WO2008141860A1 - Dispositif de détection sans contact de mouvements linéaires ou de mouvements de rotation - Google Patents

Dispositif de détection sans contact de mouvements linéaires ou de mouvements de rotation Download PDF

Info

Publication number
WO2008141860A1
WO2008141860A1 PCT/EP2008/054165 EP2008054165W WO2008141860A1 WO 2008141860 A1 WO2008141860 A1 WO 2008141860A1 EP 2008054165 W EP2008054165 W EP 2008054165W WO 2008141860 A1 WO2008141860 A1 WO 2008141860A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
chip sensor
chip
coordinate system
magnetic field
Prior art date
Application number
PCT/EP2008/054165
Other languages
German (de)
English (en)
Inventor
Wolfgang Welsch
Christian Bauer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2010508759A priority Critical patent/JP2010527454A/ja
Priority to CN200880016468A priority patent/CN101688790A/zh
Publication of WO2008141860A1 publication Critical patent/WO2008141860A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Definitions

  • the invention relates to a device for non-contact detection of linear or rotational movements, in particular for detecting the rotation of a vehicle wheel, with a stationary magnetoresistive chip sensor and a movable magnetic field generator device adjacent to it, leaving an air gap.
  • a device which has a magnetic sensor array with a magnetic field sensitive sensor layer in an integrated GMR spin valve multilayer system whose magnetic field sensitive sensor elements are connected to a measuring bridge and its electrical resistance in response to an external magnetic field is changeable.
  • the sensor elements are each constructed of layer systems which consist of thin, alternately magnetized and non-magnetized metal layers, in which there is a strong dependence of the electrical resistance of an applied magnetic field due to spin-dependent electron scattering.
  • a soft magnetic detection layer by a Non-magnetic intermediate layer separated from a magnetically harder layer.
  • the non-magnetic intermediate layer has such a layer thickness that only a small magnetic coupling between the two magnetic layers on the non-magnetic
  • the individual layer systems are connected either in pairs for differential measurement or preferably as a group of four to form a Wheatstone measuring bridge and are arranged at a predetermined distance from one another such that a homogeneous magnetic field does not cause a bridge signal. However, a change in the magnetic field in the range of the predetermined distance generates a bridge signal corresponding to the magnetization of a
  • Magnetic field generator device whose pole pair spacing corresponds approximately to the predetermined Gradiometerabstand the bridge circuit.
  • the device according to the invention with the features of the independent claim has the advantage over known devices that a sensor can be realized which, in a substantially identical design, the detection of the speed of a multipole wheel both in axial and radial magnetization or in measurements on a multipole -Line unit allows.
  • a sensor can be realized which, in a substantially identical design, the detection of the speed of a multipole wheel both in axial and radial magnetization or in measurements on a multipole -Line unit allows.
  • Sensors used in the chip level in particular of GMR or TMR sensors.
  • measuring arrangements for linear or rotational movements can be realized whose chip plane parallel or perpendicular to the surface of the Multipole arrangement or in any angular position between them.
  • rotational movements the same sensor design can be used both in conjunction with axially magnetized as well as with radially magnetized multipole wheels and thereby the
  • Variant diversity of the sensor designs can be reduced, resulting in higher quantities with lower production costs and easier storage.
  • the installation space can be reduced and saved by the elimination of Beinchenbiegung the integrated circuit by 90 ° both tooling and process costs.
  • a quality improvement and a higher production yield can be achieved because damage to the sensor is avoided by a necessary bending for different mounting positions.
  • suitable sensors are preferably GMR spin valve sensors or highly sensitive TMR sensors.
  • the IC of the sensor is arranged in the front region near the remote from the electrical leads edge of the sensor, so even with an installation position of the chip with its large surfaces perpendicular to the orientation of the magnetic donor elements a smaller Air gap and a high sensitivity can be realized.
  • the magnetic field transmitter device is designed as an axially magnetized pole wheel, whereby the extent of the sensor in this direction can be significantly shortened. On the other hand, can be reduced by a radial magnetization of flat magnet segments, the diameter of the sensor unit.
  • FIG. 1 shows the principle of a measuring device with an axially oriented magnetic field transmitter device in the form of an axially magnetized multipole wheel
