WO2008122183A1 - Procédé et terminal de transmission de données - Google Patents

Procédé et terminal de transmission de données Download PDF

Info

Publication number
WO2008122183A1
WO2008122183A1 PCT/CN2007/071308 CN2007071308W WO2008122183A1 WO 2008122183 A1 WO2008122183 A1 WO 2008122183A1 CN 2007071308 W CN2007071308 W CN 2007071308W WO 2008122183 A1 WO2008122183 A1 WO 2008122183A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnu
uplink
clt
downlink
time period
Prior art date
Application number
PCT/CN2007/071308
Other languages
English (en)
French (fr)
Inventor
Yang Yu
Original Assignee
Hangzhou H3C Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou H3C Technologies Co., Ltd. filed Critical Hangzhou H3C Technologies Co., Ltd.
Priority to US12/594,882 priority Critical patent/US20100111524A1/en
Publication of WO2008122183A1 publication Critical patent/WO2008122183A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2858Access network architectures
    • H04L12/2861Point-to-multipoint connection from the data network to the subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2878Access multiplexer, e.g. DSLAM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2898Subscriber equipments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/239Interfacing the upstream path of the transmission network, e.g. prioritizing client content requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6156Network physical structure; Signal processing specially adapted to the upstream path of the transmission network
    • H04N21/6168Network physical structure; Signal processing specially adapted to the upstream path of the transmission network involving cable transmission, e.g. using a cable modem
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17309Transmission or handling of upstream communications

