WO2008141860A1 - Device for the contact-free detection of linear or rotational movements - Google Patents

Device for the contact-free detection of linear or rotational movements Download PDF

Info

Publication number
WO2008141860A1
WO2008141860A1 PCT/EP2008/054165 EP2008054165W WO2008141860A1 WO 2008141860 A1 WO2008141860 A1 WO 2008141860A1 EP 2008054165 W EP2008054165 W EP 2008054165W WO 2008141860 A1 WO2008141860 A1 WO 2008141860A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
chip sensor
chip
coordinate system
magnetic field
Prior art date
Application number
PCT/EP2008/054165
Other languages
German (de)
French (fr)
Inventor
Wolfgang Welsch
Christian Bauer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2010508759A priority Critical patent/JP2010527454A/en
Priority to CN200880016468A priority patent/CN101688790A/en
Publication of WO2008141860A1 publication Critical patent/WO2008141860A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Definitions

  • the invention relates to a device for non-contact detection of linear or rotational movements, in particular for detecting the rotation of a vehicle wheel, with a stationary magnetoresistive chip sensor and a movable magnetic field generator device adjacent to it, leaving an air gap.
  • a device which has a magnetic sensor array with a magnetic field sensitive sensor layer in an integrated GMR spin valve multilayer system whose magnetic field sensitive sensor elements are connected to a measuring bridge and its electrical resistance in response to an external magnetic field is changeable.
  • the sensor elements are each constructed of layer systems which consist of thin, alternately magnetized and non-magnetized metal layers, in which there is a strong dependence of the electrical resistance of an applied magnetic field due to spin-dependent electron scattering.
  • a soft magnetic detection layer by a Non-magnetic intermediate layer separated from a magnetically harder layer.
  • the non-magnetic intermediate layer has such a layer thickness that only a small magnetic coupling between the two magnetic layers on the non-magnetic
  • the individual layer systems are connected either in pairs for differential measurement or preferably as a group of four to form a Wheatstone measuring bridge and are arranged at a predetermined distance from one another such that a homogeneous magnetic field does not cause a bridge signal. However, a change in the magnetic field in the range of the predetermined distance generates a bridge signal corresponding to the magnetization of a
  • Magnetic field generator device whose pole pair spacing corresponds approximately to the predetermined Gradiometerabstand the bridge circuit.
  • the device according to the invention with the features of the independent claim has the advantage over known devices that a sensor can be realized which, in a substantially identical design, the detection of the speed of a multipole wheel both in axial and radial magnetization or in measurements on a multipole -Line unit allows.
  • a sensor can be realized which, in a substantially identical design, the detection of the speed of a multipole wheel both in axial and radial magnetization or in measurements on a multipole -Line unit allows.
  • Sensors used in the chip level in particular of GMR or TMR sensors.
  • measuring arrangements for linear or rotational movements can be realized whose chip plane parallel or perpendicular to the surface of the Multipole arrangement or in any angular position between them.
  • rotational movements the same sensor design can be used both in conjunction with axially magnetized as well as with radially magnetized multipole wheels and thereby the
  • Variant diversity of the sensor designs can be reduced, resulting in higher quantities with lower production costs and easier storage.
  • the installation space can be reduced and saved by the elimination of Beinchenbiegung the integrated circuit by 90 ° both tooling and process costs.
  • a quality improvement and a higher production yield can be achieved because damage to the sensor is avoided by a necessary bending for different mounting positions.
  • suitable sensors are preferably GMR spin valve sensors or highly sensitive TMR sensors.
  • the IC of the sensor is arranged in the front region near the remote from the electrical leads edge of the sensor, so even with an installation position of the chip with its large surfaces perpendicular to the orientation of the magnetic donor elements a smaller Air gap and a high sensitivity can be realized.
  • the magnetic field transmitter device is designed as an axially magnetized pole wheel, whereby the extent of the sensor in this direction can be significantly shortened. On the other hand, can be reduced by a radial magnetization of flat magnet segments, the diameter of the sensor unit.
  • FIG. 1 shows the principle of a measuring device with an axially oriented magnetic field transmitter device in the form of an axially magnetized multipole wheel
  • Figure 2 shows the principle of a measuring device with a radially oriented magnetic encoder means
  • FIG. 3 shows a perspective basic illustration of a measuring device which shows the arrangement of a chip sensor optionally parallel or perpendicular to the alignment of the elements of FIG
  • Transmitter device shows, wherein the large area of the chip sensor is aligned in each case in the direction of measurement.
