WO2008136540A1 - 酸素濃縮装置 - Google Patents

酸素濃縮装置 Download PDF

Info

Publication number
WO2008136540A1
WO2008136540A1 PCT/JP2008/058688 JP2008058688W WO2008136540A1 WO 2008136540 A1 WO2008136540 A1 WO 2008136540A1 JP 2008058688 W JP2008058688 W JP 2008058688W WO 2008136540 A1 WO2008136540 A1 WO 2008136540A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
flow rate
adsorption
pressure
compressor
Prior art date
Application number
PCT/JP2008/058688
Other languages
English (en)
French (fr)
Inventor
Hisashi Kiriake
Original Assignee
Teijin Pharma Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Limited filed Critical Teijin Pharma Limited
Priority to CA2686463A priority Critical patent/CA2686463C/en
Priority to ES08752571.3T priority patent/ES2555928T3/es
Priority to CN200880015087A priority patent/CN101678189A/zh
Priority to KR1020097025450A priority patent/KR101511803B1/ko
Priority to EP08752571.3A priority patent/EP2145646B1/en
Priority to US12/451,206 priority patent/US8337599B2/en
Priority to JP2009513036A priority patent/JP5080568B2/ja
Priority to AU2008246540A priority patent/AU2008246540B2/en
Publication of WO2008136540A1 publication Critical patent/WO2008136540A1/ja
Priority to HK10105572.3A priority patent/HK1139610A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0087Environmental safety or protection means, e.g. preventing explosion
    • A61M16/009Removing used or expired gases or anaesthetic vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M16/101Preparation of respiratory gases or vapours with O2 features or with parameter measurement using an oxygen concentrator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/027Zeolites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/142Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase with semi-permeable walls separating the liquid from the respiratory gas
    • A61M16/145Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase with semi-permeable walls separating the liquid from the respiratory gas using hollow fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1025Measuring a parameter of the content of the delivered gas the O2 concentration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • B01D2259/40009Controlling pressure or temperature swing adsorption using sensors or gas analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4533Gas separation or purification devices adapted for specific applications for medical purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4541Gas separation or purification devices adapted for specific applications for portable use, e.g. gas masks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Definitions