Definitions

  • the present invention relates to Ethernet communication technologies, and in particular, to a data transmission method and terminal. Background of the invention
  • Ethernet Passive Optical Network is an access technology that combines passive optical network technology with Ethernet technology.
  • it mainly includes an optical line terminal (OLT), an optical distribution network (ODN), and an optical network unit (ONU).
  • OLT is connected to one or more ODNs;
  • the ODN is a passive optical splitting device, and the downlink data of the OLT is transmitted to multiple ONUs through optical splitting; and the uplink data of the ONU is transmitted to the OLT through the convergence.
  • the data transmission adopts the passive optical fiber transmission mode.
  • FIG. 1 is a schematic diagram of the structure of an EPCN system.
  • the EPCN system mainly includes a Coaxial-cable Line Terminal (CLT), a splitter/divider, and a coaxial network terminal (CNU, Coaxial-Cable). Network Unit).
  • CLT Coaxial-cable Line Terminal
  • CNU coaxial network terminal
  • the EPCN system connects various Ethernet devices through CLT and connects to user devices through CNU.
  • the EPCN system can be used in a variety of business environments. Currently, the most common use is Ethernet broadband in the building.
  • the EPCN system uses a point-to-multipoint structure, that is, a CLT to multiple CNU structures.
  • the CLT and each CNU transmit data through a coaxial cable, wherein the CLT occupies the downlink direction of the coaxial cable, and each CNU occupies the uplink direction of the coaxial cable.
  • each CNU shares the uplink of the coaxial cable.
  • each CNU must send uplink data to the CLT through the same physical medium. Therefore, if it is to ensure that the CLT can correctly receive the uplink data sent by each CNU, then it is necessary to ensure the uplink sent by each CNU.
  • the data does not conflict with each other. At present, there is no solution to ensure that the uplink data sent by each CNU does not conflict with each other. Summary of the invention
  • An object of the present invention is to provide a data transmission method, and another object of the present invention is to provide a coaxial line terminal, and another object of the present invention is to provide a coaxial network terminal, so as to ensure that each CNU transmits The upstream data does not conflict with each other.
  • a data transmission method includes:
  • a CLT including:
  • the medium access control MAC layer processing unit is configured to allocate a corresponding uplink occupation time period for each CNU, and send the uplink occupation time period information corresponding to each CNU to the physical layer processing unit;
  • the physical layer processing unit is configured to send, to each CNU, the uplink occupied time period information corresponding to each CNU sent by the MAC layer processing unit.
  • a CNU that includes:
  • the MAC layer processing unit is configured to obtain an uplink occupation time period corresponding to the CNU, and send an opening indication to the physical layer processing unit when detecting the uplink occupation time period; the physical layer processing unit is configured to receive the opening indication After that, uplink data transmission processing is performed.
  • a CNU the CNU being located in a coaxial network, wherein the coaxial network includes at least one CLT and a plurality of CNUs, each of the CNUs and CLTs being connected by a shared coaxial medium; in particular, the CNU includes: a downlink data receiving unit, a control unit, and an uplink data transmitting unit;
  • the downlink data receiving unit is configured to receive downlink data sent by the CLT;
  • the control unit is located at the MAC layer, and is configured to obtain a periodic uplink sending time period from the CLT, and control the opening of the uplink data sending unit in an uplink sending time period of each period, so as to send uplink data to the CLT; And controlling the uplink data sending unit to be closed at other times of the cycle, stopping sending the uplink data to avoid conflict with data sent by other CNUs or CLTs;
  • the periodic transmission time period does not overlap with the time when the CLT sends downlink data.
  • a CLT located in a coaxial network, wherein the coaxial network includes at least one CLT and a plurality of CNUs, each of the CNUs and CLTs being connected by a shared coaxial medium; in particular, the CLT includes: downlink data a transmitting unit, a control unit, a sending time allocating unit, and an uplink data receiving unit;
  • the uplink data receiving unit is configured to receive uplink data sent by the CNU;
  • the sending time allocation unit is configured to allocate a periodic downlink sending time period for the CLT and a periodic uplink sending time period for each CNU;
  • the control unit is located at the MAC layer, and is configured to control the opening of the downlink data sending unit in a downlink sending period of each period to send downlink data to the CNU; and control the downlink data sending unit to be closed at other times in a period. Stop sending downlink data to avoid conflict with the upstream data sent by the CNU;
  • the periodic transmission time period does not overlap with the time period during which the CLT sends downlink data.
  • the present invention allocates its corresponding uplink occupation time period to each CNU.
  • the processing implements the allocation of the shared transmission medium for each CNU in the EPCN system, ensuring that the uplink data sent by each CNU does not conflict with each other, and the CLT can correctly receive the uplink data sent by each CNU, thereby ensuring the EPCN. Normal physical layer communication of the system.
  • the present invention proposes a process of allocating uplink and downlink occupied time periods when the EPCN system operates in the full-duplex mode and the half-duplex mode, which not only ensures uplink transmission of each CNU, but also ensures that downlink data transmission of the CLT is not performed. It will conflict with the uplink data transmission of each CNU, thereby further ensuring the normal physical layer communication of the EPCN system and greatly improving the service quality of the service.
  • Figure 1 is a schematic view showing the structure of an EPCN system.
  • Fig. 2 is a flow chart showing data transmission in the EPCN system in the first embodiment of the present invention.
  • Figure 3 is a flow chart showing data transmission in the EPCN system in Embodiment 2 of the present invention.
  • Fig. 4 is a schematic view showing the structure of the inside of a CLT proposed in an embodiment of the present invention.
  • FIG. 5 is a block diagram showing the internal structure of the CNU proposed in an embodiment of the present invention. Mode for carrying out the invention
  • the present invention proposes a data transmission method.
  • each CNU is allocated a corresponding uplink occupation time period; each CNU performs uplink data transmission processing in its corresponding uplink occupation time period.
  • the EPCN system can be a full-duplex system or a half-duplex system from the perspective of the physical layer shared medium.
  • different physical layer media are used in the uplink and downlink directions. That is to say, the downlink direction of the CLT to the CNUs always occupies the downlink coaxial cable, and the uplink direction of each CNU to CLT always occupies the uplink coaxial cable;
  • the duplex system working mode the same physical layer medium is used in the uplink and downlink directions, that is, the downlink direction from the CLT to each CNU and the uplink direction from each CNU to the CLT are occupied by the uplink and downlink shared coaxial cable.
  • the CLT and each CNU can work in the full-duplex mode, and can also work in the half-duplex mode. Therefore, the present invention allocates the corresponding uplink occupation time period for each CNU.
  • the transmission characteristics of full-duplex mode and half-duplex mode need to be considered. The following is a description of a specific embodiment for the case where the EPCN system operates in the full-duplex mode and operates in the half-duplex mode.
  • Fig. 2 is a flow chart showing data transmission in the EPCN system in the first embodiment of the present invention.
  • the process of implementing data transmission in an embodiment of the present invention includes the following steps:
  • Step 201 The CLT allocates a data transmission period, and divides the data transmission period into uplink occupation time periods corresponding to each CNU.
  • the EPCN system has a point-to-multipoint structure, that is, one CLT to multiple CNUs.
  • the CLT and each CNU in the EPCN system operate in full-duplex mode, since the data transmission in the uplink and downlink directions occupies different coaxial cables, Therefore, the CLT can always send downlink data, regardless of the time period occupied by the CLT to send downlink data. Since each CNU occupies the uplink coaxial cable together, it is necessary to consider how long each CNU needs to send uplink data. Therefore, this step The CLT allocates a data transmission period required for each CNU to send uplink data once, and divides the data transmission period into uplink occupation time periods corresponding to each CNU.
  • the CLT allocates a data transmission period of 10 ms, and divides the uplink occupation time period corresponding to each CNU within 10 ms, for example, the CNU1 occupies the 10 ms data transmission period.
  • the CNU2 occupies the 2ms in the 10ms data transfer cycle.
  • the processing of this step 201 can be performed by the Medium Access Control (MAC) layer of the CLT.
  • MAC Medium Access Control
  • Step 202 The CLT sends the uplink occupied time period information corresponding to each CNU to each CNU.
  • the CLT may use the control message existing or newly defined between each CNU to send the uplink occupied time period information corresponding to each CNU to each CNU.
  • the uplink occupied time period information corresponding to each CNU divided by the MAC layer may be separately sent to each CNU by the physical (PHY) layer in the CLT, and after the CNU receives the uplink occupied time period information, The MAC layer of the CNU saves the uplink occupied time period information.
  • Step 203 Each CNU detects whether there is uplink data to be sent at the beginning of its corresponding uplink occupation period. If yes, step 204 is performed; otherwise, step 205 is performed.
  • the MAC layer of the CNU may determine that the start time of the uplink occupation time period of the CNU arrives according to the saved uplink occupation time period information, and send an indication of the opening to the physical layer of the CNU, and the PHY layer of the CNU is received. After the indication is turned on, a process of detecting whether uplink data needs to be transmitted is performed.
  • Step 204 The CNU sends the uplink data to the CLT through the uplink coaxial cable in the corresponding uplink occupation time period, and step 206 is performed.
  • Step 205 The CNU sends an idle signal to the CLT or enters a silent state through the uplink coaxial cable in its corresponding uplink occupation time period.
  • Step 206 Each CNU determines that the corresponding uplink occupation time period end time arrives and enters a silent state.
  • the CNU PHY layer In this step, determining that the end of the uplink occupied time period is determined by the CNU MAC layer, and sending a shutdown indication to the CNU PHY layer, the CNU PHY layer enters the silent state after receiving the shutdown indication.
  • the CLT is always performing downlink data transmission processing, including: CLT real-time detection of whether downlink data needs to be transmitted, and if so, the CLT will downlink through the downlink coaxial cable. Data is sent to each CNU, otherwise the CLT sends an idle signal to each CNU via the downstream coaxial cable, or enters a silent state.
  • Figure 3 is a flow chart showing data transmission in the EPCN system in Embodiment 2 of the present invention.
