TWI316944B - - Google Patents

Download PDF

Info

Publication number
TWI316944B
TWI316944B TW95130745A TW95130745A TWI316944B TW I316944 B TWI316944 B TW I316944B TW 95130745 A TW95130745 A TW 95130745A TW 95130745 A TW95130745 A TW 95130745A TW I316944 B TWI316944 B TW I316944B
Authority
TW
Taiwan
Prior art keywords
pharmaceutical composition
fish
peptide
limited
gentian
Prior art date
Application number
TW95130745A
Other languages
Chinese (zh)
Other versions
TW200811196A (en
Inventor
Jenn Kan Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW95130745A priority Critical patent/TW200811196A/en
Publication of TW200811196A publication Critical patent/TW200811196A/en
Application granted granted Critical
Publication of TWI316944B publication Critical patent/TWI316944B/zh

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

1316944 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種抗微生物胜肽,特別是指一種可抑制及殺死微生 物’並肋作為治療目的與增加個體健康之抗微生物胜肽。 【先前技術】 石斑魚為亞太地區重要的養殖魚種之—,由於其肉質鮮美,長久以來 位居水產ασ鎖售之首,廣受台灣、香港、大陸、日本及東南亞地區之消費 者的喜愛。台灣石斑魚繁養殖始於簡年,養殖方式可區分為海上箱網養 2與内輯水餘姐。199?年農委會漁靜為推動台灣絲亞太水產種 田+中〜’已將各類石斑魚繁養殖列為首要的施政項目亦是科技養殖的重點 (蔡,2000)。台灣石斑魚養殖已有將近2〇年的歷史,在1999 2⑻2年獲利率 更高達2G% ’齡石喊為高經濟健錄,且在台灣已是發展成熟並且 能穩定獲利的產業。 石斑魚的病害主要分為病毒與細菌性兩類,病毒是目前危害石斑魚很 嚴重的病害,包括虹彩病毒(irid〇vims)與神經壞死病毒加^〇士 vims) 疋為石斑魚易感染的兩種病毒;其巾,神經壞死病毒㈣ne crosis virus, NNV)疋目蝻石斑魚最為困擾的病毒,這種病毒的傳染能力迅速,致病力超 強,短時間内可以讓魚苗大量的死亡。 神經壞死病毒屬於結病毒科(N〇(javiride),其沒有外套膜,構形為二十 面體與球關’具有雙股RNA。^喊在魚苗咖最容胃受舰染,感染 時會使魚苗失去平衡能力,明旋方式游泳,而且還會向不同方向衝撞; 嚴重的病魚會浮在水面上,體側向上漂浮,有刺激時會突然快速游動(劉, 2002)〇 ’、’田菌I"生母害包括,愛德華氏菌、弧菌、產氣單胞菌、鏈球菌和葡萄球 菌,這些細菌類一直以來是養殖業者都會遇到的問題,石斑魚亦容易遭受 1316944 細菌性感染’造成業者的損失。魚體被細賊染的原因有許多,最容易發 病的幾個原因為:飼養密度過高、魚隻大小差異大、殘食、水質不當等, 這些都是容易讓魚體產生傷口’導致細菌容易感染的因素;細菌性感染分 為王身1·生感木以及局部性感染;全身性感染為細菌感染部位遍及每個組 織’局部性感賴為_只«體表或是_。當石斑魚受職g感染時, 身體表面會出現白色斑點。隨著病_嚴重,傷σ潰爛、紅腫、鱗月脫落 和内臟的出血,最終導致魚隻死亡(劉,2002)。 , 石斑絲台灣轉養殖魚種,但在魚糾期料被疾病擾,導致 籲每年產量不穩定,目前各種研究都是利用疫苗的方式,來增加魚體的免疫 能力;然:而’使用疫苗所產生的免疫能力不佳,常需要追加施打疫苗來維 持魚體中免疫反應,因此疫苗無法有效的讓魚體持續增加免疫能力。非但 如此,這些疫苗中有五成以上利用死亡之病原菌,這方式到目前都讓業者 質疑疫苗的安全性。由此可知,研究魚類免疫系統與找尋魚類自體抗菌物 質有其必要性。 抗微生物胜肽(antimicrobial peptides, AMPs)普遍存在於植物與動物 中,屬於内生型免疫系統中的一環。抗微生物胜肽通常是小分子的陽離子, 齡由帶正電荷的胺基酸組成(Hancock and Lehrer,1998)。魚類的抗微生物胜 肽,從餐:魚的角餐:胺(squalamine)被發現後(Moore et al.,1993),目前許多魚 類的抗微生物胜肽也被發表。 — 抗微生物胜肽根據化學結構分為三大類,第一類為兩性α-螺旋 (amphipathic α-hdix),因為結構的關係也稱為線性胜肽(Hnear peptides),結 構中由於沒有半胱氨酸殘基(cysteine residues),因此無雙硫鍵形成;第二類 則是形成分子内雙硫鍵(interamolecular disulfide bond),此類抗微生物胜肽 含有半胱氨酸殘基(cysteine residues)’可產生雙硫鍵(disulfide bond)因而形成 髮夾狀 β-摺板(hairpin-like β-sheet)及 α-螺旋 β-摺板混合(tx-helix-p-sheet mix) 1316944 兩種結構(Bulet et al·,1999);第三類為脯氨酸和/或甘氨酸過度保留區 (overpresentation proline and/or glycine residues),此種微生物胜肽含有高度 脯氨酸(proline-rich)之胜肽’從分子的大小又可以分為短鍵(sh〇rt_chain)及長 鏈(long-chain) 〇 在目前抗微生物胜肽的研究上發現,抗微生物胜肽可以對革蘭氏陽性 菌、革蘭氏陰性菌、真菌及原生動物都有破壞之能力(P〇wers and Hanc〇ck, - 2003);除了對抗微生物之外,抗微生物胜肽亦可能與發育(devel〇pment)、 . 動物脫殼(m〇lting)及生殖(reproduction)有關聯;但目前的研究中並未揭示抗 • 微生物胜肽和動植物的免疫因子調控有任何相關可能性。 抗微生物胜肽之抗微生物的機制分為兩大類,第一類為胜肽脂質交互 作用(peptide-lipid interaction),其中可細分為筒狀穿鑿模式(barrd_stave腦此) 和地毯狀覆蓋模式(carpet mode) (Shai,1999)。筒狀穿鑿模式以兩性α_螺旋 • (a_hellx)抗菌肽捲成筒狀插入膜内,利用抗微生物胜肽疏水性(hydrophobic) _ 端與菌的細胞膜接觸,另一親水性(hydrophilic)端互相面對面,則為抗微生 物胜肽的親水性端面向中心點,以聚合體的方式在膜上形成孔洞,來造成 菌體内外渗透壓不平行’導致菌體死亡(邱,2〇〇1)。另外,地毯狀覆蓋模式 φ 則是在帶正電之抗微生物胜肽與帶負電菌體細胞膜結合後,抗微生物胜肽 的親水性端與膜上之磷脂質(phospholipids head groups)或水分子反應,抗微 生物胜肽經過翻轉後,導致疏水性端的部分包圍一部分菌體的膜,進而把 此膜構造移除,破壞菌體膜的結構而使病原菌死亡(楊,2〇〇4)。 抗微生物機制的第二類為間接由受體傳達辨識過程(Receptor_mediated recognition processes) ’有些抗微生物胜肽可能與原核生物之去氧核醣核酸 (deoxyribonucleic acid)、自溶素(autolysins)和細胞通透能力(permeabi㈣有 關,可以抑制真菌孢子的萌芽及菌絲的延長與分枝(Thevi_etal,i997)。 另外有文獻指出,抗微生物胜肽與原核生物核酸結合的能力,因而抑制蛋 1316944 白質的產生(Powers and Hancock, 2003)。 由此可見,上述習肋物抗微生物的方式仍有諸多缺失 一 之設計者’而亟待加以改良。 义0 本案發明人鑑於上述習用動物抗微生物的方式所街生的各項妮 虽思加以改良創新,並經多年苦心、孤詣潛心研究後,終於成功研^縣 點,乃 件一種抗微生物胜肽【發明内容】 • +本發明之目的即在於提供-種抗微生物胜肽,以減少動物體内之病原 φ 菌,達到治療效果,並提升動物體的健康狀態。 本發月之a目的係在於提供-觀以編碼如上述發明目的抗微生物 胜肽的核苷酸片段。 本發明之另-目的係在於提供一種用以殺死微生物之組合物,該組合 - 物包含一藥學有效量之胜肽片段,以及-藥學上可接受之載劑。 - 本發明之又—目的係在於提供—觀以篩舰增加祕免疫力之免疫 誘導劑(immune elicitors)的方法。 本發明之再一目的係在於提供一種增加動物抗病力的方法,以將一免 泰疫誘導劑口服投予至動物體内。 可達成上述發明目的之抗微生物胜肽,包含一如序列表SEQ ID N〇: i 所示之胺基酸序列。 — 由於本發明之抗微生物胜肽係為一種抗菌肽(antimicrobial peptide, amp) ’抗菌肽係為一種廣泛分布於各動植物免疫系統中的胜肽片段;因 此,本發明之抗微生物胜肽可取自天然的動物,尤其是水生動物,或以習 知化學合成法合成,亦可以習知分子生物學方法製備。 本發明亦包含一種用以編碼如上述抗微生物胜肽的核苷酸片段,該核 苷酸片段具有如序列表SEQ IDN0:2所示之核苷酸序列。 1316944 本發明更提供-種用以殺死微生物的醫藥組合物,該組合物包含: —藥學有效量之胜肽片段;以及 一藥學上可接受之載劑。 其中该胜狀片段具有如序列表SEQ ID NO: 1所示之胺基酸序列。 八中及組合物之形式可為包埋物、浸泡液、飼料、飼料添加物、口服 '/主射疫田、貼片、粉末、錠劑、注射液體、懸浮液、外用液、滴劑、 • 擦劑、塗劑、乳霜、'油膏、軟膏、糊狀劑、勝以及凝膠等。 ’ 射5亥載劑可為賦形劑、稀釋劑、增稠劑、填充劑、結合劑、崩解劑、 •'閏α劑、油脂或非油脂的基劑、介面活性劑、懸浮劑、膠;疑劑、輔助劑、 防腐劑、抗軋化劑、穩定劑、著色劑、香料等。 其中該潤滑劑包含但不限於甘油及油類(如:花生油、葱麻油)。 其中忒基劑包含碳氫化合物(hydr〇carb〇ns),該碳氫化合物包含但不限 • 於更石壤、軟石虫鼠、石蝶油、甘油、蜂躐、金屬皂、天然油(如:杏仁油、 - 玉米油、花生油、蓖麻油或撖欖油)、羊毛脂及其衍生物、脂肪酸(如:硬脂 酸或油酸)或其組合物。 其中該介面活性劑包括陰離子介面活性劑、陽離子介面活性劑、非離 • 子介面活性劑’該介面活性劑包含但不限於山梨醇酐醋(—esters)、聚 氧化乙烯(polyoxyethylene)及其衍生物(如:聚氧化乙烯脂肪酸酯 polyoxyethylene fatty acid esters)、聚羧乙烯 - 物(如:卡伯漢樹脂carbopol) c 其中该懸浮劑包含但不限於天然細旨(natural gums)、纖維素(Cellulose) 何生物無機物質(如:silicace〇us silicas)、聚乙二醇54〇 (p〇lyeth加e伽〇1 540)、聚乙二醇 3350 及丙二醇(propyl glyC〇i)等。 其中該膠凝劑包含任何用於藥學上形成膠體的膠凝劑,該膠凝劑包含 但不限於纖維素(Cellulose)衍生物(如:甲基纖維素(methyl cdlul〇se)、羥基 B16944 乙基纖維素(hydroxyethyl cellulose)以及叛曱基纖維素(carb〇xymethyl cellulose)等)、乙烯基聚合物(vinyi p〇iymers)(如:聚乙稀醇 alcohols)、olyvinyl pyrrolidones)、聚缓乙稀(carboxypolymethylene)衍生物 (如·卡伯漢樹脂carbopol)、果膠、膠類(gUms)(如:阿拉伯樹膠、黃蓍膠 (tragacanth)、藻膠(alginates)、瓊脂(agar)、明膠(gdatin)以及 carrageenates)。 其中3玄醫藥組合物係以口服、浸泡、注射、塗抹或貼片的方式投予至 人體及動物體内。1316944 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to an antimicrobial peptide, and more particularly to an antimicrobial peptide which inhibits and kills microorganisms and which serves as a therapeutic purpose and increases the health of an individual. [Prior Art] Grouper is an important species of farmed fish in the Asia-Pacific region. Due to its delicious meat quality, it has long been the first in the sale of aquatic products, and is widely loved by consumers in Taiwan, Hong Kong, mainland China, Japan and Southeast Asia. Taiwan grouper breeding began in the simple year, the breeding method can be divided into the sea box network 2 and the inner series of water Yu sister. In 199, the Agriculture and Fisheries Commission of the Agriculture and Fisheries promoted Taiwan's Asia-Pacific aquatic crops in the field of +~~, which has listed all kinds of grouper breeding as the primary policy project and is also the focus of science and technology farming (Cai, 2000). Taiwan grouper farming has a history of nearly 2 years, and in 1999 2 (8) 2 years, the interest rate was as high as 2G%. The age of stone is called high economic record, and it is a mature and stable profitable industry in Taiwan. The disease of grouper is mainly divided into two types: virus and bacteria. The virus is a serious disease that is currently harmful to groupers, including iridavims and neuronecrosis virus plus vims. It is two viruses susceptible to grouper infection. Its scar, necrosis virus (NNV) is the most troubled virus of the grouper. This virus has a rapid infection ability and is extremely virulence. It can kill a large number of fry in a short time. Nervous necrosis virus belongs to the family of the genus Actinomy (N〇 (javiride), which has no mantle, and is configured as an icosahedron and a ball off' with double-stranded RNA. ^ Shouting in the fry, the most stomach is infected by the ship, when infected To make the fry lose its balance, swim in the open-loop mode, and it will collide in different directions; the serious sick fish will float on the water surface, float on the side of the body, and suddenly swim quickly when stimulated (Liu, 2002)〇', 'Tianmu I" raw mothers include, Edwards, Vibrio, Aeromonas, Streptococcus and Staphylococcus, which have long been a problem for breeders, and groupers are also susceptible to 1316944 bacterial infections. 'Cause the loss of the industry. There are many reasons for the fish to be dyed by the thief. The most common causes are: high density of feeding, large differences in fish size, residual food, improper water quality, etc. These are easy to make fish. The body produces wounds, which cause the bacteria to be easily infected; the bacterial infection is divided into the body of the body 1 and the sensational wood and local infection; the systemic infection is the part of the bacterial infection throughout each organization's partial sexy _ only « Table or _. When the grouper is infected with g, there will be white spots on the surface of the body. With the disease _ serious, injury σ ulceration, redness, stagnation and visceral bleeding, eventually leading to fish death (Liu, 2002 ), the stone-spotted Taiwanese farmed fish species, but the fish is rectified by the disease, resulting in an annual unstable production. Currently, various studies use vaccines to increase the immunity of the fish; 'The vaccine used to produce poor immunity, often requires additional vaccines to maintain the immune response in the fish, so the vaccine can not effectively increase the immunity of the fish. Not only that, more than 50% of these vaccines use death The pathogens, which have so far allowed the industry to question the safety of vaccines. It is therefore known that it is necessary to study the fish immune system and to find fish antibacterial substances. Antimicrobial peptides (AMPs) are ubiquitous in plants. Among animals, it is a part of the endogenous immune system. Antimicrobial peptides are usually small molecule cations, aged by a positively charged amino acid group. (Hancock and Lehrer, 1998). Antimicrobial peptides from fish, from the meal: fish horn meal: squalamine was discovered (Moore et al., 1993), and many of the fish's antimicrobial peptides have also been published. — Antimicrobial peptides are classified into three major categories according to their chemical structure. The first type is amphipathic α-hdix, because the structural relationship is also called Hnear peptides, and there are no cysts in the structure. Cysteine residues, thus no disulfide bond formation; the second is the formation of intramolecular disulfide bonds, which contain cysteine residues. It can produce a disulfide bond and thus form a hairpin-like β-sheet and an α-helix-p-sheet mix 1316944 ( Bulet et al., 1999); the third class is the proline and/or glycine residues, which contain a highly proline-rich peptide. 'From the size of the molecule can be divided into short keys (sh〇 Rt_chain) and long-chain 〇 In the current study of antimicrobial peptides, anti-microbial peptides have the ability to destroy Gram-positive bacteria, Gram-negative bacteria, fungi and protozoa ( P〇wers and Hanc〇ck, - 2003); in addition to anti-microbial, anti-microbial peptides may also be associated with development (devel〇pment), animal shelling (m〇lting) and reproduction (reproduction); The current study does not reveal any relevant possibilities for the regulation of anti-microbial peptides and immune factors in plants and animals. The antimicrobial mechanisms of antimicrobial peptides fall into two broad categories. The first is peptide-lipid interaction, which can be subdivided into a cylindrical chiseling mode (barrd_stave brain) and carpet-like coverage mode (carpet). Mode) (Shai, 1999). The cylindrical perforation mode is wound into a cylindrical insert with an amphoteric α_helix • (a_hellx) antibacterial peptide, and the hydrophobic peptide is contacted with the cell membrane of the fungus, and the other hydrophilic end is mutually Face-to-face, the hydrophilic end of the antimicrobial peptide faces the center point, and pores are formed on the membrane in the form of a polymer to cause the osmotic pressure inside and outside the bacteria to be non-parallel, resulting in bacterial death (Qiu, 2〇〇1). In addition, the carpet-like coverage pattern φ is the reaction between the hydrophilic end of the antimicrobial peptide and the phospholipids head groups or water molecules after the positively charged antimicrobial peptide binds to the negatively charged cell membrane. After the anti-microbial peptide is inverted, the hydrophobic end portion surrounds a part of the membrane of the bacterial cell, thereby removing the membrane structure and destroying the structure of the bacterial membrane to cause the pathogen to die (Yang, 2, 4). The second category of antimicrobial mechanisms is Receptor_mediated recognition processes. 'Some antimicrobial peptides may be transparent to deoxyribonucleic acid, autolysins, and cells in prokaryotes. The ability (permeabi (iv)) can inhibit the germination of fungal spores and the elongation and branching of mycelium (Thevi_etal, i997). It is also noted in the literature that the ability of antimicrobial peptides to bind to prokaryotic nucleic acids inhibits the production of egg 1316944 white matter ( Powers and Hancock, 2003). It can be seen that there are still many designers who lack the anti-microbial method of the above-mentioned ribs and need to be improved. The inventor of this case is based on the above-mentioned anti-microbial method of animal use. Although various thoughts have been improved and innovated, and after years of painstaking research and painstaking research, I finally succeeded in researching the county point, which is an anti-microbial peptide. [Inventive content] • The purpose of the present invention is to provide Microbial peptides to reduce the pathogens in animals, achieve therapeutic effects, and improve the health of animals The purpose of the present invention is to provide a nucleotide fragment encoding an antimicrobial peptide such as the above-mentioned object of the present invention. Another object of the present invention is to provide a composition for killing microorganisms, the combination - comprising a pharmaceutically effective amount of a peptide fragment, and - a pharmaceutically acceptable carrier. - A further object of the present invention is to provide an immune elicitors for increasing the immune immunity of a sieve vessel A further object of the present invention is to provide a method for increasing the disease resistance of an animal, which comprises orally administering an anti-infective agent to an animal. The antimicrobial peptide capable of achieving the above object of the invention comprises The amino acid sequence shown by SEQ ID N〇: i in the Sequence Listing. — Since the antimicrobial peptide of the present invention is an antimicrobial peptide (amp), the antimicrobial peptide is widely distributed in various animal and plant immune systems. The peptide peptide of the present invention; therefore, the antimicrobial peptide of the present invention can be obtained from a natural animal, especially an aquatic animal, or synthesized by a conventional chemical synthesis method, or a molecular molecule can be known. The present invention also encompasses a nucleotide fragment for encoding an antimicrobial peptide as described above, which has a nucleotide sequence as shown in SEQ ID NO: 2 of the Sequence Listing. 1316944 a pharmaceutical composition for killing a microorganism, the composition comprising: - a pharmaceutically effective amount of a peptide fragment; and a pharmaceutically acceptable carrier. wherein the fragment has the sequence of SEQ ID NO: 1 The amino acid sequence shown. The medium and composition may be in the form of an embedding, soaking liquid, feed, feed supplement, oral '/main shot field, patch, powder, lozenge, injection liquid, suspension Liquids, external liquids, drops, • liniments, paints, creams, ointments, ointments, pastes, wins, and gels. The '5 borne carrier can be an excipient, a diluent, a thickener, a filler, a binder, a disintegrant, a '闰α agent, a fat or non-greasy base, an surfactant, a suspending agent, Glue; suspects, adjuvants, preservatives, anti-rolling agents, stabilizers, colorants, perfumes, etc. The lubricant includes, but is not limited to, glycerin and oils (eg, peanut oil, onion oil). The ruthenium base comprises a hydrocarbon (hydr〇carb〇ns), which includes but is not limited to more rocky soil, soft stone worm, stone butterfly oil, glycerin, bee sting, metal soap, natural oil (such as : almond oil, - corn oil, peanut oil, castor oil or eucalyptus oil), lanolin and its derivatives, fatty acids (such as stearic acid or oleic acid) or combinations thereof. Wherein the surfactant comprises an anionic surfactant, a cationic surfactant, and a non-ionic surfactant. The surfactant includes, but is not limited to, sorbitan vinegar, polyoxyethylene, and derivatives thereof. (eg, polyoxyethylene fatty acid esters), carbopol-like materials (eg, carbopol) c. The suspending agent includes, but is not limited to, natural gums, cellulose ( Cellulose) Bio-inorganic substances (such as: silicace〇us silicas), polyethylene glycol 54 (p〇lyeth plus e-glycan 1 540), polyethylene glycol 3350 and propylene glycol (propyl glyC〇i). Wherein the gelling agent comprises any gelling agent for pharmaceutically forming a colloid, the gelling agent including but not limited to a cellulose (Cellulose) derivative (eg, methyl cdlul〇se, hydroxyl group B16944 B) Hydroxyethyl cellulose and carb〇xymethyl cellulose, vinyl polymers (vinyi p〇iymers) (eg, polylyl alcohols), olyvinyl pyrrolidones, polyethylamine (carboxypolymethylene) derivatives (such as carbopol), pectin, gums (gUms) (eg, gum arabic, tragacanth, alginates, agar, gelatin (gdatin) ) and carrageenates). Among them, 3 Xuan medicine compositions are administered to humans and animals by oral, soaking, injecting, smearing or patching.