  • the present invention relates to a pressure fluctuation adsorption type oxygen concentrator using an adsorbent that preferentially adsorbs nitrogen over oxygen, and particularly for oxygen inhalation therapy performed on patients with chronic respiratory diseases.
  • oxygen inhalation therapy is to allow a patient to inhale oxygen gas or oxygen-enriched air.
  • Oxygen concentrators, liquid oxygen, oxygen gas cylinders, etc. are known as supply sources, but oxygen concentrators are mainly used for home oxygen therapy because of their convenience and ease of maintenance.
  • An oxygen concentrator is a device that concentrates approximately 21% of the oxygen present in the air to a high concentration and supplies it to the user.
  • Such devices include a membrane oxygen concentrator using a polymer membrane that selectively permeates oxygen, a pressure fluctuation adsorbing oxygen concentrator using an adsorbent capable of preferentially adsorbing nitrogen over oxygen, air
  • adsorbent capable of preferentially adsorbing nitrogen over oxygen
  • Pressure fluctuation adsorption type oxygen concentrators are mainly used in the market because high concentration oxygen of 90% or more can be obtained with good yield.
  • Pressure fluctuation adsorption-type oxygen concentrators use molecular types such as 5A, 13 X, Li_X, and MD-X as adsorbents that selectively adsorb nitrogen over oxygen.
  • This is a device that uses an adsorbent bed filled with sieve zeolite and supplies compressed air from the compressor to the adsorbent bed to adsorb nitrogen under pressure and take out unadsorbed oxygen as oxygen-enriched gas.
  • Such an apparatus is usually equipped with two or more adsorbent beds, one adsorption bed adsorbs nitrogen to the adsorbent to generate unadsorbed oxygen, and the other adsorbent bed depressurizes and adsorbs.
  • Oxygen can be generated continuously by switching the desorption regeneration process of exhausting and regenerating nitrogen sequentially.
  • the pressure fluctuation adsorption method includes the PSA (Pressure Swing Adsorption) method in which the desorption process is depressurized to atmospheric pressure, and VPSA (Vacuum Pressure Swing) in which the adsorption cylinder is depressurized to a vacuum pressure using a compressor to increase the regeneration efficiency of the adsorbent.
  • PSA Pressure Swing Adsorption
  • VPSA Vauum Pressure Swing
  • Adsorption both of which are used as oxygen concentration methods in medical oxygen concentrators.
  • Such oxygen concentrators are often used not only in hospitals but also in patient homes for oxygen inhalation therapy for patients with chronic respiratory diseases. For this reason, not only does the main performance of the oxygen concentrator that constantly supplies oxygen-concentrated gas of a predetermined concentration at a constant flow rate, but also demands from users for devices such as low power consumption, quietness, and miniaturization. The demand for secondary performance of equipment considering convenience is also increasing.
  • the compressor consumes most of the power consumption of the entire device, and at the same time occupies a certain volume in the housing and is also the main source of noise generation.
  • it is necessary to reduce the size of the compressor used.
  • the downsizing of the compressor is accompanied by a decrease in the supply air volume and the compression performance of the compressor, so that there is a disadvantage that there is less room for maintaining the adsorption / desorption performance of the oxygen concentrator.
  • a compressor is used according to the set oxygen flow rate.
  • a device is described that controls the rotation speed of the lesser, controls the supply amount of raw material air, switches the adsorption process and desorption process, and controls the opening and closing of the switching valve to supply air in an optimal pressurization time. Yes.
  • Japanese Patent Laid-Open No. 2001-259341 discloses a device having a function of controlling the rotational speed of a compressor based on the oxygen concentration of a generated oxygen-enriched gas and a set oxygen flow rate, and suppressing power consumption at a low flow rate. Is described.
  • Japanese Patent Application Laid-Open No. Hei 6-31129 increases the rotational speed of the compressor drive motor for a predetermined time during the adsorption process.
  • a gas separation device that is normally controlled at a rotational speed is disclosed. Disclosure of the invention
  • the oxygen concentrator is equipped with a product tank that temporarily stores the concentrated oxygen produced downstream of the adsorption bed in order to cope with fluctuations in the supply flow rate when the oxygen set flow rate is switched.
  • This provides a buffer function that responds to changes in the supply flow rate, and further detects changes in the product tank pressure with a pressure sensor.
  • the compressor speed is increased to increase the amount of oxygen produced. Feedback control such as increasing is performed. If the amount of oxygen produced is kept to a minimum, the required supply air volume of the compressor can be reduced accordingly, and a small type with low power consumption can be installed in the oxygen concentrator. Accordingly, the product tank itself can be reduced in size.
  • the present invention solves the above-mentioned problems, paying attention to fluctuations in the product flow caused by suppressing the amount of oxygen produced, and performing feedback control of the amount produced by a flow sensor alone, resulting in small size and low power consumption. It realizes a device that satisfies the secondary performance of silence.
  • the present invention includes an adsorption bed filled with an adsorbent capable of selectively adsorbing nitrogen over oxygen, a compressor for supplying air to the adsorption bed, and supplying the air from the compressor to the adsorption bed to extract concentrated oxygen.
  • Pressure fluctuation adsorption type oxygen concentration equipped with an adsorption step, a flow path switching valve for repeating the desorption step of depressurizing the adsorbent bed and regenerating the adsorbent at a fixed timing, and a flow rate measuring means for measuring the supply flow rate of the generated concentrated oxygen
  • An apparatus for providing an oxygen concentrator comprising pulsation detecting means for detecting pulsation of supplied oxygen, and control means for controlling an air supply amount of the compressor based on the detection result.
  • the present invention is the flow rate measuring unit in which the pulsation detecting unit has a function of measuring the peak flow rate and the bottom flow rate of the concentrated oxygen to be supplied, and the control unit has the peak flow rate value per predetermined time or the
  • the present invention provides an oxygen concentrator that is a means for performing control to increase / decrease the air supply amount of the compressor when the bottom flow rate value exceeds a preset threshold range.
  • the present invention also provides an adsorption step in which pressurized air is supplied to an adsorbent bed filled with an adsorbent capable of selectively adsorbing nitrogen rather than oxygen to extract oxygen-enriched gas, and the desorption is performed by depressurizing the adsorbent bed and regenerating the adsorbent.
  • a pressure fluctuation adsorption type oxygen concentration method that generates oxygen-enriched gas by repeating the process at constant evening time, supply of the pressurized air based on the supply flow rate of the generated oxygen-enriched gas based on a set value Step 1 for controlling the amount, step 2 for detecting the pulsation of the oxygen-enriched gas, and controlling the supply amount of the pressurized air based on the detection result of the pulsation.
  • an oxygen enrichment method characterized by comprising step 3 of controlling.
  • the step 2 for detecting the pulsation of the oxygen-enriched gas measures the peak flow rate and / or the potom flow rate of the supplied oxygen-enriched gas, and the peak flow rate value or the potom flow rate value per predetermined time is determined in advance.
  • the flow rate value exceeds the range of ⁇ 5% of the set flow rate value it is judged that pulsating flow has occurred, and the flow rate peak value (L p) and flow rate pot in the i-sequence of pressure fluctuation adsorption method adsorption / desorption are determined.
  • the threshold range Providing an oxygen enriched method characterized by performing control to increase or decrease the supply amount of the pressurized air when it exceeds.
  • the pulsation of the oxygen-enriched gas can be measured not only by the flow value of the supplied oxygen-enriched gas but also by the pressure value.
  • FIG. 1 shows a schematic diagram of a V PS A type pressure fluctuation adsorption type oxygen concentrator as an embodiment of the oxygen concentrator of the present invention.
  • FIG. 2 is a schematic diagram of a PSA type pressure fluctuation adsorption type oxygen concentrator, which is another embodiment of the oxygen concentrator of the present invention.
  • FIG. 1 is a schematic configuration diagram illustrating a two-cylinder VPSA type pressure fluctuation adsorption type oxygen concentrator as an embodiment of the present invention.
  • Fig. 1 is an oxygen concentrator
  • 3 is a humidified oxygen concentrator. Indicates the user (patient) inhaling the blood.
  • the raw material air taken in from the outside is taken into the housing of the apparatus from an air intake port provided with an external air intake filter 101 for removing foreign matters such as dust.
  • normal air contains about 21% oxygen, about 77% nitrogen, 0.8% argon, water vapor, and 1.2% of other gases.
  • Such an apparatus is an apparatus for concentrating and extracting oxygen gas necessary as a breathing gas from air.
  • an adsorbent that selectively adsorbs nitrogen molecules rather than oxygen molecules is used as an adsorption bed.
  • molecular sieve zeolite such as 5A, 13X, Li-X, or MD-X can be used as the nitrogen adsorbent.
  • the target adsorption cylinders 105a and 105b are sequentially switched by the switching valves 104a and 104b, and the raw air is supplied to the compressor 103. Pressurize to supply approximately 77% nitrogen gas contained in the raw material air under pressure in the adsorption cylinder.
  • the adsorption cylinders 105a and 105b are formed of cylindrical containers filled with the adsorbent, and usually use one or two cylinders or three or more adsorption cylinders depending on the number of adsorption cylinders used. However, in order to produce oxygen-enriched gas from raw material air continuously and efficiently, the two-cylinder or multi-cylinder adsorption cylinder shown in Fig. 1 should be used. Is preferred. Further, the compressor 103 uses a two-head type oscillating air compressor as a compressor having a compression function and a vacuum function, as well as a screw type, a single mouth type, a scroll type, etc. In some cases, a rotary air compressor is used. The power source of the electric motor that drives the compressor 103 may be alternating current or direct current.
  • Oxygen-concentrated gas which is mainly composed of oxygen gas that has not been adsorbed by the zeolite adsorbent in the adsorption cylinder 105, passes through check valves 106a and 106b provided so as not to flow back to the adsorption cylinder 105. Flows into 107.
  • the zeolite adsorbent filled in the adsorption cylinder needs to desorb and remove the adsorbed nitrogen molecules from the adsorbent in order to adsorb nitrogen gas again from the newly introduced raw material air.
  • the pressurized state realized by the compressor 103 is connected to the vacuum line of the compressor 103 by the three-way solenoid valves (switching valves) 104a and 104b and switched to the vacuum decompression state.
  • the adsorbent is regenerated by desorbing the gas.
  • a part of the oxygen-enriched gas is caused to flow back to the adsorption cylinder in the desorption process from the product end side of the adsorption cylinder in the adsorption process through the pressure equalizing valve 102 as a purge gas. It may be.
  • the oxygen-enriched gas is produced from the raw air and stored in the product tank 107.
  • the oxygen-enriched gas stored in the product tank 107 contains high-concentration oxygen gas, for example, 95%.
  • the pressure and supply flow rate are controlled by the pressure regulating valve 108 and the flow rate setting means 109, and the humidifier 20 1 is supplied to the patient with humidified oxygen-enriched gas.
  • the humidifier 201 includes a water permeable membrane module having a moisture permeable membrane, a waterless hollow fiber humidifier that takes in moisture from external air and supplies it to a dry oxygen-enriched gas, and a bubbling type using water.
  • a humidifier or a surface evaporation type water humidifier can be used.
  • one adsorption cylinder 105a is used for the pressure adsorption process.
  • a vacuum desorption process is performed, and the adsorption process and the desorption process are sequentially switched in the reverse phase to continuously generate oxygen.
  • the flow rate can be set.
  • a stable flow rate of oxygen can be supplied.
  • the secondary performance of the equipment considering the convenience of the user to the equipment, such as reducing the power consumption, quietness, and miniaturization of the oxygen concentrator, is determined by the type of compressor used and its operation control method. .
  • the amount of oxygen produced is controlled so that the pressure in the product tank is slightly higher than the pressure necessary to maintain the pressure on the outlet side of the pressure regulating valve at a constant level.
  • the generated amount is controlled, if the oxygen extraction amount temporarily increases due to a change in the flow rate setting value, the feedback in the oxygen generation amount feedback control will not follow, and the pressure in the product tank will decrease temporarily. A pulsating flow of oxygen gas occurs.
  • a method of controlling the amount of oxygen produced by constantly monitoring the pressure in the product tank 107 can be considered, but it is necessary to install a new pressure sensor to measure the pressure in the product tank. Arise.
  • the pulsation detecting hand for detecting the pulsation of the supplied oxygen
  • a control means for controlling the air supply amount of the compressor according to the presence or absence of pulsation.
  • the pulsation detection means is a flow sensor with a function to measure the peak flow and bottom flow of the concentrated oxygen to be supplied.
  • the control means 401 controls the air supply amount of the compressor 103 to be increased or decreased. For example, when the peak flow rate value or the bottom flow rate value exceeds the 5% soil range with respect to the set flow rate value, it is judged that pulsating flow has occurred, and the motor speed is increased to increase the air supply amount of the compressor. Control to raise.
  • the flow sensor 302 various flow sensors such as an electromagnetic type, a mechanical type, an ultrasonic type, and a thermal type are used.
  • the ultrasonic flow sensor can also measure oxygen concentration at the same time. Since the pressure of the generated oxygen fluctuates for each adsorption / desorption sequence, the pulsating flow is detected by the flow rate peak value (L p) and the flow rate bottom value (L b) in one adsorption / desorption sequence of the pressure fluctuation adsorption method. This is done by detecting and calculating.
  • the comparison with the predetermined threshold can be managed by the flow rate fluctuation rate ((Lp-Lb) / flow rate set value) in addition to the absolute value comparison.
  • the pulsation can be detected by detecting the pressure fluctuation when the pressure sensor 301 is provided on the downstream side of the pressure regulating valve in addition to the flow rate sensor 302 described above.
  • the amount of air supplied by the compressor required for oxygen generation can be minimized. It is possible to achieve various secondary effects to satisfy the patient compliance required for oxygen concentrators, such as reducing the size of the compressor, reducing the power consumption of the device, and reducing the noise.
  • the downsizing of compressors is a function of compressor compression performance and vacuum performance. This saves the mechanical power and makes it more susceptible to the temperature of the operating environment.
  • the magnitude of the static load resistance varies greatly depending on the usage environment of the oxygen concentrator, and the compressor may not start in a low temperature environment in winter.
  • the cause may be that the required torque at start-up increases and the start-up current of the drive motor increases, resulting in insufficient torque and, in some cases, the device not starting.
  • a method for suppressing the load on the compressor at the time of starting the oxygen concentrator includes a plurality of adsorption cylinders filled with an adsorbent capable of selectively adsorbing nitrogen rather than oxygen, a compressor for supplying pressurized air to the adsorption cylinder, The flow path between the compressor and each adsorption cylinder is sequentially switched, the adsorption process for supplying pressurized air to each adsorption cylinder to extract concentrated oxygen, and the desorption process for depressurizing each adsorption cylinder to regenerate the adsorbent are repeated at predetermined times.
  • a pressure equalizing flow path having a pressure equalizing valve for equalizing the pressure between the adsorbing cylinders is provided downstream of the adsorbing cylinder, and when the compressor is started,
  • an oxygen concentrator characterized by including a start control means for starting the pressure equalizing valve in an open state.
  • the adsorption cylinder is two adsorption cylinders
  • the flow path switching means is an electromagnetic valve that switches between each adsorption cylinder, the compressor, and the exhaust pipe
  • the activation control means has a predetermined time when the compressor is activated
  • the compressor and the adsorption process side adsorption cylinder are communicated with each other through the electromagnetic valve, and the pressure equalization valve is opened, and the exhaust pressure pipe is communicated with the desorption process side adsorption cylinder and the electromagnetic valve.