  • the process of implementing data transmission in another embodiment of the present invention includes the following steps:
  • Step 301 The CLT allocates an uplink data transmission period and a downlink data transmission period, and when the CLT and each CNU in the EPCN system work in the half duplex mode, since the data transmission in the uplink and downlink directions occupies the same coaxial cable, therefore, The uplink and downlink data transmission cannot be performed at the same time, and the coaxial cable shared by the uplink and downlink needs to be occupied in a timely manner. Therefore, in this step, the CLT needs to first allocate the uplink data transmission period occupied by the uplink data transmission and the downlink data transmission period occupied by the downlink data transmission. Moreover, the uplink data transmission period is further divided into uplink occupation time periods corresponding to the respective CNUs.
  • the CLT allocates a downlink data transmission period of 5 ms, and an uplink data transmission period of 5 ms, and divides the uplink occupation time period corresponding to each CNU within 5 ms.
  • the CNU 1 occupies the lms in the 5 ms data transmission period
  • the CNU 2 occupies 5 ms data transmission.
  • the processing of this step 301 can be performed by the Medium Access Control (MAC) layer of the CLT.
  • MAC Medium Access Control
  • Step 302 The CLT sends the uplink occupied time period information corresponding to each CNU to each CNU.
  • the CLT may use the control message existing or newly defined between each CNU to send the uplink occupied time period information corresponding to each CNU to each CNU.
  • the uplink occupied time period information corresponding to each CNU divided by the MAC layer may be separately sent to each CNU by the physical layer (PHY) in the CLT, and after the CNU receives the uplink occupied time period information, The MAC layer of the CNU saves the uplink occupied time period information.
  • PHY physical layer
  • Step 303 Each CNU detects whether uplink data needs to be sent at the beginning of its corresponding uplink occupation time period. If yes, step 304 is performed; otherwise, step 305 is performed.
  • the MAC layer of the CNU may determine, according to the saved uplink occupation time period information, that the CNU uplink occupation time period start time arrives, and send an opening indication to the CNU physical layer, and the CNU PHY layer receives After the indication is turned on, a process of detecting whether uplink data needs to be transmitted is performed.
  • Step 304 The CNU sends the uplink data to the CLT through the coaxial cable shared by the uplink and downlink in the corresponding uplink occupation time period, and step 306 is performed.
  • Step 305 The CNU sends an idle signal to the CLT or enters a silent state through a coaxial cable shared by the uplink and downlink during its corresponding uplink occupation period.
  • the operation of sending an idle signal to the CLT or entering a silent state can be performed by the CNU PHY layer.
  • Step 306 Each CNU determines that the corresponding uplink occupation time period end time arrives. Enter the silent state.
  • the CNU PHY layer In this step, determining that the end of the uplink occupied time period is determined by the CNU MAC layer, and sending a shutdown indication to the CNU PHY layer, the CNU PHY layer enters the silent state after receiving the shutdown indication.
  • the uplink and downlink data are sent in a time-sharing manner.
  • the uplink data transmission period is performed. Therefore, the CLT is always in a silent state and is not sent.
  • Downstream data After the end of the uplink data transmission period, that is, during the downlink data transmission period, the CLT performs downlink data transmission processing, including: when the downlink data transmission period starts, the CLT detects whether downlink data needs to be transmitted, and if yes, passes the uplink and downlink sharing.
  • the coaxial cable transmits downlink data to each of the CNUs; if not, sends an idle signal to each of the CNUs or enters a silent state through a coaxial cable shared by the uplink and the downlink.
  • the CLT can allocate its corresponding uplink occupation time period to each CNU according to the experience value. That is to say, when all the data transmission periods are allocated and the uplink occupation time period corresponding to each CNU is allocated, the CLT can be executed according to the empirical value set in advance therein, for example, determining an uplink data transmission period of 5 ms according to the empirical value. , - The downlink data transmission period is also 5ms.
  • the CLT can also allocate a corresponding uplink occupation time period for each CNU according to the data reported by the CNU. That is to say, in the foregoing embodiment of the present invention, each CNU may further send the length of the uplink data to be sent by itself to the CLT before sending the uplink data; thus, the CLT is required according to the number of CNUs and each CNU.
  • the length of the transmitted uplink data to allocate each data transmission cycle mentioned in each of the above embodiments, and divide each The upstream occupied time period corresponding to the CNU.
  • Fig. 4 is a schematic view showing the structure of the inside of a CLT which is proposed in an embodiment of the present invention.
  • the internals of the CLT mainly include: a MAC layer processing unit and a physical layer processing unit, where
  • the MAC layer processing unit is configured to allocate a corresponding uplink occupation time period for each CNU, and send the uplink occupation time period information corresponding to each CNU to the physical layer processing unit; the physical layer processing unit is configured to use the MAC layer processing unit The uplink occupied time period information corresponding to each CNU sent is sent to each CNU.
  • the MAC layer processing unit is implemented.
  • the MAC layer processing unit allocates a data transmission period, and divides the data transmission period into uplink occupation time periods corresponding to each CNU.
  • the process of the MAC layer processing unit to allocate a corresponding uplink occupation time period for each CNU may be specifically: the MAC layer processing unit allocates an uplink data transmission period and downlink data transmission. The period, and the uplink data transmission period is divided into uplink occupation time periods corresponding to the respective CNUs.
  • the MAC layer processing unit when the CLT operates in the full duplex mode, in order to further implement downlink data transmission within the CLT, the MAC layer processing unit further transmits an open indication to the physical layer processing unit at all times; then the physical layer processing unit Further, when receiving the opening indication, the downlink coaxial cable is used for downlink data transmission processing, that is, the downlink transmission is always valid, and the physical layer processing unit can always detect the opening indication. Therefore, as long as there is downlink data, the physical layer processing unit Will be sent.
  • the MAC layer processing unit When the CLT is operating in the half-duplex mode, in order to further implement downlink data transmission within the CLT, the MAC layer processing unit further sends an indication of inception to the physical layer processing unit when detecting the start of the downlink data transmission period, in detecting Downstream data transfer cycle At the end, the shutdown indication is sent to the physical layer processing unit; the physical layer processing unit further performs downlink data transmission processing by using the uplink and downlink shared coaxial cable when receiving the opening indication, and enters silence when receiving the shutdown indication. status.
  • FIG. 5 is a block diagram showing the internal structure of the CNU in an embodiment of the present invention.
  • the internal of the CNU mainly includes: a MAC layer processing unit and a physical layer processing unit, where
  • the MAC layer processing unit is configured to obtain an uplink occupation time period corresponding to the CNU, and send an opening indication to the physical layer processing unit when detecting the uplink occupation time period; the physical layer processing unit is configured to receive the opening indication After that, uplink data transmission processing is performed.
  • the MAC layer processing unit further sends a shutdown indication to the physical layer processing unit when detecting that the uplink occupation time period ends;
  • the physical layer processing unit is further configured to enter a silent state after receiving the shutdown indication.
  • the process of implementing the uplink data sending process by the physical layer processing unit includes: after receiving the opening indication, if the physical layer processing unit detects that there is uplink data to be sent, the physical layer processing unit sends uplink data to the CLT, if no If the uplink data needs to be sent, it sends an idle signal to the CLT or enters a silent state.
  • the uplink data or the idle signal is sent through the uplink coaxial cable.
  • the uplink data is sent through the uplink and downlink shared coaxial cable. Idle signal.
  • the CLT allocates a corresponding uplink occupation time period for each CNU, and sends the uplink occupation time period information corresponding to each CNU to each CNU, thereby making each CNU
  • the uplink data can be sent according to its corresponding uplink occupied time period.
  • it may also be managed by a manager
  • the corresponding uplink occupation time period is allocated directly on each CNU, so that each CNU can send uplink data according to its corresponding uplink occupation time period.
  • a CNU can be obtained.
  • the CNU is located in a coaxial network, wherein the coaxial network includes at least one CLT and a plurality of CNUs, each of the CNUs and CLTs being connected by a shared coaxial medium; in particular, the CNU includes: a downlink data receiving unit , a control unit and an uplink data transmitting unit;
  • the downlink data receiving unit is configured to receive downlink data sent by the CLT;
  • the control unit is located at the MAC layer, and is configured to obtain a periodic uplink sending time period from the CLT, and control the opening of the uplink data sending unit in an uplink sending time period of each period, so as to send uplink data to the CLT; And controlling the uplink data sending unit to be closed at other times of the cycle, stopping sending the uplink data to avoid conflict with data sent by other CNUs or CLTs;
  • the periodic transmission time period does not overlap with the time when the CLT sends downlink data.
  • the uplink transmission time occupied by the CNU may be shorter than the downlink transmission time occupied by the CLT.
  • the coaxial network includes at least one CLT and a plurality of CNUs, each of the CNUs and The CLT is connected through a shared coaxial medium.
  • the CLT includes: a downlink data sending unit, a control unit, a sending time allocating unit, and an uplink data receiving unit.
  • the uplink data receiving unit is configured to receive uplink data sent by the CNU. ;
  • the sending time allocation unit is configured to allocate a periodic downlink sending time period for the CLT and a periodic uplink sending time period for each CNU;
  • the control unit is located at the MAC layer, and is used in each Controlling the opening of the downlink data sending unit during the downlink transmission period of the period, so as to send the downlink data to the CNU; and controlling the downlink data sending unit to be closed at other times of the period, stopping the transmission of the downlink data to avoid the uplink data conflict with the CNU. ;
  • the periodic transmission time period does not overlap with the time period during which the CLT sends downlink data.
  • the downlink transmission time occupied by the CLT may be greater than the uplink transmission time occupied by one CNU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Communication Control (AREA)
  • Bidirectional Digital Transmission (AREA)

