體外敏感性試驗 以科羅耐國際科技有限公司合成抗微生物胜肽,純度經由高效能液相 層析(high performance liquid chromatography,HPLC)測試純度達 90%以上; 利用δ亥合成抗‘生物胜肽對細菌進行最小抑菌濃度(minima丨此ibjt〇ry concentration,MIC)和最小殺菌濃度㈣以謂茁bactericidal conce血— MBC)試驗。 8.1菌液的製備 _ 將大腸桿菌(五以a//DH5c〇、哈威氏弧菌(松>η·〇 /^吵)、溶澡 孤固(Vibrio alginolyticus)、缓孤菌(Vibrio anguiHarum)、能孤菌(鳩 - salmonicida)、轰氣單胞菌(^eromonas '表复葡萄球菌 •(加;%fccoc伽吻办而),將此七株菌株培養於LBA DH5a)或 TSA (+1.5% NaCl)上’經過16小時37°C培養後,刮下菌落溶於指定培養液, 使OD54〇為1時(濃度約為^1〇9菌數),取5〇(^1菌液加入5〇〇只1的[;3或 TSB (+1.5%NaCl)使菌液濃度為ixio8菌數滅。 8·2 敏感性試驗(Susceptibility test) 使用96孔培養皿在每個凹槽加入ΐ30μ1的菌液,菌液濃度為lxl〇8菌 23 200811196 數/m卜在加入20μ1不同濃度(0.075 μΜ-0·675 μΜ)的化學合成龍膽石斑抗微 生物胜肽後,以37 C培養16小時,觀察沒有細菌生長而呈現澄清的菌液之 最低抗微生物胜肽濃度,此為最小抑菌濃度(MIC);再將呈現澄清的菌液之 組別,取完全菌液塗抹在培養於LBA (£· cW DH5a)或TSA (+1.5% NaCl) 上’經過16小時37 C培養後,觀察菌落則得知最小殺菌濃度(趣。),每個 實驗組各有二重複及對照組。 • 測試結果如表一所示,此七株菌最小抑菌濃度(MIC)分別為:大腸桿菌 (及co" DH5a) 0·075 μΜ、哈威氏弧菌扣)0·15 μΜ、溶 φ 澡弧菌(脱咖 0·15 μΜ、鰻弧菌(财响⑽gwz7/ar_) 0·15 μΜ、 綠孤 @(VibHo salmonicida) 0Λ5 μΜ、轰氣單胞菌(Aeromonas hydrvphila) 0.375 μΜ、表皮葡萄球菌(加坤咖⑺c⑽印/如服·也)0.075 μΜ ;而其最小 殺菌濃度(MBC)分別為 0.15 μΜ、0.225 μΜ、0.375 μΜ、0.45 μΜ、0.3 μΜ、 0.675 μΜ、0_525 μΜ。 表一龍膽石斑抗微生物胜肽(AMP)對不同病源菌之最小抑菌濃度(MIC)與 最小殺菌濃度(MBC)值 菌種 最小抑菌濃度(MIC) 最小殺菌濃度(MBC) 葛蘭氏陰性菌 產氣單胞菌 (Aeromonas hydrophila) 0.375 μΜ 0.675 μΜ 鰻弧菌 (Vibrio an^uillarum) 0.15 μΜ 0.45 μΜ 鮭弧菌 {Vibrio salmonicida) 0.15 μΜ 0.30 μΜ 哈威氏孤菌 (Vibrio harveyi) 0.15 μΜ 0.225 μΜ 溶澡弧菌 (Vibrio al^inolyticus) 0.15 μΜ 0.375 μΜ 大腸桿菌 {Escherichia coli DH5a) 0.075 μΜ 0.15 μΜ 葛蘭氏陽性菌 表皮葡萄球菌 {Staphylococcus epidermidis) 0.075 μΜ 0.525 μΜ 24 200811196 由本實施例結果可知,本發明之抗微生物胜肽可殺死葛蘭氏陽性菌與 葛蘭氏陰性菌’對不同微生物均有殺菌與抑菌效果,因此,本發明之抗微 生物胜肽亦能作為廣效性殺菌劑或防腐劑。 實施例9抗微生物胜肽(AMP)對石斑魚之保護作用 • 將龍膽石斑魚分成四組,分別注射PBS (對照組)、弧菌, • /辰度為1x100 cfil/flsh)、抗微生物胜肽cecropin (濃度為1 _fish)+弧菌(濃 度為IxlO6 cfb/fish )、本發明之抗微生物胜肽(gAMp,濃度為1 __)+ 弧菌(濃度為lxl06cfo/flsh),經24、48、72小時後,觀察各組之死亡率, 馨絲如圖十二所示,注射PBS組(對照、组)在72小時後死亡率為〇% ;注射 弧菌組在72小時後死亡率為100〇/〇 ;注射抗微生物胜肽cecr〇pin+弧菌組在 72小時後死亡率為80% ;注射本發明之抗微生物胜肽(gAMp) +弧菌在% 小日守後死亡率為60%,此實驗僅注射各種AMP —次,由結果顯示,注射本 發明之抗微生物胜肽(gAMP)已可顯著降低龍膽石斑魚40%的死亡率,可見 本發明之抗微生物胜肽(gAMP)已達到對魚隻提供保護作用之功效。 由注射本發明之抗微生物胜肽(AMP)對抗病力的影響試驗可直接證 明,當應用本發明之抗微生物胜肽(AMP)時,確實會增加石斑魚的抗病力。 ® 由於AMP具有廣效性殺菌能力,故使用本發明之抗微生物胜肽(AMP)可對 動物提供保護,提高其抗病能力,該動物應不限制在水產動物,亦包括畜 ^ 產動物及人類。 實施例10浸泡中草藥後龍膽石斑抗微生物胜肽(ΑΜΡ)基因表現情形之分 析 將龍膽石斑魚分成四組’分別為純海水沒放置任何中藥的對照組,與 各含有 50 ppm 的板 i根(Isatis indigotica)、黃耆(Astragalus membrcmace ⑽)、甘草之海水的處理組;以強烈打氣使中藥均勻的 混何在30公升水體中,浸泡24小時後,使用150ppm的MS-222 (Ethyl 25 200811196 B-amino-benzoatemethanesulfonatesolt),. 頭腎、脾臟、腦、血液、肝、皮冑m M TRIz〇l Wgent H t〇tal RNA > 保存於俄冰箱’簡脚收4聚合酶連航應㈣·time _如ive PCR)分析AMP基因表現模式。 如圖十一所示’心包頁耆之處理組,其血液中鳩p基因的表現具有顯 著的差異㈣.〇5);由於黃耆具桃祕預素料侧,能增強細胞產生 干擾素能力(段,2005)。另外在老鼠研究中,利用黃耆萃取物中的皂素成分 中含有cydoastmgenol與cyclogalegenin,可以增加免疫球蛋白(购The data unit is μ#μ1, and then divided by the number of base pairs of the plastid, divided by the base pair molecular weight of 66〇 _ dalton to be converted into mole/μΐ, multiplied by 6.02Χ1023 to obtain copies/μΐ. The data obtained from the experiment, using SAS (Statistic Alalysis System) software, using univariate analysis (〇ne_way analysis Qf variance) 'Using Duncan's MultipleRange Tes to compare the significant difference between the factors (p < 0.05), the data obtained by the average soil standard The deviation (Mean soil SD) is indicated; this method is used for all amp gene expression analyses in the present invention. Please refer to Figure 6. The results of the AMP gene expression pattern between tissues show that gentian grouper is in the brain, heart, liver, spleen, intestine, stomach, muscle, blood, total silk, eyes, head kidney, skin and The fins have the expression of AMP gene; the head kidney has the highest performance, followed by the spleen, silk, and φ blood. These tissues all have blood flow related tissues, further demonstrating that the AMP gene may be secreted by blood cells. In the AMP study of flounder, it is pointed out that cockroaches are also an important immune organ in fish (Murray et al., 2003); and the results of this example show that the AMP gene has obvious performance in silk (see Figure 6). Therefore, in the next embodiment of the present invention, the silkworm is used as the index structure for analyzing the expression of the AMP gene. Example 5 Injecting a virus-like nucleic acid drug polyinosinic-polycytidylic acid (po丨yI:C) into a gentian plaque, and analyzing the performance of the antimicrobial peptide (AMP) gene, the gentian grouper was divided into four groups, each group separately Injecting different concentrations of the virus-like nucleic acid drug polyinosinic-polycytidylic acid (polyI:C) in units of fish body weight (BW) per gram of fish, and the volume of the injected drug is 2.0 μl per kg of fish, and the volume of each group of poly I:C is injected. The concentrations were Opg/gBW (control), ipg/gBW, 2 pg/g BW, 5 pg/g BW, and the solvent was grouper PBS, which was injected intramuscularly and injected into the back muscles. After 24 hours, 150 ppm of MS-222 (Ethyl 3-amino-benzoatemethanesulfonatesolt) was used to reduce the stimulation of fish anesthesia; seven tissues including silk, head kidney, spleen, brain, blood, liver and skin were taken and extracted with TRIzol reagent. T〇tal 'Cai Ba' was stored in a -80 ° C refrigerator for real-time quantitative polymerase chain reaction (reai_time • quantitative PCR) analysis of AMP gene expression patterns. The AMP gene expression of each tissue after injection of different concentrations of poly I:C for 24 hours is shown in Figure VII. Using total silk as an indicator of the performance of the amp gene, 2pgpolyI:C was injected per gram of fish body weight. The treatment group had the highest AMP gene expression. The 2 μ§ poly I:C treatment group was injected into the mother's body weight, and the total kidney, brain, spleen, liver, blood, skin and silk were taken at 12 hours, 24 hours, 48 hours, and 72 hours after the injection. RNA 'analysis of AMP gene expression pattern by real-time quantitative polymerase chain reaction (reaptime qUantitative pcR), the results shown in Figure 8. Under the 72-hour long-term treatment, the AMP gene expression of silk and head kidney was higher than that of the control group. It is speculated that because the organism-induced antimicrobial peptide is the first line of defense, when the foreign substance enters the organism, the antimicrobial peptide (AMp) • the gene may also be directed against foreign objects. Example 6 was injected with different concentrations of lipopolysaccharide (LPS) into gentian plaque ♦ to analyze the performance of the antimicrobial peptide (AMP) gene. The gentian grouper was divided into four groups, each group was injected differently. The concentration of LPS is measured in grams per gram of fish body weight (BW), and the weight of each gram of fish is injected into the injection of 〇 (control group), 5 、, 1 〇, 15 tons of LPS 'mother gram fish body weight 2 FμΐFreund's inc〇mpiete adjuvant, the injection method is intraperitoneal injection. After 24 hours, 15 〇ppm of MS_222 (Ethyl 3_amino_benzc>atemethanesulfonatesolt) was used to reduce the stimulation of fish anesthesia; tissues such as kidney, brain, spleen, liver, blood and silk were taken separately, and t〇tal (10) was extracted with TRIz〇1 reagent. , 21 200811196 Stored in a _80 °C refrigerator' for real-time quantitative polymerase chain reaction (real_time ah - PCR) analysis of AMP gene expression patterns. The AMP gene expression of each tissue after injection of different concentrations of LPS for 24 hours is shown in Figure 9. The AMP gene in the silk tissue and the head kidney tissue at each concentration of Lps showed a significant increase in the performance compared with the control group (Ρ&lt ; 0·05), showing that the amount of AMP gene induced in different tissues is different. LPS was injected intraperitoneally with 15 μ§ of the weight of the mother fish, and samples were taken at 24 hours, 48 hours, 96 hours, and 132 hours to investigate the AMP gene expression in the head kidney, brain, spleen, liver, blood, and silk. As shown in Figure 10, the results show that the A^p gene of the total silk tissue has a significant increase in the amount of φ in your hour; while the spleen and head kidney have a significant increase in expression at 24 hours. It can be inferred that the immune response rate of various organs of the organism is not the same, and the tissue produced by the immunity is changed because of the location of the stimulation. In Kim (2_5), it was found that the time to produce an immune response in the different tissues of L. sinensis was different, and the expression of some tissues decreased over time. Example 7 Analysis of the performance of the gentian grouper antimicrobial peptide (AMp) gene after changing the environmental factor salinity The gentian grouper was divided into a control group and an experimental group, and the control group was pure seawater (the salinity was 35%). The experimental group reduced the salinity by 10% per day. The salinity of the three angel experimental group was 5%. After 24 hours, use 150 ppm of MS_222 (Ethyl - methanesulfonate solt) to reduce the stimulation of fish anesthesia; take the total silk, head kidney, spleen, brain, blood, liver, skin and other tissues, extract with TRIzol reagent 1 (^1 inverse^8, stored at -8〇.0 ice phase, for real-time quantitative polymerase chain reaction (real_time qUantitatiVe PCR) analysis of AMP gene expression pattern. As shown in Figure 11, the experimental group at low salinity Under the environment, its amp gene has a significant increase in the expression of head kidney, skin, blood, and total silk. It can be seen that when the salinity changes, the immune gene will be induced, thereby increasing the immunity of the fish and changing the salinity. When it is 5%, it is speculated that it will stimulate the endogenous immune system of gentian grouper, which makes the gentian grouper susceptible to pathogen infection or disease, making gentian grouper less susceptible to bacterial and viral infection. Including: changes in salinity, temperature changes, insufficient dissolved oxygen, chemical pollution, etc., causing many physiological changes in the fish, responding to the urgency of the environment. At the time, the physiology, appearance, tissues and cells of the fish produce an immune response (Barton and .Blanchard, 2〇〇ι). The results of this example further confirm that the AMP gene expression can be increased by changing the salinity of the culture environment. Further enhance the anti-viral and anti-bacterial infection of gentian grouper; this concept can be applied to aquaculture to improve the immunity and disease resistance of fish, to reduce death, death and yield. Example 8 In vitro susceptibility test of chemically synthesized grouper antimicrobial peptide to each pathogen The antibacterial peptide was synthesized by Coroine International Technology Co., Ltd., and the purity was passed through high performance liquid chromatography (HPLC). The purity of the test was over 90%; the minimum inhibitory concentration (minima丨 ibjt〇ry concentration, MIC) and the minimum bactericidal concentration (4) of the bacteria were determined by using the δ hai synthetic anti-bio-peptide to test the bactericidal conce blood-MBC. 8.1 Preparation of bacterial solution _ Escherichia coli (five to a / / DH5c 〇, Vibrio harveyi (pine > η · 〇 / ^ noisy), dissolved bath (Vibrio alginolyticus), slow fungus (Vibrio anguiHarum ), 孤- salmonicida, Aeromonas (^eromonas 'Staphylococcus aureus • (plus; %fccoc Gaya), these seven strains were cultured in LBA DH5a) or TSA (+ On 1.5% NaCl), after 16 hours of incubation at 37 °C, the colonies were scraped and dissolved in the designated culture medium to make OD54 11 (concentration is about ^1〇9), and 5 〇(^1 bacterial solution) Add 5 〇〇 1 of [; 3 or TSB (+1.5% NaCl) to reduce the bacterial concentration to ixio8. 8. 2 Susceptibility test Using a 96-well culture dish, add ΐ30μ1 to each groove. The bacterial liquid, the concentration of the bacterial liquid is lxl〇8 bacteria 23 200811196 number / m Bu after adding 20μ1 different concentrations (0.075 μΜ-0·675 μΜ) of chemically synthesized gentian grouper antimicrobial peptide, cultured at 37 C 16 Hours, observe the lowest antimicrobial peptide concentration of the clarified bacterial liquid without bacterial growth, which is the minimum inhibitory concentration (MIC); then the group of clarified bacterial liquid will be presented. The bacterial solution was applied to LBA (£· cW DH5a) or TSA (+1.5% NaCl). After 16 hours of 37 C culture, the colonies were observed to know the minimum bactericidal concentration (interest). Each experimental group had 2. Repeat and control group. • The test results are shown in Table 1. The minimum inhibitory concentration (MIC) of the seven strains are: Escherichia coli (and co" DH5a) 0·075 μΜ, Harvey's Vibrio buckle) · 15 μΜ, φ 弧 弧 ( 脱 脱 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 0.375 μΜ, Staphylococcus epidermidis (Kang Khan (7) c (10) printed / as served, also) 0.075 μΜ; and its minimum bactericidal concentration (MBC) is 0.15 μΜ, 0.225 μΜ, 0.375 μΜ, 0.45 μΜ, 0.3 μΜ, 0.675 μΜ, 0_525 μΜ Table 1. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gentian grouper antimicrobial peptide (AMP) for different pathogenic bacteria Minimum inhibitory concentration (MIC) Minimum bactericidal concentration (MBC) Gram-negative bacteria Aeromonas hydrophila 0.375 μΜ 0.675 μΜ Vibrio an^uil Larum) 0.15 μΜ 0.45 μΜ Vibrio salmonicida 0.15 μΜ 0.30 μΜ Vibrio harveyi 0.15 μΜ 0.225 μΜ Vibrio al^inolyticus 0.15 μΜ 0.375 μΜ Escherichia coli DH5a 0.075 μΜ 0.15 μΜ Gram-positive bacteria Staphylococcus epidermidis 0.075 μΜ 0.525 μΜ 24 200811196 It can be seen from the results of this example that the antimicrobial peptide of the present invention can kill Gram-positive bacteria and Gram-negative bacteria 'The bactericidal and bacteriostatic effects of different microorganisms, therefore, the antimicrobial peptide of the present invention can also be used as a broad-acting fungicide or preservative. Example 9 Protective effect of antimicrobial peptide (AMP) on grouper • The gentian grouper was divided into four groups and injected with PBS (control group), Vibrio, • / Chencheng 1x100 cfil/flsh), antimicrobial peptide Cecropin (concentration of 1 _fish) + Vibrio (concentration of IxlO6 cfb / fish), the antimicrobial peptide of the invention (gAMp, concentration of 1 __) + Vibrio (concentration of lxl06cfo / flsh), after 24, 48, After 72 hours, the mortality of each group was observed. The sin is shown in Fig. 12. The mortality rate is 〇% after 72 hours in the PBS group (control, group) and 100% in the Vibrio group after 72 hours. 〇/〇; the injection of the antimicrobial peptide cecr〇pin+Vibrio group had a mortality rate of 80% after 72 hours; the injection of the antimicrobial peptide of the invention (gAMp) + Vibrio had a mortality rate of 60% after a small day This experiment only injected various AMP-times, and the results showed that the injection of the anti-microbial peptide (gAMP) of the present invention can significantly reduce the mortality of gentian grouper 40%, and it can be seen that the antimicrobial peptide (gAMP) of the present invention has been Achieve the protective effect on fish. The test for the effect of injecting the antimicrobial peptide (AMP) of the present invention against virulence can directly prove that the use of the antimicrobial peptide (AMP) of the present invention does increase the resistance of the grouper. ® Because of the broad-spectrum bactericidal ability of AMP, the use of the antimicrobial peptide (AMP) of the present invention can protect animals and improve their disease resistance. The animal should not be restricted to aquatic animals, but also livestock and animals. Humanity. Example 10 Analysis of the performance of the gentian grouper anti-microbial peptide (ΑΜΡ) gene after immersion of Chinese herbal medicine The gentian grouper was divided into four groups, respectively, a control group in which pure water was not placed in any Chinese medicine, and each containing 50 ppm of plate i Roots (Isatis indigotica), Astragalus membrcmace (10), licorice seawater treatment group; strong airing to make the Chinese medicine evenly mixed in 30 liters of water, soak for 24 hours, use 150ppm MS-222 (Ethyl 25 200811196 B-amino-benzoatemethanesulfonatesolt),. Kidney, spleen, brain, blood, liver, skin 胄 m M TRIz〇l Wgent H t〇tal RNA > Saved in Russian refrigerator 'Jane's foot 4 polymerase Lian Ying (4)· Time _ such as ive PCR) analysis of AMP gene expression patterns. As shown in Figure 11, the treatment group of the pericardium sputum has a significant difference in the expression of 鸠p gene in the blood (4). 〇5); because of the scutellaria sinensis, it can enhance the ability of cells to produce interferon. (Section, 2005). In addition, in the mouse study, the saponin component of the astragalus extract contains cydoastmgenol and cyclogalegenin, which can increase the immunoglobulin (purchasing

