WO2014201605A1 - 带宽分配方法、装置、局端、终端和系统 - Google Patents

带宽分配方法、装置、局端、终端和系统 Download PDF

Info

Publication number
WO2014201605A1
WO2014201605A1 PCT/CN2013/077323 CN2013077323W WO2014201605A1 WO 2014201605 A1 WO2014201605 A1 WO 2014201605A1 CN 2013077323 W CN2013077323 W CN 2013077323W WO 2014201605 A1 WO2014201605 A1 WO 2014201605A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
rtt
transmission time
time slot
central office
Prior art date
Application number
PCT/CN2013/077323
Other languages
English (en)
French (fr)
Inventor
张利
孙方林
吴广生
赵泉波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/077323 priority Critical patent/WO2014201605A1/zh
Priority to CN201380000814.9A priority patent/CN104488236A/zh
Publication of WO2014201605A1 publication Critical patent/WO2014201605A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • the present invention relates to the field of network technologies, and in particular, to a bandwidth allocation method, apparatus, central office, terminal, and system. Background technique
  • Passive optical network technology is a point-to-multipoint optical fiber transmission and access technology applied to passive optical network systems.
  • ONUs Optical Network Units
  • OLT Optical Line Terminal
  • the transmission direction of the OLT to the ONU is the downlink direction, and the broadcast mode is adopted.
  • FIG. 1a the OLT continuously transmits data to each ONU in a broadcast manner, and each ONU selects to receive and send data to itself; ONU to OLT
  • the transmission direction is the uplink direction, and the time division multiple access method is adopted.
  • each ONU occupies different uplink time slots, and sends data to the OLT through time division multiplexing, and there is a guard interval between adjacent uplink time slots. .
  • the OLT allocates the transmission time slot using the uplink bandwidth to each ONU according to the size of the uplink data to be sent by each ONU, and the ONU receives the bandwidth in the transmission time slot allocated by the OLT to itself. After the authorization, the uplink data can be sent.
  • the scheduling of the entire uplink bandwidth is divided into three steps: First, in the period N-1, each ONU sends a bandwidth request to the OLT according to the size of the uplink data to be sent; second, in the period N, the OLT receives the After the bandwidth request sent by each ONU, the bandwidth of each ONU is calculated by an iterative algorithm, and a bandwidth grant message is sent to indicate the allocated transmission slot to each ONU. Third, in the period N+1, each ONU is specified. The time slot transmits the uplink data to the OLT, and each of the assigned designated time slots belongs to the period N+1. Therefore, it can be seen that the ONU-one uplink bandwidth request takes three cycles, that is, the maximum uplink delay is three cycles.
  • the inventors have found that at least the following problems exist in the prior art: In order to ensure that the OLT can receive the uplink data sent by each ONU in the period N+1, the bandwidth authorization issued by the OLT in the period N The message needs to arrive at each ONU, and the ONU occupying the first time slot in the period N+1 also needs to send data in the period N, so that the data can be in the period N+1.
  • One time slot arrives at 0LT. This requires that the length of the period N be greater than the maximum terminal round trip delay (Max RTT, Max Round-Trip Time).
  • the uplink delay is 3 cycles, which is larger than 3*Max RTT, which is larger, and the uplink delay and RTT of the ONT with smaller RTT are larger.
  • the upstream delay of the ONU is as large. Summary of the invention
  • a bandwidth allocation method for a central office in a point-to-multipoint access system, where the central office and the The at least one terminal corresponding to the central office, the method includes:
  • each terminal that sends the bandwidth request is allocated a corresponding transmission time slot, and at least one terminal in each terminal allocates a transmission time slot belonging to the N+Kth cycle. Transmitting a bandwidth grant message to each terminal according to the allocated transmission time slot, so that each terminal sends uplink data by using the corresponding transmission time slot;
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT, and the maximum round-trip transmission delay is the largest between the central office and the at least one terminal Round trip transmission delay.
  • the assigning, to the terminal that sends the bandwidth request, the corresponding transmission time slot includes:
  • Each terminal is assigned a different transmission slot belonging to the same period according to the respective round-trip transmission delay RTT of each terminal, and the same period is the N+Kth period.
  • the performing according to the corresponding round-trip transmission delay RTT of each terminal, assigning each terminal to belong to the same period Before the different transmission time slots, it also includes:
  • Each terminal of the bandwidth request allocates a corresponding transmission time slot, including:
  • Each terminal is assigned a different transmission slot belonging to a different period according to the respective round-trip transmission delay RTT of each terminal.
  • the determining, according to the corresponding round-trip transmission delay RTT of each terminal, assigning each terminal to a different period Different transmission time slots including:
  • the k is not equal to the K, the k is an integer greater than or equal to 1, and the K is an integer greater than or equal to 2.
  • the determining, according to the corresponding round-trip transmission delay RTT of each terminal, assigning each terminal to a different period Different transmission time slots including:
  • Each terminal is allocated a transmission slot in the corresponding period according to the RTT interval corresponding to each terminal and the corresponding relationship.
  • the corresponding round-trip transmission delay RTT direction according to each terminal Before each terminal is assigned to a different transmission time slot in a different cycle it also includes:
  • a second aspect provides a bandwidth allocation method for a central office in a point-to-multipoint access system, where the point-to-multipoint access system includes the central office and a corresponding end office At least one terminal, the method includes:
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT, and the maximum round-trip transmission delay is the largest between the central office and the at least one terminal Round trip transmission delay.
  • a bandwidth allocation apparatus for use in a central office in a point-to-multipoint access system, where the point-to-multipoint access system includes the central office and a corresponding end office At least one terminal, the device includes:
  • a receiving module configured to receive a bandwidth request sent by the at least one terminal
  • An allocating module configured to allocate a corresponding transmission time slot to each terminal that sends the bandwidth request received by the receiving module in the Nth period, and at least one terminal in each terminal is allocated
  • the transmission time slot belongs to the N+Kth cycle
  • a sending module configured to send, according to the transmission time slot allocated by the allocation module, a bandwidth grant message to each terminal, so that each terminal sends uplink data by using the corresponding transmission time slot;
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT, and the maximum round-trip transmission delay is the largest between the central office and the at least one terminal Round trip transmission delay.
  • the first allocating unit is configured to allocate, according to the respective round-trip transmission delay RTT of each terminal, different transmission slots belonging to the same period, and the same period is the N+Kth period.
  • the first statistic unit is configured to calculate a difference degree of the RTT size according to the RTT corresponding to each terminal;
  • the first determining unit is configured to determine whether the degree of difference counted by the first statistical unit is smaller than a predetermined threshold
  • the first allocating unit is configured to: if the determination result of the first determining unit is that the difference degree is less than a predetermined threshold, perform the round-trip transmission delay RTT corresponding to each terminal according to each terminal The terminals allocate steps belonging to different transmission slots in the same cycle.
  • a second allocation unit configured to allocate, to each terminal, different transmission time slots belonging to different periods according to respective round-trip transmission delays RTT of each terminal.
  • the second allocation unit includes:
  • a determining subunit configured to determine whether the RTT corresponding to each terminal is greater than a second threshold; the first assigning subunit, configured to: if the determining subunit is determined by the terminal
  • the terminal allocates a transmission slot in the N+kth period
  • a second allocation subunit configured to: if the determination result of the determining subunit is corresponding to the terminal
  • the terminal allocates a transmission slot in the N+Kth period
  • the k is not equal to the K, the k is an integer greater than or equal to 1, and the K is an integer greater than or equal to 2.
  • Obtaining a subunit configured to obtain a correspondence between preset different RTT sections and each period; determining a subunit, configured to determine an RTT interval corresponding to each terminal according to an RTT corresponding to each terminal; Obtaining the correspondence obtained by the subunits, and assigning each terminal a transmission slot in the corresponding period.
  • the second statistic unit is configured to calculate a difference degree of the RTT size according to the RTT corresponding to each terminal;
  • the second determining unit is configured to determine whether the degree of difference counted by the second statistical unit is greater than a predetermined threshold
  • the second allocating unit is configured to: if the determination result of the second determining unit is that the difference degree is greater than a predetermined threshold, perform the round-trip transmission delay RTT corresponding to each terminal according to each terminal. The terminals allocate steps belonging to different transmission slots in different periods.
  • a bandwidth allocation apparatus for a terminal in a point-to-multipoint access system, where the point-to-multipoint access system includes the central office and at least a corresponding to the central office a terminal, the terminal includes:
  • a request sending module configured to send a bandwidth request to the central office
  • a receiving module configured to receive a bandwidth grant message sent by the central office, where the bandwidth grant message is used to notify a corresponding transmission time slot of the terminal, where the transmission time slot belongs to an N+Kth cycle;
  • a data sending module configured to send uplink data to the central office by using the transmission time slot; where K is an integer greater than or equal to 2, and satisfies (K* cycle length) > maximum round-trip transmission delay Max RTT,
  • the maximum round-trip transmission delay is the maximum round-trip transmission delay between the central office and the at least one terminal.
  • a point-to-multipoint access system including a central office and at least one terminal corresponding to the central office, where the central office includes the third aspect and the third aspect, in various possible implementation manners,
  • the terminal includes the bandwidth allocation device of the fourth aspect.
  • a central office where the central office includes:
  • a receiver configured to receive a bandwidth request sent by at least one terminal
  • a processor configured to allocate a corresponding transmission time slot to each terminal that sends the bandwidth request received by the receiver in an Nth period, and at least one terminal of each terminal is allocated by the terminal
  • the transmission time slot belongs to the N+Kth cycle
  • a transmitter configured to send a bandwidth grant message to each terminal according to the transmission time slot allocated by the processor, so that each terminal sends uplink data by using the corresponding transmission time slot;
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT, and the maximum round-trip transmission delay is the largest between the central office and the at least one terminal Round trip transmission delay.
  • the processor is further configured to allocate, according to a corresponding round-trip transmission delay RTT of each terminal, each terminal to a different one in the same period.
  • the transmission time slot, the same period is the N+Kth period.
  • the processor is further configured to calculate a difference degree of RTT size according to respective RTTs of each terminal;
  • the processor is further configured to determine whether the difference degree is less than a predetermined threshold; The processor is further configured to: if the degree of difference is less than a predetermined threshold, perform the step of allocating different transmission time slots belonging to the same period to each terminal according to a round-trip transmission delay RTT corresponding to each terminal.
  • the processor is further configured to allocate, according to a corresponding round-trip transmission delay RTT of each terminal, each terminal to a different one of different periods. Transmission time slot.
  • the processor is further configured to determine whether an RTT corresponding to each terminal is greater than a second threshold;
  • the processor is further configured to allocate, to the terminal, a transmission time slot in an N+kth period if the RTT corresponding to the terminal is less than a second threshold;
  • the processor is further configured to allocate, to the terminal, a transmission time slot in an N+Kth period if the RTT corresponding to the terminal is greater than a second threshold;
  • the k is not equal to the K, the k is an integer greater than or equal to 1, and the K is an integer greater than or equal to 2.
  • the processor is further configured to obtain a correspondence between a preset different RTT interval and each period ;
  • the processor is further configured to determine, according to the RTT corresponding to each terminal, an RTT interval corresponding to each terminal;
  • the processor is further configured to allocate, according to the RTT interval corresponding to each terminal, the transmission time slot in the corresponding period to each terminal.
  • the processor is further configured to: RTT statistics the degree of difference in RTT size;
  • the processor is further configured to determine whether the difference degree is greater than a predetermined threshold
  • the processor is further configured to: if the degree of difference is greater than a predetermined threshold, perform the step of assigning each terminal to a different transmission time slot in a different period according to a corresponding round-trip transmission delay RTT of each terminal.
  • a seventh aspect provides a terminal, where the terminal includes:
  • a transmitter configured to send a bandwidth request to the central office
  • a receiver configured to receive a bandwidth authorization message sent by the central office, where the bandwidth authorization message is used Notifying the transmission time slot corresponding to the terminal, the transmission time slot belongs to the N+Kth cycle; the transmitter is further configured to send uplink data to the central office by using the transmission time slot; wherein An integer greater than or equal to 2, and satisfying (K* period length) > maximum round-trip transmission delay Max RTT, the maximum round-trip transmission delay being the maximum round-trip transmission delay between the central office and the at least one terminal .
  • a point-to-multipoint access system includes a central office as described in the sixth aspect and at least one corresponding to the central office, as in the seventh aspect The terminal described.
  • the transmission time slot allocated by at least one terminal in each terminal belongs to the N+Kth cycle, where K is an integer greater than or equal to 2, and satisfies (K* period length) > Max RTT, so that the period length only needs to satisfy (period length) >(1/K)* Max RTT, and the uplink delay is three cycles.
  • FIG. 1 is a schematic diagram of a direction in which an OLT sends downlink data to an OUN in an implementation environment according to an embodiment of the present invention
  • Figure lb is a schematic diagram of a direction in which an OUN sends uplink data to an OLT in an implementation environment according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for bandwidth allocation method provided in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of implementation of a bandwidth allocation method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for bandwidth allocation method provided in another embodiment of the present invention
  • FIG. 5 is a flowchart of a method for bandwidth allocation method according to another embodiment of the present invention
  • FIG. 6 is another embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for bandwidth allocation method provided in an embodiment of the present invention
  • 8 is a schematic structural diagram of a bandwidth allocation apparatus according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a bandwidth allocation apparatus according to another embodiment of the present invention
  • FIG. 10 is a bandwidth provided by another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a bandwidth allocation apparatus according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a bandwidth allocation apparatus according to an embodiment of the present invention
  • FIG. 13 is an implementation of the present invention.