Description

一种数据传输方法和终端
技术领域
本发明涉及以太网通信技术,特别是涉及一种数据传输方法和终端。 发明背景
以太网无源光网络( EPON , Ethernet Passive Optical Network )是将 无源光网络技术和以太网技术相结合所产生的接入技术。 在 EPON系统 中, 主要包括光线路终端 (OLT )、 光分布网 (ODN ) 和光网络单元 ( ONU )。 OLT连接一个或者多个 ODN; ODN是无源分光器件,将 OLT 下行的数据通过光分路传输到多个 ONU; 并将 ONU的上行数据通过汇 聚传输到 OLT。 其中, 数据传输采用了无源光纤传输方式。
借鉴于 EPON 系统的网络结构, 目前出现了以太网无源同轴网络 ( EPCN, Ethernet Passive Coaxial-cable Network ) 系统。 EPCN系统以 以太网为载体, 采用点到多点结构、 无源同轴电缆传输方式, 上行以突 发的以太网包方式发送数据流。 图 1是 EPCN系统的结构示意图, 如图 1 所示, EPCN 系统主要包括同轴线路终端 (CLT, Coaxial-cable Line Terminal ), 分支器 /分配器、 以及同轴网络终端 ( CNU, Coaxial-Cable Network Unit )。 EPCN系统通过 CLT连接各种以太网设备,并通过 CNU 连接用户设备。 EPCN 系统可以应用于多种业务环境中, 目前最为常用 的就是在楼内的以太网宽带到户使用。
EPCN系统采用了点到多点的结构, 即, 一个 CLT到多个 CNU的 结构。 CLT和各 CNU之间通过同轴电缆传输数据, 其中, CLT占用同 轴电缆的下行方向, 而各个 CNU共同占用同轴电缆的上行方向。 根据 EPCN系统的特点可以看出,由于各个 CNU共同占用同轴电缆的上行方 向, 也就是说, 各个 CNU必须通过同一个物理介质来向 CLT发送上行 数据, 因此, 如果要保证 CLT能够正确接收到每一个 CNU发来的上行 数据, 那么就必须要保证各个 CNU发送的上行数据不会相互沖突。 而 目前, 却并不存在任何保证各个 CNU所发送的上行数据不会相互沖突 的解决方案。 发明内容
本发明的一个目的在于提出一种数据传输方法, 本发明的另一个目 的在于提出一种同轴线路终端, 本发明的又一目的在于提出一种同轴网 络终端, 以便于保证各个 CNU所发送的上行数据不会相互沖突。
为达到上述目的, 本发明的技术方案是这样实现的:
一种数据传输方法, 包括:
为每个同轴网络终端 CNU分配对应的上行占用时间段; 一种 CLT, 包括:
媒质接入控制 MAC层处理单元,用于为每个 CNU分配对应的上行 占用时间段, 并将每个 CNU对应的上行占用时间段信息发送至物理层 处理单元;
物理层处理单元,用于将 MAC层处理单元发来的每个 CNU对应的 上行占用时间段信息发送至每个 CNU。
一种 CNU, 该 CNU包括:
MAC层处理单元, 用于获取所在 CNU对应的上行占用时间段, 并 在检测到该上行占用时间段开始时, 向物理层处理单元发送开启指示; 物理层处理单元, 用于在接收到开启指示后, 进行上行数据发送处 理。 一种 CNU, 该 CNU位于同轴网络中, 其中该同轴网络包括至少一 个 CLT以及多个 CNU, 所述每个 CNU以及 CLT通过一个共享的同轴 媒质相连; 特别的是, 该 CNU 包括: 下行数据接收单元, 控制单元以 及上行数据发送单元;
所述下行数据接收单元, 用以接收 CLT发送的下行数据;
所述控制单元, 位于 MAC层的, 用以从 CLT获得一个周期性的上 行发送时间段, 并在每个周期的上行发送时间段内控制上行数据发送单 元的开启, 以便向 CLT发送上行数据; 并在一个周期的其他时间控制上 行数据发送单元关闭, 停止发送上行数据以避免和其它 CNU或者 CLT 发送的数据沖突;
其中所述周期性的发送时间段与 CLT发送下行数据的时间不重叠。 一种 CLT, 位于同轴网络中, 其中该同轴网络包括至少一个 CLT以 及多个 CNU, 所述每个 CNU以及 CLT通过一个共享的同轴媒质相连; 特别的是, 该 CLT包括: 下行数据发送单元, 控制单元, 发送时间分配 单元以及上行数据接收单元;
所述上行数据接收单元用以接收 CNU发送的上行数据;
所述发送时间分配单元用以为本 CLT的分配一个周期性的下行发送 时间段以及为每个 CNU分别分配一个周期性的上行发送时间段;
所述控制单元, 位于 MAC层的, 用于在每个周期的下行发送时间 段内控制下行数据发送单元的开启, 以便向 CNU发送下行数据; 并在 一个周期的其他时间控制下行数据发送单元关闭, 停止发送下行数据以 避免和 CNU发送的上行数据沖突;
其中所述周期性的发送时间段与 CLT发送下行数据的时间段不重 叠。
由此可见, 本发明通过为各个 CNU分配其对应的上行占用时间段 的处理, 实现了在 EPCN系统中为各个 CNU分配其共享的传输介质, 保证了各个 CNU所发送的上行数据不会相互沖突, CLT能够正确接收 到每一个 CNU发送的上行数据, 从而保证了 EPCN系统的正常物理层 通信。
进一步地, 本发明提出了在 EPCN系统工作在全双工模式和半双工 模式时分配上下行占用时间段的处理, 不仅保证了各个 CNU的上行发 送, 而且还保证了 CLT的下行数据发送不会与各个 CNU的上行数据发 送相互沖突, 从而进一步保证了 EPCN系统的正常物理层通信, 大大提 高了业务服务质量。 附图简要说明
图 1是 EPCN系统的结构示意图。
图 2是在本发明实施例 1中在 EPCN系统中进行数据传输的流程图。 图 3是在本发明实施例 2中在 EPCN系统中进行数据传输的流程图。 图 4是本发明一个实施例中提出的 CLT内部的结构示意图。
图 5是本发明一个实施例中提出的 CNU内部的结构示意图。 实施本发明的方式
为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图及具 体实施例对本发明作进一步地详细描述。
本发明提出了一种数据传输方法。 在该方法中, 为每个 CNU分配 对应的上行占用时间段; 每个 CNU在其对应的上行占用时间段内进行 上行数据发送处理。
需要说明的是,在实际的业务实现中,从物理层共享介质角度来看, EPCN 系统可以是一个全双工系统, 也可以是一个半双工系统。 在全双 工系统工作模式下,上下行方向使用不同的物理层介质,也就是说, CLT 到各 CNU的下行方向一直占用下行同轴电缆, 各 CNU到 CLT的上行 方向一直占用上行同轴电缆; 在半双工系统工作模式下, 上下行方向使 用相同的物理层介质, 也就是说, 从 CLT到各 CNU的下行方向和从各 CNU到 CLT的上行方向分时占用上下行共享的同轴电缆。
可见, 由于在 EPCN系统中, CLT与各个 CNU可以工作在全双工 模式下, 也可以工作在半双工模式下, 因此, 本发明在为各个 CNU分 配其对应的上行占用时间段时, 还需要考虑全双工模式和半双工模式的 传输特点。 下面则针对 EPCN系统工作在全双工模式和工作在半双工模 式的情况, 分别举一个具体实施例进行说明。