其中該動物可為畜產動物或水生動物;當為畜產動物時,較佳者為牛、 羊、雞或豬’更佳者為雞;當為水生動物時,較佳者域類,更佳者為養 殖魚類;在此所稱之養殖魚類係指可藉由人确養之魚類,較佳為水產養 殖業者所養殖之魚類,例如:石斑魚(gr〇uper)、海鱺(c〇bia)、網魚⑽&_)、 比目魚(hahbut) ' 鮭魚(saimon)、鳟魚(tr〇m)、餘魚(catfi_ 魚(goldfish)、吳郭魚(tilapia)與斑馬魚(zebrafish)等,但並不僅限於此。 本發明更進-步提供一種用以篩選能增加動物免疫力之免疫誘導劑 (immune elicitors)的方法,包含:Wherein the animal may be a livestock animal or an aquatic animal; when it is a livestock animal, preferably a cow, a sheep, a chicken or a pig is better as a chicken; when it is an aquatic animal, a preferred domain is a better one. For the culture of fish; the term "aquaculture fish" as used herein refers to fish that can be cultivated by humans, preferably fish cultured by aquaculture workers, such as grouper (gr〇uper), sea bream (c〇bia), Net fish (10) &_), halibut (hahbut) 'salmon (saimon), squid (tr〇m), remaining fish (catfi_fish (goldfish), tilapia (tilapia) and zebrafish (zebrafish), but Not limited to this. The present invention further provides a method for screening immune elicitors that increase the immunity of an animal, comprising:

物; 步驟-將所欲_選之免疫料劑與—靖混合,藉以獲得—混合物; 步驟二對-動物口服針魏合物,亦可使用浸泡方式投予該混合 曰步驟三檢測該動物體内如序列表SEQ ID N〇:丨所示之胜肽片段的表 現量,以及 y驟:^祕从絲現量威來觸料賴導辦 病的影響。 仇 其中該步驟三中,祕肽片段之檢測方法_類在本發財並沒有特 別的限制,賴輯職巾財•知識柯藉由任何綠檢顺 段的表現量,例如:膠體電泳、西方墨點法、免疫反應法等,但並不僅^ 1316944 •於此;該胜肽片段之檢測亦可藉由檢測能編碼該胜肽片段之mRNA的表現 量來判定,該mRNA的序列如由相表SEQIDN〇:2所示之歸酸序列所 轉錄而成的序列;該mRNA表現量的檢測法,例如北方墨點法,但並不僅 限於此。 本發明所述之動物’可為畜絲物或水生動物;當為畜產動物時,較 佳者為牛、羊、雞或豬,更佳者為雞;當為水生動物時,較佳者為魚類, *更佳者為養殖魚類;在此所稱之養殖魚類係、指可藉由人工飼養之魚類,較 ,佳為水產養殖業者所養殖之魚類,例如:石斑魚(grouper)、海鱺(c〇bia)、調 • ^(-bream) . tb a , (halibut). , (salm〇n) ^ ^ ^ # ^ 鯉魚(c吨)、金魚(goldfish)、吳郭魚(tilapia)與斑馬魚(細瓜响 限於此。 本發明又進一步提供一種增加動物抗病力的方法,包含: • 轉A提供―鮮有效量之免疫解劑,該免疫誘導劑係可誘導動物 - 懸生如序列表SEQIDN0:1所示之抗微生物胜肽; 步驟B提供一動物;以及 步驟C將該免疫誘導劑投予至該動物的體内。 • 其中該免疫誘導劑亦可為以上述一種用以篩選能增加動物免疫力之免 疫誘導劑(i_neelicitors)的方法,以序列表SEQidn〇: i胜狀表現量或以 序列表SEQIDN0:2mRNA基因表現量多寡筛選能增加動物免疫力之免疫 - 誘導劑的方法,所篩選出之免疫誘導劑。 其中該免疫誘導劑可進—步包含-藥學上可接受之載劑。 其中該胜肽片段可取自天然的動物尤其是水生動物體中,或以習知化 學合成法合成,亦m知分子生物學方法㈣,分子生物學方法如下:. 步驟a提供如序列表SEQ ID N0:2所示之核苷酸片段; 步驟b提供一表現載體; 11 D16944 步驟c將該核苷酸片段與該表現載體重組為一重組表現載體; 步驟d將该重組表現載體送入宿主細胞中;以及 步驟e使該宿主細胞表現該胜肽片段。 其中該宿主細胞可以係大腸桿菌(五c〇/〇、酵母菌及動物細胞,但不僅 限於此。 以大腸桿菌(凡co/z·)為例’可選定大腸桿菌迟响系統的表現質體後, - 再選疋s亥表現貧體中適當的限制酶切位(restriction enzyme site),以該限制酶 - 剪切該表現質體,亦以該限制酶剪切含有可編碼本發明之胜肽片段的核苦 φ 酸序列之核普酸片段’將前述經限制酶剪切後的表現質體及核芽酸片段進 行接合反應(ligation) ’接著將含有可編碼本發明之胜肽片段的核苷酸序列之 大腸桿菌(五·系統表現質體轉形(transf〇rm)入大腸桿菌(五純)菌體中, 該大腸桿邮· ’可為£⑺"BL21TM (DE3) pLysS,轉形可用電轉形 • (electr〇-transf_ation)或熱休克(heat shock)等任何習知轉形技術來進行,轉 . 形後用誘導物_而)誘導大腸桿_•⑶/〇表現本發明之胜肽片段,誘導 物可為異丙基硫代半乳_SGpmpylthiQgalaetoside,IPTQH胃Μ _。 以酵母ϋ為例,财敎料_統的表㈣體及該表現質體中適當 φ 的_酶切位後,以該限制畴切絲現質體,亦以該限制酶剪切含有; 編碼本發明之胜肽片段的核魏序狀贿酸片段,將以限_剪切後的 表現質體及核普酸片段進行接合反應,接著將含有可編碼本發明之胜狀片 -段的㈣酸序列之酵系統的表現質體轉形人酵母菌中,轉形可用任何 習知轉形技術來進行,例如可先去除酵母菌的細胞壁,使酵母菌形成原生 質球狀體(sphemplast)再進行轉形,或是用鹼性陰離子(如:Lici或Rbc'i)加Step-mixing the desired immunochemical agent with the mixture to obtain a mixture; the second step is to - the animal oral needle, and the mixture can be administered by soaking. The third step is to detect the animal. The expression amount of the peptide fragment shown in SEQ ID N〇: 序列 in the sequence table, and the y-throat: the secret of the amount of silk from the silk to the cause of the disease. In the third step, the detection method of the secret peptide fragment _ class is not particularly limited in this wealth, and the amount of performance of any green check is, for example, colloidal electrophoresis, western ink Point method, immunoreactivity method, etc., but not only ^ 1316944 • The detection of the peptide fragment can also be determined by detecting the amount of mRNA encoding the peptide fragment, and the sequence of the mRNA is A sequence transcribed from the acid sequence shown by SEQ ID NO: 2; a method for detecting the amount of mRNA expression, such as, but not limited to, the northern blot method. The animal of the present invention may be a silk animal or an aquatic animal; when it is a livestock animal, it is preferably a cow, a sheep, a chicken or a pig, and more preferably a chicken; when it is an aquatic animal, it is preferably Fish, * Better known as farmed fish; referred to herein as farmed fish, refers to fish that can be raised by hand, compared to fish cultured by aquaculture, such as grouper, sea otter ( C〇bia),调• ^(-bream) . tb a , (halibut). , (salm〇n) ^ ^ ^ # ^ squid (c ton), goldfish, goldfish (tilapia) and zebra The fish (small melon ring is limited to this. The present invention further provides a method for increasing the disease resistance of an animal, comprising: • Transfer A provides a fresh and effective amount of an immunosuppressant, the immune inducer is capable of inducing an animal - suspending the order The antimicrobial peptide shown in SEQ ID NO: 1 is listed; Step B provides an animal; and Step C is administered to the animal in the body. • wherein the immune inducer can also be used to screen A method for increasing the immunity of animal immunity by i_neelicitors, with the sequence listing SEQidn〇: i The expression of the winning form or the immunological-inducing agent capable of increasing the immunity of the animal by screening the amount of the SEQ ID NO: 2 mRNA gene, and the immune inducing agent selected. The immune inducing agent can further comprise - pharmacy An acceptable carrier. The peptide fragment can be obtained from a natural animal, especially a water-like object, or synthesized by a conventional chemical synthesis method, and is also known as a molecular biological method (4). The molecular biological method is as follows: Step a provides a nucleotide fragment as shown in SEQ ID NO: 2 of the Sequence Listing; Step b provides a representation vector; 11 D16944 Step c Recombines the nucleotide fragment with the expression vector into a recombinant expression vector; The recombinant expression vector is delivered to the host cell; and step e causes the host cell to express the peptide fragment, wherein the host cell can be E. coli (five c〇/〇, yeast, and animal cells, but is not limited thereto). Escherichia coli (where co/z·) is used as an example. After selecting the plastids of the E. coli delayed response system, the appropriate restriction enzyme site in the poor body is selected. Enzyme-clearing the plastid, and also cleavage of the nucleocapsid fragment containing the nucleotide sequence of the nucleotide sequence encoding the peptide of the present invention by the restriction enzyme And the nuclear bud fragment is subjected to ligation> followed by Escherichia coli containing a nucleotide sequence encoding the peptide fragment of the present invention (V. system expressing plastid transformation (transf〇rm) into Escherichia coli (five In pure bacterial cells, the large intestine rod can be used for £(7)"BL21TM (DE3) pLysS, and any conventional transformation technique such as electr〇-transf_ation or heat shock can be used. The transformation is carried out with the inducer _ and the induction of the large intestine rod _•(3)/〇 shows the peptide fragment of the present invention, and the inducer may be isopropyl thiohalfion _SGpmpylthiQgalaetoside, IPTQH stomach Μ _. Taking yeast sputum as an example, after the ( 酶 四 及 及 及 及 及 及 及 及 及 及 及 及 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 适当 ; ; ; ; ; ; ; ; ; The nuclear welix-like british acid fragment of the peptide fragment of the present invention will be subjected to a ligation reaction with a cleavage-expressing plastid and a nucleotide acid fragment, followed by a (tetra) acid sequence which encodes the segment-segment of the present invention. In the expression of the yeast system, the transformation can be carried out by any conventional transformation technique. For example, the cell wall of the yeast can be removed first, and the yeast can be transformed into a protoplast spheroid (sphemplast). Or use a basic anion (such as Lici or Rbc'i)