  • FIG. 1 shows the principle of a measuring device with an axially acting magnetic field generator unit in the form of an axially magnetized multipole wheel 10 whose individual magnet segments 12 have a small thickness perpendicular to the plane of the drawing and are arranged in an annular shape in their trapezoidal shape. Of the entire multipole 10 only a section is shown, wherein the individual magnetic segments 12, each with alternating polarity line up.
  • a magnetoresistive chip sensor 14 is arranged approximately centrally above the magnet segments 12 such that, with the release of an axial air gap 13 with its large surfaces parallel to the surfaces of the
  • Magnet segments 12 is aligned in the direction of measurement.
  • the flux relevant to the measurement generated by the magnet segments 12 is designated Bx and directed parallel to the large areas 16 of the chip sensor 14.
  • the designation of the magnetic flux Bx corresponds to the x-axis of an x / y / z coordinate system 17, wherein the magnetization direction of the segments 12 corresponds to the z-direction and the orientation of the large areas 16 of the chip sensor 14 corresponds to the x / y-plane.
  • the device shown in Figure 1 only on the basis of their essential measuring elements allows the contactless detection of rotational movements, in particular the detection of the rotation of a vehicle wheel, which, for example, to control the braking effect in anti-lock braking systems or electronic
  • Figure 2 shows a similar arrangement as Figure 1, wherein the chip sensor 14 has the same structure and design as in Figure 1.
  • this arrangement with a radially magnetized multipole 22 with magnetically reversed magnetic segments 24 of the chip sensor 14, leaving an air gap 23 with its large surfaces 16 in the x / z plane of the x / y / z
  • Coordinate system 25 aligned, wherein the measuring direction and detected by the chip sensor 14 magnetic flux Bx again point in the x direction of the coordinate system.
  • the chip sensor 14 can be used in unmodified design as in an axial magnetization of the magnetic segments 12 of Figure 1.
  • the sensor 14 is preferably constructed in both applications in Figure 1 and Figure 2 as a GMR (Giant Magneto Resistance) - sensor in a known manner and will therefore not be described here.
  • the layer systems of the sensor are preferably designed in the likewise known spin valve design, whereby an increased sensitivity of the sensor can be realized.
  • a very advantageous design of the chip sensor 14 is also the design as TMR (Tunnel Magneto Resistance) sensor, which also has a very high measurement accuracy. In principle, however, sensors in the AMR (Anisotropic Magneto Resistance) design can also be used for the measurements.
  • FIG. 3 again shows, in a schematic representation, the two possibilities of arranging the chip sensors 14 on the one hand parallel to the surface of the chip
  • Magnetic sensor device according to Figure 1 and on the other hand perpendicular to the surface of the magnetic field generator device according to FIG. 2.
  • the flux Bx or the flux change relevant for the measurement is aligned in the x direction of the x / y / z coordinate system 27 and runs parallel to the large areas 16 of the chip sensors 14.
  • the integrated circuit in the chip sensor 14 is located as far forward as possible near the edge 26 in the sensor. It can thus cover a large air gap area, although increases in accordance with the position of the IC relative to the magnetic surface in contrast to the parallel orientation of the air gap.
  • the chip sensor 14 is shown with four connection lines 28, 30, 32, 34 each for clarification of an internal structure with a Wheatstone bridge circuit having four resistance regions to which a supply voltage is supplied at two connection points and between two further connection points in FIG the bridge diagonal in a known manner a measured value is tapped.
  • the device according to the invention represents an embodiment of a magnetoresistive chip sensor 14 which, when moving in relation to the magnet segments 12 or 24 in the x direction of the specified coordinate systems, enables the measurement both with radial and axial or linear alignment of the magnet segments. Leave it While maintaining the measuring direction, the measuring arrangements shown in FIGS. 1 to 3 for detecting the change in the magnetic flux density Bx can be realized with one and the same sensor 14. As a result, installation situations can be operated for the previously different sensor designs were required.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The invention relates to a device for the contact-free detection of linear or rotational movements, particularly for detecting the rotation of a vehicle wheel. Said measurement device operates with a magnetoresistive chip sensor (14) that is fixed in place and a magnetic field transmitter device (10, 22) adjacent thereto, leaving open an air gap (13, 23); the individual magnetic segments (12, 24) of said magnetic field transmitter device are magnetized in the polarity thereof in an alternating fashion substantially in the z direction of a three-dimensional x/y/z coordinate system (17, 25, 27), wherein the chip sensor (14) is oriented with the large areas (16) thereof substantially in the x/y or x/z plane of the coordinate system (17, 25, 27) or in an intermediate position relative to said planes, the measurement device and the large surface (16) of the chip sensor (14) each being located in the x direction of the x/y/z coordinate system.