实施例 1:
图 2是在本发明实施例 1中在 EPCN系统中进行数据传输的流程图。 参见图 2, 当 EPCN系统工作在全双工模式时, 本发明一个实施例实现 数据传输的过程包括以下步骤:
步骤 201: CLT分配数据传送周期, 并将数据传送周期划分为各个 CNU对应的上行占用时间段。
EPCN系统具有点到多点结构, 即一个 CLT到多个 CNU , 这样, 当 EPCN系统中 CLT和各个 CNU均工作在全双工模式时, 由于上下行方 向的数据传输占用不同的同轴电缆, 因此, CLT可以一直发送下行数据, 无需考虑 CLT发送下行数据时占用的时间段, 而由于各个 CNU共同占 用上行同轴电缆, 则需要考虑各个 CNU多长时间需要发送一次上行数 据, 因此, 本步骤中, CLT分配各个 CNU发送一次上行数据所需占用 的数据传送周期, 并将数据传送周期划分为各个 CNU对应的上行占用 时间段。 比如, CLT分配数据传送周期为 10ms, 并划分在 10ms内各个 CNU对应的上行占用时间段, 如 CNU1占用 10ms数据传送周期内的第 lms, CNU2占用 10ms数据传送周期内的第 2ms等。
在本实施例中, 可由 CLT 的媒体接入控制 (MAC )层执行本步骤 201的处理。
步骤 202: CLT将各个 CNU对应的上行占用时间段信息分别发送至 各个 CNU。
本步骤 202中, CLT可以利用与各个 CNU之间已有或新定义的控 制消息来将各个 CNU 对应的上行占用时间段信息分别发送至各个 CNU。
另外, 在本步骤中, 可以由 CLT中的物理(PHY )层将 MAC层划 分的各个 CNU对应的上行占用时间段信息分别发送至各个 CNU, 在 CNU接收到上行占用时间段信息后, 可以由该 CNU的 MAC层保存该 上行占用时间段信息。
步骤 203: 每个 CNU在其对应的上行占用时间段开始时, 检测是否 有上行数据需要发送, 如果是, 则执行步骤 204, 否则, 执行步骤 205。
在本步骤 203中,可以由 CNU的 MAC层根据保存的上行占用时间 段信息, 确定该 CNU的上行占用时间段起始时刻到来, 并向 CNU的物 理层发送开启指示, CNU的 PHY层收到该开启指示后, 执行检测是否 有上行数据需要发送的处理。
步骤 204: 该 CNU在其对应的上行占用时间段内, 通过上行同轴电 缆将上行数据发送至 CLT, 执行步骤 206。
本步骤中, 向 CLT发送上行数据的操作可由 CNU的 PHY层完成。 步骤 205: 该 CNU在其对应的上行占用时间段内, 通过上行同轴电 缆将空闲信号发送至 CLT或进入静默状态。
本步骤中, 向 CLT发送空闲信号或进入静默状态的操作可由 CNU 的 PHY层完成。 步骤 206:每个 CNU确定自身对应的上行占用时间段结束时刻到来, 进入静默状态。
本步骤中,确定上行占用时间段结束时刻到来可由 CNU的 MAC层 来确定, 并向 CNU的 PHY层发送关闭指示, CNU的 PHY层收到该关 闭指示后, 进入静默状态。
由于工作在全双工模式,上下行数据发送可以同时进行, 因此, CLT 始终在进行下行数据发送处理, 包括: CLT实时检测是否有下行数据需 要发送, 如果是, CLT通过下行同轴电缆将下行数据发送至每个 CNU, 否则, CLT通过下行同轴电缆将空闲信号发送至每个 CNU,或进入静默 状态。
实施例 2:
图 3是在本发明实施例 2中在 EPCN系统中进行数据传输的流程图。 参见图 3, 当 EPCN系统工作在半双工模式时, 本发明另一个实施例实 现数据传输的过程包括以下步骤:
步骤 301: CLT分配上行数据传送周期和下行数据传送周期, 并将 当 EPCN系统中 CLT和各个 CNU均工作在半双工模式时, 由于上 下行方向的数据传输占用相同的同轴电缆, 因此, 上下行数据传输不能 同时进行, 需要分时占用上下行共享的同轴电缆, 因此,本步骤中, CLT 需要首先分配上行数据传输占用的上行数据传送周期和下行数据传输 占用的下行数据传送周期, 并且, 再将上行数据传送周期划分为各个 CNU对应的上行占用时间段。比如, CLT分配下行数据传送周期为 5ms, 上行数据传送周期也为 5ms, 并划分在 5ms内各个 CNU对应的上行占 用时间段,如 CNU1占用 5ms数据传送周期内的第 lms, CNU2占用 5ms 数据传送周期内的第 2ms等。 在本实施例中, 可由 CLT 的媒体接入控制 (MAC )层执行本步骤 301的处理。
步骤 302: CLT将各个 CNU对应的上行占用时间段信息分别发送至 各个 CNU。
本步骤 302中, CLT可以利用与各个 CNU之间已有或新定义的控 制消息来将各个 CNU 对应的上行占用时间段信息分别发送至各个 CNU。
另外, 在本步骤中, 可以由 CLT中的物理层(PHY )将 MAC层划 分的各个 CNU对应的上行占用时间段信息分别发送至各个 CNU, 在 CNU接收到上行占用时间段信息后, 可以由该 CNU的 MAC层保存该 上行占用时间段信息。
步骤 303: 每个 CNU在其对应的上行占用时间段开始时, 检测是否 有上行数据需要发送, 如果是, 则执行步骤 304, 否则, 执行步骤 305。
在本步骤 303中, 可以由 CNU的 MAC层根据保存的上行占用时间 段信息, 确定该 CNU的上行占用时间段起始时刻到来, 并向 CNU的物 理层发送开启指示, CNU的 PHY层收到该开启指示后, 执行检测是否 有上行数据需要发送的处理。
步骤 304: 该 CNU在其对应的上行占用时间段内, 通过上下行共享 的同轴电缆将上行数据发送至 CLT, 执行步骤 306。
本步骤中, 向 CLT发送上行数据的操作可由 CNU的 PHY层完成。 步骤 305: 该 CNU在其对应的上行占用时间段内, 通过上下行共享 的同轴电缆将空闲信号发送至 CLT或进入静默状态。
本步骤中, 向 CLT发送空闲信号或进入静默状态的操作可由 CNU 的 PHY层完成。
步骤 306:每个 CNU确定自身对应的上行占用时间段结束时刻到来, 进入静默状态。
本步骤中,确定上行占用时间段结束时刻到来可由 CNU的 MAC层 来确定, 并向 CNU的 PHY层发送关闭指示, CNU的 PHY层收到该关 闭指示后, 进入静默状态。
由于工作在半双工模式, 因此, 上下行数据是分时发送的, 当进行 图 3中步骤 303至步骤 306的过程时,是上行数据传送周期, 因此, CLT 一直处于静默状态, 不会发送下行数据。 在上行数据传送周期结束后, 即在下行数据传送周期内, CLT进行下行数据发送处理, 包括: CLT在 下行数据传送周期开始时, 检测是否有下行数据需要发送, 如果是, 则 通过上下行共享的同轴电缆将下行数据发送至所述的每个 CNU; 如果 否, 则通过上下行共享的同轴电缆将空闲信号发送至所述的每个 CNU 或进入静默状态。
需要说明的是, 在上述图 2和图 3所示流程中, CLT和 CNU在没 有数据发送时向对方发送空闲信号的处理为本发明推荐的处理, 这样, 可以进一步有利于 CLT和 CNU之间的时间同步。
