WO2008142459A2 - Cheminée en forme de tour solaire composite - Google Patents

Cheminée en forme de tour solaire composite Download PDF

Info

Publication number
WO2008142459A2
WO2008142459A2 PCT/GR2008/000039 GR2008000039W WO2008142459A2 WO 2008142459 A2 WO2008142459 A2 WO 2008142459A2 GR 2008000039 W GR2008000039 W GR 2008000039W WO 2008142459 A2 WO2008142459 A2 WO 2008142459A2
Authority
WO
WIPO (PCT)
Prior art keywords
chimney
characteristic
tower
solar tower
composite solar
Prior art date
Application number
PCT/GR2008/000039
Other languages
English (en)
Other versions
WO2008142459A3 (fr
Inventor
Emmanuil Dermitzakis
Aristeidis Dermitzakis
Original Assignee
Emmanuil Dermitzakis
Aristeidis Dermitzakis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emmanuil Dermitzakis, Aristeidis Dermitzakis filed Critical Emmanuil Dermitzakis
Publication of WO2008142459A2 publication Critical patent/WO2008142459A2/fr
Publication of WO2008142459A3 publication Critical patent/WO2008142459A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • B01D1/305Demister (vapour-liquid separation)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/047Treatment of water, waste water, or sewage by heating by distillation or evaporation using eolic energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • F03G6/045Devices for producing mechanical power from solar energy using a single state working fluid gaseous by producing an updraft of heated gas or a downdraft of cooled gas, e.g. air driving an engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/62Application for desalination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/131Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/24Heat transfer, e.g. cooling for draft enhancement in chimneys, using solar or other heat sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/141Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention refers to a composite solar tower chimney which serves as both a solar chimney as well as a solar tower steam boiler for the generation of electrical energy, desalinated water and probably industrial cooling.
  • the conventional, known solar tower cooperates with two axis heliostats, which reflect and focus the solar radiation upon a solar steam boiler which is found at the peak of a tower at a height of 150-250 meters.
  • the solar steam boiler with its solar collectors, heats water for the generation of steam and electrical energy with steam turbines .
  • the common solar chimney correspondingly uses the solar energy for the heating of air in a greenhouse which is found around its base.
  • the air is directed into a chimney of a great height of 600-1000 meters.
  • the difference of the specific weights of the air inside and outside the greenhouse, combined with the height of the chimney itself, creates a great static pressures' difference which is converted into mechanical energy and, by means of a system of wind turbines, into electrical energy.
  • Characteristic to both of the aforementioned systems and the more important cost factor is the high tower which supports the central solar steam boiler of the first system and the high solar chimney of the second. Particularly in the case of the solar chimney, the initial investment of the tower and the greenhouse is cost prohibitive.
  • the renewable forms of energy production engage passive systems for the storing of thermal energy.
  • a characteristic disadvantage of the rotor is that first its movement originates not directly from the warm, humid air ascending inside the tower, but rather indirectly from the dry, external ambient air, which is used for cooling the system and which has anyway a lower temperature and energy in comparison to the air inside the tower.
  • a second disadvantage is that the inner cycle of air which undergoes successive humidifications and dehumidifications is of closed type.
  • the closed cycle is known to be disadvantageous in comparison to the open cycle in that the difference of specific weights between the ascending and descending air currents is dramatically low, and consequently that of the static pressures developed at the base which are responsible for the ascension and acceleration of the air flow.
  • the mounting of the rotor at such a great height on the top of the tower creates vibrations that compromise the stability of the tower itself.
  • the invention described herein aims to reduce the cost and to increase the rate of efficiency by the combination and synergy of both innovative and known systems as well as the common use of their components or of the complete integration of these systems.
  • the composite solar tower-chimney consists of a cylindrical column of considerable height positioned on a base of a greater diameter raised above the ground and open at its circumference. Around this base are found a great number of solar sun-tracing heliostats, reflecting the solar radiation and directing it to a number of solar steam boilers, which are set at different heights outside and around the chimney tower.
  • the solar steam boiler heats up either water for the immediate production of steam or salt solution for the indirect and post dated production of steam and the consequent production of electrical energy by means of a system of steam turbine-generators.
  • the rejected low pressure steam is directed to a conventional ground distillation plant to which it contributes the needed amount of heat and then returns to its closed cycle.