  • FIG. 14 is a structural block diagram of a central office provided in an embodiment of the present invention
  • FIG. 14 is a structural block diagram of a point-to-multipoint access system provided in an embodiment of the present invention;
  • Figure 15 is a block diagram showing the structure of a central office provided in another embodiment of the present invention.
  • Figure 16 is a block diagram showing the structure of a terminal provided in an embodiment of the present invention. detailed description
  • a point-to-multipoint access system refers to a system in which a topology is a single central office connected to multiple terminals.
  • a point-to-multipoint access system includes at least one central office, and one central office usually corresponds to multiple terminals.
  • the optical network system is a kind of point-to-multipoint access system.
  • the central office is the OLT and the terminal is the ONU.
  • an optical network system includes at least one OLT, and one OLT corresponds to at least one ONU.
  • the embodiment of the present invention uses an optical network system as an example for detailed description, and the details are as follows:
  • the bandwidth allocation method includes:
  • Step 201 Receive a bandwidth request sent by at least one terminal.
  • the 0LT receives at least one bandwidth request sent by the 0NU.
  • Step 202 In the Nth period, allocate a corresponding transmission time slot to each terminal that sends the bandwidth request, and the transmission time slot allocated by at least one terminal in each terminal belongs to the N+Kth cycle; In the Nth period, the 0LT allocates a corresponding transmission time slot to each ONU that sends the bandwidth request, and at least one ONU in each ONU allocates a transmission time slot belonging to the N+Kth cycle, where K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum RTT (Max RTT, Max Round-Trip Time), and the maximum round-trip transmission delay is between the central office and at least one terminal. Maximum round trip transmission delay.
  • Step 203 Send a bandwidth grant message to each terminal according to the allocated transmission time slot, so that each terminal sends uplink data by using a corresponding transmission time slot.
  • the OLT sends a bandwidth grant message to each ONU according to the allocated transmission slot, so that each ONU transmits the uplink data by using the corresponding transmission slot.
  • the bandwidth allocation method allocates a corresponding transmission time slot to each terminal that sends a bandwidth request in the Nth period, and at least one terminal in each terminal is allocated.
  • the transmission slot to be belongs to the N+Kth cycle, where K is an integer greater than or equal to 2, and satisfies (K* period length) > Max RTT, so that the period length only needs to satisfy (period length) > (1/K ) * Max RTT can, the uplink delay is (K+2) cycles, only need to be greater than ((K+2) /K) * Max RTT, and (( K+2 ) /K ) * Max RTT is less than or equal to (3/2) * Max RTT, instead of requiring more than 3* Max RTT; solves the problem of excessive uplink delay due to the requirement that the period length is greater than the maximum terminal round-trip transmission delay, and achieves the reduction of the uplink delay. effect.
  • the OLT allocates transmission time slots belonging to the N+1th cycle for each ONU in the Nth cycle, in order to ensure that each ONU can send data to the transmission time slot allocated to itself.
  • the OLT before the N+1th cycle, the OLT needs to send a bandwidth grant message to the ONU, and the ONU occupying the first slot in the N+1th period also needs to data before the N+1th cycle.
  • the condition that the period length satisfies (period length) > Max RTT is required.
  • the OLT can selectively allocate transmission time slots belonging to the N+Kth period for all or part of the ONUs in the Nth cycle, so only the period length needs to be satisfied (K* cycle length) > Max RTT
  • K* cycle length Max RTT
  • the condition can be, that is, (period length) > ( 1 / K ) * Max RTT.
  • the uplink delay is usually (3* cycle length) >3*Max RTT;
  • the bandwidth allocation method provided by the embodiment of the present invention achieves the effect of reducing the uplink delay.
  • the bandwidth allocation method provided by the embodiment of the present invention may have two specific implementation manners: First, all the terminals in the system are allocated transmission time slots belonging to the same period in the Nth cycle, and the same period is the N+Kth Period, where K is an integer greater than or equal to 2; second, all the terminals in the system are allocated transmission time slots belonging to the N+kth cycle in the Nth cycle, and at the same time, the other part of the terminal is assigned to the N+K A transmission slot in a period, where k is not equal to ⁇ , and K is an integer greater than or equal to 2. Two specific implementations are described below.
  • FIG. 4 there is shown a flow chart of a method for bandwidth allocation provided in another embodiment of the present invention.
  • This embodiment is mainly described by using the bandwidth allocation method in an optical network system including an OLT (Optical Line Terminal) and three Optical Network Units (Optical Network Units), and the network is assumed.
  • the round-trip delay (RTT) of the three ONUs in the system is the same, both being 0.9ms.
  • the bandwidth allocation method includes:
  • Step 401 Obtain a corresponding RTT of each terminal in advance
  • the OLT obtains the RTT corresponding to each ONU in advance by interacting with the ONU.
  • the RTTs of the three ONUs acquired by the OLT are both 0.9ms.
  • Step 402 Receive a bandwidth request sent by at least one terminal.
  • the ONU sends a bandwidth request to the OLT.
  • the corresponding OLT receives a bandwidth request sent by at least one ONU, where N is an integer greater than or equal to 2. For example, the OLT receives three bandwidth requests sent by the ONU in the N-1th cycle.
  • Step 403 Calculate the difference degree of the RTT size according to the RTT corresponding to each terminal.
  • the OLT calculates the difference degree of the RTT size according to the RTT corresponding to each ONU obtained in advance.
  • the statistical method may have the following two methods. First, calculate the variance or standard deviation of the respective RTTs of the respective ONUs, and calculate the variance or standard deviation as the degree of difference between the respective RTTs of the respective ONUs; second, The value range of the RTT is divided into different range intervals, and then the range of the range corresponding to the RTT of each ONU is counted.
  • the degree of difference is 0, if each ONU is The corresponding RTT belongs to different range of values, and the degree of difference between different range of values is taken as the degree of difference between the respective RTTs of the respective ONUs.
  • the corresponding RTT values of the three ONUs acquired by the OLT are both 0.9ms. Since the three RTUs have the same RTT value of 0.9ms, if the first statistical method is used, the variance or standard deviation is known. 0, so the degree of difference between the respective RTTs of the respective ONUs is 0. If the second statistical method is used, it can be known that the respective RTTs of the respective ONUs belong to the same range of values, so that the respective RTUs correspond to the RTTs. The degree of difference is zero.
  • Step 404 determining whether the degree of difference is less than a predetermined threshold
  • the OLT determines whether the degree of difference is less than a predetermined threshold. For example, the degree of difference between the respective RTTs of the three ONUs obtained in step 402 is 0 ms, and if the predetermined threshold is 0.2 ms, the OLT judges Whether 0ms is less than the predetermined threshold of 0.2ms.
  • Step 405 If the degree of difference is less than a predetermined threshold, assign, according to each terminal corresponding reciprocal transmission delay RTT, each terminal to a different transmission time slot belonging to the same period, and the same period is the N+Kth period;
  • the OLT allocates different transmission slots belonging to the same period to each ONU according to the respective RTTs of each ONU, and the same period is the Nth. +K cycles, where K is an integer greater than or equal to 2, and satisfies (K* cycle length) > maximum round-trip transmission delay Max RTT, and maximum round-trip transmission delay is the maximum round-trip between the central office and at least one terminal Transmission delay.
  • the transmission time slot in the ⁇ +2 period is allocated in ⁇ , assuming that there are three transmission time slots in one cycle, the OLT allocates three transmission time slots in the N+2th cycle to the three ONUs respectively.
  • step 403 and step 404 are both preferred steps. That is, after obtaining the RTT corresponding to each terminal, the OLT may also allocate different transmissions belonging to the same period to each ONU according to the corresponding round-trip transmission delay RTT of each ONU without step 403 and step 404. Time slot.
  • the value of K may be any integer greater than 1, and only needs to satisfy (K* cycle length) > maximum round-trip transmission delay Max RTT.
  • Step 406 Send a bandwidth grant message to each terminal according to the allocated transmission time slot, so that each terminal sends uplink data by using a corresponding transmission time slot.
  • the OLT sends a bandwidth grant message to each ONU according to the allocated transmission slot, so that each ONU transmits the uplink data by using the corresponding transmission slot.
  • the ONU receives the bandwidth grant message sent by the OLT, and sends the uplink data by using the corresponding transmission time slot.
  • the OLT receives the bandwidth request sent by at least one ONU in the second cycle, and allocates different transmission time slots belonging to the same cycle to each terminal in the N+1th cycle, the same cycle. It is the ⁇ + ⁇ period, where ⁇ is an integer greater than or equal to 2.
  • the bandwidth allocation method collects the difference degree of the RTT size of the RTT corresponding to each terminal, and determines whether the difference degree is less than a predetermined threshold. If the degree is less than the predetermined threshold, each terminal is assigned a different transmission slot belonging to the same period, and the same period is the N+Kth period. Under this allocation method, the period length only needs to be satisfied (K* period length) >
  • Max RTT Max RTT, Max Round-Trip Time
  • the required period length is satisfied (period length) > Max RTT
  • the period length can be set to 1 ms
  • the uplink delay is 3*
  • the second specific implementation manner is introduced below.
  • the second specific implementation manner is divided into two cases according to different methods for counting the degree of difference of RTTs corresponding to each ONU. The first case will be described below.
  • the bandwidth allocation method is applied to an optical network system including an OLT (Optical Line Terminal) and four Optical Network Units (Optical Network Units) as an example, and the iM is configured.
  • the RTT (Right-Trip Time) of 50% of the ONUs in the network system is the same, which is 0.4ms; the other 50% of the ONUs have the same RTT of 0.9ms.
  • the bandwidth allocation method includes:
  • Step 501 Obtain a corresponding RTT of each terminal in advance
  • the OLT obtains the RTT corresponding to each ONU in advance by interacting with the ONU.
  • the RTTs of the four ONUs acquired by the OLT are 0.4ms, 0.4ms, 0.9ms, and 0.9ms, respectively.
  • Step 502 Receive a bandwidth request sent by at least one terminal.
  • the ONU sends a bandwidth request to the OLT; correspondingly, the OLT receives a bandwidth request sent by at least one ONU, where N is an integer greater than or equal to 2. For example, the OLT receives four bandwidth requests sent by the ONU in the N-1th cycle.
  • Step 503 Calculate the difference degree of the RTT size according to the RTT corresponding to each terminal;
  • the OLT calculates the difference in RTT size according to the RTT corresponding to each ONU obtained in advance. For example, the RTTs of the four ONUs acquired by the OLT are 0.4ms, 0.4ms, 0.9ms, and 0.9ms, respectively.
  • the OLT can calculate the variance or standard deviation of the four values. The calculation can be concluded that the variance of the four values is 0.14375. .
  • the OLT can also calculate the difference degree of the RTT size by using other methods.
  • the embodiment of the present invention uses the calculation variance as an example for description.
  • Step 504 determining whether the degree of difference is greater than a predetermined threshold;
  • the OLT determines whether the degree of difference is less than a predetermined threshold. For example, the degree of difference between the respective RTTs of the four ONUs obtained in step 503 is 0.14375. Assuming that the predetermined threshold is 0.1, the OLT determines whether 0.14375 is greater than a predetermined threshold of 0.1.
  • Step 505 If the result of the determination is that the degree of difference is greater than a predetermined threshold, determine whether the RTT corresponding to each terminal is greater than a second threshold.
  • the OLT determines whether the RTT corresponding to each ONU is greater than a second threshold. For example, if the degree of difference between the respective RTTs of the four ONUs is 0.14375 greater than a predetermined threshold of 0.1, the OLT determines whether the RTT corresponding to each ONU is greater than a second threshold, and if the second threshold is 0.5 ms, the OLT determines that each Whether the RTT corresponding to each ONU is greater than 0.5ms.
  • step 503 and step 504 are both preferred steps. After the OLT obtains the corresponding RTT of each ONU, the OLT may directly determine whether the RTT corresponding to each ONU is greater than or equal to step 503 and step 504. Second threshold.
  • Step 506 If the RTT corresponding to the terminal is less than the second threshold, allocate the transmission slot in the N+kth period to the terminal; if the RTT corresponding to the terminal is greater than the second threshold, allocate the N+Kth to the terminal. Transmission time slot within the period;
  • the OLT allocates a transmission slot in the N+kth period to the ONU whose RTT is less than the second threshold in the Nth cycle; and allocates the transmission slot in the N+Kth period to the ONU whose RTT is greater than the second threshold; and k Not equal to K, where k is an integer greater than or equal to 1, and K is an integer greater than or equal to 2.
  • the result of the foregoing step 505 is the four ONUs in the embodiment.
  • the RTT of the two ONUs is 0.4ms less than the second threshold of 0.5ms, and the RTTs of the other two ONUs are 0.9ms greater than the second threshold of 0.5ms.
  • one of k and K may also take the integer 1.
  • the OLT allocates half of the transmission slots of the N+1th period to two ONUs with an RTT of 0.4 ms, and the Nth Half of the +2 cycles are allocated to two ONUs with an RTT of 0.9 ms.
  • Step 507 Send a bandwidth grant message to each terminal according to the allocated transmission time slot, so that each terminal sends uplink data by using a corresponding transmission time slot.