Description

Beschreibungdescription
Titeltitle
Vorrichtung zur berührungslosen Erfassung von Linear- oder RotationsbewegungenDevice for non-contact detection of linear or rotational movements
Stand der TechnikState of the art
Die Erfindung geht aus von einer Vorrichtung zur berührungslosen Erfassung von Linear- oder Rotationsbewegungen, insbesondere zur Erfassung der Rotation eines Fahrzeugrades, mit einem ortsfesten magnetoresitiven Chipsensor und einer diesem unter Freilassung eines Luftspaltes benachbarten, beweglichen Magnetfeldgebereinrichtung.The invention relates to a device for non-contact detection of linear or rotational movements, in particular for detecting the rotation of a vehicle wheel, with a stationary magnetoresistive chip sensor and a movable magnetic field generator device adjacent to it, leaving an air gap.
Aus der DE 103 57 149 Al ist bereits eine Vorrichtung bekannt, welche eine Magnetsensoranordnung aufweist mit einer magnetfeldempfindlichen Sensorschicht in einem integrierten GMR-Spin-Valve-Mehrschichtsystem, dessen magnetfeldempfindliche Sensorelemente zu einer Messbrücke verschaltet sind und dessen elektrischer Widerstand in Abhängigkeit von einem äußeren Magnetfeld veränderbar ist. Die Sensorelemente sind hierbei jeweils aus Schichtsystemen aufgebaut, welche aus dünnen, abwechselnd magnetisierten und nicht magnetisierten Metallschichten bestehen, bei denen eine starke Abhängigkeit des elektrischen Widerstandes von einem angelegten Magnetfeld aufgrund spinabhängiger Elektronenstreuung vorliegt. Hierbei wird eine weichmagnetische Detektionsschicht durch eine nichtmagnetische Zwischenschicht von einer magnetisch härteren Schicht getrennt. Die nichtmagnetische Zwischenschicht weist eine derartige Schichtdicke auf, dass nur eine geringe magnetische Koppelung zwischen den beiden magnetischen Schichten über die nichtmagnetischeFrom DE 103 57 149 Al a device is already known, which has a magnetic sensor array with a magnetic field sensitive sensor layer in an integrated GMR spin valve multilayer system whose magnetic field sensitive sensor elements are connected to a measuring bridge and its electrical resistance in response to an external magnetic field is changeable. The sensor elements are each constructed of layer systems which consist of thin, alternately magnetized and non-magnetized metal layers, in which there is a strong dependence of the electrical resistance of an applied magnetic field due to spin-dependent electron scattering. Here, a soft magnetic detection layer by a Non-magnetic intermediate layer separated from a magnetically harder layer. The non-magnetic intermediate layer has such a layer thickness that only a small magnetic coupling between the two magnetic layers on the non-magnetic
Zwischenschicht erfolgt, wodurch man erreicht, dass die Magnetisierungsrichtung der weichmagnetischen Detektionsschicht schon sehr kleinen externen Magnetfeldern folgt. Die einzelnen Schichtsysteme sind entweder paarweise zur Differenzmessung oder vorzugsweise als Vierergruppe zu einer Wheatstoneschen Messbrücke verschaltet und dabei in einem vorgegebenen Abstand zueinander angeordnet, derart, dass ein homogenes Magnetfeld kein Brückensignal bewirkt. Eine Veränderung des Magnetfeldes im Bereich des vorgegebenen Abstands erzeugt jedoch ein Brückensignal entsprechend der Magnetisierung einerIntermediate layer takes place, whereby it is achieved that the magnetization direction of the soft magnetic detection layer follows very small external magnetic fields. The individual layer systems are connected either in pairs for differential measurement or preferably as a group of four to form a Wheatstone measuring bridge and are arranged at a predetermined distance from one another such that a homogeneous magnetic field does not cause a bridge signal. However, a change in the magnetic field in the range of the predetermined distance generates a bridge signal corresponding to the magnetization of a
Magnetfeldgebereinrichtung, deren Polpaarabstand etwa dem vorgegebenen Gradiometerabstand der Brückenschaltung entspricht .Magnetic field generator device whose pole pair spacing corresponds approximately to the predetermined Gradiometerabstand the bridge circuit.
Offenbarung der ErfindungDisclosure of the invention
Die erfindungsgemäße Vorrichtung mit den Merkmalen des unabhängigen Anspruchs hat gegenüber bekannten Vorrichtungen den Vorteil, dass ein Sensor realisiert werden kann, welcher bei im Wesentlichen identischer Bauform die Detektierung der Drehzahl eines Multipolrades sowohl bei axialer als auch bei radialer Magnetisierung oder auch bei Messungen an einer Multipol-Lineareinheit ermöglicht. Dabei wird vorzugsweise die hohe Empfindlichkeit von grundsätzlich bekanntenThe device according to the invention with the features of the independent claim has the advantage over known devices that a sensor can be realized which, in a substantially identical design, the detection of the speed of a multipole wheel both in axial and radial magnetization or in measurements on a multipole -Line unit allows. In this case, preferably the high sensitivity of basically known