  • Adjacent to and all around the area of the solar tower is constructed a greenhouse of considerable dimension with peripheral openings for the entering of ambient air and is completely covered by a transparent cover.
  • the air is heated in the greenhouse by solar radiation and is directed to the tower chimney, where its thermal energy is converted by means of wind turbines to mechanical energy and finally to electrical energy.
  • the majority of the ground area covered by the greenhouse is covered by both shallow ponds of sea water and special shallow ponds characterized by an increasing salinity with depth, called solar lakes or solar gradient ponds.
  • the humidity that the air received along the way is concentrated in the form of clean desalinated water or is absorbed by some means which contributes to a parallel production of industrial cooling energy.
  • the flow of the water or that of the solution back to the base of the tower moves a water turbine for the generation of significant, additional electrical energy.
  • the system can function as a whole fully and completely, since the waste of one part is a vital element for the other.
  • Figure 1 Section AA of the solar tower-chimney.
  • FIG. 1 Ground plan of the solar tower-chimney.
  • Figure 3 Section BB of the solar tower-chimney.
  • Figure 4 Detail A of the shallow solar gradient pond.
  • Figure 5 Section of the shallow solar gradient pond.
  • Figure 6 Detail B of the solar tower-chimney.
  • Figure 7 Detail of the solar tower-chimney.
  • Figures 1,2,3 and 6 depict the ground plan and the sections of the composite solar tower-chimney consisting of a cylindrical column 1 of considerable height H, which is positioned on a base 3 raised above the ground level and bearing a greater diameter than the column, open at its circumference. Adjacent to and around the base 3 lies a second area 6 defined by a circle of an even greater diameter, on which there are a great number of solar sun tracing heliostats 7.
  • the solar sun tracing heliostats 7 are two-axis mirrors which reflect and direct solar radiation to a solar steam boiler collector 2, which is set outside and around the composite solar tower-chimney 1, at a height Hl from the ground level.
  • the solar steam boiler 2 heats water for the immediate production of steam or salt solution for the indirect and post dated production of steam and the consequent production of electrical energy by means of a system of steam turbine-generators.
  • the rejected low pressure steam is, following the steam turbine, directed to a conventional desalination plant as for example that of distillation, where it provides the needed amount of heat, is thereby condensated and then returns to the closed system of solar steam boiler 2. (This has not been designed).
  • the majority of the area 8 beneath the greenhouse is taken up by a shallow pond of sea water, while a lesser part of the area also takes up special shallow ponds 10 characterized by an increasing salinity with depth. These are, in other words, the solar ponds or solar gradient ponds as depicted « in figures 4 and 5.
  • the greenhouse can possibly even be built upon the sea, where the majority of which would be a floating construction.
  • the air of the greenhouse is heated by solar energy, passes at an accelerating rate over the sea water, and is conducted by means of radialized covered passages 15 to the solar tower-chimney 1.
  • a great difference in static pressures at the base of chimney 1 is created, which by means of a system of wind turbines 4 is in turn converted into mechanical energy and finally into electrical energy.
  • the hot and dry air through its passage over the sea water at a great speed, evaporates and carries along vapors which, by reason of its small specific weight, ascends together with the hot air to the solar tower-chimney.
  • the evaporation can be accelerated by agitating the surface of the water or by creating an artificial rain comprised of sea water.
  • the conventional ground distillation plant of the solar towers uses the very same pond for its supplying with sea water.
  • the solar gradient ponds 10 are covered by a transparent plastic sheet 11 which floats on the water and consists of three zones, a, b and c.
  • the air ducts in the shape of upsilon 14 are isolated along the entire height of the vertical part of intake 14a, and along the height of the non-submerged vertical part of outtake 14b. The air ducts remain closed during the day and open at night .
  • the upper and cooler zone a can function as a cool means of condensation of steam of the thermal generators and of other co-generative complexes. Water of the upper zone a is conducted directly through passages 17 to condensers and returns through passages 18, hotter, to the same zone of the solar pond. The same function can be executed indirectly by means of submerged heat exchangers.
  • the zone a can also receive thermal loads from the wasted brine of the conventional ground distillation plant.
  • the large quantities of water required for the function of this solar pond, both of clean water which evaporates as well as brackish brine for the maintenance of the salt gradient, are provided by the conventional ground distillation plant.
  • FIG 6 there is depicted a process of vapour condensation by method of multiple successive coolings and reheatings of humid air between two somewhat stable temperatures
  • the solar tower-chimney and by extent the air passing through it is divided for this purpose into segments and independent currents.