  • the OLT sends a bandwidth grant message to each ONU according to the allocated transmission slot, so that each ONU transmits the uplink data by using the corresponding transmission slot.
  • the ONU receives the bandwidth grant message sent by the OLT, and sends the uplink data by using the corresponding transmission time slot.
  • the OLT receives the bandwidth request sent by at least one ONU in the Nth cycle, and allocates different transmission time slots belonging to different periods to each ONU in the N+1th cycle, and each The transmission time slot allocated by at least one ONU in the ONU belongs to the N+Kth cycle, where K is an integer greater than or equal to 2.
  • the bandwidth allocation method determines whether the RTT corresponding to each terminal is greater than a second threshold by determining that the difference of the RTT size of the RTT corresponding to each terminal is greater than a predetermined threshold.
  • the terminal in the N+kth period is allocated to the terminal whose RTT is smaller than the second threshold, and the transmission slot in the N+Kth period is allocated to the terminal whose RTT is greater than the second threshold, and k is not equal to K.
  • the bandwidth allocation method provided by the embodiment of the present invention greatly reduces the uplink delay, and the different ONTs of the RTT have different Upside delay.
  • the second case of the second specific embodiment is described below.
  • FIG 6 there is shown a flowchart of a method for bandwidth allocation method provided in another embodiment of the present invention.
  • This embodiment is mainly described by using the bandwidth allocation method in an optical network system including an OLT (Optical Line Terminal) and four ONUs (Optical Network Units), and the JM is configured.
  • the bandwidth allocation method includes: Step 601: Acquire each RTT corresponding to each terminal in advance;
  • the OLT obtains the corresponding RTT of each ONU in advance by interacting with the ONU.
  • the RTTs of the four ONUs acquired by the OLT are 0.4ms, 0.4ms, 0.9ms, and 0.9ms, respectively.
  • Step 602 Receive a bandwidth request sent by at least one terminal.
  • the ONU sends a bandwidth request to the OLT; correspondingly, the OLT receives a bandwidth request sent by at least one ONU, where N is an integer greater than or equal to 2. For example, the OLT receives four bandwidth requests sent by the ONU in the N-1th cycle.
  • Step 603 Calculate the difference degree of the RTT size according to the RTT corresponding to each terminal;
  • the OLT calculates the difference in RTT size according to the RTT corresponding to each ONU obtained in advance. For example, the RTTs of the four ONUs acquired by the OLT are 0.4ms, 0.4ms, 0.9ms, and 0.9ms, respectively.
  • the OLT can calculate the variance or standard deviation of the four values. The calculation can be concluded that the variance of the four values is 0.14375. .
  • the OLT can also calculate the difference degree of the RTT size by using other methods.
  • the embodiment of the present invention uses the calculation variance as an example for description.
  • Step 604 determining whether the degree of difference is greater than a predetermined threshold
  • the OLT determines whether the degree of difference is less than a predetermined threshold. For example, the degree of difference between the RTTs corresponding to the four ONUs obtained in step 603 is 0.14375, and if the predetermined threshold is 0.1, the OLT determines whether 0.14375 is greater than a predetermined threshold of 0.1.
  • Step 605 If the result of the determination is that the degree of difference is greater than a predetermined threshold, obtain a correspondence between the preset different RTT intervals and each period;
  • step 603 and step 604 are both preferred steps, that is, after obtaining the RTT corresponding to each ONU, the OLT may directly obtain the preset different RTT intervals and each period without going through steps 603 and 604. Correspondence between them.
  • Step 606 Determine, according to the RTT corresponding to each terminal, an RTT interval corresponding to each terminal.
  • Step 607 Allocate, according to the RTT interval and the corresponding relationship corresponding to each terminal, a transmission slot in the corresponding period to each terminal;
  • step 605 the correspondence between the preset different RTT intervals and the respective periods and the RTT interval corresponding to each ONU determined in step 606 are obtained, and the OLT allocates a transmission slot in the corresponding period to each ONU.
  • the interval is (0.5ms, 1ms)
  • Step 608 Send a bandwidth grant message to each terminal according to the allocated transmission time slot, so that each terminal sends uplink data by using a corresponding transmission time slot.
  • the OLT sends a bandwidth grant message to each ONU according to the allocated transmission slot, so that each ONU transmits the uplink data by using the corresponding transmission slot.
  • the ONU receives the bandwidth grant message sent by the OLT, and sends the uplink data by using the corresponding transmission time slot.
  • the OLT receives the bandwidth request sent by at least one ONU in the Nth cycle, and allocates different transmission time slots belonging to different periods to each terminal in the N+1th cycle, and each time The transmission time slot allocated by at least one of the terminals belongs to the N+Kth cycle, where K is an integer greater than or equal to 2.
  • the bandwidth allocation method obtains the RTT interval and the difference of the RTT corresponding to each terminal when determining that the difference of the RTT size of the RTT corresponding to each terminal is greater than a predetermined threshold.
  • each terminal is allocated a transmission slot in the corresponding period.
  • the period length only needs to satisfy (K* period length) > Max RTT (Max RTT, Max Round-Trip Time), and the interval corresponding to the two ONUs with the RTT of 0.4 ms is [0ms, 0.5ms].
  • the corresponding period is the N+kth period
  • the interval corresponding to the two ONUs with the RTT of 0.9ms is (0.5ms, 1ms)
  • the corresponding period is the N+Kth period.
  • k l
  • the required period length is satisfied (period length) > Max RTT
  • the period length can be set to lms
  • FIG. 7 shows a flowchart of a method for bandwidth allocation method provided in an embodiment of the present invention.
  • This embodiment is mainly described by using the bandwidth allocation method in an optical network system including an OLT (Optical Line Terminal) and at least one ONU (Optical Network Unit).
  • the bandwidth allocation method includes:
  • Step 701 Send a bandwidth request to the central office.
  • the ONU sends a bandwidth request to the OLT.
  • Step 702 Receive a bandwidth authorization message sent by the central office.
  • the ONU receives the bandwidth grant message sent by the OLT, and the bandwidth grant message is used to notify the ONU of the corresponding transmission time slot, and the transmission time slot belongs to the N+Kth cycle.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT, and the maximum round-trip transmission delay is the maximum round-trip transmission delay between the central office and at least one terminal.
  • Step 703 Send uplink data to the central office by using the transmission time slot.
  • the ONU uses the transmission slot to transmit uplink data to the OLT.
  • the bandwidth allocation method sends a bandwidth request to the central office to receive a bandwidth grant message sent by the central office, and the bandwidth grant message is used to notify the terminal of the corresponding transmission time slot, where the transmission time slot belongs to The N+Kth cycle.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > Max RTT, so that the period length only needs to satisfy (period length) > (1/K) * Max RTT, and the uplink delay is (K) +2 ) cycles, only need to be greater than ((K+2 ) /K ) * Max RTT, and ( ( K+2 )/K )* Max RTT is less than or equal to ( 3/2 )* Max RTT, instead of being greater than 3* Max RTT; solves the problem that the uplink delay is too large due to the requirement that the period length is greater than the maximum terminal round-trip transmission delay, and the effect of reducing the uplink delay is achieved.
  • the bandwidth allocation device includes:
  • the receiving module 810 is configured to receive a bandwidth request sent by at least one terminal.
  • the allocating module 820 is configured to allocate a corresponding transmission time slot to each terminal that sends the bandwidth request received by the receiving module 810 in the Nth period, and at least one terminal in each terminal is allocated The arriving transmission time slot belongs to the N+Kth cycle.
  • the sending module 830 is configured to send a bandwidth grant message to each terminal according to the transmission time slot allocated by the allocating module 820, so that each terminal sends uplink data by using the corresponding transmission time slot.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT.
  • the bandwidth allocation apparatus allocates a corresponding transmission time slot to each terminal that sends a bandwidth request in the Nth period, and at least one terminal in each terminal allocates
  • the transmission slot to be belongs to the N+Kth cycle, where K is an integer greater than or equal to 2, and satisfies (K* period length) > Max RTT, so that the period length only needs to satisfy (period length) > (1/K ) * Max RTT can, the uplink delay is (K+2) cycles, only need to be greater than ((K+2) /K) * Max RTT, and (( K+2 ) /K ) * Max RTT is less than or equal to (3/2) * Max RTT, instead of requiring more than 3* Max RTT; solves the problem of excessive uplink delay due to the requirement that the period length is greater than the maximum terminal round-trip transmission delay, and achieves the reduction of the uplink delay. effect.
  • FIG. 9 there is shown a block diagram of a bandwidth allocation apparatus provided in
  • the obtaining module 910 is configured to obtain, in advance, an RTT corresponding to each terminal.
  • the receiving module 920 is configured to receive a bandwidth request sent by at least one terminal.
  • the allocating module 930 is configured to allocate a corresponding transmission time slot to each terminal that sends the bandwidth request received by the receiving module in the Nth period, and at least one terminal in each terminal is allocated to The transmission time slot belongs to the N+Kth cycle.
  • K is an integer greater than or equal to 2 and satisfies (K* period length) > maximum round trip transmission delay Max RTT.
  • the allocating module 930 includes: a first statistic unit 931, a first judging unit 932, and a first allocating unit 933.
  • the first statistic unit 931 is configured to determine, according to the RTT, the RTT size difference of each terminal that is obtained by the acquiring module 910;
  • the first determining unit 932 is configured to determine a difference process that is calculated by the first statistics unit 931. Whether the degree is less than a predetermined threshold;
  • the first allocating unit 933 is configured to: if the determination result of the first determining unit 932 is that the degree of difference is less than a predetermined threshold, assigning each terminal to the same according to a round-trip transmission delay RTT corresponding to each terminal Different transmission slots in the period, the same period is the N+Kth period.
  • the sending module 940 is configured to send a bandwidth grant message to each terminal according to the transmission time slot allocated by the allocation module, so that each terminal sends uplink data by using the corresponding transmission time slot.
  • the bandwidth allocation apparatus collects the difference degree of the RTT size of the RTT corresponding to each terminal, and determines whether the degree of difference is less than a predetermined threshold. If the degree of difference is less than a predetermined threshold, each terminal is compared. Different transmission slots belonging to the same cycle are allocated, and the same cycle is the N+Kth cycle.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > Max RTT, so that the period length only needs to satisfy (period length) >(1/K)* Max RTT, and the uplink delay is (K) +2) cycles, only need to be greater than +? / ⁇ ⁇ ! ⁇ !
  • FIG. 10 is a schematic structural diagram of a bandwidth allocation apparatus according to another embodiment of the present invention.
  • the bandwidth allocation device includes:
  • the obtaining module 1010 is configured to obtain, in advance, an RTT corresponding to each terminal.
  • the receiving module 1020 is configured to receive a bandwidth request sent by at least one terminal.
  • the allocating module 1030 is configured to allocate a corresponding transmission time slot to each terminal that sends the bandwidth request received by the receiving module 1020 in the Nth period, and at least one terminal in each terminal is allocated.
  • the arriving transmission time slot belongs to the N+Kth cycle.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT.
  • the allocating module 1030 specifically includes: a second statistic unit 1031, a second judging unit 1032, and a second allocating unit 1033.
  • the second statistic unit 1031 is configured to determine, according to the RTT statistics, the difference in RTT size of each terminal that is obtained by the acquiring module 1010.
  • the second determining unit 1032 is configured to determine whether the degree of difference counted by the second statistic unit 1031 is greater than a predetermined threshold
  • the second allocating unit 1033 is configured to: if the second determining unit 1032 determines that the result is If the degree of difference is greater than a predetermined threshold, each terminal is assigned a different transmission slot belonging to a different period according to a corresponding round-trip transmission delay RTT of each terminal.
  • the second allocating unit 1033 specifically includes: a determining subunit 1033a, a first assigning subunit 1033b, and a second assigning subunit 1033c.
  • the determining subunit 1033a is configured to determine whether the RTT corresponding to each terminal is greater than a second threshold
  • the first allocating sub-unit 1033b is configured to: when the determining result of the determining sub-unit 1033a is that the RTT corresponding to the terminal is less than a second threshold, allocate the transmission in the N+kth period to the terminal.
  • a second allocation sub-unit 1033c configured to allocate, to the terminal, a transmission time slot in an N+Kth period if the judgment result of the determining sub-unit 1033a is that the RTT corresponding to the terminal is greater than a second threshold;
  • the k is not equal to the K, the k is an integer greater than or equal to 1, and the K is an integer greater than or equal to 2.
  • the sending module 1040 is configured to send a bandwidth grant message to each terminal according to the transmission time slot allocated by the allocating module 1030, so that each terminal sends the uplink data by using the corresponding transmission time slot.
  • the bandwidth allocation apparatus determines whether the RTT corresponding to each terminal is greater than a second threshold by determining that the degree of difference of the RTT size of the RTT corresponding to each terminal is greater than a predetermined threshold.
  • the terminal in the N+kth period is allocated to the terminal whose RTT is smaller than the second threshold, and the transmission slot in the N+Kth period is allocated to the terminal whose RTT is greater than the second threshold, and k is not equal to K.