  • the oxygen concentrator is characterized in that it is means for controlling opening and closing of a valve, and in particular, the flow path switching means is a three-way electromagnetic valve, and the start control means is a rotation at the start of the compressor. Fixed number This can be realized by an oxygen concentrator characterized by control means that is started at a lower rotational speed than in a normal state.
  • FIG. 2 is a schematic apparatus configuration diagram illustrating a 2-cylinder PSA type pressure fluctuation adsorption type oxygen concentrator.
  • the exhaust path in the desorption process passes through the vacuum exhaust line of the compressor 103, whereas in the PSA type oxygen concentrator shown in Fig. 2, it is connected to the open air line. Except for this point, the device has the same configuration. Therefore, the pressurized adsorption cylinder 105 is decompressed to the atmospheric pressure state by the three-way solenoid valves (switching valves) 104a and 104b, and the adsorbent is regenerated by desorbing the adsorbed nitrogen gas. Further, in this desorption process, in order to increase the desorption efficiency, the oxygen-enriched gas may be made to flow back as a purge gas from the product end side of the adsorption cylinder during the adsorption process via the pressure equalizing valve 102.
  • the gas is purified from the end of the product while the pressure in the adsorption cylinder does not rise sufficiently at the beginning of the oxygen concentrator start-up.
  • the control means 401 controls to open the pressure equalizing valve 102 on the downstream side (product end side) of the suction cylinder 105 in conjunction with the start of the compressor (compressor) 103.
  • Pressurized air is supplied to a certain adsorbing cylinder 105a, and the initial gas is collected from the product end of the adsorbing cylinder 105b in the desorption process via the pressure equalizing valve 102.
  • the adsorption cylinder 105a is pressurized in a few seconds, and then the pressure equalizing valve 102 is closed, and the normal adsorption process is started.
  • high concentration oxygen such as 90% is stored in the production tank via the check valve 106a.
  • the compressor When the compressor is started, a load is applied compared to the steady operation state. Especially when starting at low temperatures such as in winter, the compressor drive torque As a result, the compressor will not start even when the power is turned on. Normally, the required torque is large when starting the compressor, and the starting current for the drive module increases.
  • the control means 401 that controls the activation can also activate the rotation speed at the time of starting the compressor at a lower speed than in the steady state.
  • the control means 401 of the oxygen concentrator performs various operation controls in a steady state.
  • the set value of the flow rate setting means 109, the product gas flow rate value by the flow rate sensor 302, and the oxygen concentration of the oxygen-enriched gas produced by the oxygen concentration sensor 301 are detected, and the rotation speed of the motor of the compressor 103 is controlled by the control means 401.
  • the amount of air supplied to the adsorption cylinder 105 is controlled. If the set flow rate is low, reduce the amount of oxygen produced by reducing the number of revolutions and reduce power consumption.
  • Downsizing the compressor is effective in reducing the noise generated by the oxygen concentrator equipped with it.
  • this effect is an effect during steady operation, and a large noise is generated when the equipment is started and stopped.
  • Various measures have been taken for medical oxygen concentrators to reduce noise and prevent vibration. For example, change from a reciprocating compressor to a low-noise scroll type or helical type compressor, or use a box or duct.
  • a resonance type or expansion type silencer is installed in the intake pipe and exhaust pipe, or a sound absorbing material is attached to the housing.
  • various measures are taken to reduce noise during normal operation, from improving the compressor itself to improving the housing and installing a silencer. However, no measures are taken at startup or shutdown of the equipment.
  • Such problems include a plurality of adsorption cylinders filled with an adsorbent capable of selectively adsorbing nitrogen rather than oxygen, a compressor that supplies pressurized air to the adsorption cylinders, and a flow path between the compressor and each adsorption cylinder.
  • An adsorption process for supplying pressure air to each adsorption cylinder to extract concentrated oxygen, and a pressure fluctuation adsorption oxygen type equipped with a flow path switching means for depressurizing each adsorption cylinder to regenerate the adsorbent at a predetermined timing
  • the concentrating device is provided with stop control means for performing switching control of the flow path switching means for setting the internal pressure of the adsorption cylinder to a normal pressure when the apparatus is stopped, and after receiving the apparatus stop command signal, the adsorption cylinder internal pressure is a predetermined pressure.
  • an oxygen concentrator which is a means for performing control to stop the driving of the compressor at the following time.
  • a pressure equalizing flow path having a pressure equalizing valve that communicates the product ends of the pressure side suction cylinder and the vacuum desorption side suction cylinder is further provided, and the stop control means opens the pressure equalization valve based on the apparatus stop command signal.
  • the vacuum line of the pressure side suction cylinder and the compressor, the vacuum desorption side suction cylinder and the compressor pressure Switching control of the flow path switching means is performed so as to communicate the line, and the switching control is performed simultaneously with or immediately after the switching control is performed. This can be solved by using a means for controlling the compressor to stop.
  • the stop control means is a means for performing control to stop the driving of the compressor at a time point equal to or less than 50% of the maximum pressure value of the adsorption cylinder internal pressure.
  • An oxygen concentrating apparatus comprising a flow path switching means for repeating an adsorption process for supplying compressed air and extracting concentrated oxygen, and a desorption process for regenerating the adsorbent by depressurizing each adsorption cylinder in a predetermined evening. Applied.
  • the control means 401 for controlling the switching of the flow path switching valves 104a and 104b in order to make the internal pressure of the adsorption cylinders 105a and 105b normal.
  • the internal pressure of the adsorption cylinder is predetermined. Control is performed to stop the driving of the compressor 103 when the pressure is below the pressure. In other words, by controlling the compressor to stop when the pressure difference between the adsorption cylinders after a predetermined time is small, not when the pressure difference immediately after the adsorption / desorption process ends is large, quietness and vibration suppression during the stop can be achieved. Realize.
  • a pressure equalizing flow path provided with a pressure equalizing valve 102 communicating between the product ends of the pressure side suction cylinder 105a and the vacuum desorption side suction cylinder 105b is used, and based on the stop control means 401 force device stop command signal, the pressure equalization valve Opening 102, the pressure equalizing purge process in which a part of the product gas is used to purge the desorption side adsorption cylinder 105b To stop the compressor.
  • the pressure equalizing valve 102 By opening the pressure equalizing valve 102, the pressure side adsorption cylinder 105a becomes 50% or less of the maximum pressure.
  • the residual pressure is also automatically exhausted, and the device stops in a quiet state. it can.
  • the flow path switching valves 104a, 104 are connected so that the pressure side suction cylinder 105a communicates with the vacuum line of the compressor 103, and the vacuum desorption side suction cylinder 105b communicates with the compressor pressure line. Switching control between the adsorption process and the desorption process is performed at the same time or immediately after that, so that the compressor can be stopped near atmospheric pressure. It is possible to achieve quietness and vibration control when stopping. The points to keep in mind when stopping the oxygen concentrator will be further described. In general, when shutting down the VPSA type oxygen concentrator, there are many things to be aware of, such as deterioration of the adsorbent during shutdown and early operation stabilization at restart.
  • the conventional device does not take into account that moisture is discharged from the adsorption bed, compressor, piping, etc. when the equipment is stopped, and moisture absorption by the moisture remaining in the adsorption bed after the operation is stopped.
  • Deterioration, condensation and mist in compressors and switching valves are problems.
  • a method of discharging moisture by stopping after the exhaust stroke is conceivable, but in that case, moisture in one cylinder is discharged, but moisture is accumulated in the other cylinder. Purging with product gas from the product tank cannot be handled by the check valve provided between the adsorption bed and the product tank, and a new solenoid valve must be installed. Therefore, technology to prevent moisture absorption and dew condensation in the adsorption bed and switching valve after the equipment is stopped is important.
  • Such problems include a plurality of adsorption cylinders filled with an adsorbent capable of selectively adsorbing nitrogen rather than oxygen, supplying pressurized air to the adsorption cylinders, and reducing the vacuum.
  • Compressor equipped with a function the flow path between the compressor and each adsorption cylinder is switched in sequence, and the adsorption process to supply pressurized air to each adsorption cylinder and take out concentrated oxygen.
  • an oxygen concentrator having a flow path switching means for repeating the desorption process to be performed at a predetermined evening, switching of the flow path switching means for making the internal pressure of the adsorption cylinder normal pressure when the apparatus is stopped.
  • the stop control means communicates the pressurization side suction cylinder with the compressor vacuum line, the vacuum desorption side suction cylinder and the compressor pressurization line based on the compressor stop signal. It is characterized in that it is a means for performing switching control, and in particular, the stop control means, based on the stop signal of the compressor, pressurization side suction cylinder and compressor vacuum line, vacuum desorption side suction cylinder and compressor pressure line After switching control of the flow path switching means so as to communicate with each other, the flow path so as to further communicate the pressure side suction cylinder and the pressure line of the compressor, and the vacuum desorption side suction cylinder and the compressor vacuum line.
  • An embodiment of the present invention is an oxygen concentrator characterized in that it is means for performing switching control of the switching means.
  • the pressure-side suction cylinder and the vacuum desorption-side suction cylinder are further equipped with a pressure equalization valve that communicates the product ends, and the stop control means drives the compressor with the pressure equalization valve open.
  • the adsorption cylinder is two adsorption cylinders, and the flow path switching means is composed of a three-way valve that switches between the adsorption cylinder and the pressurization line or vacuum line of the compressor, and An oxygen concentrator characterized by the fact that the adsorption cylinder and the vacuum line of the compressor are connected when the power is stopped is considered as a preferred embodiment.
  • the adsorption beds on both the pressure adsorption process side and the vacuum desorption process side of the VPSA type oxygen concentrator are stopped in an atmospheric pressure state. It is possible to suppress the gas movement of the device during the stoppage, and in particular, it is possible to prevent the inflow of high humidity external air to the vacuum side adsorption bed. In addition, it is possible to prevent condensation of the pressurized air due to a decrease in the temperature of the equipment after the equipment has been stopped from being exhausted under reduced pressure to the atmospheric pressure of the pressurized air.
  • a three-way valve that switches between the two cylinders of the adsorption bed and the compressor pressure / vacuum is used by connecting the adsorption cylinders both to the compressor vacuum line when the power supply is stopped.
  • the residual pressure can be exhausted via the vacuum line side plate valve of the compressor with a poor seal, and the inside of the device can be maintained at normal pressure.
  • the compressor 103 when one adsorption cylinder 105a is performing a pressure adsorption process, the other adsorption cylinder 105b performs a vacuum desorption process, and the adsorption process and desorption process are in reverse phase. Sequentially switched to produce oxygen continuously. If the compressor 103 can be stopped when the pressure in the adsorption beds 105a and 105b reaches zero (atmospheric pressure), the adsorption cylinder pressure can be stopped at atmospheric pressure. However, in reality, the compressor 103 receives a stop signal. Even so, the compressor is driven by inertia for some time, so it is difficult to control both cylinders at atmospheric pressure.
  • the device stop signal itself is controlled so that the compressor is stopped when the pressure difference between the adsorption cylinders after a predetermined time is small, not when the pressure difference immediately after the end of the adsorption / desorption process is large. This is preferable from the viewpoint of efficiency of returning to atmospheric pressure. It is also preferable from the viewpoint of quietness and vibration suppression when the compressor is stopped.
  • the internal pressure of the adsorption cylinder is set to a normal pressure.
  • the pressure switching line 104a, 104 connected to the pressurer suction line, vacuum desorption side adsorption cylinder 105b and the compressor vacuum line is connected to the pressure line adsorption cylinder and compressor vacuum line, vacuum desorption side adsorption cylinder and compressor pressurization. Switching control of flow path switching valves 105a and 105 is performed so that the lines are connected. As a result, the pressure side suction cylinder is depressurized and the vacuum side suction cylinder is pressurized using an inertial compressor.
  • the stop control means 401 simultaneously performs control to stop the compressor drive while the pressure equalizing valve is open, and not only equalizes the pressure at the raw material end but also equalizes the pressure between the product ends of the adsorption cylinder. .
  • the flow path is configured using a three-way valve that switches between the suction cylinder and the pressure line or vacuum line of the compressor as the flow path switching means. It is preferable to set the flow path so that the vacuum line of the compressor is connected. Even if the suction bed stops in a pressurized state by connecting the normally open flow path when the power is stopped to the suction cylinder and the vacuum line of the compressor, Such residual pressure can be exhausted, and the inside of the apparatus can be maintained at normal pressure.
  • the invention's effect is if two suction cylinders are used and the flow path is configured using a three-way valve that switches between the suction cylinder and the pressure line or vacuum line of the compressor as the flow path switching means. It is preferable to set the flow path so that the vacuum line of the compressor is connected. Even if the suction bed stops in a pressurized state by connecting the normally open flow path when the power is stopped to the suction cylinder and the vacuum line of the compressor, Such residual pressure can be exhausted, and the inside of the apparatus can be maintained at normal pressure
  • the oxygen concentrator of the present invention detects the pulsation of the supplied oxygen gas using an existing sensor, and controls the amount of oxygen produced based on the detection result, thereby producing an acid.
  • Various air-conditioning effects such as downsizing the compressor, reducing the power consumption of the device, and reducing the noise are required to satisfy the patient compliance required for oxygen concentrators. Can be realized.
  • the pressurized side adsorption cylinder and the desorption side adsorption cylinder communicate with each other via a pressure equalizing valve, and the pressurized air increases the pressure inside the adsorption cylinder.
  • the low concentration oxygen gas generated from the product end of the pressurized side adsorption cylinder at the start-up is collected in the desorption process side adsorption cylinder via the pressure equalizing valve, so that the low concentration oxygen gas is collected on the product tank side. It is possible to prevent the gas from flowing into the gas, and 90% high concentration oxygen gas can be supplied to the user at an early stage.
  • compressor stop noise and vibration can be suppressed by controlling the compressor to stop when the pressure inside the suction cylinder is at a predetermined pressure, especially 50% or less of the maximum suction cylinder pressure.
  • the pressure equalization valve is opened based on the device stop command signal, and the compressor is stopped in the state of the pressure purge with the pressure equalization valve open, or the pressure side suction cylinder and the compressor vacuum line, vacuum desorption This can be realized by stopping at the same time or immediately after the switching control of the flow path switching means so that the side suction cylinder and the compressor pressurization line communicate with each other.