上熱休克來處理酵母菌以進行轉形,轉形後用誘導物誘導酵母菌表現本發口 明之胜肽片段,誘導物可為IPTG等習知誘導物。 X 以動物細胞為例’可敎雜細胞系統絲現f體及該表現質體中適 12 1316944 田勺限制酶切位後,以雜綱剪切絲現質體,亦⑽限綱剪切含有 可柄本發明樣肽#段的姆酸序狀核微#段,將以關酶剪切後 的=現負體及核苷酸片段進行接合反應,接著將含有可編碼本發明之胜肽 片段的核Μ序列之動物細胞系統的表現f體轉染(transinfeetiGn)入動物細 胞中,該祕細胞可為昆蟲細胞或哺乳動物細胞,轉染可雌何習知轉染 技術來進行,如職絲感賴lipGfeetiQn)__㈣ium ㈣法 - 來表現本發明之胜肽片段。 ' 此外,為使林發明之抗微生物的方法處理之動物的抵抗疾病能力可 • 有效提昇,前述之免疫誘導劑可經由口服、浸泡或注射的方式投予至該動 物的體内;口服可以係直接口服或添加於飼料中,#以口服方式投予時, 為避免該免疫誘導劑於通過該動物的消化道時,被消化道中的消化液所破 壞,該免疫解劑可進-步藉由習知技術將其進行微㈣處理,以增強其 ' 抵抗消化液的能力;該注射方式則包括靜脈注射(intravenous injection,IV)、 肌肉注射(Intram娜· injection,IM)及腹腔注射(intraperit〇neal 等,但並不僅限於此;當以靜脈注射方式投予至動物體内時,為使其能發 揮最大的效果。 隹 本發明之組合物或胜狀,可促進動物抵抗病原菌入侵,因此可增加動 物抗病力,提昇動物的健康狀態。 本發明之組合物或胜肽還可做為外用防腐劑、殺菌劑之用。 【實施方式】 實施例1 本發明之抗微生物胜肽(AMP)片段的製備 首先依Chomczynski及Sacchi的方法(1987)從龍膽石斑 /iOTceo/a加)的總絲組織分離總RNA (total RNA);接下來,從1〇网總腿八 合成cDNA,使用含有200UMolony鼠類血癌病毒反轉錄酶(M〇i〇nymurine leukemia vims reverse transcriptase)、1 mM dNTP、160 U RNase 抑制劑 13 1316944 (inhibitor)及1.6 pg p过機引子(rand〇m primei^ ιχ反轉錄緩衝液,在42〇c進 行轉錄30刀鐘接著以&合吞孕連鎖反應(口吻咖:脱也此reacti〇n,pcr)放 大(amplify)抗微生物胜肽(AMp)基因,pCR係使用含有2〇阳反轉錄產物、 0.5 UTaqDNA聚合酶及1 正反向AMp引子的_ ιχ pCR緩衝液,正 向AMP引子具有如SEQ ID NO: 3所示之核苦酸序列,反向AMP引子具有 如SEQ ID NO: 4所示之核皆酸序列,pCR係於DNA溫度循環反應器 -(thermal cycler)進行,pCR步驟為在55 °C緩冷配對(annealing)l分鐘30秒, ' 在72 C延長(^郎1011)1分鐘30秒,在94。(:變性(denaturation)l分鑌,共 • 35個循環(Cyde) ; PCR反應終止後,取15 μΐ的PCR產物以2¼洋菜膠體 (agarosegel)作電泳分析,接著進行溴乙烯_____染色。 純化的PCR產物會被選殖進M13mpl8或pBluescript的位置並The heat shock is used to treat the yeast for transformation, and after transformation, the yeast is used to induce the yeast to express the peptide fragment of the present invention, and the inducer may be a known inducer such as IPTG. X Take animal cells as an example. The sputum cell system can be smear and the plastid is 121316944. After the restriction enzyme cleavage position, the zygote is cut into the genus, and (10) the cut contains The stalk-like nuclear nucleus of the peptide-like fragment of the present invention can be subjected to a ligation reaction with the current negative and nucleotide fragments after cleavage by a shut-off enzyme, followed by containing a peptide fragment encoding the peptide of the present invention. The expression of the animal cell system of the nuclear sequence is transfected into the animal cell. The secret cell can be an insect cell or a mammalian cell, and the transfection can be performed by a female transfection technique, such as a silky feeling on the lipGfeetiQn. __(iv) ium (four) method - to represent the peptide fragment of the present invention. In addition, in order to effectively improve the disease resistance of the animal treated by the antimicrobial method of the invention, the aforementioned immune inducer can be administered to the animal by oral, immersion or injection; Directly orally or added to the feed, when administered orally, in order to prevent the immune inducer from being destroyed by the digestive juice in the digestive tract when passing through the digestive tract of the animal, the immunologically decomposing agent can further advance It is micro-(four) treated by conventional techniques to enhance its ability to resist digestive juices; the injection methods include intravenous injection (IV), intramuscular injection (Intram Na·injection, IM), and intraperitoneal injection (intraperit〇). Neal et al, but not limited to this; when administered intravenously to animals, in order to maximize its effect. 隹 The composition or the triumph of the invention can promote the animal against pathogen invasion, so Increasing the disease resistance of the animal and improving the health state of the animal. The composition or peptide of the present invention can also be used as a preservative for external use and a bactericide. Example 1 Preparation of the antimicrobial peptide (AMP) fragment of the present invention First, total RNA was isolated from the total silk tissue of gentian grouper/iOTceo/a plus according to the method of Chomczynski and Sacchi (1987); Down, synthesize cDNA from the total leg of the 1st net, using 200UMolony leukemia virus reverse transcriptase, 1 mM dNTP, 160 U RNase inhibitor 13 1316944 (inhibitor) and 1.6 Pg p machine primer (rand〇m primei^ ιχ reverse transcription buffer, transcribed at 42 〇c for 30 knives and then amplified by & gestation chain reaction (must coffee: take this reacti〇n, pcr) to enlarge ( Amplify) the anti-microbial peptide (AMp) gene, pCR uses _ χ χ pCR buffer containing 2 〇 positive reverse transcription product, 0.5 UTaq DNA polymerase and 1 forward and reverse AMp primer, and the forward AMP primer has SEQ ID NO: The nucleotide sequence shown in 3, the reverse AMP primer has the nucleotide sequence shown in SEQ ID NO: 4, the pCR is carried out in a DNA temperature cycle reactor, and the pCR step is at 55 ° C. Slow cooling pairing (annealing) l minutes 30 seconds, 'in 72 C extension (^ Lang 1011) 1 minute 30 seconds At 94. (: denaturation 1 minute, total • 35 cycles (Cyde); after the PCR reaction is terminated, 15 μΐ of the PCR product is analyzed by electrophoresis of 21⁄4 agarose gel, followed by vinyl bromide_ ____dyeing. The purified PCR product will be cloned into the M13mpl8 or pBluescript position and

會以雙去氧核醣鏈停止法(dideoxynucleotide chain termination)定序,AMP基 ' 因&疋序後彳于到如序列表SEQ ID NO : 2所示的序列;由序列表SEQ ID . N〇 . 2所示的序列可知,經龍膽石斑總絲中選殖出的抗微生物胜肽(AMP) cDNA序列,具有494個核苷酸,其中轉譯區域((;〇(1丨叩regi〇n)由2〇4核苷 酸所組成’如圖一所示,經演譯(deduced)後得到具有67個胺基酸之抗微生 φ 物胜肽(AMP) ’其序列如序列表seq ID NO: 1所示。 另一方面,將純化的PCR產物與表現載體pET31b(+)分別以限制酶 d/vvNI剪切,再將剪切後的PCR產物及pET31b(+)進行接合反應,將接合 反應後所得含有PCR產物的pET31 b(+)轉形至表現宿主五co/z_ BL21TM (DE3) pLysS中’在37 °C下以200rpm振盪培養’並以不同濃度的IPTG進行誘導 (induce) ’結果以1 mM IPTG誘導的效果最好。以12% SDS-PAGE分析, 發現E. coll BL21™ (DE3) pLysS所表現的AMP胜肽位於不可溶蛋白部分, 其分子量約為2.7kDa’如圖二所示,西方墨潰法亦證明其確為AMp胜肽。 將所得不可溶蛋白部分以組胺酸親和層析法(His. Bind® chromatography)進Will be sequenced by the dideoxynucleotide chain termination method, the AMP group 'in & sequence will be followed by the sequence shown in SEQ ID NO: 2 of the Sequence Listing; from the sequence listing SEQ ID. N〇 The sequence shown in 2 shows that the anti-microbial peptide (AMP) cDNA sequence selected from the gentian group filament has 494 nucleotides, of which the translation region ((;〇(1丨叩regi〇) n) consisting of 2〇4 nucleotides', as shown in Figure 1, after derivation, an anti-microbial φ peptide (AMP) with 67 amino acids is obtained. The sequence is as shown in the sequence table seq. ID NO: 1. On the other hand, the purified PCR product was cleaved with the expression vector pET31b(+) with restriction enzyme d/vvNI, and the cleavage PCR product and pET31b(+) were ligated. The PCR product-containing pET31 b(+) obtained after the ligation reaction was transformed into the expression host five co/z_BL21TM (DE3) pLysS 'in a shaking culture at 37 ° C at 200 rpm' and induced with different concentrations of IPTG (induce The results were best induced by 1 mM IPTG. The 12% SDS-PAGE analysis revealed that the AMP peptide represented by E. coll BL21TM (DE3) pLysS was not located. The lysin fraction has a molecular weight of about 2.7 kDa, as shown in Figure 2. The Western ink-crush method also proves to be an AMp peptide. The obtained insoluble protein fraction is subjected to histidine-acid chromatography (His. Bind® chromatography). )

14 1316944 行純化’接著以溴化氰(CNBr)進行剪切’藉此可得到純化的AMp胜肽。 實施例2不同動物的抗微生物胜肽(AMP)序列之比對 在已知的物種中’抗微生物胜肽皆屬於小分子的胜肽,將本發明實施 例1中所選殖出的抗微生物胜肽,與其他魚類之抗微生物胜肽胺基酸序列 進行比對,比對結果如圖三所示,本發明之抗微生物胜肽與點帶石斑的抗 微生物胜肽胺基酸序列最為相近’而在其他魚種則是與,鱸魚和比目魚較為 相近’而在抗微生物胜肽的分類上’各物種間均各成一類,但在相同物種 - 裡抗菌肽的類型也不相同,不論脊椎動物或是無脊椎動物,都難以找到一 • 定的規則性。 本發明之抗微生物胜狀具有67個胺基酸(如序列表seq id NO· 1所 示),其中包含訊息胜肽(signal peptide)、成熟胜肽(_咖peptide)及 prodomain’其3D立體結構如圖四所示。訊息胜肽具有如序列表SEQ m N〇: . 5所示之胺基酸序列’主要在細胞内訊息傳遞時產生功能進行切割,剩下 . 成熟胜肽與Pr〇d〇main。成熟胜肽具有如序列表SEqidn〇: 6所示之胺基 酸序列,是主要與病菌作用的位置,帶有電荷可與細菌的細胞膜做結合, 目前可能之AMP作用模式為筒狀穿鑿模式(barrel_stave m〇de)以〜以壯抗菌 • 肽捲成筒狀插入細胞膜膜内,利用抗菌肽疏水性端與菌的細胞膜接觸,另 一親水性端互相面對面,則為抗菌肽的親水性端面向中心點,以聚合體的 方式在膜上形成孔洞,來造成菌體内外滲透壓不平行,導致菌體死亡(邱 —2001)。地毯狀覆蓋模式(caiPetmocie)(Shai,1999)。帶正電之抗菌肽與帶負電 之細菌細胞膜結合後,親水性端與膜反應,抗菌肽經過翻轉後導致疏水性 的部分,包圍部分細菌細胞膜進而把此膜構造移除,破壞菌體膜的結構使 得病原®死亡(揚,施4)。造成細菌的死亡,有效的抵抗病原菌產生内生型 免疫。14 1316944 Purification followed by shearing with cyanogen bromide (CNBr) to obtain a purified AMp peptide. Example 2 Ratio of Antimicrobial Peptide (AMP) Sequences of Different Animals In the known species, 'antimicrobial peptides are all peptides of small molecules, and the antibiotics selected in the first embodiment of the present invention are The peptide is compared with the antimicrobial peptide amino acid sequence of other fishes, and the alignment result is shown in FIG. 3, and the antimicrobial peptide and the spotted grouped antimicrobial peptide amino acid sequence of the present invention are the most Similar in 'and in other species, carp and flounder are similar' and in the classification of antimicrobial peptides, 'the species are different, but in the same species - the types of antimicrobial peptides are different, regardless of Vertebrates or invertebrates are hard to find a regularity. The antimicrobial agent of the present invention has 67 amino acids (as shown in the sequence table seq id NO·1), which contains a signal peptide, a mature peptide (_coffee peptide) and a prodomain' 3D stereo The structure is shown in Figure 4. The message peptide has an amino acid sequence as shown in the Sequence Listing SEQ m N〇: .5, which produces a function to cleave mainly during intracellular signaling, leaving the mature peptide and Pr〇d〇main. The mature peptide has an amino acid sequence as shown in the sequence table SEqidn〇: 6, which is a position mainly acting on the pathogen, and has a charge to bind to the cell membrane of the bacteria. Currently, the AMP mode of action is a cylindrical perforation mode ( The barrel_stave m〇de) is inserted into the membrane of the cell with a strong antibacterial peptide; the hydrophobic end of the antibacterial peptide is contacted with the cell membrane of the bacteria, and the other hydrophilic end faces each other, and the hydrophilic end of the antibacterial peptide is faced. At the center point, pores are formed on the membrane in the form of a polymer, so that the osmotic pressure inside and outside the bacteria is not parallel, resulting in the death of the cells (Qiu-2001). Carpet-like coverage mode (caiPetmocie) (Shai, 1999). After the positively charged antimicrobial peptide is combined with the negatively charged bacterial cell membrane, the hydrophilic end reacts with the membrane, and the antimicrobial peptide is turned over to cause a hydrophobic portion, which surrounds part of the bacterial cell membrane to remove the membrane structure and destroy the bacterial membrane. The structure makes the pathogen® die (Yang, Shi 4). Causes the death of bacteria, effectively resisting the pathogens to produce endogenous immunity.