Sensoren in der Chipebene genutzt, insbesondere von GMR- oder TMR- Sensoren. Hiermit lassen sich Messanordnungen für Linear- oder Rotationsbewegungen realisieren, deren Chipebene parallel oder senkrecht zur Oberfläche der Multipolanordnung oder in einer beliebigen Winkellage dazwischen liegt. Im Falle von Rotationsbewegungen kann die gleiche Sensorausführung sowohl in Verbindung mit axial magnetisierten wie auch mit radial magnetisierten Multipolrädern verwendet werden und hierdurch dieSensors used in the chip level, in particular of GMR or TMR sensors. Hereby, measuring arrangements for linear or rotational movements can be realized whose chip plane parallel or perpendicular to the surface of the Multipole arrangement or in any angular position between them. In the case of rotational movements, the same sensor design can be used both in conjunction with axially magnetized as well as with radially magnetized multipole wheels and thereby the
Variantenvielfalt der Sensorbauformen verringert werden, wodurch sich höhere Stückzahlen mit niedrigeren Fertigungskosten und eine einfachere Lagerhaltung ergeben. Gegenüber bekannten Messanordnungen mit Hallsensoren, welche nur die Messung der Komponente der magnetischen Flussdichte senkrecht zur Chipebene erlauben, können der Einbauraum verringert und durch den Wegfall der Beinchenbiegung des integrierten Schaltkreises um 90° sowohl Werkzeug- als auch Prozesskosten eingespart werden. Zusätzlich sind eine Qualitätsverbesserung und eine höhere Produktionsausbeute erzielbar, da Beschädigungen am Sensor durch eine notwendige Biegung für unterschiedliche Einbaulagen vermieden werden.Variant diversity of the sensor designs can be reduced, resulting in higher quantities with lower production costs and easier storage. Compared to known measuring arrangements with Hall sensors, which allow only the measurement of the component of the magnetic flux density perpendicular to the chip plane, the installation space can be reduced and saved by the elimination of Beinchenbiegung the integrated circuit by 90 ° both tooling and process costs. In addition, a quality improvement and a higher production yield can be achieved because damage to the sensor is avoided by a necessary bending for different mounting positions.
Durch die in den abhängigen Ansprüchen vorgeschlagenen Maßnahmen sind vorteilhafte Weiterbildungen undThe measures proposed in the dependent claims are advantageous developments and
Verbesserungen der im unabhängigen Anspruch angegebenen Vorrichtung möglich. Um eine hohe Messempfindlichkeit der Vorrichtung zu gewährleisten eignen sich als Sensoren vorzugsweise GMR-Spin-Valve-Sensoren oder hochempfindliche TMR-Sensoren.Improvements of the device specified in the independent claim possible. In order to ensure a high measuring sensitivity of the device, suitable sensors are preferably GMR spin valve sensors or highly sensitive TMR sensors.
Hinsichtlich der Bauweise des Chipsensors ist es besonders zweckmäßig, wenn der IC des Sensors in dessen vorderem Bereich nahe der von den elektrischen Anschlussleitungen abgewandten Kante des Sensors angeordnet ist, sodass auch bei einer Einbaulage des Chips mit seinen Großflächen senkrecht zur Ausrichtung der magnetischen Geberelemente ein kleiner Luftspalt und eine hohe Messempfindlichkeit realisierbar werden. Zur Erzielung einer besonders kompakten, Raum sparenden Bauform bei der Erfassung von Rotationsbewegungen, beispielsweise innerhalb eines Radlagers, ist es vorteilhaft, wenn die Magnetfeldgebereinrichtung als axial magnetisiertes Polrad ausgebildet ist, wodurch sich die Erstreckung des Sensors in dieser Richtung deutlich verkürzen lässt. Andererseits kann durch eine radiale Magnetisierung von flachen Magnetsegmenten der Durchmesser der Sensoreinheit reduziert werden.With regard to the design of the chip sensor, it is particularly expedient if the IC of the sensor is arranged in the front region near the remote from the electrical leads edge of the sensor, so even with an installation position of the chip with its large surfaces perpendicular to the orientation of the magnetic donor elements a smaller Air gap and a high sensitivity can be realized. In order to achieve a particularly compact, space-saving design when detecting rotational movements, for example within a wheel bearing, it is advantageous if the magnetic field transmitter device is designed as an axially magnetized pole wheel, whereby the extent of the sensor in this direction can be significantly shortened. On the other hand, can be reduced by a radial magnetization of flat magnet segments, the diameter of the sensor unit.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert .Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description.
Es zeigenShow it
Figur 1 das Prinzip einer Messvorrichtung mit einer axial ausgerichteten Magnetfeldgebereinrichtung in Form eines axial magnetisierten Multipolrades,1 shows the principle of a measuring device with an axially oriented magnetic field transmitter device in the form of an axially magnetized multipole wheel,
Figur 2 das Prinzip einer Messvorrichtung mit einer radial ausgerichteten Magnetfeldgebereinrichtung undFigure 2 shows the principle of a measuring device with a radially oriented magnetic encoder means and
Figur 3 eine perspektivische Prinzipdarstellung einer Messvorrichtung, welche die Anordnung eines Chipsensors wahlweise parallel oder senkrecht zur Ausrichtung der Elemente derFIG. 3 shows a perspective basic illustration of a measuring device which shows the arrangement of a chip sensor optionally parallel or perpendicular to the alignment of the elements of FIG
Gebereinrichtung zeigt, wobei die Großfläche des Chipsensors jeweils in Messrichtung ausgerichtet ist. Ausführungsformen der ErfindungTransmitter device shows, wherein the large area of the chip sensor is aligned in each case in the direction of measurement. Embodiments of the invention