  • the passing air is divided into part or current 24 and into part or current 25.
  • the successive coolings are combined with traditional condensation, which delivers the desalinated water, while with the respective reheatings, only heat is added to the system.
  • the heat exchangers 27 are used in combination with the heat exchangers 21, which indirectly convey the heat from the solar ponds or the thermal wastes, or low pressure steam, of the other systems.
  • the heat exchangers 22 are found half on a segment inside tower 1, and half on the respective exterior cooling upstreams. These currents are created between tower 1 and its shell Ia or between shells Ia and Ib, respectively, which surround the tower at this height.
  • These secondary chimneys can also not be coaxial but independent and can engage secondary wind turbines 4a as well.
  • the drop collectors 26 and 36 function to collect desalinated water which, with water turbine 32, contribute to the generation of additional electrical energy.
  • the condensation of water vapours from the hot air can also occur indirectly by mean of the conventional method of absorption by hygroscopic solid materials, like silica gel, or hygroscopic fluids, as for example a water-based solution of lithium bromide.
  • Figure 7 is depicted a variation with fluid absorbers.
  • the solar tower-chimney 1 bulges at the height which has been chosen for the absorption of warm air vapours and creates chamber 28.
  • the ascending air is deflected 90 degrees from its path to area 28, guided by the vanes 33 in order to return again to the vertical after having passed the bulge.
  • the solution of the absorber rich but poor in water, is distributed in the form of microscopic droplets by an array of nozzles 30, in order to achieve the maximum possible surface contact.
  • This phase there occurs a release of heat both to the passing air as well as to the absorber.
  • the humidity gives back the heat which it had received in the phase of evaporation.
  • the rich in water mixture of the absorber is directed after water turbine 32 to the system of regeneration and the final reception of desalinated water, while the dense and regenerated solution of the absorber that is created is directed by means of pump 35 and pipe 34 to the nozzles 30 and, consequently, completing the cycle.
  • the process of reception of the desalinated water, or regeneration is connected by the heat of the absorber from other energy sources, both renewable and nonrenewable, and which already exist in other parts of the same plant, in order to produce steam.
  • This phase of regeneration of the absorber will be a part of another general system, or cycle, or part of a cycle producing cooling by absorption, where water is both the cooling medium and also the medium of creation of electrical energy.
  • the system in which the above will ultimately be imbedded will depend upon the needs and priorities of the region of the plant for cooling or electrical energy. Should, for example, one be interested in the production of cooling by absorption, the phase of regeneration of the absorber will be the corresponding "regeneration" of the cooling cycle, while the phase of vapour absorption will be the corresponding "absorption" of the same cycle. Should, likewise, one be interested in the production of electrical energy, the produced steam will expand in a steam turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne une cheminée en forme de tour solaire composite constituée du cylindre (1) positionné au centre d'une serre couverte (8). Une chaudière solaire centrale (2) - qui est suffisamment surélevée par rapport au sol et placée à l'extérieur, sur la périphérie du cylindre - recueille le rayonnement d'un grand nombre d'héliostats à deux axes (7) et produit de la vapeur qui peut mettre en mouvement la turbine à vapeur générant de la vapeur; la vapeur rejetée est utilisée pour le fonctionnement d'une usine de distillation de sol classique. La majeure partie de la surface couverte de la serre comprend des étangs d'eau de mer peu profonds tandis qu'une partie moins importante comprend des étangs à gradient solaire utilisés comme lieux de stockage thermique pour le fonctionnement de la cheminée en forme de tour solaire composite (1) et des systèmes co-fonctionnant avec celle-ci. Les étangs d'eau de mer alimentent également la précédente unité de distillation de sol classique avec de l'eau de mer. La température et la vitesse élevées de l'air chaud passant sur la surface de l'eau de mer provoque son évaporation. L'air chaud présentant des taux d'humidité élevés est dirigé vers la cheminée en forme de tour solaire composite (1) où l'énergie mécanique de l'air chaud est convertie à l'aide d'éoliennes (4) en électricité tandis qu'à une certaine hauteur, l'humidité de l'air chaud est condensée ou absorbée par des matériaux absorbants spécifiques afin d'être finalement reçu sous la forme d'une eau purifiée désalinisée tandis qu'un refroidissement potentiel peut être effectué en parallèle. Une puissance supplémentaire est générée par la turbine à eau (32) actionnée par l'eau désalinisée supplémentaire ou par des solutions liquides s'écoulant à nouveau par gravité jusqu'à la structure de base de la cheminée en forme de tour solaire.
PCT/GR2008/000039 2007-05-17 2008-05-16 Cheminée en forme de tour solaire composite WO2008142459A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GR20070100298 2007-05-17
GR20070100298A GR1005806B (el) 2007-05-17 2007-05-17 Συνθετος ηλιακος πυργος καμιναδα