Prodomain具有如序列表SEQ ID Ν〇··7所示之胺基酸序列,其功能則 15 1316944 W U片广0曰修替換 是中和成熟胜肽的電荷’當在成熟胜肽不f要與外來病㈣作用時使成熟 胜肽不肺錄’以免傷#到宿主桃Yin心,2_)。絲紐帶正電會 與帶負電的_細胞膜側,而在生物體本身細胞膜也為帶負電,抗菌狀 餘專-性的辨認何為外來病M與生物體本身,所以需要㈣⑽血來中 和抗菌肽的電荷,以免造成生物體的傷害。 實施例3龍膽石斑抗菌肽結構及極性分析 使用 Kyte-Doolittle hydropathy blots 程式分析 SEQ ID NO: 6 AMP 成熟 胜肽顯示第7到16胺基酸後具有明顯疏水性(hydrophobic)及親水性 (hydrophilic)交錯的區域(如圖四、圖五及圖十四所示)。在使用國家衛生研 究院巨分林列分析軟體巾pjOtein analysis之HeUeal Whed指令分析疏水性 及親水性絲_分佈以及3-D結構圖,可以發現顏;5斑抗微生物胜肽 所形成α螺旋(a helix)會有明顯疏水性及親水性的分部(如圖五及圖十四所 示)’该抗微生物胜肽屬於兩性(amphipathic)分子,為傳統的抗微生物胜肽 (Hancock and Lehrer, 1998) ° 由本實施例可推測龍膽石斑抗微生物胜肽的殺菌機制為筒狀穿鑿模式 或是地毯狀覆蓋模式,因為龍膽石斑抗微生物胜肽結構為α螺旋帶正電, 當在殺病原菌細胞膜作用的時候,抗菌肽需要為兩性分子,才能順利把病 原菌的膜產生孔洞,造成滲透壓不平衡使病原菌死亡(Shai,1999)。ExPASy Proteomics軟體分析後在第30至35胺基酸位置上的N_myrist〇ylati〇n ske 主要功能在於使蛋白質醢化與C-14飽和脂肪酸結合,推測為抗菌肽與細胞 膜上的填脂質結合用(Towleretal.,1998)。由3D立體結構圖預測可得知,龍 膽石斑AMP分為二個部分’而在成熟胜狀的部分為a_heiix結構(如圖四所 示)’屬於第一類的兩性抗微生物胜肽,推測可能為本發明抗微生物胜肽主 要為與細菌的細胞膜作用位置。 實施例4抗微生物胜肽(AMP)之mRNA在石斑魚體内的分布 16 1316944 本實驗以即時定置聚合酶連鎖反應(real_time quantitative PCR)技術,分 析抗微生物胜肽(AMP)基因在龍膽石斑各組織之表現模式。利用螢光染劑 SYBR green I可鑲喪在DNA雙股凹槽上,經由鹵素燈激發而產生螢光的 特性’彳貞測其螢光值的量。當SYBRgreenI沒有鑲嵌在雙股DNA上時, 螢光背景值非常低;當SYBR green I開始鑲嵌在PCR放大的標的基因片 段上時,螢光值訊號也會相對的提高。如無非特異性引子的結合,或基因 - 組DNA (g⑽mic DNA)的污染等干擾影響,PCR反應合成標的基因之 • DNA的合成狀態’可區分為:(1)兩倍倍增的幾何級數倍增期(geometric φ phase); (2)反應物不足時’基因合成非兩倍倍增的線性增加期(linearphase); 以及(3)最後反應物耗盡、失效,達反應終點的高原期phase)。因此 要偵測標的基因在組織器官的表現量,必須在pcR反應的幾何級數倍增期 (geometric phase)定量才具有意義。Real4ime quantitative pCR 的原理就是利 • 用不同濃度模板在相同PCR反應條件下,含有高濃度模板的反應會較快達 ‘ 到系何級數倍增期,相對的’低濃度的模板則較慢達到,將定義達到幾何 級數彳σ 期中點的臨界PCR循環數目定為(thresholdcycle),亦即C!T值 會隨模板濃度降低而升高。利用不同濃度標準品在同步定量pCR反應的CT 籲 #,由軟體計算緣製標準曲線與回歸公式,以内插法換算待測樣品内含有 心的基因絕對表現量。同時若要得到炼解曲線(Meiting curve),則在標的基 因放大循環後進行炼解溫度(melting temperature) 66。匸_99。〇的連續螢光偵 測刀析熔解曲線的結果可以瞭解引子是否會自行有互補的現象,或是引 . 子的專一性’以更正確的幫助了解實驗定量的正確性。 41抽取點帶石斑各組織之總RNA (total RNA) 刀別取點帶石斑之腦、懿絲、眼、心臟、頭腎、肝臟、脾、腸、胃、 肌肉血液、皮膚組織,加入10倍體積之TRIzol reagent (Invitrogen, U.S.A.), 用到刀先將組織剪碎再用均質棒打碎,加入1/5體積的氣仿, 17 1316944 強力搖晃30秒,置於室溫下靜置10分鐘,在uoooxg離心15分 鐘’吸取上清液至新的微量離心管中,加入TRIzol reagent等量體積的異丙 醇(isopropanol)均勻混合,置於室溫下靜置1〇分鐘,在4。〇下12000xg離心 ^分鐘;將RNA溶解在20μ1 DEPC水中,置於55°C下溶解10分鐘,然後 儲存在-80°C冰箱中備用,以測量rna濃度與純度比值。 4.2 反轉錄酶反應(ReverseTranscripti〇n) 將萃取出來的RNA每管定量至5 pg之total RN A並進行反轉錄酶反應。 4.3即時定量聚合酶連鎖反應(reai_time qUantitative pcr) 專一性引子(Primer)根據SEQ ID NO: 1設計AMP基因部分cDNA序 列’利用LightCyclerProbeDesignprogram設計即時定量聚合酶連鎖反應專 —性引子(primer) ’ AMP 基因分別利用 real-time quntitative PCR AMP 專一性 引子A3及A4 (其序列分別如序列表SEQ ID NO: 8及SEQ ID NO: 9所示) 進行 real-time quntitative PCR。 4·4即時定量聚合酶連鎖反應(rea〗_time qUntitative PCR) 4·4·1標準曲線製備 小量質艘備製(Mini-preparation) • 將SEQ ID NO: 1定序且確定含有Mx基因與AMP基因部分cDNA序 列之菌種由-8(TC冰箱中取出,培養於30 ml的LB/Ampicillin培養液 (Luria-Bertanimedium)中,以37°C震盪培養至隔夜約16小時後,取出菌液 _ 並進行小量質體製備。 取出隔夜培養之菌液1 ml置入1·5 ml微量離心管中,於4。(:下以 12,000xg 離心 5 分鐘’倒掉上清液,加入 150 μΐ Solution I (50 mM glucose、 25 mM Tris-HCl pH 8.0、10 mM EDTA pH 8.0)重新懸浮菌體,加入 200 μΐ 新鮮配製的SolutionII(0.2NNaOH、l%SDS),置於冰上10分鐘,加入150μ1 Solution III (3 M potassium acetate、10% glacial acetic acid),置於冰上 5 分 18 1316944 鐘’於4 °C下以12,000xg離心5分鐘,收集上清液至新的微量離心管中, 加入等量體積的飽和紛(phenol)與氯仿(chloroform),強力搖晃30秒,置於 室溫下靜置10分鐘,在4 t下以12,000xg離心15分鐘。 收集上清液至新的微量離心管中,加入兩倍體積的95 %冰酒精,混合 均勻置於-20 °C下20分鐘,於4 °C下以H,000xg離心5分鐘,倒掉上清液 留下沉澱物’以70 %酒精洗滌沉澱物兩次,然後真空乾燥離心沉澱物,將 沉澱物溶於20μ1無菌水中,存於_2〇。〇備用。 4.4.1.2質體DNA泼度和純度的計算 以分光光度計測量OD260,計算質體DNA的濃度的標準為1 OD260 = 50 pg of DNA/ ml,其公式為 50 pg X dilute factor X A260= pg / ml。質體 DNA 純度以OD260/OD280的比值介於1.6〜1.8之間為較純的DNA。 待質體DNA濃度計算出來後,將質體DNA濃度調整至1 μ§/μ1,並依 10倍稀釋方式由10·1連續稀釋至10-9,稀釋後將質體DNA存於_2〇。〇備用。 4.4.1.3製備標準曲線 分別由10_4-1〇_8之稀釋後質體溶液中取3 μ1置於反應毛細管中,再分別 加入 2_4 μΐ MgCl2、1 μΐ SYBR、real-time quntitative PCR AMP 專一性引子 A3及A4 (其序列分別如序列表SEq ID no·· 8及SEQ ID NO: 9所示)各0·5 μΐ、12.6 μΐ無菌水’最後總體積為2〇 μ1 ;將反應毛細管置入及時定量分析 儀(LightCycler 1.2)中,設定以下條件反應:95°C解離10分鐘;95。(:解離〇 秒;64°C黏合10秒;72°C合成15秒;解離、黏合、合成步驟重複40個循 環後降溫至40°C後持續升溫至95T:,以解離反應後產物並連續偵測螢光 值。反應後彳貞測結果以LightCycler Software 3.5 program分析後製作標準曲 線。 4.4.2.1龍膽石斑各組織即時定量聚合酶連鎖反應偵測 取3 μΐ實施例4.2所製得之反轉錄酶反應(RT)產物置於反應毛細管中,分 19 1316944 別加入2.4 μΐ MgCl2、1 μΐ SYBR、real-time quntitative PCR AMP專一性引子 A3及A4 (其序列分別如序列表SEQ ID NO: 8及SEQ ID NO: 9所示)各0.5 μΐ、12.6 μΐ無菌水’最後總體積為2〇 μΐ。將反應毛細管置入及時定量分析儀 (LightCyclerl.2)中’設定以下條件反應·· 95°C解離10分鐘;95。(:解離〇秒; 64 C黏合5秒;72 C合成15秒;解離、黏合、合成步驟重複4〇個循環後降溫 至40°C後持續升溫至95。(: ’以解離反應後產物並連續偵測螢光值。反應後 偵測結果以LightCycler Software 3.5 program配合標準曲線分析,分析後所得 數據單位為μβ/μΐ,接著除以質體的驗基對數目,再除以驗基對分子量66〇 dalton以換算成mole/μ卜乘以6.02x1023得copies/μ卜實驗所得的數據,以 (Statistic Alalysis System)軟體,運用單變量分析(〇ne-way anaiysis 〇f variance),利用Duncan’s MultipleRange Tes比較各因子間顯著差異程度(p < 0.05),所得數據以平均土標準偏差(Mean 土 SD)表示;本發明中所有AMP基 因表現分析均使用此方法。 請參閱圖六’由AMP基因在各組織間之表現模式實驗結果顯示,龍膽 石斑在腦、心臟、肝臟、脾臟、腸、胃、肌肉、液、總絲、眼睛、頭腎、 皮膚及鰭均有AMP基因的表現;頭腎的表現量最高,其次是脾臟、鰓絲、 血液。這些組織都具有血液流動相關組織,進一步證明AMP基因可能是由 血球細胞所分泌。在比目魚的AMP研究指出,總在魚類中也是一個重要的 免疫器官(Murray ei α/·, 2003);而由本實施例之結果顯示,AMP基因在鰓絲 有明顯的表現(如圖六所示)’因此在本發明接下來的實施例中,將以總絲作 為分析AMP基因表現的指標性組織。 實施例5 注射仿病毒核酸之藥品polyinosinic-polycytidylic acid (polyI:C) 至龍膽石斑内,分析其抗微生物胜肽(AMP)基因表現情形 將龍膽石斑魚分成四組,每組分別注射不同濃度之仿病毒核酸藥品 polyinosinic-polycytidylic acid (polyI:C),以每公克魚體重(BW)為單位,每公 20 1316944 克魚體重注射藥品之體積為200μ1,各組poly I:C的注射濃度分別為 Opg/gBW (對照組)、lpg/gBW、2pg/gBW、5pg/gBW,溶劑為石斑魚之 PBS, 以肌肉注射,注射在背部肌肉。24小時後使用15〇ppm的MS-222 (Ethyl 3-amino-benzoate methanesulfonate solt),讓魚麻醉降低刺激;分別取鰓絲、 頭腎、脾臟、腦、血液、肝、皮膚等七個組織,利用TRIzol reagent萃取total RNA ’保存於-80°C冰箱,以進行即時定量聚合酶連鎖反應(real_time quantitative PCR)分析AMP基因表現模式。 各組織在注射不同濃度之poly I:C 24小時後的AMP基因表現如圖七所 示;以總絲作為分析AMP基因表現的指標性組織來看,以每克魚體重注射 2pgpoly I:C之處理組的AMP基因表現量最高。 針對每克魚體重注射2pg poly I:C之處理組,分別在注射後12小時、 24小時、48小時、72小時取其頭腎、腦、脾臟、肝臟、血液、皮膚和鰓絲 之total RNA ’利用即時定望;聚合酶連鎖反應(reai_tjme quantitatjve pcr)分析 AMP基因表現模式,結果如圖八所示,在72小時的長時間處理下,總絲 與頭腎的AMP基因表現均比對照組高,推測因為生物體誘導的抗微生物胜 肽是免疫的第一道防線,當外來物質進入生物體内時,抗微生物胜肽(AMp) 基因可能也會被諫導來對抗外來物。 實施例6 ’主射不同激度之脂多聽類(Hp〇p〇丨ySaccharide,LPS)至龍膽石斑 内,分析其抗微生物胜肽(AMP)基因表現情形 將龍膽石斑魚分成四組,每組分別注射不同濃度之Lps,以每公克魚 體重(BW)為單位’每公克魚體重分別注射〇咫(對照組)、5咫、1〇吨、15咫 的LPS ’每公克魚體重的注射物中添加2〇〇μι不完全佐劑 adjuvant) ’注射方式為腹腔注射。24小時後使用i5〇ppm的MS-222 (Ethyl 3-amino-benzoate methanesulfonate s〇lt),讓魚麻醉降低刺激;分別取頭腎、 脑、脾臟肝臟血液和總絲等組織,利用TRjzoi reagent萃取total RNA,Prodomain has an amino acid sequence as shown in SEQ ID SEQ.7 of the Sequence Listing, and its function is 15 1316944. The film is widely replaced with a charge that neutralizes the mature peptide. When the foreign disease (4) acts, the mature peptide is not recorded in the lungs to avoid injury # to the host peach Yin heart, 2_). The silk bond is positively charged with the negatively charged _ cell membrane side, while the cell membrane of the organism itself is also negatively charged, and the antibacterial condition is specifically identified as the foreign disease M and the organism itself, so it is necessary to (4) (10) blood to neutralize the antibacterial The charge of the peptide so as not to cause damage to the organism. Example 3 Structure and polarity analysis of gentian plaque antimicrobial peptides SEQ ID NO: 6 was analyzed using Kyte-Doolittle hydropathy blots. AMP mature peptide showed significant hydrophobicity and hydrophilicity after 7th to 16th amino acid ( Intersecting areas (as shown in Figure 4, Figure 5 and Figure 14). Analysis of hydrophobic and hydrophilic silk-distribution and 3-D structure maps using the HeUeal Whed instruction of the National Institutes of Health's giant tissue analysis pjOtein analysis can reveal the α-helix formed by the 5-spot antimicrobial peptide ( a helix) has a distinctly hydrophobic and hydrophilic fraction (as shown in Figures 5 and 14). The antimicrobial peptide belongs to the amphipathic molecule and is a traditional antibacterial peptide (Hancock and Lehrer, 1998) ° It can be inferred from this example that the bactericidal mechanism of the gentian plaque antimicrobial peptide is a cylindrical chiseling mode or a carpet-like covering mode, because the gentian plaque antimicrobial peptide structure is α-helix positively charged, when When killing the cell membrane of the pathogen, the antibacterial peptide needs to be an amphiphilic molecule in order to smoothly create pores in the membrane of the pathogenic bacteria, resulting in an imbalance of osmotic pressure to cause the pathogen to die (Shai, 1999). The main function of N_myrist〇ylati〇n ske at the 30th to 35th amino acid position after ExPASy Proteomics software analysis is to combine protein deuteration with C-14 saturated fatty acid, presumably to bind antibacterial peptide to lipid filling on cell membrane ( Towleretal., 1998). It can be known from the 3D stereogram prediction that the gentian grouper AMP is divided into two parts' and the part of the mature triumph is a_heiix structure (as shown in Fig. 4), which belongs to the first class of amphoteric antimicrobial peptides. It is speculated that the antimicrobial peptide of the present invention may be mainly located at the cell membrane with bacteria. Example 4 Distribution of Antimicrobial Peptide (AMP) mRNA in Grouper 16 1316944 This experiment analyzes the antimicrobial peptide (AMP) gene in gentian grouper by real-time quantitative PCR. The performance patterns of each organization. Using the fluorescent dye SYBR green I can be placed on the DNA double-strand groove and excited by a halogen lamp to produce a fluorescent property's measure of the amount of fluorescence. When SYBRgreenI is not embedded in double-stranded DNA, the background value of the fluorescence is very low; when SYBR green I is first embedded in the target gene fragment amplified by PCR, the fluorescence signal will increase relatively. If there is no binding of non-specific primers, or the interference of gene-group DNA (g(10)mic DNA), the synthesis state of DNA synthesized by PCR reaction can be distinguished as: (1) Double multiplication of geometric progression multiplication (geometric φ phase); (2) The linear phase of non-double doubling of gene synthesis when the reactant is insufficient; and (3) the last reactant depletion, failure, and the plateau phase of the reaction endpoint. Therefore, in order to detect the amount of expression of the target gene in tissues and organs, it must be quantified in the geometric phase of the pcR reaction. The principle of Real4ime quantitative pCR is that • with different concentration templates, under the same PCR reaction conditions, the reaction with high concentration of template will be faster than the doubling period of the series, and the relative 'low concentration template will be slower. The number of critical PCR cycles defined to reach the midpoint of the geometric progression 彳σ period is determined as (threshold cycle), that is, the C!T value increases as the template concentration decreases. Using the different concentrations of standard products to simultaneously quantify the pCR response of the CT call #, the software calculates the standard curve and the regression formula, and interpolates the absolute expression of the gene containing the heart in the sample to be tested. At the same time, if a Meiting curve is to be obtained, a melting temperature 66 is performed after the target gene amplification cycle.匸_99. The result of the continuous fluorescence detection of the 萤 析 熔 熔 可以 可以 可以 可以 可以 可以 可以 可以 可以 可以 可以 可以 可以 可以 可以 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 41 extraction of total RNA from all tissues of the group of plaques (total RNA) knives take the spotted brain, silk, eye, heart, head kidney, liver, spleen, intestine, stomach, muscle blood, skin tissue, join 10 times the volume of TRIzol reagent (Invitrogen, USA), use the knife to first cut the tissue and then use a homogenized rod to break, add 1/5 volume of air imitation, 17 1316944 vigorously shake for 30 seconds, let stand at room temperature 10 minutes, centrifugation at uoooxg for 15 minutes' Aspirate the supernatant into a new microcentrifuge tube, add TRIzol reagent in equal volumes of isopropanol, mix evenly, and let stand at room temperature for 1 minute, at 4 . Centrifuge at 12000 xg for 1 minute; dissolve the RNA in 20 μl DEPC water, dissolve at 55 ° C for 10 minutes, and store in a -80 ° C freezer to measure the ratio of rna concentration to purity. 4.2 Reverse Transcriptase Reaction (ReverseTranscripti〇n) The extracted RNA was quantified to 5 pg of total RN A per tube and subjected to reverse transcriptase reaction. 4.3 Real-time quantitative polymerase chain reaction (reai_time qUantitative pcr) The specific primer (Primer) designed the AMP gene partial cDNA sequence according to SEQ ID NO: 1 'Designing an instant quantitative polymerase chain reaction-specific primer 'AMP gene using LightCyclerProbeDesignprogram Real-time quntitative PCR was performed using real-time quntitative PCR AMP specific primers A3 and A4 (the sequences are shown in SEQ ID NO: 8 and SEQ ID NO: 9, respectively). 4·4 real-time quantitative polymerase chain reaction (rea _time qUntitative PCR) 4·4·1 standard curve preparation of mini-preparation (Mini-preparation) • SEQ ID NO: 1 sequence and identified containing Mx gene and The AMP gene partial cDNA sequence was removed from the -8 (TC refrigerator), cultured in 30 ml of LB/Ampicillin medium (Luria-Bertanimedium), and cultured at 37 ° C for about 16 hours overnight, and the bacterial solution was taken out. _ and prepare a small amount of plastids. Take 1 ml of the overnight culture solution and put it into a 1.5 ml microcentrifuge tube, and centrifuge at 5 °C for 1 minute at 12,000 xg. Add the supernatant and add 150 μΐ. Resuspend the cells in Solution I (50 mM glucose, 25 mM Tris-HCl pH 8.0, 10 mM EDTA pH 8.0), add 200 μl of freshly prepared Solution II (0.2 N NaOH, 1% SDS), place on ice for 10 minutes, add 150μ1 Solution III (3 M potassium acetate, 10% glacial acetic acid), placed on ice for 5 minutes 18 1316944 hrs. Centrifuge at 12,000 xg for 5 minutes at 4 °C, collect the supernatant into a new microcentrifuge tube. Add an equal volume of phenol and chloroform, shake vigorously 30 For one second, let stand at room temperature for 10 minutes, centrifuge at 12,000 xg for 15 minutes at 4 t. Collect the supernatant into a new microcentrifuge tube, add twice the volume of 95% iced alcohol, mix evenly - Centrifuge at H,000xg for 5 minutes at 20 °C for 20 minutes at 20 °C, pour off the supernatant to leave a precipitate. Wash the precipitate twice with 70% alcohol, then dry the precipitate by vacuum drying. Dissolved in 20μ1 sterile water, stored in _2〇. 〇 spare. 4.4.1.2 Calculation of plastid DNA transcript and purity OD260 is measured by spectrophotometer, and the standard for calculating the concentration of plastid DNA is 1 OD260 = 50 pg of DNA / ml, the formula is 50 pg X dilute factor X A260= pg / ml. The purity of plastid DNA is between 0.01 and 1.8 as the pure DNA in the ratio of OD260/OD280. After the plastid DNA concentration is calculated, The plastid DNA concentration was adjusted to 1 μ§/μ1, and serially diluted from 10·1 to 10-9 in a 10-fold dilution manner. After dilution, the plastid DNA was stored in _2 〇. 〇. 4.4.1.3 Preparation standard The curve is taken from the diluted plastid solution of 10_4-1〇_8 and placed in the reaction capillary, and then added 2_4 μΐ MgCl2. 1 μΐ SYBR, real-time quntitative PCR AMP specific primers A3 and A4 (the sequences are shown in sequence table SEq ID no·· 8 and SEQ ID NO: 9 respectively) 0·5 μΐ, 12.6 μΐ sterile water' last The total volume was 2 〇μ1; the reaction capillary was placed in a timely quantitative analyzer (LightCycler 1.2), and the following conditions were set: 95 ° C dissociation for 10 minutes; 95. (: dissociation leap seconds; 64 ° C bonding 10 seconds; 72 ° C synthesis 15 seconds; dissociation, bonding, synthesis steps repeated 40 cycles, after cooling to 40 ° C, continued to heat up to 95T: to dissociate the reaction product and continue Fluorescence values were detected. After the reaction, the results were analyzed by LightCycler Software 3.5 program to prepare a standard curve. 4.4.2.1 gentian grouper tissue real-time quantitative polymerase chain reaction detection 3 μΐ obtained in Example 4.2 The reverse transcriptase reaction (RT) product was placed in a reaction capillary, subdivided into 19 1316944, 2.4 μΐ MgCl2, 1 μΐ SYBR, real-time quntitative PCR AMP specific primers A3 and A4 (the sequences are shown in SEQ ID NO: 8 and SEQ ID NO: 9) 0.5 μΐ, 12.6 μΐ sterile water 'final total volume is 2〇μΐ. Place the reaction capillary in a timely quantitative analyzer (LightCyclerl.2) 'Set the following conditions to react · 95 °C dissociation for 10 minutes; 95. (: dissociation leap seconds; 64 C bonding for 5 seconds; 72 C synthesis for 15 seconds; dissociation, bonding, synthesis steps repeated 4 cycles and then cooled to 40 ° C and continued to heat up to 95. : 'To dissociate the reaction product and continuously detect Fluorescence value. The post-reaction detection results were analyzed with LightCycler Software 3.5 program and standard curve. The unit of data obtained after analysis was μβ/μΐ, then divided by the number of pairs of plastids, and then divided by the basis weight of 66〇dalton. The data obtained by multiplying the mole/μb by 6.02x1023 to obtain the copies/μb experiment, using the (Statistic Alalysis System) software, using univariate analysis (〇ne-way anaiysis 〇f variance), using Duncan's MultipleRange Tes to compare each The degree of significant difference between factors (p < 0.05), the data obtained is expressed as mean soil standard deviation (Mean soil SD); all methods of AMP gene expression analysis in this invention are used. See Figure 6 'from AMP gene in each organization Experimental results show that gentian grouper has AMP gene expression in brain, heart, liver, spleen, intestine, stomach, muscle, fluid, total silk, eyes, head kidney, skin and fin; The highest amount of performance, followed by the spleen, silk, blood. These tissues have blood flow related tissues, further proof that the AMP gene may be secreted by blood cells. The AMP study of the fish pointed out that it is also an important immune organ in fish (Murray ei α/·, 2003); and the results of this example show that the AMP gene has obvious performance in silk (see Figure 6). Therefore, in the next embodiment of the present invention, the total filament is used as an indexing tissue for analyzing the expression of the AMP gene. Example 5 Injection of a virus-like nucleic acid drug polyinosinic-polycytidylic acid (polyI:C) into a gentian group to analyze the performance of the antimicrobial peptide (AMP) gene. The gentian grouper was divided into four groups, each group was injected differently. Concentration of the virus-like nucleic acid drug polyinosinic-polycytidylic acid (polyI: C), in grams per gram of fish body weight (BW), 20 1316944 grams per gram of fish body weight of injected drugs is 200μ1, the concentration of poly I: C injection They were Opg/gBW (control group), lpg/gBW, 2pg/gBW, 5pg/gBW, and the solvent was grouper PBS, which was injected intramuscularly and injected into the back muscles. After 24 hours, 15 〇ppm of MS-222 (Ethyl 3-amino-benzoate methanesulfonate solt) was used to reduce the stimulation of fish anesthesia; seven tissues including silk, head kidney, spleen, brain, blood, liver and skin were taken. The total RNA was extracted with TRIzol reagent and stored in a -80 °C refrigerator for real-time quantitative PCR analysis of AMP gene expression patterns. The AMP gene expression of each tissue after injection of different concentrations of poly I:C for 24 hours is shown in Figure 7. The total silk is used as an indicator of the performance of the AMP gene. 2pgpoly I:C is injected per gram of fish body weight. The treatment group had the highest AMP gene expression. For the treatment of 2 pg of poly I:C per gram of fish, the total RNA of the head kidney, brain, spleen, liver, blood, skin and silk was taken at 12 hours, 24 hours, 48 hours, and 72 hours after injection. 'Using immediate expectation; polymerase chain reaction (reai_tjme quantitatjve pcr) analysis of AMP gene expression pattern, the results shown in Figure 8, under the long-term treatment of 72 hours, the total and silk AMP gene performance compared with the control group High, it is speculated that because the organism-induced antimicrobial peptide is the first line of defense, when the foreign substance enters the organism, the antimicrobial peptide (AMp) gene may also be induced to fight against foreign objects. Example 6 'Hp〇p〇丨y Saccharide (LPS) with different stimuli to the gentian plaque, and analyzed the performance of the antimicrobial peptide (AMP) gene. The gentian grouper was divided into four groups. Each group was injected with different concentrations of Lps, and the weight per gram of fish body weight (BW) was injected into the sputum (control group), 5 咫, 1 ton, 15 咫 LPS' per gram of fish body weight per gram of fish body weight. 2 〇〇 μιη incomplete injection adjuvant was added to the injection. 'Injection method is intraperitoneal injection. After 24 hours, i5〇ppm MS-222 (Ethyl 3-amino-benzoate methanesulfonate s〇lt) was used to reduce the stimulation of fish anesthesia; the liver, brain and spleen liver blood and total silk were taken separately and extracted by TRjzoi reagent. Total RNA,