Abstract

 本発明は、酸素よりも窒素を選択的に吸着し得る吸着剤を充填した吸着床と、該吸着床へ空気を供給するコンプレッサ、該コンプレッサからの空気を該吸着床へ供給し濃縮酸素を取出す吸着工程、該吸着床を減圧し吸着剤を再生する脱着工程を一定タイミングで繰り返すための流路切替弁、生成した濃縮酸素の供給流量を測定する流量測定手段を具備した圧力変動吸着型酸素濃縮装置において、供給酸素の脈動を検出する脈動検知手段を備え、該検知結果に基いて、該コンプレッサの空気供給量を制御する制御手段を備えたことを特徴とする酸素濃縮装置であり、生成酸素量を抑えることにより生じる製品流量の変動に着目し、流量センサ単独で生成量のフィードバック制御を行なうことで小型、低消費電力、静粛性といった二次性能を満たす装置を実現するものである。

Description

酸素濃縮装置
技術分野
本発明は、 酸素よりも窒素を優先的に吸着する吸着剤を用いた圧力 変動吸着型の酸素濃縮装置に明関するものであり、 特に慢性呼吸器疾患 患者などに対して行われる酸素吸入療法に使用する医療用酸素濃縮装 田
置に関するものである。 書 背景技術
近年、 喘息、 肺気腫症、 慢性気管支炎等の呼吸器系器官の疾患に苦 しむ患者が増加する傾向にあるが、 その治療法として最も効果的なも ののひとつに酸素吸入療法がある。 かかる酸素吸入療法とは、 酸素ガ スあるいは酸素富化空気を患者に吸入させるものである。 その供給源 として、 酸素濃縮装置、 液体酸素、 酸素ガスボンベ等が知られている が、 使用時の便利さや保守管理の容易さから、 在宅酸素療法には酸素 濃縮装置が主流で用いられている。
酸素濃縮装置は、 空気中に存在する約 2 1 %の酸素を高濃度に濃縮 して使用者に供給する装置である。 かかる装置には酸素を選択的に透 過する高分子膜を用いた膜式酸素濃縮装置や、 酸素よりも窒素を優先 的に吸着しうる吸着剤を用いた圧力変動吸着型酸素濃縮装置、 空気中 に含まれる酸素を電気化学的に分離して供給する装置などがある。
90 %以上の高濃度酸素を収率よく得られることから圧力変動吸着型酸 素濃縮装置が主に市場で用いられている。
圧力変動吸着型酸素濃縮装置は、 酸素よりも窒素を選択的に吸着す る吸着剤として 5A型や 13 X型、 L i_X型、 MD-X型などのモレキュラー シーブゼォライ トを充填した吸着床を用い、 吸着床にコンプレッサか ら圧縮空気を供給することにより、 加圧条件下で窒素を吸着させ、 未 吸着の酸素を酸素濃縮ガスとして取り出す装置である。 かかる装置に は通常は 2つ以上の吸着床が備えられており、 一方の吸着床で吸着剤 に窒素を吸着させ未吸着の酸素を生成する吸着工程と、 他方の吸着床 を減圧させ吸着した窒素を排気し再生する脱着再生工程を順次切替え ながら行なうことにより連続して酸素を生成することができる。
圧力変動吸着法には、 脱着工程を大気圧まで減圧する P S A (Pressure Swing Adsorption) 法、 吸着剤の再生効率を高める為にコ ンプレッサを用いて吸着筒を真空圧まで減圧する V P S A (Vacuum Pressure Swing Adsorption) 法があり、 何れも医療用酸素濃縮装置に おける酸素濃縮方法として採用されている。
かかる酸素濃縮装置は、 慢性呼吸器疾患患者に対する酸素吸入療法 用として病院だけでなく患者宅で使用される場合が多い。 このため、 所定濃度の酸素濃縮ガスを常に一定流量で安定的に供給するという酸 素濃縮装置の主性能が要求させるだけでなく、 低消費電力や静粛性、 小型化などの装置に対する使用者の利便性を考慮した機器の二次性能 の要求も大きくなってきている。
酸素濃縮装置の構成要素部品のうち、 コンプレッサが装置全体の消 費電力の大部分を消費しており、同時に筐体内でも一定の容積を占め、 さらに騒音発生の主体でもある。 このような装置の二次性能の要求を 実現する為には、 使用するコンプレッサを小型化することが必要とな る。 しかし、 コンプレッサの小型化は、 コンプレッサの供給風量や圧 縮性能の低下を伴うため、 酸素濃縮装置の吸脱着性能を維持する為の 余裕が少なくなるという欠点を有する。
特開平 11-207128号公報には、酸素濃縮装置の低消費電力化を図り、 高い酸素収率を実現する手段として、 設定酸素流量に応じて、 コンプ レッサの回転数を制御し原料空気の供給量を制御し、 吸着工程、 脱着 工程の切換え夕イミングを切換弁の開閉を制御することにより最適な 加圧時間で空気を供給する装置が記載されている。
また特開 2001- 259341号公報には、 生成された酸素濃縮ガスの酸素 濃度と設定酸素流量に基づきコンプレッサの回転数をィンバ一夕制御 し、 低流量時における消費電力を抑える機能を備えた装置が記載され ている。
吸着工程時における吸着筒の昇圧時間を短縮し、 早期に吸着効率を 向上させる装置として、 特開平 6-31129号公報には、 吸着工程時の所 定時間コンプレッサ駆動モー夕の回転数を増速させ、 それ以外は通常 回転数に制御する気体分離装置が開示されている。 発明の開示
酸素濃縮装置は、 酸素の設定流量切換え時における供給流量の変動 に対応するため、 吸着床の下流側に生成した濃縮酸素を一時的に貯留 する製品タンクを備える。 これにより供給流量変化に対応するバッフ ァ機能を持たせると共に、 更に製品タンク内圧力の変化を圧力センサ で検知し、 所定圧力以下になった場合にはコンプレッサの回転数を上 げ、酸素生成量を増やすなどのフィードバック制御が行なわれている。 生成酸素量を必要最小限に抑えると、 その分、 コンプレッサの必要 供給風量の低減を図ることができ、 消費電力が小さな小型タイプのも のを酸素濃縮装置に搭載することが可能となる。 それに合わせて製品 タンク自体も小型化することができる。 一方で供給酸素流量の設定変 更ゃ、 温度や気圧など装置の使用環境の変化に対しては、 装置の 1次 性能を維持するだけの余裕がなくなる。 かかる問題に対して、 酸素濃 度センサや流量センサ、 圧力センサなど各種検知手段を搭載すること で変動に対応しょうとすると、 新たな検知手段や制御機構の搭載は装 置の大型化、 コストアップに繋がる。
本発明は、 上記の課題を解決するものであり、 生成酸素量を抑える ことにより生じる製品流量の変動に着目し、 流量センサ単独で生成量 のフィードバック制御を行なうことで小型、 低消費電力.、 静粛性とい つた二次性能を満たす装置を実現するものである。
本発明は、 酸素よりも窒素を選択的に吸着し得る吸着剤を充填した 吸着床と、 該吸着床へ空気を供給するコンプレッサ、 該コンプレッサ からの空気を該吸着床へ供給し濃縮酸素を取出す吸着工程、 該吸着床 を減圧し吸着剤を再生する脱着工程を一定タイミングで繰り返すため の流路切替弁、 生成した濃縮酸素の供給流量を測定する流量測定手段 を具備した圧力変動吸着型酸素濃縮装置において、 供給酸素の脈動を 検出する脈動検知手段を備え、 該検知結果に基いて、 該コンプレッサ の空気供給量を制御する制御手段を備えたことを特徴とする酸素濃縮 装置を提供する。
また本発明は、 かかる脈動検出手段が、 供給する濃縮酸素のピーク 流量及びノボトム流量を測定する機能を備えた該流量測定手段であり、 該制御手段が、 所定時間当たりの該ピーク流量値または該ボトム流量 値が予め設定した閾値範囲を超えた場合に該コンプレッサの空気供給 量を増減させる制御を行なう手段であることを特徴とする酸素濃縮装 置を提供するものである。
また本発明は、 酸素よりも窒素を選択的に吸着し得る吸着剤を充填 した吸着床に加圧空気を供給し酸素濃縮ガスを取り出す吸着工程、 該 吸着床を減圧し吸着剤を再生する脱着工程を一定夕イミングで繰り返 すことで酸素濃縮ガスを生成する圧力変動吸着型の酸素濃縮方法にお いて、 該生成した酸素濃縮ガスの供給流量を設定値に基づき、 該加圧 空気の供給量を制御するステップ 1、 該酸素濃縮ガスの脈動を検出す るステップ 2、 該脈動の検知結果に基いて、 該加圧空気の供給量を制 御するステップ 3 を備えたことを特徴とする酸素濃縮方法を提供する。 また本発明は、かかる酸素濃縮ガスの脈動を検出するステツプ 2が、 供給する酸素濃縮ガスのピーク流量及び/またはポトム流量を測定し、 所定時間当たりの該ピーク流量値または該ポトム流量値が予め設定し た閾値範囲内であるかどうかを検知するステップであり、 該閾値範囲 を超えた場合に該加圧空気の供給量を増減させる制御を行なうことを 特徴とし、 該ピーク流量値或いは該ボトム流量値が設定流量値に対し て ± 5 %の範囲を超えた場合に脈流が発生したと判断し、 圧力変動吸 着法の吸脱着の iシーケンスにおける流量ピーク値 (L p) と流量ポト ム値 (L b) を検知結果と所定閾値との比較、 特に (流量ピーク値 (L P) 一流量ボトム値 (L b) ) /流量設定値で表される流量変動率に基づ いて、 所定閾値との比較を行い、 該閾値範囲を超えた場合に該加圧空 気の供給量を増減させる制御を行なうことを特徴とする酸素濃縮方法 を提供する。 該酸素濃縮ガスの脈動は、 供給する酸素濃縮ガスの流量 値だけでなく圧力値によっても同様に測定可能である。 図面の簡単な説明
図 1は、 本発明の酸素濃縮装置の実施態様例である V P S A型の圧 力変動吸着型酸素濃縮装置の模式図を示す。 また図 2は、 本発明の酸 素濃縮装置の別の実施態様例である P S A型の圧力変動吸着型酸素濃 縮装置の模式図を示す。 発明を実施するための最良の形態
本発明の酸素濃縮装置の実施態様例を、 以下の図面を用いて説明す る。 図 1は本発明の一実施形態である 2筒式 V P S A型の圧力変動吸 着型酸素濃縮装置を例示した概略装置構成図である。
この図 1において、 1は酸素濃縮装置、 3は加湿された酸素濃縮ガ スを吸入する使用者 (患者) を示す。 圧力変動吸着型の酸素濃縮装置
1は、 外部空気取り込みフィルタ 101、 圧縮および真空機能を有する コンプレッサ 103、 流路切換弁である三方電磁弁 104a, 104b、 吸着筒 105 a, 105b, 逆止弁 106a, 106b、 製品タンク 107、 調圧弁 108、 流量設 定手段 109、 フィル夕 1 10 を備える。 これにより外部から取り込んだ 原料空気から酸素を分離して、 濃縮した酸素濃縮ガスを製造すること ができる。
先ず、 外部から取り込まれる原料空気は、 塵埃などの異物を取り除 くための外部空気取り込みフィル夕 101 を備えた空気取り込み口から 装置の筐体内に取り込まれる。 このとき、 通常の空気中には、 約 21 % の酸素、 約 77 %の窒素、 0. 8 %のアルゴン、 水蒸気やその他のガスが 1. 2 %含まれている。 かかる装置は、 空気から呼吸用ガスとして必要な 酸素ガスを濃縮して取り出す装置である。
この酸素濃縮ガスの取り出しには、 吸着床として、 酸素分子よりも 窒素分子を選択的に吸着する吸着剤を用いる。具体的には、 5A型や 13X 型、 L i- X型、 あるいは MD-X型などのモレキュラーシ一ブゼオライ ト を窒素吸着剤として使用することができる。 かかるゼォライ ト系の吸 着剤が充填された吸着筒 105 aあるいは吸着筒 105bに対して、 切換弁 104a, 104b によって対象とする吸着筒 105a, 105b を順次切り換えなが ら、原料空気をコンプレッサ 103により加圧して供給し、吸着筒内で、 加圧条件下で原料空気中に含まれる約 77 %の窒素ガスを選択的に吸着 除去する。
前記の吸着筒 105 a, 105bは、 前記吸着剤を充填した円筒状容器で形 成され、 通常、 吸着筒の使用本数によって 1筒式、 2筒式や、 3筒以 上の吸着筒を用いた多筒式の酸素濃縮装置があるが、 連続的かつ効率 的に原料空気から酸素濃縮ガスを製造するためには、 図 1に記載の 2 筒式や多筒式の吸着筒を使用することが好ましい。 また、 前記のコンプレッサ 103 には、 圧縮機能及び真空機能を有す るコンプレッサとして 2へッ ドのタイプの揺動型空気圧縮機が用いら れるほか、 スクリュー式、 口一タリ一式、 スクロール式などの回転型 空気圧縮機が用いられる場合もある。 また、 このコンプレッサ 103 を 駆動する電動機の電源は、 交流であっても直流であってもよい。