(Yang βία/·,2〇〇5)。本實施例結果顯示黃耆對動物(包括水產動物)具有顯著 的免疫調節魏,包括非特異性Μ,且能誘導產生干擾素,是一個报強 的生物辦劑,對臨床疾病是一種很有效用的藥物。 本發明所提供之-種抗微生物胜肽,與其他習用技術相互比較時,更 具有下列之優點: 1·由上述說明及實施例可知,本發明之抗微生物胜肽基因在免疫系統 的表現情形、抗微生物胜肽殺菌種類與濃度、物理因子(鹽度)、免疫刺激物 (P〇lyI:C及LPS)、中草藥等分析,均證實本發明之抗微生物胜肽基因表現 和石斑魚的免疫力成正相關,該抗微生物胜肽(AMp) mRNA表現量上升 時,石斑魚的抗病能力亦上升;在注射本發明之抗微生物胜肽(AMP)對抗病 力的影響上,更直接證明當使用本發明之抗微生物胜肽(AMP)時,確實會增 加石斑魚的抗病力。 2·由本發明之抗微生物胜肽(AMP)之特殊化學結構,可得知該抗微生 物胜肽(AMP)與微生物細胞膜作用能力,顯示此抗微生物胜肽具有特殊殺菌 月b力’且對微生物殺菌能力具非特定性(n〇I>Specigc)與廣效性;因此,本發 明所提供之抗微生物胜肽(AMP),確實具有抗菌、抗病的功能。 上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例 26 200811196 並非用以關本發明之專概圍,凡未脫離本發賴藝精神所為之等效實 施或變更,均應包含於本案之專利範圍中。 綜上所述,本案不但為一新穎之抗微生物胜肽,並具社述多項功效, n分符合新穎性及進步性之法定發明專利要件,爰依法提㈣請,懇 請貴局核准本件發明專利申請案,以勵發明,至感德便。(Yang βία/·, 2〇〇5). The results of this example show that Astragalus membranaceus has significant immunoregulatory effects on animals (including aquatic animals), including non-specific sputum, and can induce interferon production. It is a potent biological agent and is very useful for clinical diseases. Utility drugs. The antibacterial peptide provided by the present invention has the following advantages when compared with other conventional techniques: 1. The above description and examples show that the antimicrobial peptide gene of the present invention is expressed in the immune system. , antibacterial peptide bactericidal species and concentration, physical factors (salt), immunostimulants (P〇lyI: C and LPS), Chinese herbal medicine, etc., all confirmed the performance of the antimicrobial peptide gene of the present invention and the immunity of grouper Positively related, when the amount of the antimicrobial peptide (AMp) mRNA is increased, the resistance of the grouper is also increased; the effect of injecting the antimicrobial peptide (AMP) of the present invention on the disease resistance is more directly proved when used. The antimicrobial peptide (AMP) of the present invention does increase the resistance of groupers. 2. The specific chemical structure of the antimicrobial peptide (AMP) of the present invention, the ability of the antimicrobial peptide (AMP) to interact with the microbial cell membrane is known, and it is shown that the antimicrobial peptide has a special bactericidal monthly b force' and The bactericidal ability is non-specific (n〇I>Specigc) and broad-spectrum; therefore, the antimicrobial peptide (AMP) provided by the present invention does have an antibacterial and disease-resistant function. The detailed description above is a detailed description of one of the possible embodiments of the present invention, and the embodiment 26 200811196 is not intended to be used in the context of the present invention. Both should be included in the scope of the patent in this case. In summary, this case is not only a novel anti-microbial peptide, but also has a number of functions. The n-point conforms to the statutory invention patent requirements of novelty and progress, and is recommended according to law. (4) Please ask your office to approve the invention patent. Apply for the case, in order to invent the invention, to the sense of virtue.