21 1316944 保存於-80°C冰箱,以進行即時定量聚合酶連鎖反應㈣也加q_titative PCR)分析AMP基因表現模式。 各組織在注射不同濃度之LPS 24小時後的AMp基因表現如圖九所示, AMP基因在鰓絲組織與頭腎組織在各濃度的Lps下,均較對照組均有明顯 增加表現量(ρ<0·〇5) ’顯示AMP基因在不同組織所誘導的表現量不相同。 以腹腔注射每克魚體重15gg的LPS,分別在24小時、48小時、96小 132小日守進行採樣,探討頭腎、腦、脾臟、肝臟、血液和鰓絲之 . 基因表現量。如圖十所示,結果顯示鰓絲組織之AMP基因在48小時才會 • 有明顯的增加表現量;而脾臟和頭腎均在24小時即有明顯的增加表現量。 由此可以推論,生物體各種器官的免疫反應速度不盡相同,且會因為受到 刺激的位置不同,而改變免疫產生的組織。在Kim (2〇〇5)的研究中發現比 目魚在不同組織被LPS誘導下,產生免疫反應的時間也會相對不同,而且 • 長時間下有些組織的表現量會降低。 - 實施例7改變環境因子鹽度後龍膽石斑抗微生物胜肽(AMP)基因表現情 形之分析 將龍膽石斑魚分成一對照組及一實驗組,對照組為純海水(鹽度為 _ 35%。)’而實驗_每天鹽度減少腦處理三天使實驗組鹽度為$ 放 置 24 】、時後’使用 15〇 ppm 的 MS-222 (Ethyl 3-amino-benzoate methanesulfonatesolt) ’讓魚麻醉降低刺激;分別取總絲、頭腎、脾臟、腦、21 1316944 was stored in a -80 ° C refrigerator for real-time quantitative polymerase chain reaction (4) plus q_titative PCR) analysis of AMP gene expression patterns. The AMp gene expression of each tissue after injection of different concentrations of LPS for 24 hours is shown in Figure 9. The AMP gene in the silk tissue and the head kidney tissue at each concentration of Lps showed a significant increase in the performance compared with the control group (ρ&lt ;0·〇5) 'Shows that the amount of AMP gene induced in different tissues is different. LPS was injected intraperitoneally with 15 ng of body weight per gram of fish, and samples were taken at 24 hours, 48 hours, 96 hours and 132 days, respectively, to investigate the gene expression of the head kidney, brain, spleen, liver, blood and silk. As shown in Figure 10, the results showed that the AMP gene of silk tissue was significantly increased in 48 hours. The spleen and head kidneys showed a significant increase in expression at 24 hours. It can be inferred that the immune response rate of various organs of the organism is not the same, and the tissue produced by the immunity is changed because of the location of the stimulation. In Kim (2〇〇5), it was found that the time to produce an immune response in the different tissues of L. sinensis was different, and • The expression of some tissues decreased over time. - Example 7 Analysis of the performance of gentian grouper anti-microbial peptide (AMP) gene after changing the environmental factor salinity The gentian grouper was divided into a control group and an experimental group, and the control group was pure seawater (salinity _ 35 %.) 'And experiment _ daily salinity reduction brain treatment three angels experimental group salinity is $ placed 24 】, after the 'use 15 〇 ppm of MS-222 (Ethyl 3-amino-benzoate methanesulfonatesolt) 'Let the fish anesthesia reduced Stimulation; taking total silk, head kidney, spleen, brain,