In Figur 1 ist das Prinzip einer Messvorrichtung mit einer axial wirkenden Magnetfeldgebereinheit in Form eines axial magnetisierten Multipolrades 10 dargestellt, dessen einzelne Magnetsegmente 12 senkrecht zur Zeichenebene eine geringe Dicke aufweisen und in ihrer trapezförmigen Gestalt kreisringförmig angeordnet sind. Von dem gesamten Multipolrad 10 ist nur ein Ausschnitt dargestellt, wobei sich die einzelnen Magnetsegmente 12 mit jeweils wechselnder Polung aneinander reihen. Ein magnetoresistiver Chipsensor 14 ist etwa mittig über den Magnetsegmenten 12 angeordnet, derart, dass er unter Freilassung eines axialen Luftspaltes 13 mit seinen Großflächen parallel zu den Oberflächen der1 shows the principle of a measuring device with an axially acting magnetic field generator unit in the form of an axially magnetized multipole wheel 10 whose individual magnet segments 12 have a small thickness perpendicular to the plane of the drawing and are arranged in an annular shape in their trapezoidal shape. Of the entire multipole 10 only a section is shown, wherein the individual magnetic segments 12, each with alternating polarity line up. A magnetoresistive chip sensor 14 is arranged approximately centrally above the magnet segments 12 such that, with the release of an axial air gap 13 with its large surfaces parallel to the surfaces of the
Magnetsegmente 12 in Messrichtung ausgerichtet ist. Der für die Messung relevante, von den Magnetsegmenten 12 erzeugte Fluss ist mit Bx bezeichnet und parallel zu den Großflächen 16 des Chipsensors 14 gerichtet. Die Bezeichnung des magnetischen Flusses Bx entspricht der x-Achse eines x/y/z- Koordinatensystems 17, wobei die Magnetisierungsrichtung der Segmente 12 der z-Richtung und die Ausrichtung der Großflächen 16 des Chipsensors 14 der x/y-Ebene entspricht.Magnet segments 12 is aligned in the direction of measurement. The flux relevant to the measurement generated by the magnet segments 12 is designated Bx and directed parallel to the large areas 16 of the chip sensor 14. The designation of the magnetic flux Bx corresponds to the x-axis of an x / y / z coordinate system 17, wherein the magnetization direction of the segments 12 corresponds to the z-direction and the orientation of the large areas 16 of the chip sensor 14 corresponds to the x / y-plane.
Die in Figur 1 nur anhand ihrer wesentlichen Messelemente dargestellte Vorrichtung ermöglicht die berührungslose Erfassung von Rotationsbewegungen, insbesondere die Erfassung der Rotation eines Fahrzeugrades, welche beispielsweise zur Steuerung der Bremswirkung in Antiblockiersystemen oder bei der elektronischenThe device shown in Figure 1 only on the basis of their essential measuring elements allows the contactless detection of rotational movements, in particular the detection of the rotation of a vehicle wheel, which, for example, to control the braking effect in anti-lock braking systems or electronic
Fahrzeugstabilisierung benötigt werden. Anstelle einer kreisringförmigen Anordnung der Magnetsegmente 12 ist jedoch auch eine lineare Ausrichtung der Segmente möglich zur Erfassung von Linearbewegungen. Die Stromversorgung des Chipsensors 14 erfolgt über zwei Zuleitungen 18 und 20 über die in bekannter Weise auch die Sensorsignale bereitgestellt werden.Vehicle stabilization needed. However, instead of a circular arrangement of the magnet segments 12, a linear alignment of the segments is also possible for detecting linear movements. The power supply of Chip sensors 14 via two leads 18 and 20 are provided over the well-known manner, the sensor signals.
Figur 2 zeigt eine ähnliche Anordnung wie Figur 1, wobei der Chipsensor 14 gleich aufgebaut und gestaltet ist wie in Figur 1. In dieser Anordnung mit einem radial magnetisierten Multipolrad 22 mit wechselnd gepolten Magnetsegmenten 24 ist der Chipsensor 14 unter Freilassung eines Luftspaltes 23 mit seinen Großflächen 16 in der x/z-Ebene des x/y/z-Figure 2 shows a similar arrangement as Figure 1, wherein the chip sensor 14 has the same structure and design as in Figure 1. In this arrangement with a radially magnetized multipole 22 with magnetically reversed magnetic segments 24 of the chip sensor 14, leaving an air gap 23 with its large surfaces 16 in the x / z plane of the x / y / z
Koordinatensystems 25 ausgerichtet, wobei die Messrichtung und der von dem Chipsensor 14 erfasste Magnetfluss Bx wiederum in x-Richtung des Koordinatensystems weisen. Bei dieser radialen Ausrichtung der Magnetsegmente 24 kann der Chipsensor 14 in unveränderter Bauform wie bei einer axialen Magnetisierung der Magnetsegmente 12 gemäß Figur 1 benutzt werden. Der Sensor 14 ist in beiden Anwendungen bei Figur 1 und Figur 2 vorzugsweise als GMR- (Giant Magneto Resistance) - Sensor in bekannter Weise aufgebaut und wird daher hier nicht näher beschrieben. Die Schichtsysteme des Sensors sind vorzugsweise in der ebenfalls bekannten Spin-Valve- Ausführung gestaltet, wodurch sich eine erhöhte Empfindlichkeit des Sensors realisieren lässt. Eine sehr vorteilhafte Gestaltung des Chipsensors 14 ist auch die Bauform als TMR- (Tunnel Magneto Resistance) -Sensor, welcher ebenfalls eine sehr hohe Messgenauigkeit aufweist. Grundsätzlich sind jedoch für die Messungen auch Sensoren in der AMR- (Anisotrop Magneto Resistance) -Bauform verwendbar.Coordinate system 25 aligned, wherein the measuring direction and detected by the chip