  • is an integer greater than or equal to 2, and satisfies ( ⁇ *period length) > Max RTT, so that the period length only needs to satisfy (period length)>(1/K)* Max RTT, and the uplink delay is (K) +2 ) cycles, only need to be greater than (( K+2 ) /K ) * Max RTT, and (( K+2 ) /K ) * Max RTT is less than or equal to (3/2 ) * Max RTT, instead of being greater than 3* Max RTT; solves the problem that the uplink delay is too large due to the requirement that the period length is greater than the maximum terminal round-trip transmission delay, and the effect of reducing the uplink delay is achieved, and the terminals with different RTTs have different uplink delays. .
  • the bandwidth allocation device includes:
  • the obtaining module 1110 is configured to obtain, in advance, an RTT corresponding to each terminal.
  • the receiving module 1120 is configured to receive a bandwidth request sent by at least one terminal.
  • the allocating module 1130 is configured to allocate a corresponding transmission time slot to each terminal that sends the bandwidth request received by the receiving module 1120 in the Nth period, and at least one terminal in each terminal is allocated.
  • the arriving transmission time slot belongs to the N+Kth cycle.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT.
  • the allocating module 1130 specifically includes: a second statistic unit 1131, a second judging unit 1132, and a second allocating unit 1133.
  • the second statistic unit 1131 is configured to determine, according to the RTT statistics, the difference in RTT size of each terminal that is obtained by the acquiring module 1110.
  • the second determining unit 1132 is configured to determine whether the degree of difference calculated by the second statistic unit 1131 is greater than a predetermined threshold
  • the second allocating unit 1133 is configured to: if the determination result of the second determining unit 1132 is that the degree of difference is greater than a predetermined threshold, assigning to each terminal according to a corresponding round-trip transmission delay RTT of each terminal belongs to different Different transmission time slots in the cycle.
  • the second allocating unit 1133 specifically includes: an obtaining subunit 1133a, a determining subunit 1133b, and an allocating subunit 1133c.
  • the obtaining sub-unit 1133a is configured to obtain a correspondence between preset different RTT intervals and each period;
  • the determining subunit 1133b is configured to determine, according to the RTT corresponding to each terminal, an RTT interval corresponding to each terminal;
  • the allocating sub-unit 1133c is configured to allocate, according to the RTT interval corresponding to each terminal determined by the determining sub-unit 1133b, the corresponding relationship acquired by the acquiring sub-unit 1133a, to allocate a transmission time in a corresponding period to each terminal. Gap.
  • the sending module 1140 is configured to send a bandwidth grant message to each terminal according to the transmission time slot allocated by the allocating module 1130, so that each terminal sends the uplink data by using the corresponding transmission time slot.
  • the bandwidth allocation apparatus obtains the RTT interval and the difference of the RTT corresponding to each terminal when determining that the difference degree of the RTT size of the RTT corresponding to each terminal is greater than a predetermined threshold.
  • each terminal is allocated a transmission slot in the corresponding period.
  • the bandwidth allocation device includes:
  • a request sending module 1210 configured to send a bandwidth request to the central office
  • the receiving module 1220 is configured to receive a bandwidth grant message sent by the central office, where the bandwidth grant message is used to notify a corresponding transmission time slot of the terminal, where the transmission time slot belongs to an N+K cycle; 1230.
  • the sending by using the transmission time slot corresponding to the bandwidth authorization message received by the receiving module 1220, sending uplink data to the central office.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT, and the maximum round-trip transmission delay is the largest between the central office and the at least one terminal Round trip transmission delay.
  • the bandwidth allocation apparatus sends a bandwidth request to the central office to receive a bandwidth grant message sent by the central office, and the bandwidth grant message is used to notify the terminal of the corresponding transmission time slot, where the transmission time slot belongs to The N+Kth cycle.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > Max RTT, so that the period length only needs to satisfy (period length) > (1/K) * Max RTT, and the uplink delay is (K) +2 ) cycles, only need to be greater than ((K+2 ) /K ) * Max RTT, and ( ( K+2 )/K )* Max RTT is less than or equal to ( 3/2 )* Max RTT, instead of being greater than 3* Max RTT; solves the problem that the uplink delay is too large due to the requirement that the period length is greater than the maximum terminal round-trip transmission delay, and the effect of reducing the uplink delay is achieved. Please refer to FIG.
  • the point-to-multipoint access system includes: at least one central office 1310 and at least one terminal 1312 corresponding to the central office 1310.
  • the central office 1310 includes the bandwidth allocation apparatus shown in any of FIG. 8, FIG. 9, FIG. 10, and FIG. 11; the terminal 1312 includes the bandwidth allocation apparatus shown in FIG.
  • the central office 1310 and the terminal 1312 are connected by a network.
  • the point-to-multipoint access system may be an optical network system, the central office 1310 may be an OLT, and the terminal 1312 may be an ONU.
  • the central office includes: a receiver 1410, a processor 1420, and a transmitter 1430.
  • the receiver 1410 is configured to receive a bandwidth request sent by at least one terminal.
  • the processor 1420 is configured to allocate a corresponding transmission time slot to each terminal that sends the bandwidth request received by the receiver 1410 in the Nth period, and at least one terminal in each terminal The assigned transmission time slot belongs to the N+Kth cycle.
  • the transmitter 1430 is configured to send a bandwidth grant message to each terminal according to the transmission time slot allocated by the processor 1420, so that each terminal sends uplink data by using the corresponding transmission time slot.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT.
  • the central office provided by the embodiment of the present invention allocates a corresponding transmission time slot to each terminal that sends a bandwidth request in the Nth period, and at least one terminal in each terminal is allocated.
  • the transmission time slot belongs to the N+Kth cycle, where K is an integer greater than or equal to 2, and satisfies (K* cycle length) > Max RTT, so that the cycle length only needs to be satisfied (period length) > (1/K) * Max RTT is OK, the uplink delay is (K+2) cycles, only need to be greater than ((K+2) /K) * Max RTT, and (( K+2 )/K )* Max RTT is less than or equal to ( 3/2)* Max RTT, instead of requiring more than 3* Max RTT; solves the problem of excessive uplink delay due to the requirement that the period length is greater than the maximum terminal round-trip transmission delay, and the effect of reducing the uplink delay is achieved. . Referring to FIG. 15, there is shown a block diagram showing the configuration of
  • the processor 1510 is configured to obtain, in advance, an RTT corresponding to each terminal.
  • the receiver 1520 is configured to receive a bandwidth request sent by at least one terminal.
  • the processor 1510 is further configured to: in the Nth period, allocate, to each terminal that sends the bandwidth request received by the receiver 1510, a corresponding transmission time slot, and at least one of each terminal
  • the transmission time slot allocated by the terminal belongs to the N+Kth cycle.
  • K is an integer greater than or equal to 2
  • the processor 1510 is further configured to use, according to the RTT statistics, the RTT size of each terminal stored in the memory 1540;
  • the processor 1510 is further configured to determine whether the difference degree is less than a predetermined threshold.
  • the processor 1510 is further configured to: if the difference degree is less than a predetermined threshold, according to each terminal corresponding to the round-trip transmission
  • the extended RTT allocates to each terminal different transmission slots belonging to the same cycle, and the same cycle is the N+Kth cycle.
  • the transmitter 1530 is configured to send a bandwidth grant message to each terminal according to the transmission time slot allocated by the processor, so that each terminal sends uplink data by using the corresponding transmission time slot.
  • the central office collects the difference degree of the RTT size of the RTT corresponding to each terminal, and determines whether the degree of difference is less than a predetermined threshold. If the degree of difference is less than a predetermined threshold, each terminal is allocated. It belongs to different transmission time slots in the same cycle, and the same cycle is the N+Kth cycle.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > Max RTT, so that the period length only needs to satisfy (period length) >(1/K)* Max RTT, and the uplink delay is (K) +2 ) cycles, only need to be greater than ((K+2 ) /K ) * Max RTT, and (( K+2 ) /K ) * Max RTT is less than or equal to ( 3/2 ) * Max RTT, instead of being greater than 3* Max RTT; solves the problem that the uplink delay is too large due to the requirement that the period length is greater than the maximum terminal round-trip transmission delay, and the effect of reducing the uplink delay is achieved.
  • the central office includes: a processor 1510, a receiver 1520, a transmitter 1530, and a memory 1540.
  • the processor 1510 is configured to obtain, in advance, an RTT corresponding to each terminal.
  • the receiver 1520 is configured to receive a bandwidth request sent by at least one terminal.
  • the processor 1510 is further configured to: in the Nth period, allocate, to each terminal that sends the bandwidth request received by the receiver 1510, a corresponding transmission time slot, and at least one of each terminal
  • the transmission time slot allocated by the terminal belongs to the N+Kth cycle.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT.
  • the processor 1510 is further configured to use, according to the RTT statistics, the RTT size of each terminal stored in the memory 1540;
  • the processor 1510 is further configured to determine whether the difference degree is greater than a predetermined threshold.
  • the processor 1510 is further configured to: if the difference degree is greater than a predetermined threshold, determine each Whether the RTT corresponding to the terminal is greater than a second threshold;
  • the processor 1510 is further configured to: if the RTT corresponding to the terminal is less than a second threshold, allocate a transmission slot in the N+kth period to the terminal;
  • the processor 1510 is further configured to allocate, to the terminal, a transmission time slot in an N+Kth period if the RTT corresponding to the terminal is greater than a second threshold;
  • the k is not equal to the K, the k is an integer greater than or equal to 1, and the K is an integer greater than or equal to 2.
  • the transmitter 1530 is configured to send a bandwidth grant message to each terminal according to the transmission time slot allocated by the processor 1510, so that each terminal sends uplink data by using the corresponding transmission time slot.
  • the central office determines whether the RTT corresponding to each terminal is greater than a second threshold by determining whether the difference of the RTT size of the RTT corresponding to each terminal is greater than a predetermined threshold.
  • the terminal whose RTT is smaller than the second threshold allocates the transmission slot in the N+kth period, and allocates the transmission slot in the N+Kth period to the terminal whose RTT is greater than the second threshold, and k is not equal to K.
  • is an integer greater than or equal to 2, and satisfies ( ⁇ *period length) > Max RTT, so that the period length only needs to satisfy (period length) >(1/K)* Max RTT, and the uplink delay is (K +2 ) cycles, only need to be greater than (( K+2 ) /K ) * Max RTT, and (( K+2 ) /K ) * Max RTT is less than or equal to (3/2 ) * Max RTT, instead of being greater than 3* Max RTT; solves the problem that the uplink delay is too large due to the requirement that the period length is greater than the maximum terminal round-trip transmission delay, and the effect of reducing the uplink delay is achieved, and the terminals with different RTTs have different uplink delays. .
  • the central office includes: a processor 1510, a receiver 1520, a transmitter 1530, and a memory
  • the processor 1510 is configured to obtain, in advance, an RTT corresponding to each terminal.
  • the receiver 1520 is configured to receive a bandwidth request sent by at least one terminal.
  • the processor 1510 is further configured to: in the Nth period, allocate, to each terminal that sends the bandwidth request received by the receiver 1510, a corresponding transmission time slot, and at least one of each terminal
  • the transmission time slot allocated by the terminal belongs to the N+Kth cycle.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT.
  • the processor 1510 is further specifically configured to: according to the difference degree of the RTT statistical RTT size corresponding to each terminal stored by the memory 1540; The processor 1510 is further configured to determine whether the difference degree is greater than a predetermined threshold. The processor 1510 is further configured to: if the difference degree is greater than a predetermined threshold, acquire the preset processor 1510, and further And determining, according to the RTT corresponding to each terminal, an RTT interval corresponding to each terminal;
  • the processor 1510 is further configured to allocate, to each terminal, a transmission time slot in a corresponding period according to an RTT interval corresponding to each terminal and the corresponding relationship.
  • the transmitter 1530 is configured to send a bandwidth grant message to each terminal according to the transmission time slot allocated by the processor 1510, so that each terminal sends uplink data by using the corresponding transmission time slot.
  • the central office provided by the embodiment of the present invention obtains the RTT interval and the different RTTs of the RTT corresponding to each terminal by determining that the difference of the RTT size of the RTT corresponding to each terminal is greater than a predetermined threshold.
  • the correspondence between the interval and each period is allocated to each terminal a transmission slot in the corresponding period according to the RTT interval and the corresponding relationship corresponding to each terminal.
  • the transmission time slot allocated by at least one terminal in each terminal belongs to the N+Kth cycle, where K is an integer greater than or equal to 2, and satisfies (K* cycle length) > Max RTT, and thus the cycle length Only need to meet (cycle length) >(l/K)* Max RTT, the uplink delay is (K+2) cycles, only need to be greater than ((K+2) /K) * Max RTT, and (( K+2 ) /K ) * Max RTT is less than or equal to ( 3/2 ) * Max RTT, instead of requiring more than 3* Max RTT; resolves the upstream delay due to the requirement that the period length is greater than the maximum terminal round-trip transmission delay
  • the big problem is that the effect of reducing the uplink delay is achieved, and the different terminals of the RTT have different uplink delays.
  • FIG. 16 is a block diagram showing the structure of a terminal provided in an embodiment of the present invention.
  • the terminal includes: a transmitter 1610, a receiver 1620, and
  • the transmitter 1610 is configured to send a bandwidth request to the central office.
  • the receiver 1620 is configured to receive a bandwidth grant message sent by the central office, where the bandwidth grant message is used to notify a corresponding transmission time slot of the terminal, where the transmission time slot belongs to an N+Kth cycle;
  • the processor 1630 is further configured to use the transmission time slot in the bandwidth grant message received by the receiver 1620 to control the transmitter 1610 to send uplink data to the central office;
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > maximum round-trip transmission delay Max RTT, and the maximum round-trip transmission delay is the highest between the central office and the at least one terminal Large round-trip transmission delay.