  • Figure 2 shows the principle of a measuring device with a radially oriented magnetic encoder means
  • FIG. 3 shows a perspective basic illustration of a measuring device which shows the arrangement of a chip sensor optionally parallel or perpendicular to the alignment of the elements of FIG
  • Transmitter device shows, wherein the large area of the chip sensor is aligned in each case in the direction of measurement.
  • FIG. 1 shows the principle of a measuring device with an axially acting magnetic field generator unit in the form of an axially magnetized multipole wheel 10 whose individual magnet segments 12 have a small thickness perpendicular to the plane of the drawing and are arranged in an annular shape in their trapezoidal shape. Of the entire multipole 10 only a section is shown, wherein the individual magnetic segments 12, each with alternating polarity line up.
  • a magnetoresistive chip sensor 14 is arranged approximately centrally above the magnet segments 12 such that, with the release of an axial air gap 13 with its large surfaces parallel to the surfaces of the
  • Magnet segments 12 is aligned in the direction of measurement.
  • the flux relevant to the measurement generated by the magnet segments 12 is designated Bx and directed parallel to the large areas 16 of the chip sensor 14.
  • the designation of the magnetic flux Bx corresponds to the x-axis of an x / y / z coordinate system 17, wherein the magnetization direction of the segments 12 corresponds to the z-direction and the orientation of the large areas 16 of the chip sensor 14 corresponds to the x / y-plane.
  • the device shown in Figure 1 only on the basis of their essential measuring elements allows the contactless detection of rotational movements, in particular the detection of the rotation of a vehicle wheel, which, for example, to control the braking effect in anti-lock braking systems or electronic
  • Figure 2 shows a similar arrangement as Figure 1, wherein the chip sensor 14 has the same structure and design as in Figure 1.
  • this arrangement with a radially magnetized multipole 22 with magnetically reversed magnetic segments 24 of the chip sensor 14, leaving an air gap 23 with its large surfaces 16 in the x / z plane of the x / y / z
  • Coordinate system 25 aligned, wherein the measuring direction and detected by the chip sensor 14 magnetic flux Bx again point in the x direction of the coordinate system.
  • the chip sensor 14 can be used in unmodified design as in an axial magnetization of the magnetic segments 12 of Figure 1.
  • the sensor 14 is preferably constructed in both applications in Figure 1 and Figure 2 as a GMR (Giant Magneto Resistance) - sensor in a known manner and will therefore not be described here.
  • the layer systems of the sensor are preferably designed in the likewise known spin valve design, whereby an increased sensitivity of the sensor can be realized.
  • a very advantageous design of the chip sensor 14 is also the design as TMR (Tunnel Magneto Resistance) sensor, which also has a very high measurement accuracy. In principle, however, sensors in the AMR (Anisotropic Magneto Resistance) design can also be used for the measurements.
  • FIG. 3 again shows, in a schematic representation, the two possibilities of arranging the chip sensors 14 on the one hand parallel to the surface of the chip
  • Magnetic sensor device according to Figure 1 and on the other hand perpendicular to the surface of the magnetic field generator device according to FIG. 2.
  • the flux Bx or the flux change relevant for the measurement is aligned in the x direction of the x / y / z coordinate system 27 and runs parallel to the large areas 16 of the chip sensors 14.
  • the integrated circuit in the chip sensor 14 is located as far forward as possible near the edge 26 in the sensor. It can thus cover a large air gap area, although increases in accordance with the position of the IC relative to the magnetic surface in contrast to the parallel orientation of the air gap.
  • the chip sensor 14 is shown with four connection lines 28, 30, 32, 34 each for clarification of an internal structure with a Wheatstone bridge circuit having four resistance regions to which a supply voltage is supplied at two connection points and between two further connection points in FIG the bridge diagonal in a known manner a measured value is tapped.
  • the device according to the invention represents an embodiment of a magnetoresistive chip sensor 14 which, when moving in relation to the magnet segments 12 or 24 in the x direction of the specified coordinate systems, enables the measurement both with radial and axial or linear alignment of the magnet segments. Leave it While maintaining the measuring direction, the measuring arrangements shown in FIGS. 1 to 3 for detecting the change in the magnetic flux density Bx can be realized with one and the same sensor 14. As a result, installation situations can be operated for the previously different sensor designs were required.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