sensor 14 magnetic flux Bx again point in the x direction of the coordinate system. In this radial alignment of the magnet segments 24, the chip sensor 14 can be used in unmodified design as in an axial magnetization of the magnetic segments 12 of Figure 1. The sensor 14 is preferably constructed in both applications in Figure 1 and Figure 2 as a GMR (Giant Magneto Resistance) - sensor in a known manner and will therefore not be described here. The layer systems of the sensor are preferably designed in the likewise known spin valve design, whereby an increased sensitivity of the sensor can be realized. A very advantageous design of the chip sensor 14 is also the design as TMR (Tunnel Magneto Resistance) sensor, which also has a very high measurement accuracy. In principle, however, sensors in the AMR (Anisotropic Magneto Resistance) design can also be used for the measurements.
Figur 3 zeigt nochmals in schematisierter Darstellung die beiden Möglichkeiten der Anordnung der Chipsensoren 14 einerseits parallel zur Oberfläche derFIG. 3 again shows, in a schematic representation, the two possibilities of arranging the chip sensors 14 on the one hand parallel to the surface of the chip
Magnetfeldgebereinrichtung gemäß Figur 1 und andererseits senkrecht zur Oberfläche der Magnetfeldgebereinrichtung gemäß Figur 2. In beiden Anordnungen ist der für die Messung relevante Fluss Bx, beziehungsweise die Flussänderung, in x- Richtung des x/y/z Koordinatensystems 27 ausgerichtet und verläuft parallel zu den Großflächen 16 der Chipsensoren 14.Magnetic sensor device according to Figure 1 and on the other hand perpendicular to the surface of the magnetic field generator device according to FIG. 2. In both arrangements, the flux Bx or the flux change relevant for the measurement is aligned in the x direction of the x / y / z coordinate system 27 and runs parallel to the large areas 16 of the chip sensors 14.
Beim Einbau des Chipsensors 14 in der senkrechten Ausrichtung zur Oberfläche der Magnetsegmente 12 entsprechend der rechten Darstellung in Figur 3 ist es wichtig, dass der in dem Chipsensor 14 verbaute IC möglichst weit vorne nahe der Kante 26 im Sensor liegt. Er kann so einen großen Luftspaltbereich abdecken, obwohl sich entsprechend der Position des IC gegenüber der Magnetoberfläche im Gegensatz zur parallelen Ausrichtung der Luftspalt vergrößert. Durch eine entsprechende Gestaltung und die hohe Empfindlichkeit, insbesondere von GMR-Sensoren, kann jedoch im Vergleich zu Hallsensoren eine Reduktion des Messbereichs bei der senkrechten Montage über der Messoberfläche praktisch vollständig ausgeglichen werden.When installing the chip sensor 14 in the vertical orientation to the surface of the magnet segments 12 according to the right-hand illustration in FIG. 3, it is important that the integrated circuit in the chip sensor 14 is located as far forward as possible near the edge 26 in the sensor. It can thus cover a large air gap area, although increases in accordance with the position of the IC relative to the magnetic surface in contrast to the parallel orientation of the air gap. By means of a corresponding design and the high sensitivity, in particular of GMR sensors, however, a reduction of the measuring range in the case of vertical mounting over the measuring surface can be virtually completely compensated in comparison to Hall sensors.
In der Ausführung gemäß Figur 3 ist der Chipsensor 14 mit jeweils vier Anschlussleitungen 28, 30, 32, 34 dargestellt zur Verdeutlichung eines inneren Aufbaus mit einer Wheatstone-Brückenschaltung mit vier Widerstandsbereichen, welchen an zwei Verbindungspunkten eine Versorgungsspannung zugeführt wird und zwischen zwei weiteren Verbindungspunkten in der Brückendiagonale in bekannter Weise ein Messwert abgegriffen wird.In the embodiment according to FIG. 3, the chip sensor 14 is shown with four connection lines 28, 30, 32, 34 each for clarification of an internal structure with a Wheatstone bridge circuit having four resistance regions to which a supply voltage is supplied at two connection points and between two further connection points in FIG the bridge diagonal in a known manner a measured value is tapped.
Die erfindungsgemäße Vorrichtung stellt eine Ausführungsform eines magnetoresistiven Chipsensors 14 dar, welche bei der Bewegung gegenüber den Magnetsegmenten 12 oder 24 in x- Richtung der angegebenen Koordinatensysteme die Messung sowohl bei radialer als auch bei axialer oder linearer Ausrichtung der Magnetsegmente ermöglicht. Dadurch lassen sich unter Beibehaltung der Messrichtung die in den Figuren 1 bis 3 gezeigten Messanordnungen zur Erfassung der Änderung der magnetischen Flussdichte Bx mit ein und demselben Sensor 14 realisieren. Hierdurch können Einbausituationen bedient werden, für die bisher unterschiedliche Sensorausführungen erforderlich waren. The device according to the invention represents an embodiment of a magnetoresistive chip sensor 14 which, when moving in relation to the magnet segments 12 or 24 in the x direction of the specified coordinate systems, enables the measurement both with radial and axial or linear alignment of the magnet segments. Leave it While maintaining the measuring direction, the measuring arrangements shown in FIGS. 1 to 3 for detecting the change in the magnetic flux density Bx can be realized with one and the same sensor 14. As a result, installation situations can be operated for the previously different sensor designs were required.