  • the terminal provided by the embodiment of the present invention sends a bandwidth request to the central office to receive a bandwidth grant message sent by the central office, and the bandwidth grant message is used to notify the terminal of the corresponding transmission time slot, and the transmission time slot belongs to the Nth. +K cycles.
  • K is an integer greater than or equal to 2, and satisfies (K* period length) > Max RTT, so that the period length only needs to satisfy (period length) >(l/K)* Max RTT, and the uplink delay is (K) +2) cycles, only need to be greater than +? / ⁇ ⁇ ! ⁇ !
  • FIG. 13 is a schematic structural diagram of a point-to-multipoint access system according to an embodiment of the present invention.
  • the point-to-multipoint access system includes: at least one central office 1310 and at least one terminal 1312 corresponding to the central office 1310.
  • the central office 1310 includes the bandwidth allocation apparatus shown in FIGS. 14 and 15; the terminal 1312 includes the bandwidth allocation apparatus shown in FIG.
  • the central office 1310 and the terminal 1312 are connected by a network.
  • the point-to-multipoint access system may be an optical network system
  • the central office 1310 may be an OLT
  • the terminal 1312 may be an ONU.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc., which are within the spirit and scope of the present invention, should be included in the protection of the present invention. Within the scope.

Abstract

本发明实施例提供了一种带宽分配方法、装置、局端、终端和系统,涉及网络技术领域,所述方法包括:接收至少一个终端发送的带宽请求;在第N个周期内,向每个终端分配对应的传输时隙,且每个终端中至少有1个终端所分配到的传输时隙属于第N+K个周期;根据分配的传输时隙向每个终端发送带宽授权消息;其中,K为大于等于2的整数,且满足(K*周期长度)>最大往返传输时延Max RTT。本发明通过在第N个周期内,向发送带宽请求的每个终端分配对应的传输时隙,且至少有1个终端所分配到的传输时隙属于第N+K个周期,解决了由于要求周期长度大于最大终端往返传输时延而导致的上行时延过大的问题,达到了减小上行时延的效果。

Description

说 明 书
带宽分配方法、 装置、 局端、 终端和系统 技术领域
本发明涉及网络技术领域, 特别涉及一种带宽分配方法、 装置、 局端、 终 端和系统。 背景技术
随着光器件和光纤成本的逐步降低, 无源光网络技术得到越来越广泛的应 用。 无源光网络技术是一种点对多点的光纤传输和接入技术, 应用于无源光网 络系统中。 在无源光网络系统中, 一个 OLT ( Optical Line Terminal , 光线路终 端) 下可以有多个 ONU ( Optical Network Unit, 光网络单元)。 其中, OLT到 ONU的传输方向为下行方向, 采用广播方式, 如图 la所示, OLT连续的将数 据以广播的方式发送给每个 ONU, 各个 ONU选择接收发送给自己的数据; ONU到 OLT的传输方向为上行方向, 采用时分多址方式, 如图 lb所示, 各个 ONU占用不同的上行时隙, 通过时分复用的方式向 OLT发送数据, 相邻的上 行时隙间有保护时间间隔。
为了保证各个 ONU发送的上行数据不发生沖突, OLT要根据各个 ONU 所要发送上行数据的大小为各个 ONU分配使用上行带宽的传输时隙, ONU在 收到 OLT分配给自己的传输时隙内的带宽授权后才可以发送上行数据。 通常, 整个上行带宽的调度分为 3个步骤: 第一, 在周期 N-1内, 各个 ONU根据所 要发送上行数据的大小向 OLT发送带宽请求; 第二, 在周期 N内, OLT在收 到各个 ONU发送的带宽请求后, 通过迭代算法计算各个 ONU的带宽, 并下 发带宽授权消息以便向每个 ONU指示所分配的传输时隙; 第三, 在周期 N+1 内, 各个 ONU在指定时隙将上行数据发送至 OLT, 所分配的各个指定时隙均 属于周期 N+1内。 由此可知, ONU—个上行带宽的请求与生效需要 3个周期 的时间, 即上行最大时延为 3个周期。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 为了保 证 OLT能够在周期 N+1内接收到各个 ONU所发送的上行数据, 在周期 N内 OLT所下发的带宽授权消息需要抵达各个 ONU, 而占用周期 N+1内第一个时 隙的 ONU也需要在周期 N内将数据发出,以便该数据能够在周期 N+1内的第 一个时隙抵达 0LT。 这就要求周期 N的长度大于最大终端往返传输时延( Max RTT, Max Round-Trip Time )。 鉴于每个周期的长度都相同, 那么当 Max RTT 过大时, 上行时延为 3个周期, 大于 3*Max RTT, 则会更大, 且 RTT较小的 ONU的上行时延和 RTT较大的 ONU的上行时延一样大。 发明内容
为了解决由于要求周期长度大于最大终端往返传输时延而导致的上行时 延过大的问题, 本发明实施例提供了一种带宽分配方法。 所述技术方案如下: 第一方面,提供了一种带宽分配方法,用于点到多点接入系统中的局端中, 所述点到多点接入系统中包括所述局端和与所述局端对应的至少一个终端, 所 述方法包括:
接收所述至少一个终端发送的带宽请求;
在第 N个周期内, 向发送所述带宽请求的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1个终端所分配到的传输时隙属于第 N+K个周期; 根据分配的所述传输时隙向每个终端发送带宽授权消息, 以便每个终端利 用对应的所述传输时隙发送上行数据;
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT,所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
结合第一方面, 在第一方面的第一种可能的实施方式中, 所述向发送所述 带宽请求的每个终端分配对应的传输时隙, 包括:
根据每个终端各自对应的往返传输时延 RTT 向每个终端分配属于同一周 期中的不同传输时隙, 所述同一周期为第 N+K个周期。
结合第一方面的第一种可能的实施方式, 在第一方面的第二种可能的实施 方式中, 所述根据每个终端各自对应的往返传输时延 RTT 向每个终端分配属 于同一周期中的不同传输时隙之前, 还包括:
根据每个终端各自对应的 RTT统计 RTT大小的差异程度;
判断所述差异程度是否小于预定阈值; 若所述差异程度小于预定阈值, 则 执行所述根据每个终端各自对应的往返传输时延 RTT 向每个终端分配属于同 一周期中的不同传输时隙的步骤。
结合第一方面, 在第一方面的第三种可能的实施方式中, 所述向发送所述 带宽请求的每个终端分配对应的传输时隙, 包括:
根据每个终端各自对应的往返传输时延 RTT 向每个终端分配属于不同周 期中的不同传输时隙。
结合第一方面的第三种可能的实施方式, 在第一方面的第四种可能的实施 方式中, 所述根据每个终端各自对应的往返传输时延 RTT 向每个终端分配属 于不同周期中的不同传输时隙, 包括:
判断每个终端所对应的 RTT是否大于第二阈值;
若所述终端所对应的 RTT小于第二阈值, 则向所述终端分配第 N+k个周 期内的传输时隙;
若所述终端所对应的 RTT大于第二阈值, 则向所述终端分配第 N+K个周 期内的传输时隙;
所述 k不等于所述 K, 所述 k为大于等于 1的整数, 所述 K为大于等于 2 的整数。
结合第一方面的第三种可能的实施方式, 在第一方面的第五种可能的实施 方式中, 所述根据每个终端各自对应的往返传输时延 RTT 向每个终端分配属 于不同周期中的不同传输时隙, 包括:
获取预设的不同 RTT区间与各个周期之间的对应关系;
根据每个终端所对应的 RTT确定每个终端所对应的 RTT区间;
根据每个终端所对应的 RTT 区间和所述对应关系, 向每个终端分配对应 周期内的传输时隙。
结合第一方面的第三种、 第四种或者第五种可能的实施方式, 在第一方面 的第六种可能的实施方式中,所述根据每个终端各自对应的往返传输时延 RTT 向每个终端分配属于不同周期中的不同传输时隙之前, 还包括:
根据每个终端各自对应的 RTT统计 RTT大小的差异程度;
判断所述差异程度是否大于预定阈值;
若所述差异程度大于预定阈值, 则执行所述根据每个终端各自对应的往返 传输时延 RTT向每个终端分配属于不同周期中的不同传输时隙的步骤。
第二方面,提供了一种带宽分配方法,用于点到多点接入系统中的局端中, 所述点到多点接入系统中包括所述局端和与所述局端对应的至少一个终端, 所 述方法包括:
向所述局端发送带宽请求; 接收所述局端发送的带宽授权消息, 所述带宽授权消息用于通知所述终端 对应的传输时隙, 所述传输时隙属于第 N+K个周期;
利用所述传输时隙向所述局端发送上行数据;
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT,所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
第三方面,提供了一种带宽分配装置,用于点到多点接入系统中的局端中, 所述点到多点接入系统中包括所述局端和与所述局端对应的至少一个终端, 所 述装置包括:
接收模块, 用于接收所述至少一个终端发送的带宽请求;
分配模块,用于在第 N个周期内, 向发送所述接收模块接收到的带宽请求 的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1个终端所分配到 的传输时隙属于第 N+K个周期;
发送模块, 用于根据所述分配模块分配的所述传输时隙向每个终端发送带 宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数据;
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT,所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
结合第三方面, 在第三方面的第一种可能的实施方式中, 所述分配模块, 包括:
第一分配单元, 用于根据每个终端各自对应的往返传输时延 RTT 向每个 终端分配属于同一周期中的不同传输时隙, 所述同一周期为第 N+K个周期。
结合第二方面的第一种可能的实施方式, 在第二方面的第二种可能的实施 方式中, 所述分配模块, 还包括:
第一统计单元和第一判断单元;
所述第一统计单元, 用于根据每个终端各自对应的 RTT统计 RTT大小的 差异程度;
所述第一判断单元, 用于判断所述第一统计单元统计出的差异程度是否小 于预定阈值;
所述第一分配单元, 用于若所述第一判断单元的判断结果为所述差异程度 小于预定阈值, 则执行所述根据每个终端各自对应的往返传输时延 RTT 向每 个终端分配属于同一周期中的不同传输时隙的步骤。
结合第三方面, 在第三方面的第三种可能的实施方式中, 所述分配模块, 包括:
第二分配单元, 用于根据每个终端各自对应的往返传输时延 RTT 向每个 终端分配属于不同周期中的不同传输时隙。
结合第三方面的第三种可能的实施方式, 在第三方面的第四种可能的实施 方式中, 所述第二分配单元, 包括:
判断子单元, 用于判断每个终端所对应的 RTT是否大于第二阈值; 第一分配子单元, 用于若所述判断子单元的判断结果为所述终端所对应的
RTT小于第二阈值, 则向所述终端分配第 N+k个周期内的传输时隙;
第二分配子单元, 用于若所述判断子单元的判断结果为所述终端所对应的
RTT大于第二阈值, 则向所述终端分配第 N+K个周期内的传输时隙;
所述 k不等于所述 K, 所述 k为大于等于 1的整数, 所述 K为大于等于 2 的整数。
结合第三方面的第三种可能的实施方式, 在第三方面的第五种可能的实施 方式中, 所述第二分配单元, 包括:
获取子单元, 用于获取预设的不同 RTT区间与各个周期之间的对应关系; 确定子单元,用于根据每个终端所对应的 RTT确定每个终端所对应的 RTT 区间; 间和所述获取子单元获取到的对应关系, 向每个终端分配对应周期内的传输时 隙。
结合第三方面的第三种、 第四种或者第五种可能的实施方式, 在第三方面 的第六种可能的实施方式中, 所述分配模块, 还包括:
第二统计单元和第二判断单元
所述第二统计单元, 用于根据每个终端各自对应的 RTT统计 RTT大小的 差异程度;
所述第二判断单元, 用于判断所述第二统计单元统计出的差异程度是否大 于预定阈值;
所述第二分配单元, 用于若所述第二判断单元的判断结果为所述差异程度 大于预定阈值, 则执行所述根据每个终端各自对应的往返传输时延 RTT 向每 个终端分配属于不同周期中的不同传输时隙的步骤。
第四方面,提供了一种带宽分配装置,用于点到多点接入系统中的终端中, 所述点到多点接入系统中包括所述局端和与所述局端对应的至少一个终端, 所 述终端包括:
请求发送模块, 用于向局端发送带宽请求;
接收模块, 用于接收所述局端发送的带宽授权消息, 所述带宽授权消息用 于通知所述终端对应的传输时隙, 所述传输时隙属于第 N+K个周期;
数据发送模块, 用于利用所述传输时隙向所述局端发送上行数据; 其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT,所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
第五方面, 提供了一种点到多点接入系统, 包括局端和与所述局端对应的 至少一个终端, 所述局端包括第三方面和第三方面各种可能的实施方式中任一 所述的带宽分配装置, 所述终端包括第四方面所述的带宽分配装置。
第六方面, 提供了一种局端, 所述局端包括:
接收机, 用于接收至少一个终端发送的带宽请求;
处理器,用于在第 N个周期内, 向发送所述接收机接收到的带宽请求的每 个终端分配对应的传输时隙,且所述每个终端中至少有 1个终端所分配到的传 输时隙属于第 N+K个周期;
发送机, 用于根据所述处理器分配的所述传输时隙向每个终端发送带宽授 权消息, 以便每个终端利用对应的所述传输时隙发送上行数据;
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT,所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
结合第六方面, 在第六方面的第一种可能的实施方式中, 所述处理器, 还 用于根据每个终端各自对应的往返传输时延 RTT 向每个终端分配属于同一周 期中的不同传输时隙, 所述同一周期为第 N+K个周期。
结合第六方面的第一种可能的实施方式, 在第六方面的第二种可能的实施 方式中, 所述处理器, 还用于根据每个终端各自对应的 RTT统计 RTT大小的 差异程度;
所述处理器, 还用于判断所述差异程度是否小于预定阈值; 所述处理器, 还用于若所述差异程度小于预定阈值, 则执行所述根据每个 终端各自对应的往返传输时延 RTT 向每个终端分配属于同一周期中的不同传 输时隙的步骤。
结合第六方面, 在第六方面的第三种可能的实施方式中, 所述处理器, 还 用于根据每个终端各自对应的往返传输时延 RTT 向每个终端分配属于不同周 期中的不同传输时隙。
结合第六方面的第三种可能的实施方式, 在第六方面的第四种可能的实施 方式中, 所述处理器, 还用于判断每个终端所对应的 RTT是否大于第二阈值; 所述处理器, 还用于若所述终端所对应的 RTT 小于第二阈值, 则向所述 终端分配第 N+k个周期内的传输时隙;
所述处理器, 还用于若所述终端所对应的 RTT 大于第二阈值, 则向所述 终端分配第 N+K个周期内的传输时隙;
所述 k不等于所述 K, 所述 k为大于等于 1的整数, 所述 K为大于等于 2 的整数。
结合第六方面的第三种可能的实施方式, 在第六方面的第五种可能的实施 方式中, 所述处理器, 还用于获取预设的不同 RTT 区间与各个周期之间的对 应关系;
所述处理器, 还用于根据每个终端所对应的 RTT确定每个终端所对应的 RTT区间;
所述处理器, 还用于根据每个终端所对应的 RTT 区间和所述对应关系, 向每个终端分配对应周期内的传输时隙。
结合第六方面的第三种、 第四种或者第五种可能的实施方式, 在第六方面 的第六种可能的实施方式中, 所述处理器, 还用于根据每个终端各自对应的 RTT统计 RTT大小的差异程度;
所述处理器, 还用于判断所述差异程度是否大于预定阈值;
所述处理器, 还用于若所述差异程度大于预定阈值, 则执行所述根据每个 终端各自对应的往返传输时延 RTT 向每个终端分配属于不同周期中的不同传 输时隙的步骤。
第七方面, 提供了一种终端, 所述终端包括:
发送机, 用于向局端发送带宽请求;
接收机, 用于接收所述局端发送的带宽授权消息, 所述带宽授权消息用于 通知所述终端对应的传输时隙, 所述传输时隙属于第 N+K个周期; 所述发送机, 还用于利用所述传输时隙向所述局端发送上行数据; 其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT,所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
第八方面, 提供了一种点到多点接入系统, 所述点到多点接入系统包括如 第六方面所述的局端和与所述局端对应的至少一个如第七方面所述的终端。
本发明实施例提供的技术方案的有益效果是:
通过在第 N个周期内, 向发送带宽请求的每个终端分配对应的传输时隙, 且每个终端中至少有 1个终端所分配到的传输时隙属于第 N+K个周期, 其中, K为大于等于 2的整数, 且满足(K*周期长度) > Max RTT, 从而周期长度只 需要满足(周期长度) >(1/K)* Max RTT即可, 而上行时延为三个周期, 只需 要大于( 3/K ) * Max RTT, 且( 3/K ) * Max RTT小于等于( 3/2 ) * Max RTT, 而非需要大于 3* Max RTT; 解决了由于要求周期长度大于最大终端往返传输 时延而导致的上行时延过大的问题, 达到了减小上行时延的效果。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 la是本发明实施例涉及的实施环境中 OLT向 OUN发送下行数据的方 向示意图;
图 lb是本发明实施例涉及的实施环境中 OUN向 OLT发送上行数据的方 向示意图;
图 2是本发明一个实施例中提供的带宽分配方法的方法流程图;
图 3是本发明实施例提供的带宽分配方法所涉及的实施示意图;
图 4是本发明另一个实施例中提供的带宽分配方法的方法流程图; 图 5是本发明另一个实施例中提供的带宽分配方法的方法流程图; 图 6是本发明另一个实施例中提供的带宽分配方法的方法流程图; 图 7是本发明一个实施例中提供的带宽分配方法的方法流程图; 图 8是本发明一个实施例中提供的带宽分配装置的结构示意图; 图 9是本发明另一个实施例中提供的带宽分配装置的结构示意图; 图 10是本发明另一个实施例中提供的带宽分配装置的结构示意图; 图 11是本发明另一个实施例中提供的带宽分配装置的结构示意图; 图 12是本发明一个实施例中提供的带宽分配装置的结构示意图; 图 13是本发明一个实施例中提供的点到多点接入系统的结构示意图; 图 14是本发明一个实施例中提供的局端的结构方框图;
图 15是本发明另一个实施例中提供的局端的结构方框图;
图 16是本发明一个实施例中提供的终端的结构方框图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。
点到多点接入系统是指拓朴结构为单个局端与多个终端进行连接的系统。 一个点到多点接入系统, 包括至少一个局端, 而一个局端通常对应多个终端。 光网络系统作为点到多点接入系统的一种, 其局端为 OLT, 终端为 ONU。 通 常一个光网络系统中包括至少一个 OLT, 而一个 OLT对应至少一个 ONU。 为 了筒化说明, 本发明实施例以光网络系统为例进行详细说明, 具体如下:
请参考图 2, 其示出了本发明一个实施例中提供的带宽分配方法的方法流 程图。本实施例主要以该带宽分配方法应用于包括 OLT( Optical Line Terminal, 光线路终端 )和至少一个 ONU ( Optical Network Unit, 光网络单元)的光网络 系统中为例进行说明。 该带宽分配方法, 包括:
步骤 201 , 接收至少一个终端发送的带宽请求;
0LT接收至少一个 0NU发送的带宽请求。
步骤 202, 在第 N个周期内, 向发送带宽请求的每个终端分配对应的传输 时隙,且每个终端中至少有 1个终端所分配到的传输时隙属于第 N+K个周期; 在第 N个周期内, 0LT向发送带宽请求的每个 0NU分配对应的传输时隙, 且每个 0NU中至少有 1个 0NU所分配到的传输时隙属于第 N+K个周期, 其 中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时延 Max RTT ( Max RTT, Max Round-Trip Time ), 最大往返传输时延为局端和至少一 个终端之间的最大的往返传输时延。 步骤 203, 根据分配的传输时隙向每个终端发送带宽授权消息, 以便每个 终端利用对应的传输时隙发送上行数据;
OLT根据分配的传输时隙向每个 ONU发送带宽授权消息,以便每个 ONU 利用对应的传输时隙发送上行数据。
综上所述, 本发明实施例提供的带宽分配方法, 通过在第 N个周期内, 向 发送带宽请求的每个终端分配对应的传输时隙, 且每个终端中至少有 1个终端 所分配到的传输时隙属于第 N+K个周期, 其中, K为大于等于 2的整数, 且 满足(K*周期长度) > Max RTT,从而周期长度只需要满足(周期长度) >(1/K)* Max RTT即可, 上行时延为 (K+2 )个周期, 只需要大于 ((K+2 ) /K ) * Max RTT, 且(( K+2 ) /K ) * Max RTT小于等于( 3/2 ) * Max RTT, 而非需要大于 3* Max RTT;解决了由于要求周期长度大于最大终端往返传输时延而导致的上 行时延过大的问题, 达到了减小上行时延的效果。
参考图 3可知, 通常情况下, OLT在第 N个周期为各个 ONU分配属于第 N+1个周期内的传输时隙, 为了保证各个 ONU在分配给自己的传输时隙内能 够把数据发送至 OLT, 在第 N+1个周期之前, OLT需要将带宽授权消息发送 至 ONU, 而占用第 N+1个周期内的第一个时隙的 ONU也需要在第 N+1个周 期之前将数据发送至 OLT,那么,就要求周期长度满足(周期长度 ) > Max RTT 的条件。 而本发明实施例 OLT在第 N个周期可以有选择性的为全部或者部分 ONU分配属于第 N+K个周期内的传输时隙, 所以只需要周期长度满足(K* 周期长度) > Max RTT的条件即可, 也即 (周期长度) > ( 1/K ) *Max RTT。
通常情况下的上行时延为 (3*周期长度) >3*Max RTT;
而本发明实施例的上行时延为(( K+2 ) *周期长度) > ( K+2 ) * ( 1/K ) * Max RTT= ( 1+ ( 2/K ) ) * Max RTT;
在 K大于等于 2的情况下, 3*Max RTT> ( 1+ ( 2/K ) ) * Max RTT, 所以 本发明实施例提供的带宽分配方法达到了减小上行时延的效果。 本发明实施例提供的带宽分配方法可以有两种具体的实施方式: 第一, 在 第 N个周期为系统中所有终端分配属于同一周期内的传输时隙,该同一周期为 第 N+K个周期, 其中 K为大于等于 2的整数; 第二, 在第 N个周期为系统中 的部分终端分配属于第 N+k个周期内的传输时隙,同时为另外一部分终端分配 属于第 N+K个周期内的传输时隙, 其中 k不等于 Κ, K为大于等于 2的整数。 下面分别对两种具体的实施方式进行介绍。
首先对第一种具体的实施方式进行介绍, 请参考图 4, 其示出了本发明另 一个实施例中提供的带宽分配方法的方法流程图。本实施例主要以该带宽分配 方法应用于包括一个 OLT ( Optical Line Terminal, 光线路终端 )和三个 ONU ( Optical Network Unit, 光网络单元) 的光网络系统中为例进行说明, 并且假 设该网络系统中三个 ONU的往返传输时延 RTT ( Round-Trip Time )相同, 均 为 0.9ms。 该带宽分配方法, 包括:
步骤 401 , 预先获取每个终端各自对应的 RTT;
OLT通过和 ONU交互预先获取每个 ONU各自对应的 RTT。 比如, OLT 获取到的三个 ONU的 RTT均为 0.9ms。
步骤 402, 接收至少一个终端发送的带宽请求; 在第 N-1个周期, ONU向 OLT发送带宽请求; 相应的 OLT接收至少一个 ONU发送的带宽请求, 其中, N为大于等于 2的整数。 比如, OLT在第 N-1个周期接收三个 ONU发送的带 宽请求。
步骤 403 , 根据每个终端各自对应的 RTT统计 RTT大小的差异程度; OLT根据预先获取到的每个 ONU各自对应的 RTT统计 RTT大小的差异 程度。 统计方法可以有以下两种方法, 第一, 计算各个 ONU各自对应的 RTT 的方差或者标准差, 将计算出的方差或者标准差作为各个 ONU 各自对应的 RTT之间的差异程度; 第二, 将 RTT的取值范围划分为不同的值域区间, 然 后统计各个 ONU各自对应的 RTT所属的值域区间, 若各个 ONU各自对应的 RTT属于同一值域区间, 则差异程度为 0, 若各个 ONU各自对应的 RTT属于 不同的值域区间, 则将不同的值域区间之间的差异程度作为各个 ONU各自对 应的 RTT之间的差异程度。 比如, OLT获取的三个 ONU各自对应的 RTT值 均为 0.9ms, 由于三个 ONU各自对应的 RTT值相同的 0.9ms, 所以, 若采用 第一种统计方法, 则可知其方差或者标准差皆为 0, 所以各个 ONU各自对应 的 RTT之间的差异程度为 0; 若采用第二种统计方法, 则可知各个 ONU各自 对应的 RTT属于同一值域区间, 所以各个 ONU各自对应的 RTT之间的差异 程度为 0。
步骤 404, 判断差异程度是否小于预定阈值;
OLT判断差异程度是否小于预定阈值。 比如, 步骤 402得到的三个 ONU 各自对应的 RTT之间的差异程度为 0ms,假设预定阈值为 0.2ms,则 OLT判断 0ms是否小于预定阈值 0.2ms。