夜肝皮膚荨組織,利用TRIzol reagent萃取total RNA ,保存於-8〇°C '冰相’以進彳了即時定絲合酶連鎖反應(real -time quantitative PCR)分析 AMP 基因表現模式。 如圖十—所示’實驗組在低鹽度環境下,其AMP基因在頭腎、皮膚、 血液、總絲等組織中有·的增加表現量。可見在鹽度改變的時候會免疫 基因會被誘導’進而增加魚類的免疫能力,改變鹽度為5%。時,推測會刺激The liver tissue of the night liver was extracted with TRIzol reagent and stored in the -8 ° ° C 'ice phase' to analyze the AMP gene expression pattern by real-time quantitative PCR. As shown in Figure 10, the experimental group had an increased amount of AMP gene in the tissues of the head kidney, skin, blood, and total silk in a low salinity environment. It can be seen that when the salinity changes, the immune gene will be induced, which will increase the immunity of the fish and change the salinity to 5%. When speculated, it will stimulate

22 1316944 龍膽石斑内生魏疫系統,使龍膽石斑不易受到病原贼染或發病,使得 龍膽石斑較不容易受到細菌和病毒感染。 魚類免疫緊迫包括:鹽度改變、溫度改變、溶氧不足、化學藥品污染 等,使魚產生許多生理上的改變’對環境的緊追作出反應。當環境出現緊 迫時,魚類的生理、外表、組織和細胞都會產生免疫反應(Bart〇n Blanchard,2001) 〇本實施例結果進一步確認,可藉由改變養殖環境鹽度以 ' 提鬲ΑΜΡ基因之表現量,進一步增強龍膽石斑抗病毒與抗細菌性感染的能 , 力;本概念可應用於養殖業,以提升魚體免疫力及抗病能力,達到減少死 ^ 亡’提咼存活率與產量等目的。 實施例8化學合成石斑抗微生物胜肽對各病原菌之體外敏感性試驗 以科羅耐國際科技有限公司合成抗微生物胜肽,純度經由高效能液相 層析(high performance liquid chromatography,HPLC)測試純度達 90%以上; • 利用該合成抗微生物胜肽對細菌進行最小抑菌濃度(minimum inhibit〇iy - concentration,MIC)和最小殺菌濃度(minimum bactericidal concentration, MBC)試驗。 8.1菌液的製備 ❿ 將大陽桿菌(Escherichia c〇li mi5a)、哈咸氏弧菌(Vibrio harveyi)、溶澡 孤蛰(Vibrio alginofyticus)、鰻弧溘(Vibrio anguilhrum)、鮭弧亀(Vibrid salmonicida)、轰氣^ 隼概嵐(Aeromonas hydrophila)、表反葡萄.球菌 - ⑺π所祕*?) ’將此七株菌株培養於LBA c〇/z· DH5a)或 .TSA (+1.5% NaCl)上,經過16小時37。(:培養後,刮下菌落溶於指定培養液, 使OD54〇為1時(濃度約為1X109菌數),取500μ1菌液加入5〇〇μ1的LB或 TSB (+1.5%NaCl)使菌液濃度為ΐχ108菌數/πύ。 8.2 敏感性試驗(Susceptibility test) 使用96孔培養孤在每個凹槽加入130μι的菌液,菌液濃度為lxl〇8菌 23 1316944 數/m卜在加入20μ1不同濃度(0.075 μΜ-0.675 μΜ)的化學合成龍膽石珲抗微 生物胜肽後,以37°C培養16小時,觀察沒有細菌生長而呈現澄清的菌液之 最低抗微生物胜肽濃度,此為最小抑菌濃度(MIC);再將呈現澄清的菌液之 組別,取完全菌液塗抹在培養於LBA (£· co/z· DH5a)或TSA (+1.5% NaCl;) 上’經過16小時37°C培養後,觀察菌落則得知最小殺菌濃度(MBC),每個 實驗組各有三重複及對照組。 測試結果如表一所示,此七株菌最小抑菌濃度(MIC)分別為:大腸桿菌 cc»" DH5a) 0.075 μΜ、哈威氏弧菌0.15 μΜ ' 溶 澡狐菌(ί^·έπ·ο 0_15 μΜ、,鰻弧菌(Ρ%η_ο 0.15 μΜ、 娃弧菌(册η·ο sa/wom’c/iia) 0_ 15 μΜ、產氣單胞菌(Jero膨獄y /y;办ορ/π./α) 0.375 μΜ、表皮葡萄球菌ep/i/erm/ifo) 0.075 μΜ ;而其最小 殺菌濃度(MBC)分別為 0.15 μΜ、0.225 μΜ、0.375 μΜ、0.45 μΜ、0.3 μΜ、 0.675 μΜ、0.525 μΜ。 表一龍膽石斑抗微生物胜肽(AMP)對不同病源菌之最小抑菌濃度(MIC)與 最小殺菌濃度(MBC)值 菌種 最小抑菌濃度(MIC) 最小殺菌濃度(MBC) 葛蘭氏陰性菌 產氣單胞菌 {Aeromonas hydrophila) 0.375 μΜ 0.675 μΜ 鰻弧菌 {Vibrio an^uillarum) 0.15 μΜ 0.45 μΜ Ιέ弧菌 (Vibrio salmonicida) 0.15 μΜ 0.30 μΜ 哈威氏弧菌 (Vibrio harveyi) 0.15 μΜ 0.225 μΜ 溶澡弧菌 (Vibrio al^inolyticus) 0.15 μΜ 0.375 μΜ 大腸桿菌 {Escherichia coli DH5a) 0.075 μΜ 0.15 μΜ 葛蘭氏陽性菌 表皮葡萄球菌 (Staphylococcus epidermidis) 0.075 μΜ 0.525 μΜ 24 1316944 由本實施例結果可知,本發明之抗微生物胜肽可殺死葛蘭氏陽性菌與 葛蘭氏陰性菌’對不同微生物均有殺®與抑g效果,因此,本發明之抗微 生物胜肽亦能作為廣效性殺菌劑或防腐劑。 實施例9抗微生物胜肽(AMp)對石斑魚之保護作用 將龍膽石斑魚分成四組’分別注射pBS (對照組)、弧菌(巧扣^ , /農度為Ixio cfb/fish)、抗微生物胜肽cecr0pin (濃度為i _/flsh)+弧菌(濃 度為lxlO6 cfb/fish )、本發明之抗微生物胜肽(gAMP,濃度為丨pM/fish) + 弧菌(濃度為lxl06ciWflsh),經24、48、72小時後,觀察各組之死亡率, 結果如圖十二所示,注射PBS組(對照組)在72小時後死亡率為〇% ;注射 弧菌組在72小時後死亡率為100% ;注射抗微生物胜肽cecr〇pin+弧菌組在 72小時後死亡率為80% ;注射本發明之抗微生物胜肽(gAMp) +弧菌在72 小時後死亡率為60% ;此實驗僅注射各種AMP 一次,由結果顯示’注射本 發明之抗微生物胜肽(gAMP)已可顯著降低龍膽石斑魚40%的死亡率,可見 本發明之抗微生物胜肽(gAMP)已達到對魚隻提供保護作用之功效。 由注射本發明之抗微生物胜肽(AMP)對抗病力的影響試驗可直接證 明’當應用本發明之抗微生物胜肽(AMP)時,確實會增加石斑魚的抗病力。 由於AMP具有廣效性殺菌能力’故使用本發明之抗微生物胜肽(AMp)可對 動物提供保護,提高其抗病能力,該動物應不限制在水產動物,亦包括畜 產動物及人類。 實施例10浸泡中草藥後龍膽石斑抗微生物胜肽(AMP)基因表現情形之分 析 將龍膽石斑魚分成四組,分別為純海水沒放置任何中藥的對照組,與 各含有50 ppm的板藍根(/似怡加<%如·α〇、黃耆⑷約职丨舫_册如α膽;;e ⑽)、甘草加wra/emzi)之海水的處理組;以強烈打氣使中藥均勻的 混何在30公升水體中,浸泡24小時後,使用150ppm的MS-222 (Ethyl 25 1316944 S-amino-benzoatemethanesulfonatesolt),讓魚麻醉降低刺激;分別取鰓絲、 頭腎、脾臟、腦、血液、肝、皮膚等組織,利用™Ζ〇ΐ咖明加萃取_ , 保存於-8(TC冰箱’以進行即時定量聚合酶連鎖反應細“咖啊制代 PCR)分析AMP基因表現模式。 如圖十三所示,浸泡黃耆之處理組,其灰液中AMp基因的表現具有顯 著的差異(ρ<0.〇5);由於黃耆具有崎性干擾素誘導作用,能增強細胞產生22 1316944 The genital plague system of the gentian grouper makes the gentian grouper susceptible to infection or onset by pathogens, making gentian grouper less susceptible to bacterial and viral infections. Fish immunization urgency includes: changes in salinity, temperature changes, insufficient dissolved oxygen, chemical pollution, etc., causing many physiological changes in the fish's response to the environment. When the environment is urgent, the physiology, appearance, tissues and cells of the fish will produce an immune response (Bart〇n Blanchard, 2001). The results of this example are further confirmed by changing the salinity of the culture environment. The amount of performance further enhances the ability of anti-viral and anti-bacterial infections of gentian grouper; this concept can be applied to aquaculture to improve the immunity and disease resistance of fish, and to reduce the mortality rate of death and death. With the purpose of production and so on. Example 8 In vitro susceptibility test of chemically synthesized grouper antimicrobial peptide to each pathogen The antibacterial peptide was synthesized by Coroine International Technology Co., Ltd., and the purity was tested by high performance liquid chromatography (HPLC). Purity of more than 90%; • Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) test for bacteria using the synthetic antimicrobial peptide. 8.1 Preparation of bacterial solution ❿ Escherichia c〇li mi5a, Vibrio harveyi, Vibrio alginofyticus, Vibrio anguilhrum, Vibrid Salmonicida), 轰气^ A 岚 岚 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A ), after 16 hours 37. (: After culture, scrape the colony and dissolve it in the designated culture solution, so that OD54 is 1 (concentration is about 1X109), and 500μ1 of bacteria is added to 5〇〇μ1 of LB or TSB (+1.5% NaCl). The liquid concentration is ΐχ108 bacteria/πύ. 8.2 Susceptibility test Using 96-well culture alone, add 130 μM of bacteria solution to each groove. The concentration of the bacteria solution is lxl〇8 bacteria 23 1316944 number/m b in the addition of 20μ1 Different concentrations (0.075 μΜ-0.675 μΜ) of chemically synthesized gentian sarcophagus antimicrobial peptide, cultured at 37 ° C for 16 hours, observed the lowest antimicrobial peptide concentration of clarified bacterial liquid without bacterial growth, this is Minimum inhibitory concentration (MIC); a group of clarified bacterial liquids will be presented, and the complete bacterial solution will be applied to culture on LBA (£· co/z· DH5a) or TSA (+1.5% NaCl;) After incubation at 37 ° C for an hour, the minimum bactericidal concentration (MBC) was observed for the colonies, and each experiment group had three replicates and a control group. The test results are shown in Table 1. The minimum inhibitory concentration (MIC) of the seven strains were respectively For: E. coli cc»" DH5a) 0.075 μΜ, Vibrio harveyi 0.15 μΜ ' Bathing fox fungus (ί^· π·ο 0_15 μΜ,, Vibrio anguillarum (Ρ%η_ο 0.15 μΜ, Vibrio cholerae (volume η·ο sa/wom'c/iia) 0_ 15 μΜ, Aeromonas aeruginosa (Jero inflation y / y; Ορ/π./α) 0.375 μΜ, Staphylococcus epidermidis ep/i/erm/ifo) 0.075 μΜ; and the minimum bactericidal concentration (MBC) is 0.15 μΜ, 0.225 μΜ, 0.375 μΜ, 0.45 μΜ, 0.3 μΜ, 0.675 μΜ, 0.525 μΜ. Table 1 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gentian plaque antimicrobial peptide (AMP) for different pathogenic bacteria Minimum bacteriostatic concentration (MIC) Minimum sterilization Concentration (MBC) Gram-negative bacteria Aeromonas hydrophila 0.375 μΜ 0.675 μΜ Vibrio an^uillarum 0.15 μΜ 0.45 μΜ Vibrio salmonicida 0.15 μΜ 0.30 μΜ Harvey's arc Vibrio harveyi 0.15 μΜ 0.225 μΜ Vibrio al^inolyticus 0.15 μΜ 0.375 μΜ Escherichia coli DH5a 0.075 μΜ 0.15 μΜ Gram-positive Staphylococcus epidermidis 0.075 μΜ 0.525 μΜ 24 1316944 The results of this embodiment can be The antimicrobial peptide of the present invention can kill the Gram-positive bacteria and the Gram-negative bacteria, and has the effect of killing and inhibiting g to different microorganisms. Therefore, the antimicrobial peptide of the present invention can also be used as a broad-spectrum effect. Bactericide or preservative. Example 9 Protective effect of antimicrobial peptide (AMp) on grouper The gentian grouper was divided into four groups 'injected pBS (control group), Vibrio (technical), /Ixio cfb/fish, and antimicrobial The peptide cecr0pin (concentration i _/flsh) + Vibrio (concentration lxlO6 cfb/fish), the antimicrobial peptide of the invention (gAMP, concentration 丨pM/fish) + Vibrio (concentration lxl06ciWflsh), After 24, 48, and 72 hours, the mortality of each group was observed. The results are shown in Fig. 12. The mortality rate was 〇% after 72 hours in the PBS group (control group) and 72 hours after the injection in the Vibrio group. 100%; the injection of the antimicrobial peptide cecr〇pin+Vibrio group had a mortality rate of 80% after 72 hours; the injection of the antimicrobial peptide (gAMp) + Vibrio of the present invention had a mortality rate of 60% after 72 hours; The experiment only injected various AMPs once, and the results showed that 'injection of the anti-microbial peptide (gAMP) of the present invention can significantly reduce the mortality of gentian grouper 40%, and it can be seen that the anti-microbial peptide (gAMP) of the present invention has reached the fish. Only provide protection. The test for the effect of injecting the antimicrobial peptide (AMP) of the present invention against virulence can directly prove that the use of the antimicrobial peptide (AMP) of the present invention does increase the resistance of the grouper. Since the AMP has a broad-spectrum bactericidal ability, the use of the antimicrobial peptide (AMp) of the present invention can protect animals and improve their disease resistance. The animal should not be restricted to aquatic animals, but also livestock animals and humans. Example 10 Analysis of the performance of the gentian grouper anti-microbial peptide (AMP) gene after immersing the Chinese herbal medicine The gentian grouper was divided into four groups, which were respectively a control group in which no Chinese medicine was placed in pure sea water, and each contained 50 ppm of radix isatidis ( / Like Yi Jia <% such as α〇, 黄耆 (4) about the job _ _ such as α biliary;; e (10)), licorice plus wra / emzi) seawater treatment group; with strong air to make the Chinese medicine evenly mixed In 30 liters of water, after soaking for 24 hours, use 150ppm of MS-222 (Ethyl 25 1316944 S-amino-benzoatemethanesulfonatesolt) to reduce the stimulation of fish anesthesia; take silk, head kidney, spleen, brain, blood, liver, Tissues such as skin, using TM Ζ〇ΐ 明 加 加 加 加 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , It is shown that the treatment of the soaked Astragalus membranaceus has a significant difference in the expression of AMp gene in the gray liquor (ρ<0.〇5); it can enhance cell production due to the induction of scutellaria interferon.