还需要说明的是, 在上述图 2和图 3所示流程中, CLT可以根据经 验值为每个 CNU分配其对应的上行占用时间段。 也就是说, 在分配各 数据传送周期和划分各个 CNU对应的上行占用时间段时, CLT均可以 根据预先设置在其内部的经验值来执行, 比如, 根据经验值确定一个上 行数据传送周期为 5ms, —个下行数据传送周期也为 5ms等。
较佳地, CLT还可以根据 CNU上报的数据为每个 CNU分配其对应 的上行占用时间段。 也就是说, 在本发明上述实施例中, 可以进一步由 每个 CNU在发送上行数据前, 将自身所要发送的上行数据的长度发送 至 CLT; 这样, CLT根据 CNU的个数及每个 CNU所要发送的上行数据 的长度, 来分配各上述实施例中提及的各数据传送周期, 并划分各个 CNU对应的上行占用时间段。
相应地, 本发明还提出了一种 CLT。 图 4是本发明一个实施例中提 出的 CLT内部的结构示意图。 参见图 4, 在本发明一个实施例中, CLT 的内部主要包括: MAC层处理单元和物理层处理单元, 其中,
MAC层处理单元, 用于为每个 CNU分配对应的上行占用时间段, 并将每个 CNU对应的上行占用时间段信息发送至物理层处理单元; 物理层处理单元,用于将 MAC层处理单元发来的每个 CNU对应的 上行占用时间段信息发送至每个 CNU。
参见图 4, 当 CLT工作在全双工模式时, 所述 MAC层处理单元实
MAC层处理单元分配数据传送周期, 将数据传送周期划分为各个 CNU 对应的上行占用时间段。
当该 CLT工作在半双工模式时, 所述 MAC层处理单元实现为每个 CNU分配对应的上行占用时间段的过程具体可以是: 所述 MAC层处理 单元分配上行数据传送周期和下行数据传送周期, 并将上行数据传送周 期划分为各个 CNU对应的上行占用时间段。
参见图 4, 当该 CLT工作在全双工模式时, 为了在 CLT内部进一步 实现下行数据传输, 所述 MAC层处理单元进一步将开启指示始终发送 至物理层处理单元; 则所述物理层处理单元进一步在接收到开启指示 时, 利用下行同轴电缆进行下行数据发送处理, 也就是说, 下行发送始 终有效, 物理层处理单元始终能够检测到开启指示, 因此, 只要有下行 数据, 物理层处理单元就会进行发送。
当该 CLT工作在半双工模式时, 为了在 CLT内部进一步实现下行 数据传输, 所述 MAC层处理单元进一步在检测到下行数据传送周期开 始时, 将开启指示发送至物理层处理单元, 在检测到下行数据传送周期 结束时, 将关闭指示发送至物理层处理单元; 则所述物理层处理单元进 一步在接收到开启指示时, 利用上下行共享同轴电缆进行下行数据发送 处理, 在接收到关闭指示时, 进入静默状态。
相应地, 本发明还提出了一种 CNU。 图 5是本发明一个实施例中提 出的 CNU内部的结构示意图。 参见图 5, 在本发明一个实施例中, CNU 的内部主要包括: MAC层处理单元和物理层处理单元, 其中,
MAC层处理单元, 用于获取所在 CNU对应的上行占用时间段, 并 在检测到该上行占用时间段开始时, 向物理层处理单元发送开启指示; 物理层处理单元, 用于在接收到开启指示后, 进行上行数据发送处 理。
参见图 5,所述 MAC层处理单元进一步在检测到上行占用时间段结 束时, 向所述物理层处理单元发送关闭指示;
所述物理层处理单元进一步用于在接收到关闭指示后, 进入静默状 态。
参见图 5, 物理层处理单元实现上行数据发送处理的过程包括: 所 述物理层处理单元在接收到开启指示后, 如果检测到有上行数据需要发 送, 则向 CLT发送上行数据, 如果检测到没有上行数据需要发送, 则向 CLT发送空闲信号或进入静默状态。 其中, 具体地, 当 CNU工作在全 双工模式时, 是通过上行同轴电缆发送上行数据或空闲信号, 当 CNU 工作在半双工模式时, 是通过上下行共享同轴电缆发送上行数据或空闲 信号。
需要说明的是, 在上述各个实施例中, 是由 CLT为每个 CNU分配 对应的上行占用时间段, 并将每个 CNU对应的上行占用时间段信息分 别发送至各个 CNU, 从而使得每一个 CNU能够根据自身对应的上行占 用时间段发送上行数据。 在本发明的其他实施例中, 也可以由管理人员 直接在每个 CNU 上分配其对应的上行占用时间段, 从而使得每一个 CNU能够根据自身对应的上行占用时间段发送上行数据。
通过以上的实施方式的描述, 本领域的一般技术人员可以清楚地了 解到本发明可借助软件加有能力运行该软件的通用的广义计算机设备 (可以理解为具有一定通用性的硬件平台) 的方式来实现; 当然也可以 采用硬件设计的方式实现; 但很多情况下前者是更佳的实施方式。 基于 这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储 例所述的方法。
根据本发明的上述实施例,可以得到一种 CNU。该 CNU位于同轴网 络中,其中该同轴网络包括至少一个 CLT以及多个 CNU,所述每个 CNU 以及 CLT通过一个共享的同轴媒质相连; 特别的是, 该 CNU包括: 下 行数据接收单元, 控制单元以及上行数据发送单元;
所述下行数据接收单元, 用以接收 CLT发送的下行数据;
所述控制单元, 位于 MAC层的, 用以从 CLT获得一个周期性的上 行发送时间段, 并在每个周期的上行发送时间段内控制上行数据发送单 元的开启, 以便向 CLT发送上行数据; 并在一个周期的其他时间控制上 行数据发送单元关闭, 停止发送上行数据以避免和其它 CNU或者 CLT 发送的数据沖突;
其中所述周期性的发送时间段与 CLT发送下行数据的时间不重叠。 对于上述的 CNU, 其中一个周期内, 该 CNU所占用上行发送时间 可以短于 CLT所占用的下行发送时间。
根据本发明的上述实施例,还可以得到一种 CLT,位于同轴网络中, 其中该同轴网络包括至少一个 CLT以及多个 CNU,所述每个 CNU以及 CLT通过一个共享的同轴媒质相连; 特别的是, 该 CLT包括: 下行数据 发送单元, 控制单元, 发送时间分配单元以及上行数据接收单元; 所述上行数据接收单元用以接收 CNU发送的上行数据;
所述发送时间分配单元用以为本 CLT 的分配一个周期性的下行发 送时间段以及为每个 CNU分别分配一个周期性的上行发送时间段; 所述控制单元, 位于 MAC层的, 用于在每个周期的下行发送时间 段内控制下行数据发送单元的开启, 以便向 CNU发送下行数据; 并在 一个周期的其他时间控制下行数据发送单元关闭, 停止发送下行数据以 避免和 CNU发送的上行数据沖突;
其中所述周期性的发送时间段与 CLT发送下行数据的时间段不重 叠。
对于上述的 CLT, 其中一个周期内, 所述 CLT所占用的下行发送时 间可以大于一个 CNU所占用上行发送时间。
以上所述仅为本发明的过程及方法实施例, 并不用以限制本发明, 凡在本发明的精神和原则之内所做的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种数据传输方法, 其特征在于, 包括:
为每个同轴网络终端 CNU分配对应的上行占用时间段;