Claims

Ansprüche claims
1. Vorrichtung zur berührungslosen Erfassung von Linearoder Rotationsbewegungen, insbesondere zur Erfassung der Rotation eines Fahrzeugrades, mit einem ortsfesten magnetoresitiven Chipsensor (14) und einer diesem unter Freilassung eines Luftspaltes (13,23) benachbarten, beweglichen Magnetfeldgebereinrichtung, deren einzelne Magnetsegmente (12,24) in ihrer Polung wechselweise im Wesentlichen in z-Richtung eines dreidimensionalen x/y/z- Koordinatensystems (17,25,27) magnetisiert sind, wobei der Chipsensor (14) mit seinen Großflächen (16) im Wesentlichen in der x/y-Ebene oder in der x/z-Ebene des1. A device for non-contact detection of linear rotations, in particular for detecting the rotation of a vehicle wheel, with a stationary magnetoresistive chip sensor (14) and this with the release of an air gap (13,23) adjacent, movable magnetic encoder means whose individual magnet segments (12,24 ) are alternately magnetized in their polarity essentially in the z-direction of a three-dimensional x / y / z coordinate system (17, 25, 27), the chip sensor (14) with its large surfaces (16) being essentially in the x / y direction. Plane or in the x / z plane of the
Koordinatensystems (17,25,27) oder in einer Zwischenlage zu diesen Ebenen ausgerichtet ist, derart, dass die Messrichtung und die Großfläche (16) des Chipsensors (14) in x-Richtung des Koordinatensystems (17,25,27) verlaufen.Coordinate system (17,25,27) or aligned in an intermediate position to these levels, such that the measuring direction and the large area (16) of the chip sensor (14) in the x-direction of the coordinate system (17,25,27) run.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Chipsensor (14) ein GMR(Giant Magneto Resistance) -Sensor ist.2. Apparatus according to claim 1, characterized in that the chip sensor (14) is a GMR (Giant Magneto Resistance) sensor.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Chipsensor (14) als GMR-Spin Valve- Sensor ausgebildet ist.3. Apparatus according to claim 1 or 2, characterized in that the chip sensor (14) is designed as a GMR spin valve sensor.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Chipsensor (14) ein TMR (Tunnel Magneto Resistance) - Sensor ist 4. The device according to claim 1, characterized in that the chip sensor (14) is a TMR (Tunnel Magneto Resistance) - sensor
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Magnetfeldgebereinrichtung als radial magnetisiertes Mulipolrad (22) ausgebildet ist.5. Device according to one of the preceding claims, characterized in that the magnetic field transmitter device is designed as a radially magnetized Mulipolrad (22).
6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Magnetfeldgebereinrichtung als axial magnetisiertes Multipolrad (10) ausgebildet ist.6. Device according to one of claims 1 to 4, characterized in that the magnetic field transmitter device is designed as an axially magnetized multipole wheel (10).
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der IC des Chipsensors (14) in dessen vorderem Bereich nahe der von den elektrischen Anschlussleitungen (18, 20; 28-34) abgewandten Kante (26) des Sensors angeordnet ist. 7. Device according to one of the preceding claims, characterized in that the IC of the chip sensor (14) in the front region near the edge remote from the electrical connection lines (18, 20, 28-34) edge (26) of the sensor is arranged.
PCT/EP2008/054165 2007-05-18 2008-04-07 Device for the contact-free detection of linear or rotational movements WO2008141860A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010508759A JP2010527454A (en) 2007-05-18 2008-04-07 Device for non-contact detection of linear or rotational movement
CN200880016468A CN101688790A (en) 2007-05-18 2008-04-07 Device for the contact-free detection of linear or rotational movements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710023385 DE102007023385A1 (en) 2007-05-18 2007-05-18 Device for non-contact detection of linear or rotational movements
DE102007023385.1 2007-05-18

Publications (1)

Publication Number Publication Date
WO2008141860A1 true WO2008141860A1 (en) 2008-11-27

Family

ID=39592748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/054165 WO2008141860A1 (en) 2007-05-18 2008-04-07 Device for the contact-free detection of linear or rotational movements

Country Status (4)