^ 【圖式簡單說明】 H 圖為遽膽石斑抗微生物胜肽基因全長之cDna序列。總共494核苦 酸組成,包含92個核苷酸所組成的5端未轉譯區(5, UTR)、2〇4核苷酸所 # 組成的轉譯區域(codinS regi〇n)及198核苷酸所組成的3端未轉譯區域(3, UTR)。起始役碼(startc〇d〇n)ATG以粗體表示,終止密碼鄉⑼_)Τ(3Α 以星號(*)表示。轉譯區域推測可以轉譯成67胺基酸,其中包含訊息胜肽 (signal peptide)22個胺基酸(以底線標示)’成熟胜狀扣油^^ peptide)25個胺 基酸(以方框標示),以及pr〇(i〇main 20個胺基酸(以波浪底線標示)。 圖二為重組抗微生物胜肽(recombination AMP,rAMP)蛋白質之 SDS-PAGE電泳圖。利用15%之SDS-PAGE檢視誘發結果;箭號表示认碰。 圖二為各物種抗微生物胜狀胺基酸序列比對(alignment)。龍膽石斑 鲁 (Epinephelus hnceohtus"),點•石斑(Epinephelus coioides),龜,澈(JSMperca 的,歐洲狼鱸(p/e⑼加/α知似),金眼狼鱸(Morc^ ,斑 . 氣龜务、(Morone saxatilis),也 B A (Pleuronectes americanus),庸綠 [Hippoglossus hippoglossus),大西终氣戆綠(Hippoglossusplatessoides) 〇 圖四為龍膽石斑抗微生物胜肽3D立體結構。係使用protein structure modelling分子模擬龍膽石斑抗菌肽3D結構圖,含有訊號胜肽、成熟胜肽、 prodomain 〇 圖五為龍膽石斑AMP成熟胜肽(mature peptide)疏水性(hydrophobic)及 親水性區域(hydrophilic)之預測。以 Kyte-Doolittle hydropathy plots 程式分析 27 200811196 AMP成熟胜肽的極性區域。 圖六為AMP基因在龍膽石斑各組織之表現情形。分別取龍膽石斑之 腦、心臟、肝臟、脾臟、腸、胃、肌肉、血液、鰓絲、眼睛、頭腎、皮膚 及鰭組織以即時定量聚合酶連鎖反應(real_time quantitative RTpCR)分析抗 微生物胜狀基因在各組織表現之模式。^ [Simple description of the schema] H is the cDna sequence of the full length of the anti-microbial peptide gene of the gallstone group. A total of 494 nucleotide compositions consisting of a 5-terminal untranslated region consisting of 92 nucleotides (5, UTR), 2〇4 nucleotides # (codinS regi〇n) and 198 nucleotides The 3-terminal untranslated region (3, UTR) is composed. The start code (startc〇d〇n) ATG is shown in bold, and the stop code is (9)_)Τ (3Α is represented by an asterisk (*). The translated region can be translated into 67 amino acids, which contain the message peptide (signal) Peptide 22 amino acids (indicated by the bottom line) 'mature wins oil ^^) 25 amino acids (marked by box), and pr〇 (i〇main 20 amino acids (with wavy bottom line) Figure 2 shows the SDS-PAGE electrophoresis pattern of recombinant antibiotic AMP (rAMP) protein. The results were detected by 15% SDS-PAGE; the arrow indicates the collision. Figure 2 shows the antimicrobial resistance of each species. Amino acid sequence alignment. Epinephelus hnceohtus", Epinephelus coioides, turtle, Che (JSMperca, European wolfberry (p/e(9) plus /α) ), Golden Eyed Wolverine (Morc^, spot. Moine saxatilis, BA (Pleuronectes americanus), Green (Hippoglossus hippoglossus), Great West End Green (Hippoglossusplatessoides) Figure 4 is gentian stone Speckle anti-microbial peptide 3D stereostructure. Use protein structure model The ling molecule mimics the 3D structure of the gentian grouping antibacterial peptide, which contains the signal peptide, the mature peptide, and the prodomain. The figure 5 is the gentian plaque AMP mature peptide (mature peptide) hydrophobic and hydrophilic (hydrophilic) Prediction: The polar region of AMP mature peptide was analyzed by Kyte-Doolittle hydropathy plots. Figure 6 shows the performance of AMP gene in gentian grouper. The brain, heart and liver of gentian grouper were taken respectively. The spleen, intestine, stomach, muscle, blood, silk, eyes, head kidney, skin and fin tissue were analyzed by real-time quantitative RTpCR to analyze the pattern of antimicrobial gene expression in various tissues.