2、根据权利要求 1所述的方法, 其特征在于, 由同轴线路终端 CLT
3、 根据权利要求 2所述的方法, 其特征在于, 当所述 CLT和所述 每个 CNU工作在全双工模式时; 分配数据传送周期, 将数据传送周期划分为各个 CNU对应的上行占用 时间段, 并将各个 CNU对应的上行占用时间段信息分别发送至各个 CNU。
4、 根据权利要求 3所述的方法, 其特征在于, 该方法进一步包括: 所述 CLT实时检测是否有下行数据需要发送, 如果是, 则通过下行同轴 电缆将下行数据发送至所述的每个 CNU; 如果否, 则通过下行同轴电缆 将空闲信号发送至所述的每个 CNU, 或进入静默状态。
5、 根据权利要求 2所述的方法, 其特征在于, 当所述 CLT和所述 每个 CNU工作在半双工模式时; 分配上行数据传送周期和下行数据传送周期, 并将上行数据传送周期划 分为各个 CNU对应的上行占用时间段,然后将各个 CNU对应的上行占 用时间段信息分别发送至各个 CNU。
6、 根据权利要求 5所述的方法, 其特征在于, 该方法进一步包括: 所述 CLT在下行数据传送周期开始时, 检测是否有下行数据需要发送, 如果是, 则通过上下行共享的同轴电缆将下行数据发送至所述的每个
CNU; 如果否, 则通过上下行共享的同轴电缆将空闲信号发送至所述的 每个 CNU或进入静默状态。
7、根据权利要求 3至 6中任意一项所述的方法, 其特征在于, 该方 法进一步包括: 所述每个 CNU在发送上行数据前, 将自身所要发送的 上行数据的长度发送至所述 CLT;
所述 CLT根据 CNU的个数及每个 CNU所要发送的上行数据的长 度, 执行所述分配和划分的步骤。
8、根据权利要求 1至 6中任意一项所述的方法, 其特征在于, 所述 包括: 所述每个 CNU在其对应的上行占用时间段开始时, 检测是否有 上行数据需要发送, 如果是, 则在其对应的上行占用时间段内将上行数 据发送至所述 CLT, 如果否, 则在其对应的上行占用时间段内将空闲信 号发送至所述 CLT或进入静默状态。
9、 一种 CLT, 其特征在于, 包括:
媒质接入控制 MAC层处理单元,用于为每个 CNU分配对应的上行 占用时间段, 并将每个 CNU对应的上行占用时间段信息发送至物理层 处理单元;
物理层处理单元,用于将 MAC层处理单元发来的每个 CNU对应的 上行占用时间段信息发送至每个 CNU。
10、 根据权利要求 9所述的 CLT, 其特征在于, 当该 CLT工作在全 双工模式时, 所述 MAC层处理单元分配数据传送周期, 将数据传送周 期划分为各个 CNU对应的上行占用时间段;
当该 CLT工作在半双工模式时, 所述 MAC层处理单元分配上行数 据传送周期和下行数据传送周期, 并将上行数据传送周期划分为各个 CNU对应的上行占用时间段。
11、 根据权利要求 10所述的 CLT, 其特征在于, 当该 CLT工作在 全双工模式时, 所述 MAC层处理单元进一步将开启指示始终发送至物 理层处理单元; 则所述物理层处理单元进一步在接收到开启指示时, 利 用下行同轴电缆进行下行数据发送处理;
当该 CLT工作在半双工模式时, 所述 MAC层处理单元进一步在检 测到下行数据传送周期开始时, 将开启指示发送至物理层处理单元, 在 检测到下行数据传送周期结束时, 将关闭指示发送至物理层处理单元; 则所述物理层处理单元进一步在接收到开启指示时, 利用上下行共享同 轴电缆进行下行数据发送处理, 在接收到关闭指示时, 进入静默状态。
12、 一种 CNU, 其特征在于, 该 CNU包括:
MAC层处理单元, 用于获取所在 CNU对应的上行占用时间段, 并 在检测到该上行占用时间段开始时, 向物理层处理单元发送开启指示; 物理层处理单元, 用于在接收到开启指示后, 进行上行数据发送处 理。
13、 根据权利要求 12所述的 CNU, 其特征在于, 所述 MAC层处 理单元进一步在检测到上行占用时间段结束时, 向所述物理层处理单元 发送关闭指示;
所述物理层处理单元进一步用于在接收到关闭指示后, 进入静默状 态。
14、 根据权利要求 12或 13所述的 CNU, 其特征在于, 所述物理层 处理单元在接收到开启指示后, 如果检测到有上行数据需要发送, 则向 CLT发送上行数据,如果检测到没有上行数据需要发送, 则向 CLT发送 空闲信号或进入静默状态。
15、 一种 CNU, 位于同轴网络中, 其中该同轴网络包括至少一个 CLT以及多个 CNU,所述每个 CNU以及 CLT通过一个共享的同轴媒质 相连; 其特征在于, 所述 CNU 包括: 下行数据接收单元, 控制单元以 及上行数据发送单元,
所述下行数据接收单元, 用以接收 CLT发送的下行数据;
所述控制单元, 位于 MAC层的, 用以从 CLT获得一个周期性的上 行发送时间段, 并在每个周期的上行发送时间段内控制上行数据发送单 元的开启, 以便向 CLT发送上行数据; 并在一个周期的其他时间控制上 行数据发送单元关闭, 停止发送上行数据以避免和其它 CNU或者 CLT 发送的数据沖突;
其中所述周期性的发送时间段与 CLT发送下行数据的时间不重叠。
16、 如权利要求 15所述 CNU, 其特征在于, 其中一个周期内, 该
17、一种 CLT,位于同轴网络中,其中该同轴网络包括至少一个 CLT 以及多个 CNU,所述每个 CNU以及 CLT通过一个共享的同轴媒质相连; 其特征在于, 该 CLT包括: 下行数据发送单元, 控制单元, 发送时间分 配单元以及上行数据接收单元;
所述上行数据接收单元用以接收 CNU发送的上行数据;
所述发送时间分配单元用以为本 CLT 的分配一个周期性的下行发 送时间段以及为每个 CNU分别分配一个周期性的上行发送时间段; 所述控制单元, 位于 MAC层的, 用于在每个周期的下行发送时间 段内控制下行数据发送单元的开启, 以便向 CNU发送下行数据; 并在 一个周期的其他时间控制下行数据发送单元关闭, 停止发送下行数据以 避免和 CNU发送的上行数据沖突;
其中所述周期性的发送时间段与 CLT发送下行数据的时间段不重
18、 如权利要求 17所述 CLT, 其特征在于, 其中一个周期内, 所 述 CLT所占用的下行发送时间大于一个 CNU所占用上行发送时间。
PCT/CN2007/071308 2007-04-06 2007-12-21 Procédé et terminal de transmission de données WO2008122183A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/594,882 US20100111524A1 (en) 2007-04-06 2007-12-21 Method and terminal for transmitting data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100904241A CN101282315B (zh) 2007-04-06 2007-04-06 共享传输介质分配方法、系统及终端
CN200710090424.1 2007-04-06