干擾素能力(段,2〇〇5)。另外在老鼠研究中,利用黃耆萃取物中的皂素成分 中含有cydoastmgenol與cyd〇galegenin,可以增加免疫球蛋白(lgG)的能力 (Yangd虬,2005)。本實施例結果顯示黃耆對動物(包括水產動物)具有顯著 的免疫調節功能’包括非特異性免疫,且能誘導產生干擾素,是—個很強 的生物調節劑,對臨床疾病是一種很有效用的藥物。 本發明所提供之-種抗微生物驗,與其㈣賴術相互比較時,更 具有下列之優點: 1.由上述s兒明及貫施例可知,本發明之抗微生物胜肽基因在免疫系統 的表現情形、抗微生物紐殺紐贿濃度、物理因子(鹽度)、免疫刺激物 (polyl.C及LPS)、中草藥等分析,均證實本發明之抗微生物胜肽基因表現 和石斑魚的免疫力成正相關,該抗微生物胜肽(AMp) mRNA表現量上升 時’石斑魚的抗病能力亦上升;在注射本發明之抗微生物胜肽(AMp)對抗病 力的影響上,更直接證明當使用本發明之抗微生物胜肽(AMp)時,確實會增 加石斑魚的抗病力。 2.由本發明之抗微生物胜肽(AMp)之特殊化學結構,可得知該抗微生 物胜肽(AMP)無生物細賊作贱力,顯示此抗微生物胜肽具有特殊殺菌 用b力且對彳政生物知_菌能力具非特定性(n〇n_specific)與廣效性;因此,本發 明所提供之抗微生物胜肽(AMp),確實具有抗菌、抗病的功能。 上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例 26 1316944 並非用以_本發明之專利範圍,凡未脫離本發明技_神所為之等效實 施或變更,均應包含於本案之專利範圍中。 綜上所述,本案不但為一新穎之抗微生物胜肽,並具有上述多項功效, 應已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇 請貴局核准本件發明專利申請案,以勵發明,至感德便。 【圖式簡單說明】 - 圖一為龍膽石斑抗微生物胜肽基因全長之cDNA序列。總共494核苷 , 酸組成,包含92個核苷酸所組成的5端未轉譯區(5, UTR)、204核苷酸所 • 組成的轉譯區域(codinS region)及198核苷酸所組成的3端未轉譯區域(3, UTR)。起始密碼(startcocjon)ATG以粗體表示,終止密碼(st〇pc〇d〇n)TGA 以星號(*)表示。轉譯區域推測可以轉譯成67胺基酸,其中包含訊息胜肽 (signal peptide)22個胺基酸(以底線標示),成熟胜狀(mature peptide)25個胺 - 基酸(以方框標示),以及prodomain 20個胺基酸(以波浪底線標示)。 i 圖二為重組抗微生物胜肽(recombination AMP,rAMP)蛋白質之 SDS_PAGE電泳圖。利用15%之SDS-PAGE檢視誘發結果;箭號表示rAMP。 圖二為各物種抗微生物胜肽胺基酸序列比對(alignment)。龍膽石斑 φ (Epinephehs lanceohtus),點帶石職Epirjephehs coioides),鉍嘴mjSiniperca —’),歐洲狼鱸幻知似),金眼狼鱸^少奶辦),斑 紋鱸魚(Moro«e 油7的’比目魚洲ec如膽⑽s),庸鲽 - (Hippoglossus hippoglossus) ’ 大西許後魚辕人Hipp0gi〇ssuspiatess〇ides)。 , 圖四為龍膽石斑抗微生物胜肽3D立體結構。係使用 protein structure modelling分子模擬龍膽石斑抗菌肽3D結構圖,含有訊號胜肽、成熟胜肽、 prodomain ° 圖五為邊膽石斑AMP成熟胜肽扣扯切^ peptide)疏水性(hydrophobic)及 親水性區域(hydrophilic)之預測。以 Kyte-Doolittle hydropathy plots 程式分析 27 1316944 ’ amp成熟胜肽的極性區域。 圖六為AMP基因在龍膽石斑各組織之表現情形。分別取龍膽石斑之 腦、心臟、肝臟、脾臟、腸、胃、肌肉、血液、總絲、眼睛、頭腎、皮膚 及鳍組織以即時定量聚合酶連鎖反應(real_time quantitative RT_pcR)分析抗 微生物胜肽基因在各組織表現之模式。 圖七為在不同濃度poly I:C處理下對龍膽石斑各組織的AMP基因表現 之影響。每隻魚注射濃度分別為0 pg/g BW(對照組)、1 pg/g BW、2 pg/gInterferon capacity (segment, 2〇〇5). In addition, in the mouse study, the saponin component of the astragalus extract contains cydoastmgenol and cyd〇galegenin, which can increase the ability of immunoglobulin (lgG) (Yangd虬, 2005). The results of this example show that Astragalus membranaceus has significant immunoregulatory functions in animals (including aquatic animals), including non-specific immunity, and can induce the production of interferon, which is a strong biological regulator, which is very clinically ill. Effective drugs. The anti-microbial assay provided by the present invention has the following advantages when compared with (4) Lai Sui: 1. The anti-microbial peptide gene of the present invention is in the immune system as described above. Analysis of performance, antibiotic resistance, physical factor (salt), immunostimulant (polyl.C and LPS), Chinese herbal medicine, etc., all confirmed that the antimicrobial peptide gene expression of the present invention and the immunity of grouper were positive. Relatedly, when the amount of the antimicrobial peptide (AMp) mRNA is increased, the resistance of the grouper is also increased; and the effect of injecting the antimicrobial peptide (AMp) of the present invention against the disease force is more directly proved when using the present The invention of the antimicrobial peptide (AMp) does increase the resistance of groupers. 2. From the special chemical structure of the antimicrobial peptide (AMp) of the present invention, it can be known that the antimicrobial peptide (AMP) has no biological thief as a force, indicating that the antimicrobial peptide has a special sterilization force and confrontation The biological ability of the bacterium is non-specific (n〇n_specific) and broad-spectrum; therefore, the antimicrobial peptide (AMp) provided by the present invention does have an antibacterial and disease-resistant function. The detailed description above is a detailed description of one of the possible embodiments of the present invention, but the embodiment 26 1316944 is not intended to be used in the scope of the invention. It should be included in the patent scope of this case. In summary, this case is not only a novel anti-microbial peptide, but also has many of the above-mentioned effects. It should have fully complied with the statutory invention patent requirements of novelty and progressiveness, and apply for it according to law. You are requested to approve the patent application for this invention. The case, in order to invent, to the sense of virtue. [Simple description of the schema] - Figure 1 shows the full-length cDNA sequence of the gentian grouper antimicrobial peptide gene. A total of 494 nucleosides, an acid composition consisting of a 5-terminal untranslated region (5, UTR) consisting of 92 nucleotides, a translational region consisting of 204 nucleotides (codinS region) and 198 nucleotides. 3-terminal untranslated area (3, UTR). The start code (startcocjon) ATG is shown in bold, and the stop code (st〇pc〇d〇n) TGA is indicated by an asterisk (*). The translational region is presumably translated into 67 amino acids, which contain 22 amino acids of the signal peptide (marked by the bottom line) and 25 amino acids of the mature peptide (marked by the box). And prodomain 20 amino acids (marked by wavy bottom lines). i Figure 2 shows the SDS_PAGE electrophoresis pattern of recombinant antibiotic AMP (rAMP) protein. The evoked results were examined using a 15% SDS-PAGE; the arrows indicate rAMP. Figure 2 shows the alignment of the antimicrobial peptide amino acid sequences of each species. Epinephehs lanceohtus, Epirjephehs coioides, grinning mjSiniperca —'), European wolf owls, golden eyes, squid, and squid (Moro«e oil) 7's 'Bigfish Island ec such as gallbladder (10) s), mere- (Hippoglossus hippoglossus) 'Daxi Xu Hou fisherman Hipp0gi〇ssuspiatess〇ides). Figure 4 shows the 3D structure of the gentian grouper antimicrobial peptide. The protein structure modelling molecule is used to simulate the 3D structure diagram of gentian grouping antibacterial peptide, which contains signal peptide, mature peptide, prodomain °. Figure 5 is the edge of biliary plaque AMP mature peptide to pull the ^ peptide) hydrophobic (hydrophobic) And prediction of hydrophilicity. The polar regions of the 27 1316944 'amp mature peptide were analyzed by the Kyte-Doolittle hydropathy plots program. Figure 6 shows the performance of the AMP gene in various tissues of gentian grouper. Analyze the antimicrobial, real-time quantitative RT-pcR for brain, heart, liver, spleen, intestine, stomach, muscle, blood, total silk, eyes, head kidney, skin and fin tissue of gentian grouper The pattern of peptide gene expression in various tissues. Figure 7 shows the effect of AMP gene expression on various tissues of gentian grouper at different concentrations of poly I:C. The injection concentration of each fish was 0 pg/g BW (control group), 1 pg/g BW, 2 pg/g

r BW、5 pg/g BW之p〇iyI:c;龍膽石斑處理24小時後取頭腎、腦、脾臟、 Φ 肝臟、血液和總絲之total RNA ’利用即時定量聚合酶連鎖反應分析AMP 基因mRNA表現之影響,並以Duncan,s Multiple Range孔钉統計分析a、b、 c表示有顯著差異(^<U〇5);實驗數據以平均值±SD表示。 圖八為在不同時間點poly I:c處理下對龍膽石斑各組織的AMp基因表 - 現之衫響。母隻魚注射濃度為2pg/g BW的poly I:C處理後,分別在12小 …時、24小時、48小時、72小時取龍膽石斑頭腎、腦、脾臟、肝臟、血液、 皮膚和麟之total RNA,湘即時定量聚合酶連鎖反應分析AMp基因 mRNA表現量’並以Duncan,s Multiple Range 丁城統計分析&、b、c表示 φ 有顯著差異(Ρ<0·〇5),實驗數據以平均值土SD表示。 九為在不1¾濃度免賴導物LPS處理下雌膽紐各㈣的AMp 基因表現之影響。每隻魚注射LPS的濃度分別為〇_BW(對照組 - 請、1〇 pg/g BW、15 ug/g BW,24小時後取龍膽石斑頭腎、腦、脾臟、肝 ,臟、血液和總絲之她! RNA,利用即時定量聚合酶連鎖反應分析AMp基 因mRNA表現之影響,並以Dunca心刚_尺奪如統計分析a、^、 c、d表示有顯著差異(ρ <0·05),實驗數據以平均值±sd表示。 圖十為林同時間點免疫鱗物LPS處理下對龍膽顧各组織的A· 基因表現之影響。每隻魚注射LPS的濃度為15 _聽,於處理後%小 28 1316944 aagagctgca agacctggac caacgtgcct ttgaacgaga gaaagctttt gcctgagtcc 300 atgatagcct agtgaaggag ccactcattg ttaacacaaa aagaaaaagt ttttgttttt 360 gagtatagga agtattggtt caattgggta accaaaatat tttacactga tctaattgat 420 tttggaaaaa tgttagttat ttgaaataaa tctggaatct gtgttacaca caaaaaaaaa 480 aaaaaaaaaa aaaa 494 <210> 3 <211> 21 <212> DNA <213>人工序列 <220> <223> PCR引子,正向AMP引子 <400> 3 atgaggtgca tcgccctctt t 21 <210> 4 <211> 21 <212> DNA <213>人工序列 <220> <223〉PCR引子,反向AMP引子 <400> 4 tcaggcaaaa gctttctctc g 21r BW, 5 pg/g BW p〇iyI:c; gentian plaque treatment 24 hours after taking the kidney, brain, spleen, Φ liver, blood and total silk total RNA' using real-time quantitative polymerase chain reaction analysis The effect of AMP gene mRNA expression was statistically analyzed by Duncan, s Multiple Range. A, b, c showed significant differences (^ < U 〇 5); experimental data are expressed as mean ± SD. Figure 8 shows the AMp gene expression for each tissue of gentian grouper at different time points under poly I:c treatment. After the female fish was injected with poly I:C at a concentration of 2 pg/g BW, the gentian zebra head kidney, brain, spleen, liver, blood, and skin were taken at 12 hours, 24 hours, 48 hours, and 72 hours, respectively. And Lin's total RNA, Xiang instant quantitative polymerase chain reaction analysis of AMp gene mRNA expression 'and Duncan, s Multiple Range Dingcheng statistical analysis &, b, c indicates that φ is significantly different (Ρ <0·〇5) The experimental data is represented by the mean soil SD. Nine is the effect of AMp gene expression in female bilirubin (4) under the treatment of LPS without concentration. The concentration of LPS injected into each fish was 〇_BW (control group - please, 1 〇pg/g BW, 15 ug/g BW, 24 hours after taking gentian zebra head kidney, brain, spleen, liver, dirty, Blood and total silk of her! RNA, using the real-time quantitative polymerase chain reaction to analyze the effect of AMp gene mRNA expression, and the Dunca heart-like stalk as statistical analysis a, ^, c, d indicates significant difference (ρ < 0·05), the experimental data is expressed as mean ± sd. Figure 10 shows the effect of LPS treatment on the A· gene expression of each tissue of the gentian. 15 _ listening to the processed% less 28 1316944 aagagctgca agacctggac caacgtgcct ttgaacgaga gaaagctttt gcctgagtcc 300 atgatagcct agtgaaggag ccactcattg ttaacacaaa aagaaaaagt ttttgttttt 360 gagtatagga agtattggtt caattgggta accaaaatat tttacactga tctaattgat 420 tttggaaaaa tgttagttat ttgaaataaa tctggaatct gtgttacaca caaaaaaaaa 480 aaaaaaaaaa aaaa 494 < 210 > 3 < 211 & gt 21 <212> DNA <213>Artificial sequence<220><223> PCR primer, forward AMP primer <400> 3 atgaggtg Ca tcgccctctt t 21 <210> 4 <211> 21 <212> DNA <213> artificial sequence <220><223> PCR primer, reverse AMP primer <400> 4 tcaggcaaaa gctttctctc g 21

<210> 5 <211> 22 <212> PRT <213> 龍膽石斑(Epinephelus lanceolatus) <400> 5<210> 5 <211> 22 <212> PRT <213> Epinephelus lanceolatus <400> 5

Met Arg Cys lie Ala Leu Phe Leu Val Leu Ser Leu Val Val Leu Met 1 5 10 15Met Arg Cys lie Ala Leu Phe Leu Val Leu Ser Leu Val Val Leu Met 1 5 10 15

Ala Glu Pro Gly Glu Gly 20 2 15 1316944 <223> PCR 引子,real-time quantitative PCR AMP 專一性弓| 子 A4 <400> 9 caaaggcacgt tggtc 4Ala Glu Pro Gly Glu Gly 20 2 15 1316944 <223> PCR primer, real-time quantitative PCR AMP specificity bow | sub A4 <400> 9 caaaggcacgt tggtc 4

Claims (1)