Publications (2)

Publication Number Publication Date
WO2008142459A2 true WO2008142459A2 (fr) 2008-11-27
WO2008142459A3 WO2008142459A3 (fr) 2009-05-28

Family

ID=39205095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GR2008/000039 WO2008142459A2 (fr) 2007-05-17 2008-05-16 Cheminée en forme de tour solaire composite

Country Status (2)

Country Link
GR (1) GR1005806B (fr)
WO (1) WO2008142459A2 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1036241C2 (nl) * 2008-11-26 2010-05-27 Franklin Hagg Zonne-energietoren met zoutmeer als zonnewarmtecollector.
WO2010086375A1 (fr) 2009-01-29 2010-08-05 Technische Universität Bergakademie Freiberg Procédé et dispositif pour l'évaporation solaire de solutions salines
WO2010120254A3 (fr) * 2009-04-16 2011-02-03 Aydin Nurettin Procédé de production d'électricité en chauffant l'air
US20110120854A1 (en) * 2008-02-22 2011-05-26 James Weifu Lee Photovoltaic panel-interfaced solar-greenhouse distillation systems
WO2011098642A1 (fr) * 2010-02-15 2011-08-18 Universidad De Alicante Système intégral d'exploitation énergétique
FR2957388A1 (fr) * 2010-03-15 2011-09-16 Essertaux Jean Marie D Cheminee solaire de production d'electricite, de recyclage d'eau et de production agricole
WO2011120531A1 (fr) * 2010-03-29 2011-10-06 Ahmed Mohamed Salahden Hegab Coquille solaire
WO2011141178A1 (fr) * 2010-05-14 2011-11-17 Hermann Mayer Dispositif de production d'eau potable par condensation de vapeur d'eau produite dans un dispositif d'évaporation
CN102486167A (zh) * 2010-12-01 2012-06-06 毛楚楚 穹式阵列太阳能热电和风电系统
CN103437963A (zh) * 2013-08-27 2013-12-11 西北工业大学 一种太阳能集风发电塔曲面套管
US9097241B1 (en) 2014-10-02 2015-08-04 Hollick Solar Systems Limited Transpired solar collector chimney tower
CN104944488A (zh) * 2015-06-10 2015-09-30 河海大学常州校区 一种追日太阳能烟囱盐、水、电联产系统及其运行方法
US9151518B2 (en) 2009-06-03 2015-10-06 Abengoa Solar New Technologies, S.A. Solar concentrator plant using natural-draught tower technology and operating method
US9259662B2 (en) 2008-02-22 2016-02-16 James Weifu Lee Photovoltaic panel-interfaced solar-greenhouse distillation systems
CH712880A1 (de) * 2016-09-07 2018-03-15 Greensworld Swiss Ag Verfahren und System zur Nutzung von Wärmeenergie aus Sonnenstrahlung.
US20180119673A1 (en) * 2015-04-15 2018-05-03 Eduard HOVAKIMYAN Solar compression power station
US10093552B2 (en) 2008-02-22 2018-10-09 James Weifu Lee Photovoltaic panel-interfaced solar-greenhouse distillation systems
CN112532178A (zh) * 2020-12-18 2021-03-19 内蒙古工业大学 太阳能板相变液冷复合散热装置
CN113575211A (zh) * 2021-07-02 2021-11-02 四川堡笛生态农业科技有限公司 多功能塔囱温室组合体
GB2616258A (en) * 2022-02-25 2023-09-06 Butterworth Colin Sea and sun