Publications (1)

Publication Number Publication Date
WO2008122183A1 true WO2008122183A1 (fr) 2008-10-16

Family

ID=39830465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/071308 WO2008122183A1 (fr) 2007-04-06 2007-12-21 Procédé et terminal de transmission de données

Country Status (3)

Country Link
US (1) US20100111524A1 (zh)
CN (1) CN101282315B (zh)
WO (1) WO2008122183A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882960B (zh) * 2009-05-05 2014-07-23 上海傲蓝通信技术有限公司 一种点对多点的双向化光纤同轴混合全业务宽带接入系统
CN102480309B (zh) * 2010-11-30 2016-03-02 景略半导体(上海)有限公司 一种EoC中继器、及中继EoC系统
CN104081788B (zh) * 2011-12-02 2018-07-20 华为技术有限公司 用于在统一光同轴网络上减少流量的装置和方法
US9113237B2 (en) * 2012-02-03 2015-08-18 Broadcom Corporation Systems and methods for ethernet passive optical network over coaxial (EPOC) power saving modes
CN104272662A (zh) * 2012-05-09 2015-01-07 高通股份有限公司 使用时分双工在同轴链路上进行全双工以太网通信
WO2013181846A1 (zh) * 2012-06-08 2013-12-12 海能达通信股份有限公司 一种专网通信中的数据传输方法和装置
US9071358B2 (en) 2012-06-21 2015-06-30 Qualcomm Incrorporated Repeater fiber-coax units
US8989577B2 (en) 2012-06-21 2015-03-24 Qualcomm Incorporated Methods and systems for implementing time-division duplexing in the physical layer
US9363017B2 (en) 2012-07-06 2016-06-07 Qualcomm Incorporated Methods and systems of specifying coaxial resource allocation across a MAC/PHY interface
WO2014036682A1 (zh) * 2012-09-04 2014-03-13 华为技术有限公司 避免注册冲突的方法、装置及系统
US20140071994A1 (en) * 2012-09-09 2014-03-13 Steven Sharp Method and Systems for Full Duplex Communication Using a Single Channel
CN111371656B (zh) * 2018-12-25 2022-01-14 上海未来宽带技术股份有限公司 同轴电缆网络单元静默方法及装置、可读存储介质和终端
CN116647775B (zh) * 2023-07-27 2023-10-20 哈尔滨凯纳科技股份有限公司 一种用于二次供水泵站的远程数据传输终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395413A (zh) * 2001-07-09 2003-02-05 北京艺盛网联科技有限公司 同轴长距离以太网接入方法及其设备
JP2003061070A (ja) * 2001-08-22 2003-02-28 N Ii C Cable Media Kk Catv伝送システム及びそのシステム用送受信装置
WO2007009962A1 (en) * 2005-07-18 2007-01-25 Macab Ab Ethernet communication device on coaxial cable
CN1960236A (zh) * 2006-02-22 2007-05-09 上海傲蓝通信技术有限公司 一种双向化光纤同轴混合全业务接入网系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493335B1 (en) * 1996-09-24 2002-12-10 At&T Corp. Method and system for providing low-cost high-speed data services
US6108347A (en) * 1997-02-26 2000-08-22 Paradyne Corporation Non-polled dynamic slot time allocation protocol
CA2265313A1 (en) * 1998-04-15 1999-10-15 Lucent Technologies Inc. Method and apparatus enabling multiple access on a broadband communication network
US6804256B2 (en) * 2001-07-24 2004-10-12 Glory Telecommunications Co., Ltd. Automatic bandwidth adjustment in a passive optical network
KR100651364B1 (ko) * 2002-03-11 2006-11-28 삼성전자주식회사 기가 비트 이더넷 수동 광 가입자망에서의 전송대역폭할당 방법
CN1299448C (zh) * 2002-07-24 2007-02-07 中兴通讯股份有限公司 一种以太网无源光纤网络的实现方法
US7477845B2 (en) * 2003-08-18 2009-01-13 Teknovus, Inc. Method and apparatus for reducing data burst overhead in an ethernet passive optical network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395413A (zh) * 2001-07-09 2003-02-05 北京艺盛网联科技有限公司 同轴长距离以太网接入方法及其设备
JP2003061070A (ja) * 2001-08-22 2003-02-28 N Ii C Cable Media Kk Catv伝送システム及びそのシステム用送受信装置
WO2007009962A1 (en) * 2005-07-18 2007-01-25 Macab Ab Ethernet communication device on coaxial cable
CN1960236A (zh) * 2006-02-22 2007-05-09 上海傲蓝通信技术有限公司 一种双向化光纤同轴混合全业务接入网系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications", IEEE 802.3AH-2004, 7 September 2004 (2004-09-07) *
"Two-way Transformation Scheme of Cable Televison Network based on EPON+EoC", WUHAN WANLINK DATA COMMUNICATION SYSTEM PROJECT CO., LTD., 2006 *
ZHU Z., LIN R., YE J.: "Study on MAC layer of EPON and FGPA Implementation of MAC Layer of ONU", JOURNAL OF SHANGHAI UNIVERSITY (NATURAL SCIENCE EDITION), vol. 10, no. 5, October 2004 (2004-10-01), pages 441 - 444 *

Also Published As

Publication number Publication date
CN101282315B (zh) 2010-10-27
US20100111524A1 (en) 2010-05-06
CN101282315A (zh) 2008-10-08

Similar Documents

Publication Publication Date Title
WO2008122183A1 (fr) Procédé et terminal de transmission de données
US8548327B2 (en) Dynamic management of polling rates in an ethernet passive optical network (EPON)
CA2295563C (en) Method and apparatus for controlling communications in a passive optical network
EP2290999B1 (en) Multiple access system for communications network
EP2117167B1 (en) Two and three-stroke discovery process for 10G-EPONs
TWI455501B (zh) 用以延伸乙太網路被動光學網路(epon)中之媒體存取控制(mac)控制訊息的設備
US8718473B2 (en) Efficient MAC protocol for OFDMA passive optical networks (PONs)
CN1212709C (zh) 千兆位以太网无源光纤网络中传输数据的方法
US9071380B2 (en) Multi-point control protocol proxy architecture in a network with optical and coaxial domains
EP3537628A1 (en) Passive optical network system, optical line terminal and optical network unit
KR101403911B1 (ko) 수동 광 가입자 망 시스템에 이용되는 동적 대역폭 할당 장치 및 그 구현 방법
JP6900624B2 (ja) データ通信システム、光回線終端装置およびベースバンドユニット
Uzawa et al. First demonstration of bandwidth-allocation scheme for network-slicing-based TDM-PON toward 5G and IoT era
JP4770525B2 (ja) 動的帯域割当方法並びに局側装置及び宅側装置
KR101021329B1 (ko) 이더넷 수동 광가입자망에서의 에스엘에이 기반의 동적대역폭 할당 방법
WO2014201605A1 (zh) 带宽分配方法、装置、局端、终端和系统
CN102572944A (zh) 支持epon无线接入的mac协议帧结构
WO2024103769A1 (zh) 数据传输方法、装置、系统、设备及存储介质
WO2013053243A1 (zh) 共用带宽的方法、装置和系统
JP6315693B2 (ja) 帯域割当方法、帯域割当システム、加入者側終端装置及び局側終端装置
WO2022269853A1 (ja) 帯域割り当て装置、加入者線端局装置、及び帯域割り当て方法
CN117544877B (zh) 基于全光网络的低时延通信方法
JP6306488B2 (ja) 光通信システム及び帯域割当方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07846134

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12594882

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07846134

Country of ref document: EP

Kind code of ref document: A1