:1316944 : 十、申請專利範圍: 1. 一種單離自龍膽石斑之抗微生物胜肽,具有一如序列表SEQ ID NO: 1 所示之胜肽序列’係用以抑菌及殺菌,該菌係包含大腸桿菌 coliDH5a)、哈咸氏弧菌(Vibrio harveyi)、溶澡弧菌(fibrio aigino㈣cus)、 龜孤菌(Vibrio cmguillarum)、鮭弧菌(Vibrio sabnonicida)、轰 I單胞儀 [Aeromonas hydrophila)、表皮氧萄琢菌(Staphylococcus epidermidis)。 2. —種單離自龍膽石斑之核苷酸片段,具有如序列表SEQ ID NO:2所示之 核苷酸序列,係為用以編碼如申請專利範圍第1項所述之抗微生物胜肽 的核苷酸片段。 3. —種醫藥組合物,包含: 一藥學有效量之胜肽片段’該胜肽片段具有如序列表SEQIDN〇: J所示 之胺基酸序列;以及 一藥學上可接受之載劑。 4. 如申請專利範圍第3項所述之醫藥組合物,其中該醫藥組合物之形式可 為包埋物、浸泡液、飼料、飼料添加物、口服液、注射疫苗、貼片、粉 末、鍵劑、.注射液體、懸浮液、外用液、滴劑、擦劑、塗劑、乳霜、油 膏、軟膏、糊狀劑、膠以及凝膠。 5. 如申請專利範圍第3項所述之醫藥組合物,其中該載劑可為賦形劑、稀 釋劑、增稠劑、填充劑、結合劑、崩解劑、潤滑劑、油脂或非油脂的基 劑、介面活性劑、懸浮劑、膠凝劑、輔助劑、防腐劑、抗氧化劑、穩定 劑、著色劑、香料。 6. 如申請專利制第5項所述之醫藥組合物,其中該爾劑包含但不限於 甘油及油類。_ 7. 如申請專利範圍第6項所述之醫藥組合物,其中該油類包含但不限於花 生油及蓖麻油。 1316944 ρ 月7修正替換頁 8·如申請專利範圍第5項所述之醫藥組合物,其中該基劑包含碳氫化合 物’該碳氫化合物包含但不限於硬錢、軟石犧、石堪油、甘油、蜂壤、 金屬息m羊毛脂及其衍生物、脂賊或其組合物。 如申叫專概圍第8項所述之醫藥組合物,其中該天然、油包含但不限於 杏仁油、玉米油、花生油、祕油或撖禮油。 1〇·如申請專利範圍第8項所述之醫藥組合物,其中該脂肪酸包含但不限於 硬脂酸或油酸。 申4專概圍第5項所述n组合物,其巾齡面活_包括陰離 子介面活性劑、陽離子介面活性劑、非離子介面活性劑,該介面活性劑 包含但不限於山梨醇酐醋、聚氧化乙埽及其衍生物、聚羧乙埽及精生 物。 12. 如申請補範M u項所述之㈣組合物,其中該聚氧化乙稀之衍生物 包含但不限於聚氧化乙烯脂肪酸酯。 13. 如申請專利朗第u項所述之醫藥組合物,其中該絲乙狀衍生物含 但不限於卡伯漢樹脂(carbopol)。 如申請專利範圍第5項所述之醫藥組合物,其中該懸浮劑包含但不限於 天然樹醋、纖維素魅物無機物f、聚乙二醇54()、聚乙二醇侧及丙 衍生物無機物 15.如申請專利範圍第14項所述之醫藥組合物,其_該纖維素 質包含但不限於siIicace〇us s出cas。 】6.如申請專利範圍第5項所述之醫藥組合物,其_該膠凝劑包含任何用於 樂學上形鱗_騎劑,該職含但繩於齡素衍生物、乙稀 基聚合物、聚幾乙烯衍生物、果膠、膠類。 Π.如申請專利細第%項賴之醫齡合物,射_較触物包含但 不限於f基纖維素、絲乙基纖維素以及卿基纖維素。 J316944 18.如申請專利範圍第16項所述之醫藥組合物,其中該乙烯基聚合物包含但 不限於聚乙稀醇、olyvinylpyrrolidones。 19_如申請專利範圍第16項所述之醫藥組合物,其中該聚羧乙烯衍生物包含 但不限於卡伯漢樹脂(carbopol)。 20. 如申請專利範圍第16項所述之醫藥組合物,其中該膠類包含但不限於阿 拉伯樹膠、黃蓍膝、丨桌膠、壤脂、明膠以及carrageenates。 21. 如申請專利範圍第3項所述之醫藥組合物,其中該醫藥組合物係以口 服、浸泡、注射、塗抹或貼片的方式投予至人體及動物體内。 22. 如申請專利範圍第21項所述之醫藥組合物,其中該動物為畜產動物。 23_如申請專利範圍第22項所述之醫藥組合物,其中該畜產動物係選自牛、 羊、雞、豬以及其所組成的群組。 24.如申請專利範圍第21項所述之醫藥組合物,其中該動物為水生動物。 25_如申請專利範圍第24項所述之醫藥組合物,其中該水生動物為魚類。 26. 如申請專利範圍第25項所述之醫藥組合物,其中該魚類為養殖魚類。 27. 如申請專利範園第26項所述之醫藥組合物,其中該養殖魚類係選自石斑 魚、海嫌、網魚、比目魚、鞋:魚、缚魚、餘魚、缠魚、金魚、吳郭魚、 斑馬魚以及其所組成的群組。 28. —種用以篩選能增加龍膽石斑免疫力之免疫誘導劑(immune eiicit〇rs)的 方法,包含: 步驟一將所欲篩選之免疫誘導劑與一飼料混合,藉以獲得一混合物; 步驟二對一龍膽石斑口服投予該混合物,亦可使用浸泡方式投予該混合 物; 步驟三檢測該龍膽石斑體内如序列表SEQ ID NO: 1所示之胜肽片段的 表現量;以及 步驟四以該胜肽片段的表現量高低來判斷該免疫誘導劑對該龍膽石斑 1316944:1316944 : X. Patent application scope: 1. An antimicrobial peptide isolated from gentian grouper, having a peptide sequence as shown in SEQ ID NO: 1 of the Sequence Listing for bacteriostatic and bactericidal, This strain contains Escherichia coli Dli5H), Vibrio harveyi, fibrio aigino (cus), Vibrio cmguillarum, Vibrio sabnonicida, and I. Aeromonas hydrophila), Staphylococcus epidermidis. 2. A nucleotide fragment isolated from a gentian group, having a nucleotide sequence as shown in SEQ ID NO: 2 of the Sequence Listing, for encoding an antibody as described in claim 1 A nucleotide fragment of a microbial peptide. 3. A pharmaceutical composition comprising: a pharmaceutically effective amount of a peptide fragment' wherein the peptide fragment has an amino acid sequence as set forth in SEQ ID NO: J of the Sequence Listing; and a pharmaceutically acceptable carrier. 4. The pharmaceutical composition according to claim 3, wherein the pharmaceutical composition can be in the form of an embedding, a soaking liquid, a feed, a feed additive, an oral liquid, an injection vaccine, a patch, a powder, a key. Agents, injection liquids, suspensions, external solutions, drops, liniments, paints, creams, ointments, ointments, pastes, gels, and gels. 5. The pharmaceutical composition according to claim 3, wherein the carrier is an excipient, a diluent, a thickener, a filler, a binder, a disintegrant, a lubricant, a grease or a non-fat. Bases, surfactants, suspending agents, gelling agents, adjuvants, preservatives, antioxidants, stabilizers, colorants, perfumes. 6. The pharmaceutical composition of claim 5, wherein the agent comprises, but is not limited to, glycerin and oil. 7. The pharmaceutical composition of claim 6, wherein the oil comprises, but is not limited to, flower oil and castor oil. The pharmaceutical composition of claim 5, wherein the base comprises a hydrocarbon, and the hydrocarbon includes, but is not limited to, hard money, soft stone sacrifice, stone oil, Glycerin, bee soil, metal lanolin and its derivatives, lipid thieves or combinations thereof. The pharmaceutical composition according to Item 8, wherein the natural and oily oils include, but are not limited to, almond oil, corn oil, peanut oil, secret oil or eucalyptus oil. The pharmaceutical composition of claim 8, wherein the fatty acid comprises, but is not limited to, stearic acid or oleic acid. The n composition of the fifth aspect of the invention is characterized in that it comprises an anionic surfactant, a cationic surfactant, a nonionic surfactant, and the surfactant comprises, but is not limited to, sorbitol vinegar. Polyoxyethylene oxime and its derivatives, carbamazepine and spermatozoa. 12. The composition of claim 4, wherein the derivative of the polyoxyethylene includes, but is not limited to, a polyoxyethylene fatty acid ester. 13. The pharmaceutical composition of claim 5, wherein the silk sigmoid derivative comprises, but is not limited to, carbopol. The pharmaceutical composition according to claim 5, wherein the suspending agent comprises, but is not limited to, natural tree vinegar, cellulose fragrant inorganic substance f, polyethylene glycol 54 (), polyethylene glycol side and propylene derivative Inorganic substance 15. The pharmaceutical composition according to claim 14, wherein the cellulosic material comprises, but is not limited to, siIicace〇us s out of cas. 6. The pharmaceutical composition according to claim 5, wherein the gelling agent comprises any of the formulas for the use of a squamous scale-eating agent, the Polymer, polyethylene derivative, pectin, gum.如. For example, the application of the patented 5% of the medicinal composition of the medicinal compound includes, but is not limited to, f-based cellulose, silk ethyl cellulose, and succinyl cellulose. The pharmaceutical composition of claim 16, wherein the vinyl polymer comprises, but is not limited to, polyethylene glycol, olyvinylpyrrolidones. The pharmaceutical composition according to claim 16, wherein the carboxyvinyl derivative comprises, but is not limited to, carbopol. 20. The pharmaceutical composition of claim 16, wherein the gum comprises, but is not limited to, gum arabic, scutellaria, sputum, loam, gelatin, and carrageenates. 21. The pharmaceutical composition according to claim 3, wherein the pharmaceutical composition is administered to humans and animals by oral, soaking, injecting, smearing or patching. 22. The pharmaceutical composition of claim 21, wherein the animal is a livestock animal. The pharmaceutical composition according to claim 22, wherein the animal animal is selected from the group consisting of cattle, sheep, chicken, pig, and a group thereof. 24. The pharmaceutical composition of claim 21, wherein the animal is an aquatic animal. The pharmaceutical composition according to claim 24, wherein the aquatic animal is a fish. 26. The pharmaceutical composition of claim 25, wherein the fish is a farmed fish. 27. The pharmaceutical composition according to claim 26, wherein the farmed fish is selected from the grouper, the sea, the net fish, the flounder, the shoes: the fish, the fish, the fish, the fish, the goldfish, the Wu Guo fish, zebrafish and their group. 28. A method for screening an immune inducer (immune eiicit〇rs) capable of increasing gentian plaque immunity, comprising: step 1 mixing an immune inducer to be screened with a feed to obtain a mixture; Step 2: Oral administration of the mixture to a gentian grouper, and the mixture may be administered by soaking; Step 3: detecting the performance of the peptide fragment as shown in SEQ ID NO: 1 of the sequence table in the gentian group And the fourth step is to judge the immune inducer to the gentian grouper 1316944 by the amount of the peptide fragment 殺菌反抑菌的影響,該菌包含X腸桿菌(Escherichia coH DH5a)、哈威氏弧菌(松、溶澡弧菌 alginolyticus)、緣弧菌(Vibrio anguiHarum)、能孤菌(Vibrio salmonicida)、轰氣^ 隼跑菌(Aeromonas hydrophila) ' 表反葡萄珠 谨(Staphylococcus epidermidis)。 29_如申請專利範圍第28項所述之用以篩選能增加龍膽石斑免疫力之免疫 誘導劑的方法,其中該步驟三中,該胜肽片段之檢測方法可為但不限於 膠體電泳'西方墨點法、免疫反應法。 30·如申請專利範圍第28項所述之用以篩選能增加龍膽石斑免疫力之免疫 誘導劑的方法,其中該步驟三中’該胜肽片段的表現量亦可藉由檢測能 編碼該胜肽片段之mRNA的表現量來判定,該mRNA的序列如由序列 表SEQ ID NO: 2所示之核苷酸序列所轉錄而成的序列。 31.如申請專利範圍第30項所述之用以篩選能增加龍膽石斑免疫力之免疫 誘導劑的方法,其中該mRNA表現量的檢測法可為但不限於北方墨點 法、聚合酶連鎖反應、原位雜交法。 1316944 _________ * ’牌修正替換貧The effect of bactericidal antibacterial activity includes Enterobacter aeruginosa (Escherichia coH DH5a), Vibrio cholerae (P. serrata, Alginolyticus), Vibrio angui Harum, Vibrio salmonicida, Aeromonas hydrophila 'Staphylococcus epidermidis. 29_ The method for screening for an immune inducing agent capable of increasing the immunity of gentian grouping, as described in claim 28, wherein in the third step, the method for detecting the peptide fragment is, but not limited to, colloidal electrophoresis 'Western ink point method, immune response method. 30. The method for screening for an immune inducing agent capable of increasing the immunity of gentian grouping according to claim 28, wherein the amount of the peptide fragment in the step 3 can also be encoded by detection. The expression amount of the mRNA of the peptide fragment is determined by the sequence transcribed from the nucleotide sequence shown in SEQ ID NO: 2 of the Sequence Listing. 31. A method for screening for an immune-inducing agent capable of increasing the immunity of gentian plaque as described in claim 30, wherein the method for detecting the amount of mRNA expression is, but not limited to, northern blotting, polymerase Chain reaction, in situ hybridization. 1316944 _________ * ’ card correction replacement poverty 圖十四Figure 14
TW95130745A 2006-08-22 2006-08-22 An anti-microorganism peptide TW200811196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95130745A TW200811196A (en) 2006-08-22 2006-08-22 An anti-microorganism peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95130745A TW200811196A (en) 2006-08-22 2006-08-22 An anti-microorganism peptide

Publications (2)

Publication Number Publication Date
TW200811196A TW200811196A (en) 2008-03-01
TWI316944B true TWI316944B (en) 2009-11-11

Family

ID=44767626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95130745A TW200811196A (en) 2006-08-22 2006-08-22 An anti-microorganism peptide

Country Status (1)

Country Link
TW (1) TW200811196A (en)

Also Published As

Publication number Publication date
TW200811196A (en) 2008-03-01

Similar Documents

Publication Publication Date Title
Song et al. Lysozymes in fish
Ding et al. Molecular characterization of the NK-lysin in a teleost fish, Boleophthalmus pectinirostris: Antimicrobial activity and immunomodulatory activity on monocytes/macrophages
Citarasu et al. Isolation of Aeromonas hydrophila from infected ornamental fish hatchery during massive disease outbreak
Arasu et al. Bacterial membrane binding and pore formation abilities of carbohydrate recognition domain of fish lectin
Meng et al. Research advances of antimicrobial peptides and applications in food industry and agriculture
Mabrok et al. Tenacibaculosis induction in the Senegalese sole (Solea senegalensis) and studies of Tenacibaculum maritimum survival against host mucus and plasma
Wang et al. Genome‐wide identification of catfish antimicrobial peptides: a new perspective to enhance fish disease resistance
Kumaresan et al. Gene profiling of antimicrobial peptides, complement factors and MHC molecules from the skin transcriptome of Channa striatus and its expression pattern during Aeromonas hydrophila infection
Wang et al. Antimicrobial Peptides from fish: Main Forces for Reducing and Substituting Antibiotics
CN104761629B (en) A kind of broad-spectrum high efficacy antimicrobial peptide Pb CATH OH1 and its gene, preparation method and application
CN101376675B (en) Antimicrobial peptide
Chu et al. Autophagy increases the survival rate of Macrobrachium rosenbergiiin after Aeromonas hydrophila infection
Nakagawa et al. Protection against Flavobacterium psychrophilum infection (cold water disease) in ayu fish (Plecoglossus altivelis) by oral administration of humus extract
TWI316944B (en)
ES2294106T3 (en) COMPOSITION CONTAINING PIMENTA EXTRACT IN METHODS OF TREATMENT OF AQUATIC ANIMALS.
Kasthuri et al. Genomic characterization, expression analysis, and antimicrobial function of a glyrichin homologue from rock bream, Oplegnathus fasciatus
Qiao et al. Characterization of hepcidin gene and protection of recombinant hepcidin supplemented in feed against Aeromonas hydrophila infection in Yellow River carp (Cyprinus carpio haematopterus)
Elaswad Genetic technologies for disease resistance research and enhancement in catfish
TW200936759A (en) Fish vaccine
Huang et al. Prometryn exposure disrupts the intestinal health of Eriocheir sinensis: Physiological responses and underlying mechanism
Yu et al. Functional characterization of a grouper nklysin with antibacterial and antiviral activity
Murphy et al. Aquarium fish dermatologic diseases
Fu et al. Molecular cloning, characterization of JunB in Schizothorax prenanti and its roles in responding to Aeromonas hydrophila infection
CN103936845A (en) Anti-microbial peptide from Chinese softshell turtle, as well as gene, preparation method and application thereof
TWI745896B (en) Sea fungus extract for enhancing fish immunity and disease resistance, its preparation method and application