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671056B (zh) * 2009-10-14 2011-01-19 国家海洋局天津海水淡化与综合利用研究所 太阳能烟囱蒸馏淡化系统及其淡化方法
CN106837695A (zh) * 2015-12-05 2017-06-13 哈尔滨工大金涛科技股份有限公司 废水余热发电方法与发电装置
CN107061175B (zh) * 2017-06-28 2019-03-05 姚珍汉 太阳能与风能双能风力发电系统
CN107337289A (zh) * 2017-07-07 2017-11-10 河海大学 一种集风能光能和海水蓄能于一体的反渗透海水淡化装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2747529A1 (de) * 1977-10-22 1979-04-26 Aake Teofil Dipl Ing Simonsson Einrichtung zur umwandlung und gewinnung von energie, insbesondere unter ausnutzung unmittelbar zur verfuegung stehender sonnenenergie
US4244189A (en) * 1978-10-10 1981-01-13 Emmanuel Bliamptis System for the multipurpose utilization of solar energy
GB2060860A (en) * 1979-09-17 1981-05-07 Kraftwerk Union Ag Solar power installation
JPS5925091A (ja) * 1982-08-04 1984-02-08 Mitsui Eng & Shipbuild Co Ltd トルネ−ド式風力発電装置
DE4036658A1 (de) * 1990-07-23 1992-01-30 Holzer Walter Solar-aufwind-anlage zur gewinnung von trinkwasser aus meerwasser
DE19506317A1 (de) * 1994-02-24 1995-09-21 Daniel Emert Anlage und Verfahren zur Energiegewinnung
DE19821659A1 (de) * 1998-05-14 1999-11-18 Refit Ev Aufwindkraftwerk
DE20008480U1 (de) * 2000-05-11 2000-09-07 Kusan Andre Aufwindkraftwerk
WO2001044657A1 (fr) * 1999-12-15 2001-06-21 Max Gangkofner Systeme de production de courant au moyen d'eau produite de façon artificielle en altitude
WO2003004868A2 (fr) * 2001-07-05 2003-01-16 Vida, Nikolaus Procede et dispositif de conversion de flux d'energie en continuum
EP1589221A2 (fr) * 2004-04-19 2005-10-26 COMANDU' Angelo Eolienne à effet de cheminée
ES1062512U (es) * 2006-02-22 2006-07-01 Jonas Villarrubia Ruiz Generador de corriente electrica, empleando aire y concentradores de luz solar.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2747529A1 (de) * 1977-10-22 1979-04-26 Aake Teofil Dipl Ing Simonsson Einrichtung zur umwandlung und gewinnung von energie, insbesondere unter ausnutzung unmittelbar zur verfuegung stehender sonnenenergie
US4244189A (en) * 1978-10-10 1981-01-13 Emmanuel Bliamptis System for the multipurpose utilization of solar energy
GB2060860A (en) * 1979-09-17 1981-05-07 Kraftwerk Union Ag Solar power installation
JPS5925091A (ja) * 1982-08-04 1984-02-08 Mitsui Eng & Shipbuild Co Ltd トルネ−ド式風力発電装置
DE4036658A1 (de) * 1990-07-23 1992-01-30 Holzer Walter Solar-aufwind-anlage zur gewinnung von trinkwasser aus meerwasser
DE19506317A1 (de) * 1994-02-24 1995-09-21 Daniel Emert Anlage und Verfahren zur Energiegewinnung
DE19821659A1 (de) * 1998-05-14 1999-11-18 Refit Ev Aufwindkraftwerk
WO2001044657A1 (fr) * 1999-12-15 2001-06-21 Max Gangkofner Systeme de production de courant au moyen d'eau produite de façon artificielle en altitude
DE20008480U1 (de) * 2000-05-11 2000-09-07 Kusan Andre Aufwindkraftwerk
WO2003004868A2 (fr) * 2001-07-05 2003-01-16 Vida, Nikolaus Procede et dispositif de conversion de flux d'energie en continuum
EP1589221A2 (fr) * 2004-04-19 2005-10-26 COMANDU' Angelo Eolienne à effet de cheminée
ES1062512U (es) * 2006-02-22 2006-07-01 Jonas Villarrubia Ruiz Generador de corriente electrica, empleando aire y concentradores de luz solar.