前記吸着筒 105でゼォライ ト吸着剤に吸着されなかった酸素ガスを 主成分とする酸素濃縮ガスは、 吸着筒 105へ逆流しないように設けら れた逆止弁 106a, 106bを介して、 製品タンク 107に流入する。
吸着筒内に充填されたゼォライ ト吸着剤は、 新たに導入される原料 空気から再度窒素ガスを吸着するために、 一旦吸着した窒素分子を吸 着剤から脱着除去する必要がある。 このために、 コンプレッサ 103 に よって実現される加圧状態から、 三方電磁弁 (切換弁) 104a, 104b に よってコンプレッサ 103 の真空ラインに接続され、 真空減圧状態に切 り換え、 吸着されていた窒素ガスを脱着させて吸着剤を再生させる。 さらにこの脱着工程において、その脱着効率を高めるため、均圧弁 102 を介して吸着工程中の吸着筒の製品端側から酸素濃縮ガスの一部をパ ージガスとして脱着工程中の吸着筒に逆流させるようにしてもよい。
このようにして原料空気から酸素濃縮ガスが製造され、 製品タンク 107へ蓄えられる。この製品タンク 107に蓄えられた酸素濃縮ガスは、 例えば 95 %といった高濃度の酸素ガスを含んでおり、 調圧弁 108や流 量設定手段 109などによってその圧力および供給流量が制御され、 加 湿器 20 1へ供給され、 加湿された酸素濃縮ガスが患者に供給される。 かかる加湿器 201 には、 水分透過膜を有する水分透過膜モジュール によって、 外部空気から水分を取り込んで乾燥状態の酸素濃縮ガスへ 供給する無給水式の中空糸加湿器や、水を用いたバブリング式加湿器、 或いは表面蒸発式の水加湿器を用いることが出来る。
V P S A型の酸素濃縮装置では、一方の吸着筒 105 aが加圧吸着工程 を行っている場合は、 他方の吸着筒 105bでは真空脱着工程を行い、 吸 着工程、 脱着工程を各々逆位相の形で順次切替え、 酸素を連続的に生 成している。
製品タンク 107 の圧力を、 調圧弁 108 の出口側圧力を一定に維持す るために必要な圧力より十分に大きくなるように、 吸着筒から生成さ れる酸素量を維持することができれば、 流量設定手段 109 により安定 した流量の酸素を供給することができる。 酸素濃縮装置の消費電力の低減や静粛性、 小型化など、 装置に対す る使用者の利便性を考慮した機器の二次性能は、 使用するコンプレツ サのタイプやその運転制御方法によって決定される。
その一つの方法として、 吸着床で生成される酸素生成量を必要最小 限となるようにコンプレッサの供給風量を制御する方法があり、 これ により消費電力を抑えることができる。 これは同時に装置の静粛性や 使用するコンプレッサの小型化にも繋がる。 流量設定手段 109で決定 される酸素濃縮ガスの設定流量に基づいて酸素生成量を制御手段 401 により制御すれば、 更に効率的になる。
これを実現するため、 製品タンク内圧力を調圧弁の出口側圧力を一 定に維持するために必要な圧力よりも若干高いレベルとなるように生 成酸素量を制御し、 流量値毎に酸素生成量を制御した場合には、 流量 設定値の変更により酸素取出し量が一時的に大きくなると、 酸素生成 量のフィ一ドバック制御が追従せずに、 製品タンク内圧力が一時的に 下がり、 供給する酸素ガスの脈流が生じる。 この事態を防ぐため、 製 品タンク 107の圧力を常時モニタすることにより酸素生成量を制御す る方法が考えられるが、 製品タンク内圧力を計測するために新たに圧 力センサを設置する必要が生じる。
本発明の酸素濃縮装置では、 供給酸素の脈動を検出する脈動検知手 段を備え、 脈動の有無によりコンプレッサの空気供給量を制御する制 御手段を備えたことを特徴とする。 脈動検出手段は、 供給する濃縮酸 素のピーク流量及びボトム流量を測定する機能を備えた流量センサ
302 であり、 所定時間当たりのピーク流量値またはボトム流量値が予 め設定した閾値範囲を超えた場合に、 制御手段 401 により該コンプレ ッサ 103 の空気供給量を増減させる制御を行なう。 例えばピーク流量 値或いはボトム流量値が設定流量値に対して土 5 %の範囲を超えた場 合に脈流が発生したと判断し、 コンプレッサの空気供給量を増加させ るためモ一夕回転数を上げる制御を行なう。
流量センサ 302 には、 電磁式、 機械式、 超音波式、 熱式など各種流 量センサが用いられる。 超音波式流量センサは酸素濃度も同時に測定 することができる。 生成酸素の圧力は吸脱着のシーケンス毎に変動す るため、 脈流の検出は、 圧力変動吸着法の吸脱着の 1 シーケンスにお ける流量ピーク値 (L p) と流量ボトム値 (L b) を検知、 演算するこ とで行なう。 所定閾値との比較は、 絶対値での比較の他、 流量変動率 ( ( L p— L b) /流量設定値) で管理することも可能である。
脈動の検知は、 上記流量センサ 302の他、 調圧弁下流側に圧力セン サ 301 を備えている場合には圧力変動の検知により脈動を検知するこ とも可能である。
このように既設のセンサを用いて供給酸素ガスの脈動を検知し、 検 知結果に基いて酸素生成量を制御することにより、 酸素生成に必要な コンプレッサが供給する風量を最小限に抑えることができ、 コンプレ ッサの小型化、 装置の消費電力低減、 静音化など酸素濃縮装置に求め られる患者コンプライアンスを充足するための各種二次効果を実現す ることができる。 コンプレッサの小型化は、 コンプレッサの圧縮性能や真空性能の機 械余力を省くことになり、 使用環境温度の影響を受けやすくなる。 酸 素濃縮装置の起動時には、 コンプレッサの圧縮部にかかる圧力負荷、 摩擦抵抗などにより定常運転時に比較してコンプレッサを駆動するモ 一夕に負荷がかかる。 静的負荷抵抗の大きさは酸素濃縮装置の使用環 境によって大きく変動し、 特に冬季における低温環境下ではコンプレ ッサが起動しないという事態も生じることがある。 原因として起動時 の必要トルクが大きくなり駆動モー夕の起動電流が大きくなることが 考えられ、 トルク不足、 場合によっては装置が起動しないという事態 が生じる。
このような酸素濃縮装置起動時のコンプレッサ負荷を抑える方法は、 酸素よりも窒素を選択的に吸着し得る吸着剤を充填した複数の吸着筒、 該吸着筒へ加圧空気を供給するコンプレッサ、 該コンプレッサと各吸 着筒間の流路を順次切り換え、 各吸着筒へ加圧空気を供給し濃縮酸素 を取り出す吸着工程、 各吸着筒を減圧し吸着剤を再生する脱着工程を 所定夕イミングで繰り返すための流路切換手段を具備した圧力変動吸 着型酸素濃縮装置において、 該吸着筒の下流側に吸着筒間を均圧する 均圧弁を有した均圧流路を備え、 かつ該コンプレッサの起動時に該均 圧弁を開いた状態で起動させる起動制御手段を備えることを特徴とす る酸素濃縮装置により実現可能である。
更に詳細には、 かかる吸着筒が 2つの吸着筒、 該流路切換手段が各 吸着筒とコンプレッサ、 排気管を切り換える電磁弁であり、 該起動制 御手段が、 該コンプレッサの起動時に所定時間、 該電磁弁を介してコ ンプレッサと吸着工程側吸着筒とを連通させると共に、均圧弁を開き、 脱着工程側吸着筒と電磁弁を介し排気管を連通させるように、 該均圧 弁及び該電磁弁の開閉制御を行なう手段であることを特徴とし、 特に 該流路切換手段が三方電磁弁であることを特徴とする酸素濃縮装置で あり、 かかる起動制御手段が、 該コンプレッサの起動時の回転数を定 常状態よりも低回転数で起動させる制御手段であることを特徴とする 酸素濃縮装置により実現可能となる。
図 2は、 2筒式 P S A型の圧力変動吸着型酸素濃縮装置を例示した 概略装置構成図である。 脱着工程での排気の経路が図 1に示す V P S A型酸素濃縮装置ではコンプレッサ 103 の真空排気ラインを経由して いるのに対して、 図 2の P S A型酸素濃縮装置では大気開放ラインに 接続される点以外は、 装置は同じ構成である。 従って、 加圧状態の吸 着筒 105 を、 三方電磁弁 (切換弁) 104a, 104b によって大気圧状態ま で減圧し、吸着されていた窒素ガスを脱着させて吸着剤を再生させる。 さらにこの脱着工程において、その脱着効率を高めるため、均圧弁 102 を介して吸着工程中の吸着筒の製品端側から酸素濃縮ガスをパージガ スとして逆流させるようにしてもよい。
圧力変動吸着法で使用する吸着剤は圧力に依存するため、 酸素濃縮 装置の起動初期には吸着筒の圧力が十分に上昇しない間に製品端から ガスが精製されるため、 起動初期の生成ガスの酸素濃度は定常状態の
90〜 95 %という高濃度の酸素濃縮ガスに比較して低値となり、 結果と して製品タンク 107中のガス交換が完了し酸素濃度が定常状態に達す るのに時間を要することになる。 本発明の装置の起動時には、 コンプ レッサ (圧縮機) 103の起動と合わせて制御手段 401により吸着筒 105 の下流側 (製品端側) の均圧弁 102 を開く制御を行い、 例えば吸着工 程である吸着筒 105a に加圧空気を供給し、 生成初期のガスを均圧弁 102を介して、 脱着工程の吸着筒 105bの製品端から回収する。 通常は 数秒で吸着筒 105 aは昇圧するので、 その後均圧弁 102を閉じ、 通常の 吸着工程を開始し、 例えば 90 %といった高濃度酸素を逆止弁 106a を 介して生成タンクにする貯留する。
コンプレッサの起動時には定常運転状態に比較して負荷がかかる。 特に冬季などの低温状態で起動する際にはコンプレッサの駆動トルク が上昇するため、 場合によっては電源を入れてもコンプレッサが起動 しない状態になる。 通常、 コンプレッサ起動時には必要トルクが大き く、 駆動モ一夕の起動電流が大きくなる。
本発明の装置では、 コンプレッサ駆動時には吸着工程の吸着筒 105a と脱着工程の吸着筒 105bを均圧弁 102を介して連通した状態で起動す るため、 コンプレッサの圧縮部に加圧負荷が殆どかからず、 実質的に 圧力負荷のかからない状態での起動となり、 上記のような必要以上に 突入電流が上げるといったことが起こらず、起動させることができる。 従って、 装置起動時には、 起動を制御する制御手段 401 が、 コンプ レッサの起動時の回転数を定常状態よりも低回転数で起動させること も可能である。
酸素濃縮装置の制御手段 401 は、 定常状態では種々の運転制御を行 う。 流量設定手段 109の設定値、 流量センサ 302による製品ガス流量 値、 酸素濃度センサ 301 による生成された酸素濃縮ガスの酸素濃度を 検知し、 制御手段 401によりコンプレッサ 103の電動機の回転数を制 御することで吸着筒 105への供給風量を制御する。 設定流量が低流量 の場合には回転数を落とすことで生成酸素量を抑え、 且つ消費電力の 低減を図る。 切換弁 104a, 104b, 均圧弁 102 の切り換えタイミングを 制御し、 吸脱着シーケンスタイムを変更することで最適な酸素生成を 実現する。 コンプレッサの小型化は、 それを搭載する酸素濃縮装置が発生する 騒音の低減に有効である。 しかし、 その効果は定常運転時における効 果であって、 装置の起動時や停止時には大きな騒音を発生する。 騒音 低減、 振動防止のために医療用酸素濃縮装置には各種の対策が採られ ている。 例えば、 レシプロ型コンプレッサから騒音の低いスクロール 型、 ヘリカル型コンプレッサに変更したり、 ボックスやダクトを用い て遮蔽する方法、 吸気管、 排気管に共鳴型あるいは膨張型消音器を設 置したり、 筐体に吸音材を貼り付けたりする方法が採られている。 定 常運転中の騒音低減対策は上記のように、 コンプレッサそのものの改 良から筐体改良や消音器の搭載など各種の方法が行なわれている。 し かし、 装置に起動時や停止時の対策は全く採られていない。 装置起動 時には通常、 酸素濃縮器の使用者である呼吸器疾患患者は起床してい るが、 装置停止時には患者は睡眠中で介護者が停止操作を行う可能性 があり、 停止時の騒音あるいは振動が就寝中の患者や周囲の人を起こ してしまう可能性がある。 従って、 圧力変動吸着型酸素濃縮器の装置 停止時の騒音、 振動を防止する技術が必要となる。