圖七為在不同濃度poly I:c處理下對龍膽石斑各組織的amp基因表現 之影響。母隻魚注射濃度分別為〇 pg/g BW(對照組)、1 pg/g BW、2 pg/g BW、5 pg/g BW之poly I:C ;龍膽石斑處理24小時後取頭腎、腦、脾臟、 Φ 肝臟、金液和總絲之total ,利用即時定量聚合酶連鎖反應分析AMP 基因mRNA表現之影響,並以Duncan’s Multiple Range Test統計分析a、b、 c表示有顯著差異(ρ<0·05);實驗數據以平均值表示。 圖八為在不同時間點poly I:C處理下對龍膽石斑各組織的AMp基因表 現之影響。母隻魚注射濃度為2pg/g BW的poly l:C處理後,分別在12小 時、24小時、48小時、72小時取龍膽石斑頭腎、腦、脾臟、肝臟、血液、 皮膚和鰓絲之total RNA,利用即時定量聚合酶連鎖反應分析AMp基因 mRNA 表現量,並以 Duncan’s Multiple Range Test 統計分析 a、b、c 表示 • 有顯著差異(Ρ<〇·〇5),實驗數據以平均值土Sd表示。 圖九為在不同濃度免疫誘導物LPS處理下對龍膽石斑各組織的施卩 -基因表現之影響。每隻魚注射LPS的濃度分別為Opg/gBW(對照組)、5 pg/g • BW、10阳/gBW、15 ng/gBW,24小時後取龍膽石斑頭腎、腦、脾臟、肝 臟、血液和鰓絲之total RNA,利用即時定量聚合酶連鎖反應分析_基 因mRNA表現之影響,並以Duncan’s Multiple Range Test統計分析a、b、 c、d表示有顯著差異(ρ <Ό·〇5),實驗數據以平均值±SD表示。 圖十為在不同時間點免疫誘導物LPS處理下對龍膽石斑各組織的AMp 基因表現之影響。每隻魚注射LPS的濃度為15 _娜,於處理後24小 28 200811196 Βτ則了 说小時取龍膽石斑頭腎、腦、脾臟、血液、皮膚 和懿絲之咖RNA,_㈣定量聚合酶連鎖反應分析廣基因 表現量。並以Du麵’相tiple Range Test統計分析a、b、。、d、e表示有 顯著差異(ρ<Ό·05) ’實驗數據以平均值土SD表示。 圖十-為鹽度對於龍膽石斑各組織的撕基因表現之影響。將鹽度經 過三天處理後調至5 PPt取龍膽石斑猜、腦、脾臟、肝臟、血液、皮膚和 祕UotdRNA ’ 即攸量聚麵補反應分析腑基@禮^表Figure 7 shows the effect of amp gene expression on various tissues of gentian grouper under different concentrations of poly I:c. The mother fish injection concentration was 〇pg/g BW (control group), 1 pg/g BW, 2 pg/g BW, 5 pg/g BW poly I:C; gentian grouper treatment after 24 hours The total of kidney, brain, spleen, Φ liver, gold liquid and total silk, the effect of AMP gene mRNA expression was analyzed by real-time quantitative polymerase chain reaction, and the statistical analysis of Duncan's Multiple Range Test a, b, c showed significant difference ( ρ <0·05); Experimental data is expressed as an average value. Figure 8 shows the effect of poly I:C treatment on the AMp gene expression in various tissues of gentian grouper at different time points. After the mother fish was injected with poly l:C at a concentration of 2 pg/g BW, the gentian zebra head kidney, brain, spleen, liver, blood, skin and sputum were taken at 12 hours, 24 hours, 48 hours, and 72 hours, respectively. The total RNA of silk was analyzed by real-time quantitative polymerase chain reaction, and the expression of AMp gene mRNA was analyzed by Duncan's Multiple Range Test. A, b, c were expressed. • There was a significant difference (Ρ<〇·〇5), and the experimental data was averaged. The value of soil Sd is indicated. Figure 9 shows the effects of different concentrations of immune inducer LPS on the gill-gene performance of various tissues of gentian grouper. The concentration of LPS injected into each fish was Opg/gBW (control group), 5 pg/g • BW, 10 yang/gBW, 15 ng/g BW. After 24 hours, gentian zebra head kidney, brain, spleen and liver were taken. , total RNA of blood and silk, using the quantitative quantitative polymerase chain reaction analysis _ gene mRNA performance, and Duncan's Multiple Range Test statistical analysis a, b, c, d indicates significant difference (ρ < Ό · 〇 5), experimental data is expressed as mean ± SD. Figure 10 shows the effect of AMp gene expression on the tissues of gentian grouper at different time points. The concentration of LPS injected into each fish was 15 _ Na, 24 hours after treatment 28 200811196 Βτ said that the gentian zebra head kidney, brain, spleen, blood, skin and silk coffee RNA, _ (four) quantitative polymerase Chain reaction analysis of broad gene expression. And a, b, and statistical analysis of the Du surface 'phase pleple Range Test. , d, e indicate a significant difference (ρ < Ό · 05) 'Experimental data is expressed as mean soil SD. Figure 10 - shows the effect of salinity on the gene expression of the tissues of gentian grouper. After the salinity was treated for three days, it was adjusted to 5 PPt to take the gentian stone spot guess, brain, spleen, liver, blood, skin and secret UotdRNA ’ 攸 聚 聚 聚 补 礼 礼 礼