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673119B2 (en) * 2008-02-22 2014-03-18 James Weifu Lee Photovoltaic panel-interfaced solar-greenhouse distillation systems
US20110120854A1 (en) * 2008-02-22 2011-05-26 James Weifu Lee Photovoltaic panel-interfaced solar-greenhouse distillation systems
US10093552B2 (en) 2008-02-22 2018-10-09 James Weifu Lee Photovoltaic panel-interfaced solar-greenhouse distillation systems
US9259662B2 (en) 2008-02-22 2016-02-16 James Weifu Lee Photovoltaic panel-interfaced solar-greenhouse distillation systems
NL1036241C2 (nl) * 2008-11-26 2010-05-27 Franklin Hagg Zonne-energietoren met zoutmeer als zonnewarmtecollector.
WO2010086375A1 (fr) 2009-01-29 2010-08-05 Technische Universität Bergakademie Freiberg Procédé et dispositif pour l'évaporation solaire de solutions salines
DE102009006668A1 (de) 2009-01-29 2010-08-05 Technische Universität Bergakademie Freiberg Verfahren und Vorrichtung zur solaren Eindampfung von Salzlösungen
DE102010001328A1 (de) 2009-01-29 2010-11-18 Technische Universität Bergakademie Freiberg Verfahren und Vorrichtung zur solaren Eindampfung von Salzlösungen
WO2010120254A3 (fr) * 2009-04-16 2011-02-03 Aydin Nurettin Procédé de production d'électricité en chauffant l'air
US9151518B2 (en) 2009-06-03 2015-10-06 Abengoa Solar New Technologies, S.A. Solar concentrator plant using natural-draught tower technology and operating method
WO2011098642A1 (fr) * 2010-02-15 2011-08-18 Universidad De Alicante Système intégral d'exploitation énergétique
ES2371826A1 (es) * 2010-02-15 2012-01-10 Universidad De Alicante Sistema integral de aprovechamiento energético.
FR2957388A1 (fr) * 2010-03-15 2011-09-16 Essertaux Jean Marie D Cheminee solaire de production d'electricite, de recyclage d'eau et de production agricole
WO2011120531A1 (fr) * 2010-03-29 2011-10-06 Ahmed Mohamed Salahden Hegab Coquille solaire
WO2011141178A1 (fr) * 2010-05-14 2011-11-17 Hermann Mayer Dispositif de production d'eau potable par condensation de vapeur d'eau produite dans un dispositif d'évaporation
AU2011252335B2 (en) * 2010-05-14 2014-10-09 Hermann Mayer Device for generating drinking water by condensing water vapour generated in an evaporation device
CN102486167A (zh) * 2010-12-01 2012-06-06 毛楚楚 穹式阵列太阳能热电和风电系统
CN103437963A (zh) * 2013-08-27 2013-12-11 西北工业大学 一种太阳能集风发电塔曲面套管
US9097241B1 (en) 2014-10-02 2015-08-04 Hollick Solar Systems Limited Transpired solar collector chimney tower
US20180119673A1 (en) * 2015-04-15 2018-05-03 Eduard HOVAKIMYAN Solar compression power station
CN104944488A (zh) * 2015-06-10 2015-09-30 河海大学常州校区 一种追日太阳能烟囱盐、水、电联产系统及其运行方法
CH712880A1 (de) * 2016-09-07 2018-03-15 Greensworld Swiss Ag Verfahren und System zur Nutzung von Wärmeenergie aus Sonnenstrahlung.
CN112532178A (zh) * 2020-12-18 2021-03-19 内蒙古工业大学 太阳能板相变液冷复合散热装置
CN113575211A (zh) * 2021-07-02 2021-11-02 四川堡笛生态农业科技有限公司 多功能塔囱温室组合体
GB2616258A (en) * 2022-02-25 2023-09-06 Butterworth Colin Sea and sun