かかる課題は、 酸素よりも窒素を選択的に吸着し得る吸着剤を充填 した複数の吸着筒、 該吸着筒へ加圧空気を供給するコンプレッサ、 該 コンプレッサと各吸着筒間の流路を順次切り換え、 各吸着筒へ加圧空 気を供給し濃縮酸素を取り出す吸着工程、 各吸着筒を減圧し吸着剤を 再生する脱着工程を所定タイミングで繰り返すための流路切換手段を 具備した圧力変動吸着型酸素濃縮装置において、 装置停止時に該吸着 筒の内圧を常圧にする該流路切換手段の切り換え制御を行なう停止制 御手段を備え、 装置停止指令信号を受信した後、 該吸着筒内圧が所定 圧以下の時点で該コンプレッサの駆動を停止する制御を行なう手段で あることを特徴とする酸素濃縮装置により解決する。
また、 加圧側吸着筒と真空脱着側吸着筒の製品端同士を連通する均 圧弁を備えた均圧流路をさらに備え、 該停止制御手段が、 装置停止指 令信号に基づいて該均圧弁を開き、 均圧弁を開放した状態で該コンプ レッサの駆動を停止する制御を行なう手段、 あるいは装置停止指令信 号に基づいて、 加圧側吸着筒とコンプレッサの真空ライン、 真空脱着 側吸着筒とコンプレッサ加圧ラインを連通するように該流路切換手段 の切り換え制御を行い、 切り換え制御の実施と同時乃至その直後に該 コンプレッサの駆動を停止する制御を行なう手段とすることで解決す る。
具体的には、 該停止制御手段が、 該吸着筒内圧の最大圧力値の 50 % 以下の時点で該コンプレッサの駆動を停止する制御を行なう手段であ ることを特徴とし、 特に該吸着筒が 2つの吸着筒、 該コンプレッサが 該吸着筒へ加圧空気を供給すると共に真空減圧する機能を備えたコン プレッサであり、該コンプレッサと各吸着筒間の流路を順次切り換え、 各吸着筒へ加圧空気を供給し濃縮酸素を取り出す吸着工程、 各吸着筒 を真空減圧し吸着剤を再生する脱着工程を所定夕イミングで繰り返す ための流路切換手段を具備したことを特徴とする酸素濃縮装置に適用 される。
かかる実施態様を、 図 1に記載の酸素濃縮装置を用いて説明する。 VPSA型の酸素濃縮装置では、 一方の吸着筒 105aが加圧吸着工程を行 つている場合は、 他方の吸着筒 105bでは真空脱着工程を行い、 吸着工 程、 脱着工程を各々逆位相の形で順次切り替え、 酸素を連続的に生成 している。
装置停止時には、 該吸着筒 105a, 105bの内圧を常圧にするため、 流 路切換弁 104a, 104bの切り換え制御を行なう制御手段 401力 装置停 止指令信号を受信した後、 吸着筒内圧が所定圧以下の時点でコンプレ ッサ 103 の駆動を停止する制御を行なう。 すなわち、 吸脱着工程終了 直後の圧力差が大きい時点ではなく、 所定時間後の吸着筒間の圧力差 が少ない時点でコンプレッサを停止させるように制御することにより、 停止時の静穏化、 振動抑制を実現する。
具体的には、 加圧側吸着筒 105a と真空脱着側吸着筒 105bの製品端 同士を連通する均圧弁 102を備えた均圧流路を用い、停止制御手段 401 力 装置停止指令信号に基づき、 均圧弁 102 を開き、 製品ガスの一部 を用いて脱着側吸着筒 105b のパージを行なう均圧パージ工程の状態 でコンプレッサの駆動を停止する。 均圧弁 102 を開くことにより加圧 側吸着筒 105 a は最大圧力の 50 %以下になり、 この状態でコンプレツ サを停止させることで残圧も自動的に排気され、 静穏状態で装置停止 が実現できる。
また、 制御手段 401 力 装置停止指令信号に基づいて、 加圧側吸着 筒 105 aとコンプレッサ 103の真空ライン、 真空脱着側吸着筒 105b と コンプレッサ加圧ラインを連通するように流路切換弁 104a, 104 の切 り換え制御を行い、 吸着工程と脱着工程の切り換え制御を行なったと 同時或いはその直後に該コンプレッサの駆動を停止する制御を行なう ことで、 大気圧付近でコンプレッサを停止させることができ、 装置停 止時の静穏化、 制振化が実現できる。 酸素濃縮装置を停止させる際の留意点について更に付記する。 一般 に V P S A型酸素濃縮装置を停止させる際には、 停止中の吸着剤劣化 及び再起動時の早期の運転安定化など、 多くのことに留意する必要が ある。 特に、 装置運転停止時に吸着床やコンプレッサや配管中などの 水分を排出するという点は従来の装置では考慮されておらず、 運転停 止後の吸着床内に残存している水分による吸着剤の吸湿劣化や、 コン プレッサ、 切換弁などにおける結露、 鲭びなどが問題となる。 排気ェ 程終了後に停止することで水分を排出する方法も考えられるが、 その 場合、 一方の筒の水分は排出されるが、 もう一方の筒には水分が溜ま る。 製品タンクからの製品ガスによるパージには、 吸着床と製品タン ク間に設けられる逆止弁で対応できず、 新たに電磁弁を設ける必要が 生じる。 従って、 装置停止後の吸着床や切換弁などにおける吸湿、 結 露を防止する技術が重要となる。
かかる課題は、 酸素よりも窒素を選択的に吸着し得る吸着剤を充填 した複数の吸着筒、 該吸着筒へ加圧空気を供給すると共に真空減圧す る機能を備えたコンプレッサ、 該コンプレッサと各吸着筒間の流路を 順次切り換え、' 各吸着筒へ加圧空気を供給し濃縮酸素を取り出す吸着 工程、 各吸着筒を真空減圧し吸着剤を再生する脱着工程を所定夕イミ ングで繰り返すための流路切換手段を具備した圧力変動吸着型酸素濃 縮装置において、 装置停止時に該吸着筒の内圧を常圧にする該流路切 換手段の切り換え制御を行なう停止制御手段を備えることを特徴とす る酸素濃縮装置により解決される。
また該停止制御手段が、 コンプレッサの停止信号に基づいて、 加圧 側吸着筒とコンプレッサの真空ライン、 真空脱着側吸着筒とコンプレ ッサ加圧ラインを連通するよ ¾に該流路切換手段の切り換え制御を行 なう手段であることを特徴とし、 特に該停止制御手段が、 コンプレツ サの停止信号に基づいて、加圧側吸着筒とコンプレッサの真空ライン、 真空脱着側吸着筒とコンプレッサ加圧ラインを連通するように該流路 切換手段の切り換え制御を実施した後、 更に該加圧側吸着筒とコンプ レッサの加圧ライン、 該真空脱着側吸着筒とコンプレッサ真空ライン を連通するように該流路切換手段の切り換え制御を行なう手段である ことを特徴とする酸素濃縮装置が実施態様として上げられる。
また加圧側吸着筒と真空脱着側吸着筒の製品端同士を連通する均圧 弁を.備えた均圧流路をさらに備え、 該停止制御手段が、 該均圧弁が開 いた状態で該コンプレッサの駆動を停止する制御を行なう手段である こと、 該吸着筒が 2つの吸着筒であり、 該流路切換手段が吸着筒とコ ンプレッサの加圧ラインまたは真空ラインとを切り換える三方弁から 構成され、 且つ電源停止時に、 該吸着筒と該コンプレッサの真空ライ ンが接続されることを特徴とする酸素濃縮装置が好ましい態様例とし て考えられる。
かかる酸素濃縮装置では、 VPSA型酸素濃縮装置の加圧吸着工程側と 真空脱着工程側の双方の吸着床を大気圧状態で停止させることで、 装 置停止中における装置のガス移動を抑制することが出来、 特に真空側 吸着床への高湿度の外部空気の流入を防止することが出来る。 また装 置停止後の装置温度低下に伴う加圧空気の結露発生を、 加圧空気の大 気圧まで減圧排気すること未然に防止することが出来る。
更に 2筒の吸着床とコンプレッサの加圧/真空を切り換える三方弁 を、 電源停止時に、 吸着筒の双方がコンプレッサの真空ライン側に連 通する接続形式を採用することで、 若干吸着床の残る残圧をシールの 甘いコンプレッサの真空ライン側板弁を介して排気することが出来、 装置内を常圧に維持することが可能となる。
かかる実施態様を、 図 1に記載の酸素濃縮装置を用いて説明する。
VPSA型の酸素濃縮装置では、 一方の吸着筒 105aが加圧吸着工程を行 つている場合は、 他方の吸着筒 105bでは真空脱着工程を行い、 吸着工 程、 脱着工程を各々逆位相の形で順次切り替え、 酸素を連続的に生成 している。 吸着床 105 a, 105bの圧力が各々ゼロ (大気圧) になった時 点でコンプレッサ 103 を停止できれば吸着筒内圧を大気圧で停止でき るが、 現実にはコンプレッサ 103 は、 停止信号を受信してもコンプレ ッサは慣性で若干の時間駆動するため、 両筒を大気圧状態で停止させ る制御は困難である。 装置停止信号そのものは、 吸脱着工程終了直後 の圧力差が大きい時点ではなく、 所定時間後の吸着筒間の圧力差が少 ない時点でコンプレッサを停止させるように制御するのが、 両筒を大 気圧に戻す効率の点から好ましい。 またコンプレッサの停止時の静穏 化、 振動抑制の点からも好ましい。
装置停止後に、 吸着床の圧力を大気開放する方法もあるが、 VPSA装 置の場合には、 排気ラインはコンプレッサ 103 の真空ラインに接続さ れている為、 コンプレッサ停止と共に排気も停止する。
本発明の装置では、装置停止時に該吸着筒の内圧を常圧にするため、 コンプレッサ 103の停止信号に基づいて、加圧側吸着筒 105 aとコンプ レッサ加圧ライン、真空脱着側吸着筒 105bとコンプレッサ真空ライン に接続されている流路切換弁 104a, 104 を、 加圧側吸着筒とコンプレ ッサの真空ライン、 真空脱着側吸着筒とコンプレッサ加圧ラインを連 通するように流路切換弁 105 a, 105 の切り換え制御を行なう。 これに より、 慣性で動くコンプレッサを利用して、 加圧側吸着筒の減圧、 真 空側吸着筒の加圧を行なう。 かかる操作により、 吸着筒の常圧による 均圧が達成されるが、 残圧が残る場合もあり、 さらに加圧側吸着筒と コンプレッサの加圧ライン、 真空脱着側吸着筒とコンプレッサ真空ラ インを連通するように流路切換弁を再度切り換えることで残圧を排気 する。
加圧側吸着筒と真空脱着側吸着筒の製品端同士を連通する均圧弁 102 を備えており、 通常吸脱着工程に均圧工程や製品パージ工程を行 う。 本発明では、 停止制御手段 401 は、 均圧弁が開いた状態でコンプ レッサの駆動を停止する制御を同時に行い、 原料端での均圧だけでは なく、 吸着筒の製品端同士の均圧を行なう。
図 1に示すように 2つの吸着筒を用い、 流路切換手段として吸着筒 とコンプレッサの加圧ラインまたは真空ラインとを切り換える三方弁 を用いて流路を構成する場合、 電源停止時に、 吸着筒とコンプレッサ の真空ラインが接続されるように流路を設定するのが好ましい。 電源 停止時のノーマルオープンの流路を吸着筒とコンプレッサの真空ライ ンに接続することにより、仮に吸着床が加圧状態で停止したとしても、 機密シールの甘いコンプレッサの真空ライン側板弁を介してかかる残 圧を排気することが出来、装置内を常圧に維持することが可能となる。 発明の効果
本発明の酸素濃縮装置は、 既設のセンサを用いて供給酸素ガスの脈 動を検知し、 検知結果に基いて酸素生成量を制御することにより、 酸 素生成に必要なコンプレッサが供給する風量を最小限に抑えることが でき、 コンプレッサの小型化、 装置の消費電力低減、 静音化など酸素 濃縮装置に求められる患者コンプライアンスを充足するための各種二 次効果を実現することができる。
また、 消費電力の低減に伴う起動時のコンプレッサの負荷トルクの 上昇に対して、均圧弁を介して加圧側吸着筒、脱着側吸着筒が連通し、 加圧空気が吸着筒内圧の加圧に利用されることなく、 そのまま排気側 に流れる制御を行なうことにより、 実質的に圧力負荷のない状態でコ ンプレッサを起動させることが可能となる。 従って、 起動時に起動電 流が大きくなることがなくなり、起動時の突入電流の低減に寄与する。 また、 起動時初期に加圧側吸着筒の製品端から生成される、 不純物を 含む低酸素濃度ガスを均圧弁を介して脱着工程側吸着筒に回収するこ とで低濃度酸素ガスが製品タンク側に流れることを防止することが出 来、 9 0 %といった高濃度酸素ガスを早期に使用者に供給することが 出来る。
更に、 コンプレッサの停止を吸着筒内圧が所定圧、 特に最大吸着筒 圧の 50 %以下の時点で駆動停止する制御を行なうことで、 コンプレツ サの停止騒音及び振動を抑えることが出来る。 そのためには装置停止 指令信号に基づいて該均圧弁を開き、 均圧弁を開放した加圧パ一ジェ 程の状態でコンプレッサの駆動を停止する、 あるいは加圧側吸着筒と コンプレッサの真空ライン、 真空脱着側吸着筒とコンプレッサ加圧ラ ィンを連通するように該流路切換手段の切り換え制御を行なうと同時 乃至その直後に停止することで実現可能である。