現量’姐Duncan’s Multiple Range Test統計分析a、b表示有顯著差飾 <Ό·05) ’實驗數據以平均值士sd表示。 圖十二為抗微生物難(ΑΜΡ)對石斑魚之保護侧。石斑魚分別注射 PBS (對照組)、5瓜菌、微生物胜肽cecropin +弧菌、本發明之抗微生物胜 肽+孤菌。 圖十三為中草藥浸泡對於龍膽石斑各組織的AMp基因表現之影響。板 藍根(/融hW咖㈣、黃耆"价㈣-騰岫r_ce W十甘草(吻听咖撕 ) 50PPm浸泡24小時,取龍膽石斑頭腎、腦、脾臟、肝臟、血液、 皮膚和鳃絲之total RNA,利用即時定量聚合酶連鎖反應分析AMp基因 ⑩ mRNA表現量之影響,並以Dimcan’s Multiple Range Test統計分析&、1)、(: 表示有顯著差異(ρ<0·05),實驗數據以平均值表示。 • 附件一為龍膽石斑AMP成熟胜肽(mature peptide)疏水性(hydrophobic) , 及親水性區域(hydrophilic)之預測。以BioEdit劃出HelicalWheel分析α螺 旋(ahelix)區域疏水性及親水性胺基酸的分布,藍色代表疏水性,紅色代表 親水性。 【主要元件符號說明】 益 29The current amount of 'Duncan's Multiple Range Test statistical analysis a, b indicates that there is a significant difference <Ό·05) 'Experimental data is expressed as the mean sd. Figure 12 shows the protective side of the grouper. The grouper was separately injected with PBS (control group), 5 melon bacteria, microbial peptide cecropin + Vibrio, and the antimicrobial peptide + bacterium of the present invention. Figure 13 shows the effect of Chinese herbal medicine soaking on the expression of AMp gene in various tissues of gentian grouper. Banlangen (/ Rong hW coffee (four), Huang Qi " price (four) - Tengyi r_ce W ten licorice (kiss listen to coffee torn) 50PPm soak for 24 hours, take gentian stone head kidney, brain, spleen, liver, blood, skin and The total RNA of the silk was analyzed by the real-time quantitative polymerase chain reaction, and the influence of AMp gene 10 mRNA expression was analyzed by Dimcan's Multiple Range Test &, 1), (: indicates significant difference (ρ<0·05) The experimental data is expressed as the average value. • Annex I is the prediction of the hydrophobicity and hydrophobicity of the gentian plaque AMP mature peptide (Mature peptide). The HelicalWheel analysis of the alpha helix (ahelix) The distribution of hydrophobic and hydrophilic amino acids in the region, blue represents hydrophobicity, and red represents hydrophilicity. [Main component symbol description]

Claims (1)