Also Published As

Publication number Publication date
GR1005806B (el) 2008-02-05
WO2008142459A3 (fr) 2009-05-28

Similar Documents

Publication Publication Date Title
WO2008142459A2 (fr) Cheminée en forme de tour solaire composite
Kalogirou Seawater desalination using renewable energy sources
US20120138447A1 (en) Solar desalination system with solar-initiated wind power pumps
CN101921006B (zh) 一种太阳能聚光发电和海水淡化集成方法及系统
US7552589B2 (en) Structure and methods using multi-systems for electricity generation and water desalination
Abdelmoez et al. Water desalination using humidification/dehumidification (HDH) technique powered by solar energy: a detailed review
Lovegrove et al. Solar thermal energy systems in Australia
US20120111006A1 (en) Solar energy transfer and storage apparatus
CN101671056B (zh) 太阳能烟囱蒸馏淡化系统及其淡化方法
US20120112473A1 (en) Solar desalination system with reciprocating solar engine pumps
US10371125B1 (en) Solar-concentrating chimney system with inflatable fresnel lens
CN104944488B (zh) 一种追日太阳能烟囱盐、水、电联产系统及其运行方法
Palenzuela et al. Concentrating solar power and desalination plants: engineering and economics of coupling multi-effect distillation and solar plants
CN104528853B (zh) 一种内嵌双烟囱型太阳能海水淡化系统及其淡化方法
CN104896769A (zh) 一种塔式太阳能烟囱盐、水、电联产系统及其运行方法
CN101042267B (zh) 一种光学镜太阳能热发电系统
Deniz Solar-powered desalination
US11148958B2 (en) Desalination device
US20160233829A1 (en) Solar water-collecting, air-conditioning, light-transmitting and power generating house
Abutayeh et al. Solar desalination
WO2015033249A1 (fr) Appareil de transfert et de stockage d'énergie solaire
CN101029778B (zh) 一种光学镜热管太阳能热发电系统
CN206232423U (zh) 一种联合风压式通风装置的太阳能发电及海水淡化装置
CN102434410B (zh) 十字变焦太阳能热发电系统
Farrag et al. Experimental Validation for Two Stages Humidification-Dehumidification (HDH) Water Desalination Unit

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08750821

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08750821

Country of ref document: EP

Kind code of ref document: A2