Claims

20 請求の範囲
1. 酸素よりも窒素を選択的に吸着し得る吸着剤を充填した吸着 床と、 該吸着床へ空気を供給するコンプレッサ、 該コンプレッサ からの空気を該吸着床へ供給し濃縮酸素を取り出す吸着工程、該 吸着床を減圧し吸着剤を再生する脱着工程を一定夕イミングで 繰り返すための流路切替弁、生成した濃縮酸素の供給流量を測定 する流量測定手段を具備した圧力変動吸着型酸素濃縮装置にお いて、 供給酸素の脈動を検出する脈動検知手段を備え、 該検知結 果に基いて、該コンプレッサの空気供給量を制御する制御手段を 備えたことを特徴とする酸素濃縮装置。
2. 該生成した濃縮酸素の供給流量を設定する流量設定手段を備 え、 該制御手段が流量設定手段の設定値に基づき、 該コンプレツ ザの空気供給量を制御する手段であることを特徴とする請求項 1記載の酸素濃縮装置。
3. 該脈動検出手段が、供給する濃縮酸素のピーク流量及び Zまた はボトム流量を測定する機能を備えた該流量測定手段であり、該 制御手段が、所定時間当たりの該ピーク流量値または該ポトム流 量値が予め設定した閾値範囲を超えた場合に該コンプレッサの 空気供給量を増減させる制御を行なう手段であることを特徴と する請求項 1また 2記載の酸素濃縮装置。
4. 該脈動検出手段が、該流量測定手段で検知されたピーク流量値 或いは該ポトム流量値が設定流量値に対して土 5 %の範囲を超 えた場合に脈流が発生したと判断し、該コンプレッサの空気供給 量を増加させるためモータ回転数を上げる制御を行なう手段で あることを特徴とする請求項 3記載の酸素濃縮装置。
5. 該脈動検出手段が、圧力変動吸着法の吸脱着の 1シーケンスに 21 おける流量ピーク値 (L p) と流量ボトム値 (L b) を検知し、 演 算する所定閾値との比較を行なう手段である、請求項 3または 4 記載の酸素濃縮装置。
6. 該脈動検出手段が、 (流量ピーク値 (L p) —流量ボトム値 (L b) ) /流量設定値で表される流量変動率に基づいて、 所定閾値と の比較を行なう手段である、 請求項 3記載の酸素濃縮装置。
7. 該脈動検出手段が、供給酸素濃縮ガスの圧力を測定する圧力セ ンサである、 請求項 1または 2記載の酸素濃縮装置。
8. 酸素よりも窒素を選択的に吸着し得る吸着剤を充填した吸着 床に加圧空気を供給し酸素濃縮ガスを取り出す吸着工程、該吸着 床を減圧し吸着剤を再生する脱着工程を一定タイミングで繰り 返すことで酸素濃縮ガスを生成する圧力変動吸着型の酸素濃縮 方法において、該生成した酸素濃縮ガスの供給流量を設定値に基 づき、 該加圧空気の供給量を制御するステップ 1、 該酸素濃縮ガ スの脈動を検出するステップ 2、 該脈動の検知結果に基いて、 該 加圧空気の供給量を制御するステップ 3 を備えたことを特徴と する酸素濃縮方法。
9. 該酸素濃縮ガスの脈動を検出するステップ 2が、供給する酸素 濃縮ガスのピーク流量及び Zまたはポトム流量を測定し、所定時 間当たりの該ピーク流量値または該ポトム流量値が予め設定し た閾値範囲内であるかどうかを検知するステツプであり、該閾値 範囲を超えた場合に該加圧空気の供給量を増減させる制御を行 なうことを特徴とする請求項 8記載の酸素濃縮方法。
10. 該ピーク流量値或いは該ポトム流量値が設定流量値に対して 土 5 %の範囲を超えた場合に脈流が発生したと判断し、 該加圧空 気の供給量を増加させる制御を行なうことを特徴とする請求項 9記載の酸素濃縮方法。
11. 該酸素濃縮ガスの脈動を検出するステップ 2力^圧力変動吸着 法の吸脱着の 1 シーケンスにおける流量ピーク値 (L p) と流量 ボトム値 (L b) を検知し、 演算する所定閾値との比較を行なう ことを特徴とする、 請求項 9または 1 0記載の酸素濃縮方法。
12. 該酸素濃縮ガスの脈動を検出するステップ 2が、 (流量ピーク 値 (L p) —流量ボトム値 (L b) ) /流量設定値で表される流量 変動率に基づいて、所定閾値との比較を行なうことを特徴とする、 請求項 9または 1 0記載の酸素濃縮方法。
13. 該酸素濃縮ガスの脈動を検出するステップ 2が、供給する酸素 濃縮ガスのピーク圧力及び Zまたはポ卜ム圧力を測定し、所定時 間当たりの該ピーク圧力値または該ポトム圧力値が予め設定し た閾値範囲内であるかどうかを検知するステツプである請求項 8記載の酸素濃縮方法。
PCT/JP2008/058688 2007-05-07 2008-05-02 酸素濃縮装置 WO2008136540A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2686463A CA2686463C (en) 2007-05-07 2008-05-02 Oxygen concentrator
ES08752571.3T ES2555928T3 (es) 2007-05-07 2008-05-02 Concentrador de oxígeno
CN200880015087A CN101678189A (zh) 2007-05-07 2008-05-02 氧浓缩装置
KR1020097025450A KR101511803B1 (ko) 2007-05-07 2008-05-02 산소 농축 장치
EP08752571.3A EP2145646B1 (en) 2007-05-07 2008-05-02 Oxygen enricher
US12/451,206 US8337599B2 (en) 2007-05-07 2008-05-02 Oxygen concentrator
JP2009513036A JP5080568B2 (ja) 2007-05-07 2008-05-02 酸素濃縮装置
AU2008246540A AU2008246540B2 (en) 2007-05-07 2008-05-02 Oxygen enricher
HK10105572.3A HK1139610A1 (en) 2007-05-07 2010-06-07 Oxygen enricher

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007122329 2007-05-07
JP2007-122329 2007-05-07

Publications (1)

Publication Number Publication Date
WO2008136540A1 true WO2008136540A1 (ja) 2008-11-13

Family

ID=39943643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058688 WO2008136540A1 (ja) 2007-05-07 2008-05-02 酸素濃縮装置

Country Status (12)

Country Link
US (1) US8337599B2 (ja)
EP (1) EP2145646B1 (ja)
JP (1) JP5080568B2 (ja)
KR (1) KR101511803B1 (ja)
CN (2) CN105435352A (ja)
AU (1) AU2008246540B2 (ja)
CA (1) CA2686463C (ja)
ES (1) ES2555928T3 (ja)
HK (2) HK1139610A1 (ja)
MY (1) MY149936A (ja)
TW (1) TWI478740B (ja)
WO (1) WO2008136540A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323087A1 (en) * 2010-12-13 2013-12-05 Lanxess Deutschland Gmbh Compressor and method for compressing technical gases
JP2019522146A (ja) * 2016-07-25 2019-08-08 ケア インコーポレーテッド 揺動板圧縮機およびこれを用いた酸素濃縮器
JP7089208B1 (ja) * 2021-04-20 2022-06-22 ダイキン工業株式会社 庫内空気調節装置、冷凍装置、及び輸送用コンテナ
JP7410946B2 (ja) 2018-11-16 2024-01-10 コーニンクレッカ フィリップス エヌ ヴェ ポータブル酸素濃縮