200811196 十、申請專利範圍: 1. 一種抗试生物胜肽’具有一如序列表SEQ ID NO: 1所示之胜肽序列,係 用以抑菌及殺菌。 2· —種核苷酸片段,具有如序列表SEqidn〇:2所示之核苷酸序列,係為 用以編碼如申請專利範圍第i項所述之抗微生物胜肽的核苷酸片段。 3. —種醫藥組合物,包含: -藥學有效里之胜肽片段’該胜肽片段具有如序列表SEqidn〇: !所示 之胺基酸序列;以及 一藥學上可接受之載劑。 4·如申請專機g第3項所述之醫藥組合物,其巾該醫藥組合物之形式可 為包埋物、浸泡液、飼料、飼料添加物、口服液、注射綠苗、貼片、粉 末、錄劑、注射液體、懸浮液、外用液、滴齊卜擦劑、塗劑、乳霜、油 膏、軟膏、糊狀劑、膠以及凝膠等。 5·如申請專利範圍第3項所述之醫藥組合物,其中該載劑可為賦形劑、稀 釋劑、增稠劑、填充劑、結合劑、崩解劑、潤滑劑、油脂或非油脂的基 劑、介面活性劑、懸浮劑、膠凝劑、輔助劑、防腐劑、抗氧化劑、穩定 劑、著色劑、香料等。 6·如申明專她圍第5項所述之醫藥組合物,其巾該麟劑包含但不限於 甘油及油類(如:花生油、蓖麻油)。 7·如申請專利顧第5項所述之醫合物,其巾該細包含碳氮化合 物,該碳氫化合物包含但不限於硬石壞、軟石壤、石壤油、甘油、蜂壤、 金屬匕皂、天然油(如:杏仁油、玉米油、花生油、脑油或撤視油)、羊 毛月s及其街生物、脂肪(如:硬脂酸或油酸)或其組合物。 8.如申請專利細第5項所述之醫藥組合物,其中該介面活_包括陰離 子介面活性劑、陽離子介面活性劑、非離子介面活性劑,該介面活性劑 200811196 包含但不限於山梨醇肝醋、聚氧化乙稀及其衍生物(如:聚氧化乙稀脂肪 酸西曰)、聚叛乙烯及其衍生物(如:卡伯漢樹脂carb〇p〇1)。 9.如申請專利細第5彻述之醫齡合物,其中浮劑包含但不限於 天然樹醋、纖維餘生物無機物f (如:silieae_迎㈣、聚乙二醇54〇、 聚乙二醇3350及丙二醇等。 ’ 10·如申請專利範圍第5項所述之醫藥組合物,其中該膠凝劑包含任何用於 . 藥學上軸膠體的膠凝劑,該膠凝劑包含但不限於纖維素衍生物(如··甲 基纖維素、經基乙基纖維素以及羧曱基纖維素等)、乙稀基聚合物(如: _ 聚乙稀醇、〇1γν¥ P^lidones)、聚羧乙烯衍生物(如:卡伯漢樹脂 ⑽b_)、果膠、膠類(如:阿拉伯娜、黃·、藻膠、壤脂、明膠 以及 carrageenates)。 11.如申=專利範圍第3項所述之醫藥組合物,其中該醫藥組合物係以口 服/又/包/主射、塗抹或貼片的方式投予至人體及動物體内。 12·如申請專利範圍第U項所述之醫藥組合物,其中該動物為畜產動物。 如申請專利範圍第12項所述之醫藥組合物,其中該畜產動物係選自牛、 羊、雞、豬以及其所組成的群組。 # M.如申請專利範圍第13項所述之醫藥紐合物,其中該動物為水生動物。 15_如申請專利範圍第14項所述之醫藥組合物,其中該水生動物為备類。 ,•如帽專利範圍第15項所述之醫藥組合物,其中該魚類為養殖魚類。 ,I7.如申請專利範圍第16項所述之醫藥組合物,其中該養殖魚類係選自石斑 魚、海鱺、鯛魚、比目魚、缝魚、鳟魚、餘魚、缠魚、金魚、吳郭魚' 斑馬魚以及其所組成的群組。 18.-種用間選能增加動物免疫力之免㈣導劑⑽職咖㈣的方 法,包含: 步驟將所欲_選之免疫誘導劑與一飼料混合,藉以獲得一混合物; 31 200811196 步驟二對一動物口服投予該混合物,亦可使用浸泡方式投予該混合物; 步驟三檢測該動物體内如序列表SEQ ID NO·· 1所示之胜肽片段的表現 量;以及 步驟四以該胜肽片段的表現量高低來判斷該免疫誘導劑對該動物抗病 的影響。 19.如申請專利範圍第18項所述之用以篩選能增加動物免疫力之免疫誘導 • 劑的方法,其中該步驟三中,該胜肽片段之檢測方法可為但不限於膠體 電泳、西方墨點法、免疫反應法等。 _ 2G.如中請專利範圍第18項所述之用以篩選能增加動物免疫力之免疫誘導 劑的方法,其中該步驟三中,該胜肽片段的表現量亦可藉由檢測能編碼 該胜肽片段之mRNA的表現量來判定,該mRNA的序列如由序列表SEQ ID NO: 2所示之核苷酸序列所轉錄而成的序列。 21·如申請專利範圍第20項所述之用以篩選能增加動物免疫力之免疫誘導 劑的方法,其中該mRNA表現量的檢測法可為但不限於北方墨點法'聚 合酶連鎖反應、原位雜交法等。 22. —種增加動物抗病能力的方法,包含: 鲁 纟驟八提供一藥學有效量之免疫誘導劑,該免疫誘導劑係可誘導動物體 產生如序列表SEQIDNO:l所示之抗微生物胜肽; - 步驟B提供一動物;以及 • 步驟C將該免疫誘導劑投予至該動物的體内。 23. 如申明專利範圍帛η項所述之增加動物抗病能力的方法,其中該免疫誘 ¥劑亦可為以如申請專利範圍第18項所述之方法所篩選出的免疫誘導 劑。 如申請專纖圍第22顿述之增加動物抗病能力的方法,其巾該免疫誘 丨了為中草藥(板藍根、黃耆、甘草)、ΐφ叩(Lps)、 32 200811196 β-glucan、pepdiglycan 〇 25.如申請專概®f22_紅增鳩她魏 導劑可進-步包含-藥學上可接受之編卜 ^其中錢疫誘 π如申請專聰鮮25彻述之增鴻她錢相妓,其巾該载 為賦形劑、稀釋劑、增_、填充劑、結合劑、崩解劑、潤滑劑、油月t 或非油脂的基劑、介面活性劑、懸浮劑、膠凝劑、辅助劑、防腐劑曰 氧化劑、穩定劑、著色劑、香料等。 几200811196 X. Patent application scope: 1. An antibiotic biopeptide has a peptide sequence as shown in SEQ ID NO: 1 of the Sequence Listing, which is used for bacteriostasis and sterilization. A nucleotide fragment having a nucleotide sequence as shown in the sequence table SEqidn〇: 2, which is a nucleotide fragment for encoding an antimicrobial peptide as described in the scope of claim [i]. 3. A pharmaceutical composition comprising: - a pharmaceutically effective peptide fragment - the peptide fragment having an amino acid sequence as shown in the sequence listing SEqidn::; and a pharmaceutically acceptable carrier. 4. The pharmaceutical composition according to item 3 of the special machine g, the form of the pharmaceutical composition may be an embedding substance, a soaking liquid, a feed, a feed additive, an oral liquid, an injection green seed, a patch, a powder. , recording agents, injection liquids, suspensions, external liquids, drip wipes, paints, creams, ointments, ointments, pastes, gels and gels. 5. The pharmaceutical composition according to claim 3, wherein the carrier is an excipient, a diluent, a thickener, a filler, a binder, a disintegrant, a lubricant, a grease or a non-fat. Bases, surfactants, suspending agents, gelling agents, adjuvants, preservatives, antioxidants, stabilizers, colorants, perfumes, and the like. 6. If the pharmaceutical composition described in item 5 is specifically claimed, the lining agent comprises, but is not limited to, glycerin and oil (e.g., peanut oil, castor oil). 7. The pharmaceutical composition according to claim 5, wherein the fine comprises carbonitrides, including but not limited to hard rock, soft rock, rocky oil, glycerin, bee, metal Soap, natural oil (such as: almond oil, corn oil, peanut oil, brain oil or withdrawal oil), wool month s and its street organisms, fat (such as: stearic acid or oleic acid) or a combination thereof. 8. The pharmaceutical composition according to claim 5, wherein the interface activity comprises an anionic surfactant, a cationic surfactant, a nonionic surfactant, and the surfactant 200811196 comprises, but is not limited to, sorbitol liver. Vinegar, polyethylene oxide and its derivatives (such as: polyethylene oxide fatty acid scorpion), polytetraethylene and its derivatives (such as: Carberhan resin carb〇p〇1). 9. The pharmaceutical composition as described in detail in Patent Application No. 5, wherein the buoyant comprises, but is not limited to, natural tree vinegar, fiber residual inorganic matter f (eg: silieae_ying (four), polyethylene glycol 54 〇, polyethylene 2 The pharmaceutical composition according to claim 5, wherein the gelling agent comprises any gelling agent for a pharmaceutical apical colloid, the gelling agent including but not limited to Cellulose derivatives (such as methyl cellulose, base ethyl cellulose, and carboxymethyl cellulose), ethylene-based polymers (such as: _polyethylene glycol, 〇1γν¥ P^lidones), Carbopol derivatives (such as: Kappahan resin (10) b_), pectin, gums (such as: arabina, yellow, algin, loam, gelatin and carrageenates). 11. If the patent = patent scope 3 The pharmaceutical composition, wherein the pharmaceutical composition is administered to the human body and the animal in an oral/recurrent/package/main shot, smear or patch. 12·as described in the U a pharmaceutical composition, wherein the animal is a livestock animal, such as the pharmaceutical group described in claim 12 The animal, wherein the animal is selected from the group consisting of a cow, a sheep, a chicken, a pig, and a group thereof. #M. The pharmaceutical composition according to claim 13, wherein the animal is an aquatic animal. The pharmaceutical composition of claim 14, wherein the aquatic animal is a preparation. The pharmaceutical composition according to claim 15, wherein the fish is a farmed fish. The pharmaceutical composition according to claim 16, wherein the farmed fish is selected from the grouper, sea bream, squid, flounder, squid, squid, squid, squid, goldfish, squid zebrafish And the group formed by the same. 18. - The method for increasing the immunity of the animal (IV) The agent (10) The method of the coffee (4) comprises the steps of: mixing the desired immune inducer with a feed, thereby Obtaining a mixture; 31 200811196 Step 2: Oral administration of the mixture to an animal, and the mixture may be administered by soaking; Step 3: detecting the peptide fragment of the animal as shown in SEQ ID NO. Performance; and steps The effect of the immuno-inducing agent on the disease resistance of the animal is judged by the amount of expression of the peptide fragment. 19. The method for screening an immune-inducing agent capable of increasing animal immunity as described in claim 18 In the third step, the method for detecting the peptide fragment can be, but is not limited to, colloidal electrophoresis, Western blotting, immunoreaction, etc. _ 2G. The screening energy can be used as described in item 18 of the patent scope. A method for increasing an immunity-inducing agent for animal immunity, wherein in the third step, the expression amount of the peptide fragment can also be determined by detecting the expression amount of the mRNA encoding the peptide fragment, and the sequence of the mRNA is as follows. The sequence transcribed from the nucleotide sequence shown in SEQ ID NO: 2 is shown. 21. The method for screening for an immune inducing agent capable of increasing immunity of an animal according to claim 20, wherein the method for detecting the mRNA expression amount is, but not limited to, the northern ink dot method 'polymerase chain reaction, In situ hybridization and the like. 22. A method of increasing the disease resistance of an animal comprising: a reckless sputum providing a pharmaceutically effective amount of an immunoinducing agent which induces an animal to produce an antimicrobial agent as shown in SEQ ID NO: 1 of the Sequence Listing Peptide; - Step B provides an animal; and • Step C. The immune inducing agent is administered to the body of the animal. 23. The method of increasing the disease resistance of an animal according to the scope of claim 帛n, wherein the immunostimulant is also an immune inducer selected by the method of claim 18 of the patent application. For example, if you apply for the method of increasing the disease resistance of animals in the 22nd pub, the immune seduce is Chinese herbal medicine (Blagen, Astragalus, Licorice), ΐφ叩 (Lps), 32 200811196 β-glucan, pepdiglycan 〇 25. If you apply for the special product \f22_红增鸠 her Wei-guide agent can be further step-by-step - pharmaceutically acceptable 编 其中 其中 其中 其中 其中 其中 其中 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如The towel is contained as an excipient, a diluent, a granule, a filler, a binder, a disintegrant, a lubricant, a base of oil or a non-greasy agent, an surfactant, a suspending agent, a gelling agent, Adjuvants, preservatives, oxidizing agents, stabilizers, colorants, perfumes, and the like. a few 27.