La présente invention concerne un dispositif destiné à la détection sans contact de mouvements linéaires ou de mouvements de rotation, en particulier à la détection de la rotation d'une roue de véhicule. Le dispositif de mesure fonctionne avec un capteur puce (14) magnéto résistif d'emplacement fixe, et un émetteur de champ magnétique (10, 22) voisin tout en laissant libre un entrefer (13, 23) et dont les segments magnétiques (12, 24) individuels sont magnétisés vis-à-vis de leur polarisation de manière alternée sensiblement dans la direction z d'un système de coordonnées x/y/z tridimensionnel (17, 25, 27), le capteur puce (14) étant orienté de sorte que ses surfaces majeures (16) se trouvent dans le plan x/y ou dans le plan x/z du système de coordonnées (17, 25, 27) ou dans une position intermédiaire entre ces plans. Selon l'invention, la direction de mesure et la surface majeure (16) du capteur puce (14) sont orientés respectivement dans la direction x du système de coordonnées x/y/z.
PCT/EP2008/054165 2007-05-18 2008-04-07 Dispositif de détection sans contact de mouvements linéaires ou de mouvements de rotation WO2008141860A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010508759A JP2010527454A (ja) 2007-05-18 2008-04-07 直線運動又は回転運動を非接触に検出するための装置
CN200880016468A CN101688790A (zh) 2007-05-18 2008-04-07 用于无接触探测线性或旋转运动的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710023385 DE102007023385A1 (de) 2007-05-18 2007-05-18 Vorrichtung zur berührungslosen Erfassung von Linear- oder Rotationsbewegungen
DE102007023385.1 2007-05-18

Publications (1)

Publication Number Publication Date
WO2008141860A1 true WO2008141860A1 (fr) 2008-11-27

Family

ID=39592748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/054165 WO2008141860A1 (fr) 2007-05-18 2008-04-07 Dispositif de détection sans contact de mouvements linéaires ou de mouvements de rotation

Country Status (4)

Country Link
JP (1) JP2010527454A (fr)
CN (1) CN101688790A (fr)
DE (1) DE102007023385A1 (fr)
WO (1) WO2008141860A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2507592B1 (fr) * 2009-12-04 2019-01-30 Hirschmann Automotive GmbH Poignée d'accélération rotative avec système de mesure angulaire
DE102011079633A1 (de) 2011-07-22 2013-01-24 Robert Bosch Gmbh Magnetsensor zum Messen eines Magnetfelds eines magnetischen Multipols und zugehörige Vorrichtung zur Ermittlung von Bewegungsparametern
DE102011079631A1 (de) 2011-07-22 2013-01-24 Robert Bosch Gmbh Vorrichtung zur Ermittlung von Bewegungsparametern
DE102015102013A1 (de) * 2015-02-12 2016-08-18 Valeo Schalter Und Sensoren Gmbh Sensorvorrichtung mit einer Drehmomentsensoreinrichtung und einer Inkrementalsensoreinrichtung und Kraftfahrzeug mit einer solchen Sensorvorrichtung
DE102018106438A1 (de) 2017-12-13 2019-06-13 Schaeffler Technologies AG & Co. KG Sensoranordnung mit einem Multipolencoder sowie Rotationslager mit einer solchen Sensoranordnung
DE102019120790A1 (de) * 2019-08-01 2021-02-04 Schaeffler Technologies AG & Co. KG Sensoranordnung mit Multipolencoder sowie Rotationslager
DE102021118230A1 (de) 2021-07-14 2023-01-19 Schaeffler Technologies AG & Co. KG Vorrichtung zur berührungslosen Erfassung von Bewegungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766376A (en) * 1985-08-14 1988-08-23 Hitachi, Ltd. Magnetic position detector for detecting an absolute position of a movable member
DE10052150A1 (de) * 1999-10-22 2001-04-26 Asahi Optical Co Ltd Vermessungsinstrument mit einem magnetischen Inkremental-Drehcodierer
US6300758B1 (en) * 1994-12-30 2001-10-09 Northstar Technologies Inc. Magnetoresistive sensor with reduced output signal jitter
DE102004047770A1 (de) * 2004-09-30 2006-04-27 Infineon Technologies Ag Sensor zum Erzeugen eines Ausgangssignals aufgrund eines Messmagnetfelds sowie Verfahren zur Herstellung und zum Betrieb eines solchen
EP1770371A2 (fr) * 2005-09-30 2007-04-04 Hitachi Metals, Ltd. Magnetischer Positionsgeber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397026B2 (ja) * 1995-12-06 2003-04-14 トヨタ自動車株式会社 磁気式回転検出装置
DE10357149A1 (de) 2003-12-06 2005-06-30 Robert Bosch Gmbh Magnetsensoranordnung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766376A (en) * 1985-08-14 1988-08-23 Hitachi, Ltd. Magnetic position detector for detecting an absolute position of a movable member
US6300758B1 (en) * 1994-12-30 2001-10-09 Northstar Technologies Inc. Magnetoresistive sensor with reduced output signal jitter
DE10052150A1 (de) * 1999-10-22 2001-04-26 Asahi Optical Co Ltd Vermessungsinstrument mit einem magnetischen Inkremental-Drehcodierer
DE102004047770A1 (de) * 2004-09-30 2006-04-27 Infineon Technologies Ag Sensor zum Erzeugen eines Ausgangssignals aufgrund eines Messmagnetfelds sowie Verfahren zur Herstellung und zum Betrieb eines solchen
EP1770371A2 (fr) * 2005-09-30 2007-04-04 Hitachi Metals, Ltd. Magnetischer Positionsgeber