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ619142A (en) 2007-04-20 2015-08-28 Invacare Corp Product gas concentrator and method associated therewith
US20090065007A1 (en) 2007-09-06 2009-03-12 Wilkinson William R Oxygen concentrator apparatus and method
US8075676B2 (en) * 2008-02-22 2011-12-13 Oxus America, Inc. Damping apparatus for scroll compressors for oxygen-generating systems
US9120050B2 (en) * 2008-04-21 2015-09-01 Invacare Corporation Product gas concentrator utilizing vacuum swing adsorption and method associated therewith
US8267081B2 (en) * 2009-02-20 2012-09-18 Baxter International Inc. Inhaled anesthetic agent therapy and delivery system
US9289569B2 (en) * 2009-11-16 2016-03-22 Maquet Critical Care Ab Breathing apparatus with monitored delivery device
US20120055474A1 (en) 2010-09-07 2012-03-08 Wilkinson William R Methods and systems for providing oxygen enriched gas
US8616207B2 (en) 2010-09-07 2013-12-31 Inova Labs, Inc. Oxygen concentrator heat management system and method
TWI546023B (zh) * 2011-10-27 2016-08-21 菲利浦莫里斯製品股份有限公司 具有氣溶膠生產控制之電操作氣溶膠產生系統
CN103182143B (zh) * 2011-12-30 2015-09-30 北京谊安医疗系统股份有限公司 吸收罐旁路装置
US9266053B2 (en) 2012-06-18 2016-02-23 Invacare Corporation System and method for concentrating gas
WO2013134645A1 (en) * 2012-03-09 2013-09-12 Invacare Corporation System and method for concentrating gas by adsorption
US9067174B2 (en) 2012-03-09 2015-06-30 Invacare Corporation System and method for concentrating gas
WO2013138537A1 (en) * 2012-03-14 2013-09-19 Diskint Nathaniel R Medical flow rate monitor and method of use
US9440036B2 (en) 2012-10-12 2016-09-13 InovaLabs, LLC Method and systems for the delivery of oxygen enriched gas
EP4249104A3 (en) 2012-10-12 2023-10-04 Inova Labs, Inc. Oxygen concentrator systems and methods
NZ707159A (en) 2012-10-12 2018-06-29 Inova Labs Inc Dual oxygen concentrator systems and methods
US9440179B2 (en) 2014-02-14 2016-09-13 InovaLabs, LLC Oxygen concentrator pump systems and methods
CA2944040C (en) * 2014-03-28 2022-06-21 Caire Inc. Controlling oxygen concentrator timing cycle based on flow rate of oxygen output
US9610532B2 (en) * 2014-12-30 2017-04-04 Pacific Consolidated Industries, Inc. Method and system for high reliability oxygen supply from multiple units
US11247015B2 (en) 2015-03-24 2022-02-15 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
US10245406B2 (en) 2015-03-24 2019-04-02 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
AU2016316947B2 (en) * 2015-08-31 2021-04-01 Vapotherm, Inc. High flow therapy with built-in oxygen concentrator
CN117214274A (zh) * 2016-03-31 2023-12-12 深圳市理邦精密仪器股份有限公司 血气分析仪
WO2017192660A1 (en) 2016-05-03 2017-11-09 Inova Labs, Inc. Method and systems for the delivery of oxygen enriched gas
US10773049B2 (en) 2016-06-21 2020-09-15 Ventec Life Systems, Inc. Cough-assist systems with humidifier bypass
JP6808020B2 (ja) * 2017-03-31 2021-01-06 帝人ファーマ株式会社 呼吸情報取得装置および呼吸情報取得方法
KR102229346B1 (ko) * 2018-04-05 2021-03-18 한양대학교 산학협력단 가스 제공 장치 및 가스 제공 장치의 동작방법
WO2019194575A1 (ko) * 2018-04-05 2019-10-10 한양대학교 산학협력단 가스 제공 장치 및 가스 제공 장치의 동작방법
JP2021524795A (ja) 2018-05-13 2021-09-16 サミール・サレハ・アフマド ポータブル酸素濃縮器を使用するポータブル医療用人工呼吸器システム
CN112996584A (zh) * 2018-11-15 2021-06-18 帝人制药株式会社 氧浓缩装置、控制方法及控制程序
US10946161B2 (en) 2018-12-05 2021-03-16 Aires Medical LLC Pulsed pressure swing adsorption system and method
CN109647131B (zh) * 2019-02-27 2022-02-11 大连大学 一种脉动射流变压吸附净化气体的装置
CN116648278A (zh) 2020-07-16 2023-08-25 英瓦卡尔公司 用于浓缩气体的系统和方法
WO2022015907A1 (en) 2020-07-16 2022-01-20 Invacare Corporation System and method for concentrating gas
TWI788904B (zh) * 2021-07-05 2023-01-01 精俐有限公司 氣體濃縮裝置
KR102447522B1 (ko) * 2022-02-15 2022-09-26 주식회사 오투센터 산소 발생 장치
KR102610176B1 (ko) * 2023-05-26 2023-12-05 주식회사 옥서스 산소 공급 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631129A (ja) 1992-07-17 1994-02-08 Tokico Ltd 気体分離装置
JPH11207128A (ja) 1998-01-29 1999-08-03 Daikin Ind Ltd 酸素濃縮機およびその制御方法
JP2001025934A (ja) 1999-07-12 2001-01-30 Takatada Miyanochi ダイアッセンブリ取付機構
JP2001259341A (ja) * 2000-03-16 2001-09-25 Marutaka Co Ltd 酸素濃縮器
JP2002204918A (ja) * 2001-10-25 2002-07-23 Sanyo Electric Industries Co Ltd ガス濃縮装置
US20020096174A1 (en) 2000-08-03 2002-07-25 Hill Theodore B. Portable oxygen concentration system and method of using the same
JP2007044115A (ja) * 2005-08-08 2007-02-22 Teijin Pharma Ltd 酸素濃縮装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872678B2 (ja) 1988-12-09 1999-03-17 大同ほくさん株式会社 圧力スイング吸着方式における減量運転制御方法
JPH06185468A (ja) 1992-12-17 1994-07-05 Tokico Ltd 空気圧縮機
US5906672A (en) * 1996-06-14 1999-05-25 Invacare Corporation Closed-loop feedback control for oxygen concentrator
US5746806A (en) * 1996-08-15 1998-05-05 Nellcor Puritan Bennett Incorporated Apparatus and method for controlling output of an oxygen concentrator
US5871564A (en) 1997-06-16 1999-02-16 Airsep Corp Pressure swing adsorption apparatus
JP2000060973A (ja) * 1998-08-24 2000-02-29 Ikiken:Kk 酸素濃縮器の運転制御装置
JP2000354630A (ja) 1999-06-15 2000-12-26 Techno 21:Kk 酸素濃縮装置
JP2001060973A (ja) * 1999-08-20 2001-03-06 Pfu Ltd ネットワークアドレス変換装置及びこれを備えるネットワーク及びその記憶媒体
JP2001259342A (ja) 2000-03-16 2001-09-25 Marutaka Co Ltd 酸素濃縮器の流量調整装置
JP2002253676A (ja) 2001-03-06 2002-09-10 Teijin Ltd 吸着型酸素濃縮装置
JP3867229B2 (ja) 2001-10-09 2007-01-10 株式会社日立製作所 気体分離装置
JP2003119004A (ja) * 2001-10-12 2003-04-23 Cosmo Information System:Kk 酸素濃縮装置
CN2540188Y (zh) * 2002-04-17 2003-03-19 中国科学院沈阳自动化研究所 具有氧浓度检测功能的医用小型制氧机
JP2004209467A (ja) 2002-10-31 2004-07-29 Matsushita Electric Ind Co Ltd ガス富化装置及び送風装置
JP2004261223A (ja) * 2003-02-14 2004-09-24 Teijin Ltd 医療用酸素濃縮器
JP2005052757A (ja) * 2003-08-05 2005-03-03 Toyota Auto Body Co Ltd ガス供給装置
EP1661596B1 (en) * 2003-08-26 2016-05-25 Teijin Pharma Limited Oxygen-concentrating device
JP4441214B2 (ja) * 2003-08-26 2010-03-31 帝人株式会社 酸素濃縮装置
JP4971582B2 (ja) * 2004-02-16 2012-07-11 帝人ファーマ株式会社 酸素濃縮装置
JP4257256B2 (ja) 2004-04-30 2009-04-22 日本特殊陶業株式会社 酸素濃縮器
US7455717B2 (en) * 2004-10-25 2008-11-25 Invacare Corporation Apparatus and method of providing concentrated product gas
US8020553B2 (en) * 2005-02-09 2011-09-20 Vbox, Incorporated Ambulatory oxygen concentrator containing a three phase vacuum separation system
WO2006091723A2 (en) * 2005-02-23 2006-08-31 Inogen Inc. Method and apparatus for controlling a gas fractionalization apparatus
US7402193B2 (en) * 2005-04-05 2008-07-22 Respironics Oxytec, Inc. Portable oxygen concentrator
JP2006329026A (ja) 2005-05-25 2006-12-07 Matsushita Electric Ind Co Ltd 密閉型圧縮機および空気調和機
JP2005324044A (ja) 2005-06-02 2005-11-24 Terumo Corp 酸素濃縮装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631129A (ja) 1992-07-17 1994-02-08 Tokico Ltd 気体分離装置
JPH11207128A (ja) 1998-01-29 1999-08-03 Daikin Ind Ltd 酸素濃縮機およびその制御方法
JP2001025934A (ja) 1999-07-12 2001-01-30 Takatada Miyanochi ダイアッセンブリ取付機構
JP2001259341A (ja) * 2000-03-16 2001-09-25 Marutaka Co Ltd 酸素濃縮器
US20020096174A1 (en) 2000-08-03 2002-07-25 Hill Theodore B. Portable oxygen concentration system and method of using the same
JP2002204918A (ja) * 2001-10-25 2002-07-23 Sanyo Electric Industries Co Ltd ガス濃縮装置
JP2007044115A (ja) * 2005-08-08 2007-02-22 Teijin Pharma Ltd 酸素濃縮装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2145646A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323087A1 (en) * 2010-12-13 2013-12-05 Lanxess Deutschland Gmbh Compressor and method for compressing technical gases
US9447782B2 (en) * 2010-12-13 2016-09-20 Lanxess Deutschland Gmbh Compressor and method for compressing technical gases
JP2019522146A (ja) * 2016-07-25 2019-08-08 ケア インコーポレーテッド 揺動板圧縮機およびこれを用いた酸素濃縮器
JP7042795B2 (ja) 2016-07-25 2022-03-28 ケア インコーポレーテッド 揺動板圧縮機およびこれを用いた酸素濃縮器
JP7410946B2 (ja) 2018-11-16 2024-01-10 コーニンクレッカ フィリップス エヌ ヴェ ポータブル酸素濃縮
JP7089208B1 (ja) * 2021-04-20 2022-06-22 ダイキン工業株式会社 庫内空気調節装置、冷凍装置、及び輸送用コンテナ
WO2022224616A1 (ja) * 2021-04-20 2022-10-27 ダイキン工業株式会社 庫内空気調節装置、冷凍装置、及び輸送用コンテナ
US11951437B2 (en) 2021-04-20 2024-04-09 Daikin Industries, Ltd. Inside air control system, refrigeration apparatus, and transport container

Also Published As

Publication number Publication date
KR20100017660A (ko) 2010-02-16
KR101511803B1 (ko) 2015-04-13
US20100071698A1 (en) 2010-03-25
HK1139610A1 (en) 2010-09-24
CN101678189A (zh) 2010-03-24
AU2008246540B2 (en) 2013-03-28
US8337599B2 (en) 2012-12-25
CA2686463A1 (en) 2008-11-13
EP2145646A4 (en) 2011-10-19
EP2145646B1 (en) 2015-09-30
HK1223868A1 (zh) 2017-08-11
TW200916134A (en) 2009-04-16
EP2145646A1 (en) 2010-01-20
MY149936A (en) 2013-11-15
CN105435352A (zh) 2016-03-30
CA2686463C (en) 2014-12-09
ES2555928T3 (es) 2016-01-11
AU2008246540A1 (en) 2008-11-13
JP5080568B2 (ja) 2012-11-21
JPWO2008136540A1 (ja) 2010-07-29
TWI478740B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5080568B2 (ja) 酸素濃縮装置
US8070864B2 (en) Oxygen concentrator
JP5357264B2 (ja) 酸素濃縮装置
WO2014046297A1 (ja) 酸素濃縮装置
JP4922739B2 (ja) 酸素濃縮装置
JP5193537B2 (ja) 酸素濃縮装置
JP5524574B2 (ja) 酸素濃縮装置
JP5112839B2 (ja) 酸素濃縮装置
JP5350994B2 (ja) 酸素濃縮装置
JP2009254502A (ja) 酸素濃縮装置
JP5065714B2 (ja) 酸素濃縮装置
JP5242928B2 (ja) 酸素濃縮装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880015087.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009513036

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12451206

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2686463

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008752571

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008246540

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20097025450

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2008246540

Country of ref document: AU

Date of ref document: 20080502

Kind code of ref document: A