如申請專利範圍第26項所述之賴組合物,其中該潤滑劑包含但不限於 甘油及油類(如:花生油、蓖麻油)。 28·如申請專利範圍第26彻述之醫藥組合物,其中該基劑包含碳氯化合 物,該碳氫化合物包含但不限於硬錢、軟石蝶、石蝶油、甘油、蜂壤、 至屬皂天然油(如·杏仁油、玉米油、花生油、莲麻油或撤禮油)、羊 毛脂及其触物、麟酸(如:硬紐或油酸)或其組合物。 29·如申請專利範圍第26項所述之醫藥組合物,其中該介面活性劑包括陰離 子介面活性劑、陽離子介面活性劑、非離子介面活性劑,該介面活性劑 匕έ仁不限於山#醇奸酉旨、聚氧化乙浠及其衍生物(如:聚氧化乙稀脂肪 酸醋)、聚叛乙烯及其衍生物(如··卡伯漢樹脂carb〇p〇1)。 30·如申睛專利範圍第26項所述之醫藥組合物,其中該懸浮劑包含但不限於 天;、、:树1曰、纖維素竹生物無機物質(如·· silieace〇us silicas)、聚乙二醇“ο、 來乙一醇3350及丙二醇等。 31 ·如申請專利範圍第26項所述之醫藥組合物,其中該膠凝劑包含任何用於 藥學上形成膠體的膠凝劑,該膠凝劑包含但不限於纖維素衍生物(如:甲 基纖維素、經基乙基纖維素以及羧甲基纖維素等)、乙烯基聚合物(如: 聚乙烯醇、olyvinyl pyrrolid〇nes)、聚羧乙烯衍生物(如:卡伯漢樹脂 carbopol)、果膠、膠類(如:阿拉伯樹膠、黃蓍膠、藻膠、瓊脂、明膠以 33 200811196 及 cairageenates) 〇 32.如申請專利範圍第22項所述之增加動物抗病能力的方法,其中該胜肽片 段可取自天然的動物尤其是水生動物體中,或以習知化學合成法合成, 亦可以習知分子生物學方法製備。 33·如申請專概Μ 22項所述之增加麟抗病能力的方法,射該免疫誘 導劑係以口服的方法投予至該動物的體内。 34·如申請專利範圍第22項所述之增加動物抗病能力的方法,其中該免疫誘 導劑係經微包埋處理。 、/ X27. The composition of claim 26, wherein the lubricant comprises, but is not limited to, glycerin and oils (e.g., peanut oil, castor oil). 28. The pharmaceutical composition as described in claim 26, wherein the base comprises a chlorocarbon compound, including but not limited to hard money, soft stone butterfly, stone butterfly oil, glycerin, honey bee, genus soap Natural oils (such as almond oil, corn oil, peanut oil, lotus oil or scented oil), lanolin and its touch, linonic acid (such as hard oleic acid or oleic acid) or combinations thereof. The pharmaceutical composition according to claim 26, wherein the surfactant comprises an anionic surfactant, a cationic surfactant, and a nonionic surfactant, and the surfactant is not limited to mountain # alcohol A medicinal herb, polyoxyethylene acetophenone and its derivatives (such as: polyethylene oxide fatty acid vinegar), polytetraethylene and its derivatives (such as · Carbourne resin carb〇p〇1). 30. The pharmaceutical composition according to claim 26, wherein the suspending agent comprises, but is not limited to, a day;;, a tree 1 曰, a cellulose bamboo bio-inorganic substance (such as silieace〇us silicas), The medicinal composition of claim 26, wherein the gelling agent comprises any gelling agent for pharmaceutically forming a colloid, wherein the gelling agent comprises a gelling agent for pharmaceutically forming a colloid. Gelling agents include, but are not limited to, cellulose derivatives (eg, methylcellulose, transethylcellulose, and carboxymethylcellulose, etc.), vinyl polymers (eg, polyvinyl alcohol, olyvinyl pyrrolid〇nes) , carboxyvinyl derivatives (such as: carbopol resin), pectin, gums (such as: gum arabic, tragacanth, algin, agar, gelatin to 33 200811196 and cairageenates) 〇 32. The method for increasing the disease resistance of an animal according to Item 22, wherein the peptide fragment can be obtained from a natural animal, especially a water vivid object, or synthesized by a conventional chemical synthesis method, or can be prepared by a conventional molecular biological method. 33·If you apply for a special The method for increasing the disease resistance of the lining according to Item 22, wherein the immune inducing agent is administered orally to the animal. 34. Increasing the disease resistance of the animal as described in claim 22 The method, wherein the immune inducing agent is micro-embedded. / X 35.如申請專繼關22彻述之增加動物抗祕力的方法,財該免疫誘 導劑係以注射的方法投予至該動物的體内。 " 36·如申請專機圍第22項所述之增加動物抗病能力的方法,其中該免疫誘 導劑係以靜脈注射的方法投予至該動物的體内。 37. =專:22項所述之增_^^^ V诏係以I人水添加的方法投予至該動物的體内。 38. 如申請專利範圍第22項所述之增加動物抗病能力的方法,其中該免疫誘 導劑係以經浸泡入的方法投予至該動物的體内。 八 "35. If the method of increasing the anti-mystery of the animal is described in detail, the immuno-inducing agent is administered to the animal by injection. " 36. A method for increasing the disease resistance of an animal according to Item 22, wherein the immunologically inducing agent is administered to the animal by intravenous injection. 37. =Special: The increase of _^^^ V诏 described in item 22 is administered to the body of the animal by the method of adding I human water. 38. A method of increasing the disease resistance of an animal according to claim 22, wherein the immunologically inducing agent is administered to the animal by soaking. Eight " 34 200811196 序列表 SEQIDNO: 1 長度:67 類型:胺基酸(amino acid) 生物·龍膽石斑 其他資料:抗微生物胜肽(AMP) Met Arg Cys lie .Ala Leu Phe Leu Val Leu Ser Leu Val Val Leu Met 1 5 10 15 Ala Glu Pro Gly Glu Gly Phe lie Phe His Val lie Lys Gly Leu Phe 20 25 30 His Ala Gly Lys Met lie His Gly Leu Val Thr Arg Arg Arg His Gly 35 40 45 Met Glu Glu Leu Gin Asp Leu Asp Gin Arg Ala Phe Glu Arg Glu Lys 50 55 60 Ala Phe Ala 6534 200811196 Sequence Listing SEQ ID NO: 1 Length: 67 Type: amino acid Bacteria gentian plaque Additional information: Antimicrobial peptide (AMP) Met Arg Cys lie .Ala Leu Phe Leu Val Leu Ser Leu Val Val Leu Met 1 5 10 15 Ala Glu Pro Gly Glu Gly Phe lie Phe His Val lie Lys Gly Leu Phe 20 25 30 His Ala Gly Lys Met lie His Gly Leu Val Thr Arg Arg Arg His Gly 35 40 45 Met Glu Glu Leu Gin Asp Leu Asp Gin Arg Ala Phe Glu Arg Glu Lys 50 55 60 Ala Phe Ala 65 SEQ ID NO: 2 長度:494 類型:核苷酸(DNA) 生物:龍膽石斑 其他資料:抗微生物胜肽(AMP) agagacttgc agcatctgta gatctcacac tgctcgattg gccctcttca gtaacagctt 60 tttgacattc acgctcagtc actggaaaga ggatgaggtg catcgccctc tttcttgtgt 120 tgtcgctggt ggtcctcatg gctgaacccg gggagggttt tatcttccac gtcatcaaag 180 gactctttca cgctggcaag atgatccatg gacttgtcac caggagacga catggcatgg 240 aagagctgca agacctggac caacgtgcct ttgaacgaga gaaagctttt gcctgagtcc 300 atgatagcct agtgaaggag ccactcattg ttaacacaaa aagaaaaagt ttttgttttt 360 gagtatagga agtattggtt caattgggta accaaaatat tttacactga tctaattgat 420 tttggaaaaa tgttagttat ttgaaataaa tctggaatct gtgttacaca caaaaaaaaa 480 aaaaaaaaaa aaaa 494 35 200811196 SEQIDNO:3 長度:21 類型:核苷酸(DNA) 生物:人造序列 其他資料:PCR引子,正向AMP引子 atgaggtgca tcgccctctt t 21 SEQIDNO:4 長度:21 類型:核苷酸(DNA) 生物:人造序列 其他資料:PCR引子,反向AMP引子 tcaggcaaaa gctttctctc g 21 SEQ ID NO: 5 長度:22 類型:胺基酸(amino acid) 生物:龍膽石斑SEQ ID NO: 2 Length: 494 Type: Nucleotide (DNA) Creature: Gentiana Plaque Additional Information: Antimicrobial Peptide (AMP) agagacttgc agcatctgta gatctcacac tgctcgattg gccctcttca gtaacagctt 60 tttgacattc acgctcagtc actggaaaga ggatgaggtg catcgccctc tttcttgtgt 120 tgtcgctggt ggtcctcatg gctgaacccg gggagggttt tatcttccac gtcatcaaag 180 gactctttca cgctggcaag atgatccatg gacttgtcac caggagacga catggcatgg 240 aagagctgca agacctggac caacgtgcct ttgaacgaga gaaagctttt gcctgagtcc 300 atgatagcct agtgaaggag ccactcattg ttaacacaaa aagaaaaagt ttttgttttt 360 gagtatagga agtattggtt caattgggta accaaaatat tttacactga tctaattgat 420 tttggaaaaa tgttagttat tctggaatct gtgttacaca caaaaaaaaa 480 aaaaaaaaaa aaaa 494 35 200811196 SEQIDNO ttgaaataaa: 3 length: 21 type : Nucleotide (DNA) Creature: Artificial sequence Additional information: PCR primer, forward AMP primer atgaggtgca tcgccctctt t 21 SEQIDNO: 4 Length: 21 Type: Nucleotide (DNA) Creature: Artificial sequence Additional information: PCR primer, reverse Lead to AMP tcaggcaaaa gctttctctc g 21 SEQ ID NO: 5 Length: 22 Type: amino acid Bio: gentian grouper 其他資料··抗微生物胜肽(AMP)之訊息胜肽(signalpeptide) Leu Met 15 Met Arg Cys lie Ala Leu Phe Leu Val Leu Ser Leu Val 1 5 10 Ala Glu Pro Gly Glu Gly 20 SEQ ID NO: 6 長度:25 類型:胺基酸(amino acid) 生物:龍膽石斑 其他資料:抗微生物胜肽(AMP)之成熟胜肽(mature peptide) 36 200811196 Phe 1 lie Phe His Val 5 lie Lys Gly Leu Phe His 10 Ala Gly Lys Met lie 15 His Gly Leu Val 20 Thr Arg Arg Arg His 25 SEQ ID NO: 7 長度:20 類型:胺基酸(amino acid) 生物:龍膽石斑 其他資料:抗微生物胜肽(AMP)之prodomain Gly Met Glu Glu Leu Gin Asp Leu Asp Gin Arg Ala Phe Glu Arg GluAdditional information · Antimicrobial peptide (AMP) message peptide (Legal Met 15 Met Arg Cys lie Ala Leu Phe Leu Val Leu Ser Leu Val 1 5 10 Ala Glu Pro Gly Glu Gly 20 SEQ ID NO: 6 Length :25 Type: amino acid Biology: gentian grouper Other data: mature peptide of antimicrobial peptide (AMP) 36 200811196 Phe 1 lie Phe His Val 5 lie Lys Gly Leu Phe His 10 Ala Gly Lys Met lie 15 His Gly Leu Val 20 Thr Arg Arg Arg His 25 SEQ ID NO: 7 Length: 20 Type: amino acid Bio: gentian grouper Other data: Antimicrobial peptide (AMP) )prodomain Gly Met Glu Glu Leu Gin Asp Leu Asp Gin Arg Ala Phe Glu Arg Glu Lys Ala Phe Ala 20 SEQ ID NO : 8 長度:15 類型:核苷酸(DNA) 生物:人造序列 其他資料:PCR正向引子,real-time quntitative PCR AMP專一性引子A3 ttgtgttgtcg ctggt 15Lys Ala Phe Ala 20 SEQ ID NO : 8 Length: 15 Type: Nucleotide (DNA) Creature: Artificial sequence Additional information: PCR forward primer, real-time quntitative PCR AMP specific primer A3 ttgtgttgtcg ctggt 15 SEQ ID NO: 9 長度:15 類型:核苷酸(DNA) 生物:人造序列 其他資料:PCR反向引子,real-time quntitative PCR AMP專一性引子A4 caaaggcacgt tggtc 15 37SEQ ID NO: 9 Length: 15 Type: Nucleotide (DNA) Biology: Artificial sequence Additional information: PCR reverse primer, real-time quntitative PCR AMP specific primer A4 caaaggcacgt tggtc 15 37
TW95130745A 2006-08-22 2006-08-22 An anti-microorganism peptide TW200811196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95130745A TW200811196A (en) 2006-08-22 2006-08-22 An anti-microorganism peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95130745A TW200811196A (en) 2006-08-22 2006-08-22 An anti-microorganism peptide