Country Link
JP (1) JP2010527454A (en)
CN (1) CN101688790A (en)
DE (1) DE102007023385A1 (en)
WO (1) WO2008141860A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2507592B1 (en) * 2009-12-04 2019-01-30 Hirschmann Automotive GmbH Hand-operated throttle with rotational angle measuring system
DE102011079633A1 (en) 2011-07-22 2013-01-24 Robert Bosch Gmbh Magnetic sensor for measuring a magnetic field of a magnetic multipole and associated device for determining motion parameters
DE102011079631A1 (en) 2011-07-22 2013-01-24 Robert Bosch Gmbh Device for determining motion parameters
DE102015102013A1 (en) * 2015-02-12 2016-08-18 Valeo Schalter Und Sensoren Gmbh Sensor device with a torque sensor device and an incremental sensor device and motor vehicle with such a sensor device
DE102018106438A1 (en) 2017-12-13 2019-06-13 Schaeffler Technologies AG & Co. KG Sensor arrangement with a Multipolencoder and rotary bearing with such a sensor arrangement
DE102019120790A1 (en) * 2019-08-01 2021-02-04 Schaeffler Technologies AG & Co. KG Sensor arrangement with multipole encoder and rotation bearing
DE102021118230A1 (en) 2021-07-14 2023-01-19 Schaeffler Technologies AG & Co. KG Device for non-contact detection of movements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766376A (en) * 1985-08-14 1988-08-23 Hitachi, Ltd. Magnetic position detector for detecting an absolute position of a movable member
DE10052150A1 (en) * 1999-10-22 2001-04-26 Asahi Optical Co Ltd Transit instrument for surveyor, has magnet arranged near magnetic sensor to reduce the detection errors of magnetic incremental rotary coder
US6300758B1 (en) * 1994-12-30 2001-10-09 Northstar Technologies Inc. Magnetoresistive sensor with reduced output signal jitter
DE102004047770A1 (en) * 2004-09-30 2006-04-27 Infineon Technologies Ag Sensor for measuring magnetic field, has sensor element arranged on lead structure for adjusting operating point of sensor element in measuring magnetic field based on current flow
EP1770371A2 (en) * 2005-09-30 2007-04-04 Hitachi Metals, Ltd. Magnetic encoder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397026B2 (en) * 1995-12-06 2003-04-14 トヨタ自動車株式会社 Magnetic rotation detector
DE10357149A1 (en) 2003-12-06 2005-06-30 Robert Bosch Gmbh The magnetic sensor system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766376A (en) * 1985-08-14 1988-08-23 Hitachi, Ltd. Magnetic position detector for detecting an absolute position of a movable member
US6300758B1 (en) * 1994-12-30 2001-10-09 Northstar Technologies Inc. Magnetoresistive sensor with reduced output signal jitter
DE10052150A1 (en) * 1999-10-22 2001-04-26 Asahi Optical Co Ltd Transit instrument for surveyor, has magnet arranged near magnetic sensor to reduce the detection errors of magnetic incremental rotary coder
DE102004047770A1 (en) * 2004-09-30 2006-04-27 Infineon Technologies Ag Sensor for measuring magnetic field, has sensor element arranged on lead structure for adjusting operating point of sensor element in measuring magnetic field based on current flow
EP1770371A2 (en) * 2005-09-30 2007-04-04 Hitachi Metals, Ltd. Magnetic encoder

Also Published As

Publication number Publication date
CN101688790A (en) 2010-03-31
JP2010527454A (en) 2010-08-12
DE102007023385A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
EP2156143B1 (en) Magnetic field sensor
DE102018114131A1 (en) Stray field-robust magnetic position sensor arrangement
EP2516967A2 (en) Magnetic field sensor assembly for capturing travel on movable parts
DE102007013755A1 (en) Indicator element for a magnetic rotary encoder
WO2008141860A1 (en) Device for the contact-free detection of linear or rotational movements
EP2480861A1 (en) Method for analyzing signals from an angle sensor
DE102013207159A1 (en) MAGNETIC SENSOR
WO2005088258A1 (en) Magnetic sensor arrangement
EP2764340B1 (en) Sensor arrangement
DE112016000720B4 (en) Sensor arrangement for position detection and method for assisting in determining the position of an object
WO2015144377A1 (en) Sensor assembly for ascertaining the path of a moved part
DE102015106521A1 (en) Magnetic field sensor device
DE19612422C2 (en) Potentiometer device with a linearly displaceable control element and signal-generating means
DE102021126775A1 (en) ZERO GAUSS MAGNET FOR DIFFERENTIAL, ROTATION-INDENSITIVE MAGNETIC SPEED SENSORS
DE102015013022A1 (en) Magnetic field measuring device
DE102021104542A1 (en) Multiple position detection using an inhomogeneously varying magnetic field
DE102014110438B4 (en) XMR sensor device
DE102015100191A1 (en) Magnetism detection element and rotation detector
EP0873497B1 (en) Device for the detection of deflections of a magnetic body
WO2022008265A1 (en) Omnidirectional rotational speed and rotational direction sensor
DE102005031806A1 (en) Rotation angle sensor
WO2005054885A1 (en) Magnetic sensor array
DE102011079633A1 (en) Magnetic sensor for measuring a magnetic field of a magnetic multipole and associated device for determining motion parameters
DE102011079631A1 (en) Device for determining motion parameters
DE102017211996A1 (en) Sensor unit and arrangement for detecting the position of a component

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880016468.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08735897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508759

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08735897

Country of ref document: EP

Kind code of ref document: A1