Also Published As

Publication number Publication date
CN101688790A (zh) 2010-03-31
JP2010527454A (ja) 2010-08-12
DE102007023385A1 (de) 2008-11-20

Similar Documents

Publication Publication Date Title
EP2156143B1 (fr) Capteur de champ magnétique
DE102018114131A1 (de) Streufeld-robuste magnetische Positionssensor-Anordnung
EP2516967A2 (fr) Agencement de capteurs de champ magnétique pour la détermination des courses de composants mobiles
DE102007013755A1 (de) Indikatorelement für einen magnetischen Drehwinkelgeber
WO2008141860A1 (fr) Dispositif de détection sans contact de mouvements linéaires ou de mouvements de rotation
EP2480861A1 (fr) Procédé pour l'évaluation de signaux d'un capteur angulaire
DE102013207159A1 (de) Magnetfeldsensor
WO2005088258A1 (fr) Ensemble capteur magnetique
EP2764340B1 (fr) Ensemble de detection
DE112016000720B4 (de) Sensoranordnung zur Positionserfassung und Verfahren zum Unterstützen des Bestimmens der Position eines Objekts
WO2015144377A1 (fr) Agencement de capteur servant à détecter une trajectoire sur un composant mobile
DE102015106521A1 (de) Magnetfeldsensorvorrichtung
DE19612422C2 (de) Potentiometereinrichtung mit einem linear verschiebbaren Stellelement und signalerzeugenden Mitteln
DE102021126775A1 (de) Null-gauss-magnet für differentielle, verdrehungsunempfindliche magnetische geschwindigkeitssensoren
DE102015013022A1 (de) Magnetfeldmessvorrichtung
DE102021104542A1 (de) Mehrfachpositionsdetektion unter Verwendung eines inhomogen variierenden Magnetfeldes
DE102014110438B4 (de) XMR-Sensorvorrichtung
DE102015100191A1 (de) Magnetismus-Erfassungselement und Drehungsdetektor
EP0873497B1 (fr) Dispositif de detection de deviations d'un corps magnetique
WO2022008265A1 (fr) Capteur de vitesse de rotation et de sens de rotation omnidirectionnel
DE102005031806A1 (de) Drehwinkelsensor
WO2005054885A1 (fr) Dispositif a capteur magnetique
DE102011079633A1 (de) Magnetsensor zum Messen eines Magnetfelds eines magnetischen Multipols und zugehörige Vorrichtung zur Ermittlung von Bewegungsparametern
DE102011079631A1 (de) Vorrichtung zur Ermittlung von Bewegungsparametern
DE102017211996A1 (de) Sensoreinheit und Anordnung zur Erfassung der Position eines Bauteils

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880016468.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08735897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508759

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08735897

Country of ref document: EP

Kind code of ref document: A1