Publications (2)

Publication Number Publication Date
TW200811196A true TW200811196A (en) 2008-03-01
TWI316944B TWI316944B (en) 2009-11-11

Family

ID=44767626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95130745A TW200811196A (en) 2006-08-22 2006-08-22 An anti-microorganism peptide

Country Status (1)

Country Link
TW (1) TW200811196A (en)

Also Published As

Publication number Publication date
TWI316944B (en) 2009-11-11

Similar Documents

Publication Publication Date Title
Ding et al. Molecular characterization of the NK-lysin in a teleost fish, Boleophthalmus pectinirostris: Antimicrobial activity and immunomodulatory activity on monocytes/macrophages
US7670836B2 (en) Antimicrobial peptide isolated from Penaeus monodon
Arasu et al. Bacterial membrane binding and pore formation abilities of carbohydrate recognition domain of fish lectin
Liu et al. Effect of heat stress on heat shock protein 30 (Hsp30) mRNA expression in rainbow trout (Oncorhynchus mykiss)
Zhang et al. Characterization of four heat-shock protein genes from Nile tilapia (Oreochromis niloticus) and demonstration of the inducible transcriptional activity of Hsp70 promoter
Xu et al. Characterization, expression, and functional analysis of the hepcidin gene from Brachymystax lenok
Zhao et al. Oral vaccination with recombinant Lactobacillus casei expressing Aeromonas hydrophila Aha1 against A. hydrophila infections in common carps
Srisapoome et al. Molecular and functional analyses of novel anti-lipopolysaccharide factors in giant river prawn (Macrobrachium rosenbergii, De Man) and their expression responses under pathogen and temperature exposure
Abass et al. Response of cecropin transgenesis to challenge with Edwardsiella ictaluri in channel catfish Ictalurus punctatus
CN101376675B (en) Antimicrobial peptide
Wang et al. Antimicrobial Peptides from fish: Main Forces for Reducing and Substituting Antibiotics
JP2010514412A (en) DNA fish vaccine
Nakagawa et al. Protection against Flavobacterium psychrophilum infection (cold water disease) in ayu fish (Plecoglossus altivelis) by oral administration of humus extract
Das et al. Cloning and characterization of antimicrobial peptide, hepcidin in medium carp, Puntius sarana
Feng et al. Molecular cloning of Japanese eel Anguilla japonica TNF-α and characterization of its expression in response to LPS, poly I: C and Aeromonas hydrophila infection
Gao et al. The role of CcPTGS2a in immune response against Aeromonas hydrophila infection in common carp (Cyprinus carpio)
TW200811196A (en) An anti-microorganism peptide
TW200936759A (en) Fish vaccine
Yu et al. Functional characterization of a grouper nklysin with antibacterial and antiviral activity
Lee et al. Expression analysis of lily type lectin isotypes in the rock bream, Oplegnathus fasciatus: in the tissue, developmental stage and viral infection
WO2008145074A2 (en) Amino acid and nucleic acid sequences and vaccine to control ectoparasite infestations in fish
Murphy et al. Aquarium fish dermatologic diseases
Berger Piscirickettsia salmonis; characterization and infection in the zebrafish model
TWI744983B (en) Use of dsrna against dopa decarboxylase
TW201026320A (en) New use of antimicrobial peptides