步骤 405, 若差异程度小于预定阈值, 则根据每个终端各自对应的往返传 输时延 RTT 向每个终端分配属于同一周期中的不同传输时隙, 同一周期为第 N+K个周期;
若步骤 404的判断结果为差异程度小于预定阈值, 则 OLT根据每个 ONU 各自对应的 RTT, 在第 N个周期向每个 ONU分配属于同一周期中的不同传输 时隙, 该同一周期为第 N+K个周期, 其中, K为大于等于 2的整数, 且满足 ( K*周期长度) >最大往返传输时延 Max RTT, 最大往返传输时延为局端和 至少一个终端之间的最大的往返传输时延。
比如, 上述步骤 404的判断结果为 0ms小于预定阈值 0.2ms, 则 OLT根据 每个 ONU各自对应的 RTT向每个 ONU分配属于同一周期中的不同传输时隙, 假设 K=2, 则 OLT在周期 Ν中分配第 Ν+2个周期内的传输时隙, 假设一个周 期内有三个传输时隙, OLT将第 N+2个周期内的三个传输时隙分别分配给三 个 ONU。
需要说明的是, 步骤 403和步骤 404均为优选的步骤。 也即, OLT在获得 每个终端各自对应的 RTT之后, 也可以不经过步骤 403和步骤 404, 直接根据 每个 ONU各自对应的往返传输时延 RTT向每个 ONU分配属于同一周期中的 不同传输时隙。 另外, K的取值可以是大于 1 的任意整数, 只需要满足(K* 周期长度) >最大往返传输时延 Max RTT即可, 本发明实施例仅以 K=2为例 进行说明。
步骤 406, 根据分配的传输时隙向每个终端发送带宽授权消息, 以便每个 终端利用对应的传输时隙发送上行数据;
OLT根据分配的传输时隙向每个 ONU发送带宽授权消息,以便每个 ONU 利用对应的传输时隙发送上行数据。
相应的, ONU接收 OLT发送的带宽授权消息, 并利用对应的传输时隙发 送上行数据。
需要说明的是,在 N=l时, OLT在第 Ν个周期接收至少一个 ONU发送的 带宽请求, 在第 N+1个周期向每个终端分配属于同一周期中的不同传输时隙, 同一周期为第 Ν+Κ个周期, 其中, Κ为大于等于 2的整数。
综上所述, 本发明实施例提供的带宽分配方法, 通过统计各个终端对应的 RTT的 RTT大小的差异程度, 并判断差异程度是否小于预定阈值, 若差异程 度小于预定阈值, 则向每个终端分配属于同一周期中的不同传输时隙, 且该同 一周期为第 N+K个周期。该分配方法下,周期长度只需要满足(K*周期长度) >
Max RTT( Max RTT, Max Round-Trip Time ), K=2,则可设置周期长度为 0.5ms, 上行时延= ( K+2 ) *周期长度 =4*0.5ms=2ms; 而现有技术中, 要求周期长度满 足(周期长度) > Max RTT, 周期长度可设置为 1ms, 上行时延 =3*周期长度 =3*lms=3ms; 由此可知, 本发明实施例提供的带宽分配方法大大减小了上行 时延。 下面对第二种具体的实施方式进行介绍, 第二种具体的实施方式根据统计 各个 ONU对应的 RTT的差异程度的方法不同分为两种情况。 下面对第一种情 况进行介绍: 请参考图 5, 其示出了本发明另一个实施例中提供的带宽分配方 法的方法流程图。 本实施例主要以该带宽分配方法应用于包括一个 OLT ( Optical Line Terminal, 光线路终端)和四个 ONU ( Optical Network Unit, 光 网络单元)的光网络系统中为例进行说明,并 iM 设该网络系统中 50%的 ONU 的 RTT ( Round-Trip Time )相同, 为 0.4ms; 另外 50%的 ONU的 RTT相同, 为 0.9ms。 该带宽分配方法, 包括:
步骤 501 , 预先获取每个终端各自对应的 RTT;
OLT通过和 ONU交互预先获取每个 ONU各自对应的 RTT。 比如, OLT 获取到的四个 ONU的 RTT分别为 0.4ms 、 0.4ms 、 0.9ms 和 0.9ms。
步骤 502, 接收至少一个终端发送的带宽请求;
在第 N-1个周期, ONU向 OLT发送带宽请求; 相应的, OLT接收至少一 个 ONU发送的带宽请求, 其中, N为大于等于 2的整数。 比如, OLT在第 N-1 个周期接收四个 ONU发送的带宽请求。
步骤 503 , 根据每个终端各自对应的 RTT统计 RTT大小的差异程度;
OLT根据预先获取到的每个 ONU各自对应的 RTT统计 RTT大小的差异 程度。 比如, OLT获取的四个 ONU的 RTT分别为 0.4ms 、 0.4ms 、 0.9ms 和 0.9ms, OLT可以计算四个值的方差或者标准差, 通过计算可以得出, 该四个 值的方差为 0.14375。
需要说明的是, OLT也可以通过其他方式来统计 RTT大小的差异程度, 本发明实施例以计算方差为例进行说明。
步骤 504, 判断差异程度是否大于预定阈值; OLT判断差异程度是否小于预定阈值。 比如, 步骤 503得到的四个 ONU 各自对应的 RTT之间的差异程度为 0.14375, 假设预定阈值为 0.1 , 则 OLT判 断 0.14375是否大于预定阈值 0.1。
步骤 505, 若判断结果为差异程度大于预定阈值, 则判断每个终端所对应 的 RTT是否大于第二阈值。
若步骤 504的判断结果为差异程度大于预定阈值, 则 OLT判断每个 ONU 所对应的 RTT是否大于第二阈值。 比如, 上述四个 ONU各自对应的 RTT之 间的差异程度为 0.14375大于预定阈值 0.1 , 则 OLT判断每个 ONU所对应的 RTT是否大于第二阈值, 假设第二阈值为 0.5ms, 则 OLT判断每个 ONU所对 应的 RTT是否大于 0.5ms。
需要说明的是, 步骤 503和步骤 504均为优选的步骤, 即 OLT在获得每 个 ONU各自对应的 RTT之后, 也可以不经过步骤 503和步骤 504 , 直接判断 每个 ONU所对应的 RTT是否大于第二阈值。
步骤 506, 若终端所对应的 RTT小于第二阈值, 则向终端分配第 N+k个 周期内的传输时隙;若终端所对应的 RTT大于第二阈值,则向终端分配第 N+K 个周期内的传输时隙;
OLT在第 N个周期向 RTT小于第二阈值的 ONU分配第 N+k个周期内的 传输时隙; 向 RTT大于第二阈值的 ONU分配第 N+K个周期内的传输时隙; 且 k不等于 K, 其中 k为大于等于 1的整数, K为大于等于 2的整数。 比如, 上述步骤 505的判断结果为本实施例中四个 ONU中, 其中两个 ONU的 RTT 为 0.4ms小于第二阈值 0.5ms, 另外两个 ONU的 RTT为 0.9ms大于第二阈值 0.5ms OLT向 RTT为 0.4ms的两个 ONU分配第 N+k个周期内的传输时隙, 向 RTT为 0.9ms的两个 ONU分配第 N+K个周期内的传输时隙, 假设 k=2、 K=3, OLT将第 N+2个周期中的一半的传输时隙分配给 RTT为 0.4ms的两个 ONU,将第 N+3个周期中的一半的传输时隙分配给 RTT为 0.9ms的两个 ONU。
需要说明的是, k和 K中的其中一个也可取整数 1 , 比如, 上述 OLT将第 第 N+1个周期中的一半的传输时隙分配给 RTT为 0.4ms的两个 ONU, 将第 N+2个周期中的一半的传输时隙分配给 RTT为 0.9ms的两个 ONU。 本实施例 以 k=2、 K=3为例进行说明。
步骤 507, 根据分配的传输时隙向每个终端发送带宽授权消息, 以便每个 终端利用对应的传输时隙发送上行数据; OLT根据分配的传输时隙向每个 ONU发送带宽授权消息,以便每个 ONU 利用对应的传输时隙发送上行数据。
相应的, ONU接收 OLT发送的带宽授权消息, 并利用对应的传输时隙发 送上行数据。
需要说明的是,在 N=l时, OLT在第 N个周期接收至少一个 ONU发送的 带宽请求,在第 N+ 1个周期向每个 ONU分配属于不同周期中的不同传输时隙, 且每个 ONU中至少有 1个 ONU所分配到的传输时隙属于第 N+K个周期, 其 中, K为大于等于 2的整数。
综上所述, 本发明实施例提供的带宽分配方法, 通过在判断出每个终端对 应的 RTT的 RTT大小的差异程度大于预定阈值时, 再次判断每个终端对应的 RTT是否大于第二阈值, 向 RTT小于第二阈值的终端分配第 N+k个周期内的 传输时隙, 向 RTT大于第二阈值的终端分配第 N+K个周期内的传输时隙, 且 k不等于 K。该带宽分配方法下,周期长度只需要满足( Κ*周期长度)> Max RTT ( Max RTT, Max Round-Trip Time ), 以 k=l、 K=2为例, 对于 RTT为 0.4ms 的两个 ONU , k=l , 周期长度可设置为 0.5ms , 上行时延 =3*周期长度 =3*0.5ms=1.5ms; 对于 RTT为 0.9ms的两个 ONU, K=2, 周期长度可设置为 0.5ms, 上行时延= ( K+2 ) *周期长度 =4*0.5ms=2ms; 而现有技术中, 要求周 期长度满足(周期长度) > Max RTT, 周期长度可设置为 lms, 四个 ONU的上 行时延均为上行时延 =3*周期长度 =3*lms=3ms; 由此可知, 本发明实施例提供 的带宽分配方法大大减小了上行时延, 且 RTT不同的 ONU具有不同的上行时 延。 下面对第二种具体的实施方式的第二种情况进行介绍: 请参考图 6, 其示 出了本发明另一个实施例中提供的带宽分配方法的方法流程图。 本实施例主要 以该带宽分配方法应用于包括一个 OLT ( Optical Line Terminal, 光线路终端 ) 和四个 ONU ( Optical Network Unit , 光网络单元)的光网络系统中为例进行说 明, 并 JM叚设该网络系统中 50%的 ONU的 RTT ( Round-Trip Time )相同, 为 0.4ms; 另外 50%的 ONU的 RTT相同, 为 0.9ms。 该带宽分配方法, 包括: 步骤 601 , 预先获取每个终端各自对应的 RTT;
OLT通过和 ONU交互预先获取每个 ONU各自对应的 RTT。 比如, OLT 获取到的四个 ONU的 RTT分别为 0.4ms 、 0.4ms 、 0.9ms 和 0.9ms。 步骤 602, 接收至少一个终端发送的带宽请求;
在第 N-1个周期, ONU向 OLT发送带宽请求; 相应的, OLT接收至少一 个 ONU发送的带宽请求, 其中, N为大于等于 2的整数。 比如, OLT在第 N-1 个周期接收四个 ONU发送的带宽请求。
步骤 603, 根据每个终端各自对应的 RTT统计 RTT大小的差异程度;
OLT根据预先获取到的每个 ONU各自对应的 RTT统计 RTT大小的差异 程度。 比如, OLT获取的四个 ONU的 RTT分别为 0.4ms 、 0.4ms 、 0.9ms 和 0.9ms, OLT可以计算四个值的方差或者标准差, 通过计算可以得出, 该四个 值的方差为 0.14375。
需要说明的是, OLT也可以通过其他方式来统计 RTT大小的差异程度, 本发明实施例以计算方差为例进行说明。
步骤 604, 判断差异程度是否大于预定阈值;
OLT判断差异程度是否小于预定阈值。 比如, 步骤 603得到的四个 ONU 各自对应的 RTT之间的差异程度为 0.14375, 假设预定阈值为 0.1 , 则 OLT判 断 0.14375是否大于预定阈值 0.1。
步骤 605 , 若判断结果为差异程度大于预定阈值, 则获取预设的不同 RTT 区间与各个周期之间的对应关系;
若步骤 604的判断结果为差异程度大于预定阈值, 则 OLT获取预设的不 同 RTT 区间与各个周期之间的对应关系。 比如, 上述四个 ONU各自对应的 RTT之间的差异程度为 0.14375大于预定阈值 0.1 ,则 OLT获取预设的不同 RTT 区间与各个周期之间的对应关系。假设获取到的预设的 RTT区间为 [0ms , 0.5ms] 和(0.5ms,lms], 分别对应的周期为第 N+k个周期和第 N+K个周期, 其中 k 不等于 K, 假设 k=l、 K=2。
需要说明的是, 步骤 603和步骤 604均为优选的步骤, 即 OLT在获得每 个 ONU各自对应的 RTT之后, 也可以不经过步骤 603和步骤 604 , 直接获取 预设的不同 RTT区间与各个周期之间的对应关系。另外, k和 Κ可以取任意整 数, 只需要满足 k不等于 K, 本实施例以 k=l、 K=2为例进行说明。
步骤 606 , 根据每个终端所对应的 RTT确定每个终端所对应的 RTT区间;
OLT根据每个 ONU所对应的 RTT确定每个 ONU所对应的 RTT区间。比 如,步骤 601获取到的四个 ONU各自对应的 RTT中, RTT=0.4ms的两个 ONU 所对应的区间为 [0ms , 0.5ms] , RTT=0.9ms的两个 ONU所对应的区间为( 0.5ms , lms]。
步骤 607 , 根据每个终端所对应的 RTT区间和对应关系, 向每个终端分配 对应周期内的传输时隙;
根据步骤 605获取预设的不同 RTT区间与各个周期之间的对应关系和步 骤 606确定的每个 ONU所对应的 RTT区间, OLT向每个 ONU分配对应周期 内的传输时隙。 比如, RTT=0.4ms的两个 ONU所对应的区间为 [0ms , 0.5ms] , 该区间对应的周期为第 N+k个周期, 其中 k= 1; RTT=0.9ms的两个 ONU所对 应的区间为 (0.5ms , 1ms] , 该区间对应的周期为第 N+K个周期, 其中 K=2。 OLT 向 RTT=0.4ms 的两个 ONU 分配第 N+1 个周期内的传输时隙, 向 RTT=0.9ms的两个 ONU分配第 N+2个周期内的传输时隙。
步骤 608 , 根据分配的传输时隙向每个终端发送带宽授权消息, 以便每个 终端利用对应的传输时隙发送上行数据;
OLT根据分配的传输时隙向每个 ONU发送带宽授权消息,以便每个 ONU 利用对应的传输时隙发送上行数据。
相应的, ONU接收 OLT发送的带宽授权消息, 并利用对应的传输时隙发 送上行数据。
需要说明的是,在 N=l时, OLT在第 N个周期接收至少一个 ONU发送的 带宽请求, 在第 N+1个周期向每个终端分配属于不同周期中的不同传输时隙, 且每个终端中至少有 1个终端所分配到的传输时隙属于第 N+K个周期, 其中, K为大于等于 2的整数。
综上所述, 本发明实施例提供的带宽分配方法, 通过在判断出每个终端对 应的 RTT的 RTT大小的差异程度大于预定阈值时, 获取每个终端对应的 RTT 所处的 RTT区间和不同 RTT区间和各个周期之间的对应关系, 根据每个终端 所对应的 RTT 区间和对应关系, 向每个终端分配对应周期内的传输时隙。 该 带宽分配方法下, 周期长度只需要满足( K*周期长度 ) > Max RTT ( Max RTT, Max Round-Trip Time ), 上述 RTT为 0.4ms的两个 ONU所对应的区间为 [0ms , 0.5ms] , 对应的周期为第 N+k个周期, RTT为 0.9ms的两个 ONU所对应的区 间为 (0.5ms , 1ms] , 对应的周期为第 N+K 个周期, 本实施例以 k=l、 K=2 为例, 对于 RTT为 0.4ms的两个 ONU, k=l , 周期长度可设置为 0.5ms , 上行 时延 =3*周期长度 =3*0.5ms=1.5ms; 对于 RTT为 0.9ms的两个 ONU, K=2 , 周 期长度可设置为 0.5ms , 上行时延= ( K+2 ) *周期长度 =4*0.5ms=2ms; 而现有 技术中, 要求周期长度满足(周期长度) > Max RTT, 周期长度可设置为 lms, 四个 ONU的上行时延均为上行时延 =3*周期长度 =3*lms=3ms; 由此可知, 本 发明实施例提供的带宽分配方法大大减小了上行时延, 且 RTT不同的 ONU具 有不同的上行时延。 请参考图 7, 其示出了本发明一个实施例中提供的带宽分配方法的方法流 程图。本实施例主要以该带宽分配方法应用于包括 OLT( Optical Line Terminal, 光线路终端 )和至少一个 ONU ( Optical Network Unit, 光网络单元)的光网络 系统中为例进行说明。 该带宽分配方法, 包括:
步骤 701 , 向局端发送带宽请求;
ONU向 OLT发送带宽请求。
步骤 702 , 接收局端发送的带宽授权消息;
ONU接收 OLT发送的带宽授权消息, 该带宽授权消息用于通知 ONU对 应的传输时隙, 该传输时隙属于第 N+K个周期。 其中, K为大于等于 2的整 数, 且满足(K*周期长度) >最大往返传输时延 Max RTT, 最大往返传输时 延为局端和至少一个终端之间的最大的往返传输时延。
步骤 703 , 利用该传输时隙向局端发送上行数据;
ONU利用该传输时隙向 OLT发送上行数据。
综上所述,本发明实施例提供的带宽分配方法,通过向局端发送带宽请求, 接收局端发送的带宽授权消息, 带宽授权消息用于通知终端对应的传输时隙, 该传输时隙属于第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K* 周期长度) > Max RTT,从而周期长度只需要满足(周期长度)>(1/K)* Max RTT 即可, 上行时延为 (K+2 )个周期, 只需要大于 ((K+2 ) /K ) * Max RTT, 且 ( ( K+2 )/K )* Max RTT小于等于( 3/2 )* Max RTT,而非需要大于 3* Max RTT; 解决了由于要求周期长度大于最大终端往返传输时延而导致的上行时延过大 的问题, 达到了减小上行时延的效果。 下述为本发明装置实施例, 可以用于执行本发明方法实施例。 对于本发明 装置实施例中未披露的技术细节, 请参照本发明方法实施例。 请参考图 8, 其示出了本发明一个实施例中提供的带宽分配装置的结构示 意图。 该带宽分配装置, 包括:
接收模块 810, 用于接收至少一个终端发送的带宽请求。
分配模块 820, 用于在第 N个周期内, 向发送所述接收模块 810接收到的 带宽请求的每个终端分配对应的传输时隙,且所述每个终端中至少有 1个终端 所分配到的传输时隙属于第 N+K个周期。
发送模块 830, 用于根据所述分配模块 820分配的所述传输时隙向每个终 端发送带宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数据。
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT。
综上所述, 本发明实施例提供的带宽分配装置, 通过在第 N个周期内, 向 发送带宽请求的每个终端分配对应的传输时隙, 且每个终端中至少有 1个终端 所分配到的传输时隙属于第 N+K个周期, 其中, K为大于等于 2的整数, 且 满足(K*周期长度) > Max RTT,从而周期长度只需要满足(周期长度) >(1/K)* Max RTT即可, 上行时延为 (K+2 )个周期, 只需要大于 ((K+2 ) /K ) * Max RTT, 且(( K+2 ) /K ) * Max RTT小于等于( 3/2 ) * Max RTT, 而非需要大于 3* Max RTT;解决了由于要求周期长度大于最大终端往返传输时延而导致的上 行时延过大的问题, 达到了减小上行时延的效果。 请参考图 9, 其示出了本发明另一个实施例中提供的带宽分配装置的结构 示意图。 该带宽分配装置, 包括:
获取模块 910, 用于预先获取每个终端各自对应的 RTT。
接收模块 920, 用于接收至少一个终端发送的带宽请求。
分配模块 930, 用于在第 N个周期内, 向发送所述接收模块接收到的带宽 请求的每个终端分配对应的传输时隙,且所述每个终端中至少有 1个终端所分 配到的传输时隙属于第 N+K个周期。 其中, K为大于等于 2的整数, 且满足 ( K*周期长度 ) >最大往返传输时延 Max RTT。
具体的讲, 所述分配模块 930, 包括: 第一统计单元 931、 第一判断单元 932和第一分配单元 933。
所述第一统计单元 931 , 用于根据所述获取模块 910获取到的每个终端各 自对应的 RTT统计 RTT大小的差异程度;
所述第一判断单元 932, 用于判断所述第一统计单元 931统计出的差异程 度是否小于预定阈值;
所述第一分配单元 933, 用于若所述第一判断单元 932的判断结果为所述 差异程度小于预定阈值, 则根据每个终端各自对应的往返传输时延 RTT 向每 个终端分配属于同一周期中的不同传输时隙, 所述同一周期为第 N+K个周期。
发送模块 940, 用于根据所述分配模块分配的所述传输时隙向每个终端发 送带宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数据。
综上所述, 本发明实施例提供的带宽分配装置, 通过统计各个终端对应的 RTT的 RTT大小的差异程度, 并判断差异程度是否小于预定阈值, 若差异程 度小于预定阈值, 则向每个终端分配属于同一周期中的不同传输时隙, 且该同 一周期为第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K*周期长 度) > Max RTT, 从而周期长度只需要满足(周期长度) >(1/K)* Max RTT即 可,上行时延为(K+2 )个周期,只需要大于 +? / ^ ^^ !^!1,且((K+2 ) /K ) * Max RTT小于等于( 3/2 ) * Max RTT, 而非需要大于 3* Max RTT; 解决 了由于要求周期长度大于最大终端往返传输时延而导致的上行时延过大的问 题, 达到了减小上行时延的效果。 请参考图 10,其示出了本发明另一个实施例中提供的带宽分配装置的结构 示意图。 该带宽分配装置, 包括:
获取模块 1010, 用于预先获取每个终端各自对应的 RTT。
接收模块 1020, 用于接收至少一个终端发送的带宽请求。
分配模块 1030, 用于在第 N个周期内, 向发送所述接收模块 1020接收到 的带宽请求的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1个终 端所分配到的传输时隙属于第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时延 Max RTT。
具体的讲, 所述分配模块 1030, 具体包括: 第二统计单元 1031、 第二判 断单元 1032和第二分配单元 1033。
所述第二统计单元 1031 , 用于根据所述获取模块 1010获取到的每个终端 各自对应的 RTT统计 RTT大小的差异程度;
所述第二判断单元 1032, 用于判断所述第二统计单元 1031统计出的差异 程度是否大于预定阈值;
所述第二分配单元 1033, 用于若所述第二判断单元 1032的判断结果为所 述差异程度大于预定阈值, 则根据每个终端各自对应的往返传输时延 RTT 向 每个终端分配属于不同周期中的不同传输时隙。
具体的讲, 所述第二分配单元 1033 , 具体包括: 判断子单元 1033a、 第一 分配子单元 1033b和第二分配子单元 1033c。
所述判断子单元 1033a, 用于判断每个终端所对应的 RTT是否大于第二阈 值;
所述第一分配子单元 1033b, 用于若所述判断子单元 1033a的判断结果为 所述终端所对应的 RTT小于第二阈值, 则向所述终端分配第 N+k个周期内的 传输时隙;
第二分配子单元 1033c, 用于若所述判断子单元 1033a的判断结果为所述 终端所对应的 RTT大于第二阈值, 则向所述终端分配第 N+K个周期内的传输 时隙;
所述 k不等于所述 K, 所述 k为大于等于 1的整数, 所述 K为大于等于 2 的整数。
发送模块 1040, 用于根据所述分配模块 1030分配的所述传输时隙向每个 终端发送带宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数 据。
综上所述, 本发明实施例提供的带宽分配装置, 通过在判断出每个终端对 应的 RTT的 RTT大小的差异程度大于预定阈值时, 再次判断每个终端对应的 RTT是否大于第二阈值, 向 RTT小于第二阈值的终端分配第 N+k个周期内的 传输时隙, 向 RTT大于第二阈值的终端分配第 N+K个周期内的传输时隙, 且 k不等于 K。其中, Κ为大于等于 2的整数,且满足(Κ*周期长度) > Max RTT, 从而周期长度只需要满足(周期长度 )>(1/K)* Max RTT即可,上行时延为( K+2 ) 个周期, 只需要大于(( K+2 ) /K ) * Max RTT, 且(( K+2 ) /K ) * Max RTT小 于等于 (3/2 ) * Max RTT, 而非需要大于 3* Max RTT; 解决了由于要求周期 长度大于最大终端往返传输时延而导致的上行时延过大的问题, 达到了减小上 行时延的效果, 且 RTT不同的终端具有不同的上行时延。 请参考图 11 ,其示出了本发明另一个实施例中提供的带宽分配装置的结构 示意图。 该带宽分配装置, 包括:
获取模块 1110, 用于预先获取每个终端各自对应的 RTT。 接收模块 1120, 用于接收至少一个终端发送的带宽请求。
分配模块 1130, 用于在第 N个周期内, 向发送所述接收模块 1120接收到 的带宽请求的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1个终 端所分配到的传输时隙属于第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时延 Max RTT。
具体的讲, 所述分配模块 1130, 具体包括: 第二统计单元 1131、 第二判 断单元 1132和第二分配单元 1133。
所述第二统计单元 1131 , 用于根据所述获取模块 1110获取到的每个终端 各自对应的 RTT统计 RTT大小的差异程度;
所述第二判断单元 1132, 用于判断所述第二统计单元 1131统计出的差异 程度是否大于预定阈值;
所述第二分配单元 1133, 用于若所述第二判断单元 1132的判断结果为所 述差异程度大于预定阈值, 则根据每个终端各自对应的往返传输时延 RTT 向 每个终端分配属于不同周期中的不同传输时隙。
具体的讲, 所述第二分配单元 1133, 具体包括: 获取子单元 1133a、 确定 子单元 1133b和分配子单元 1133c。
所述获取子单元 1133a, 用于获取预设的不同 RTT区间与各个周期之间的 对应关系;
所述确定子单元 1133b,用于根据每个终端所对应的 RTT确定每个终端所 对应的 RTT区间;
所述分配子单元 1133c, 用于根据所述确定子单元 1133b确定的每个终端 所对应的 RTT区间和所述获取子单元 1133a获取到的对应关系,向每个终端分 配对应周期内的传输时隙。
发送模块 1140, 用于根据所述分配模块 1130分配的所述传输时隙向每个 终端发送带宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数 据。
综上所述, 本发明实施例提供的带宽分配装置, 通过在判断出每个终端对 应的 RTT的 RTT大小的差异程度大于预定阈值时, 获取每个终端对应的 RTT 所处的 RTT区间和不同 RTT区间和各个周期之间的对应关系, 根据每个终端 所对应的 RTT 区间和对应关系, 向每个终端分配对应周期内的传输时隙。 且 每个终端中至少有 1个终端所分配到的传输时隙属于第 N+K个周期,其中, K 为大于等于 2的整数, 且满足(K*周期长度) > Max RTT, 从而周期长度只需 要满足(周期长度) >(1/K)* Max RTT即可, 上行时延为 ( K+2 ) 个周期, 只 需要大于(( K+2 ) /K ) * Max RTT, 且(( K+2 ) /K ) * Max RTT小于等于( 3/2 ) * Max RTT, 而非需要大于 3* Max RTT; 解决了由于要求周期长度大于最大终 端往返传输时延而导致的上行时延过大的问题, 达到了减小上行时延的效果, 且 RTT不同的终端具有不同的上行时延。 请参考图 12,其示出了本发明一个实施例中提供的带宽分配装置的结构示 意图。 该带宽分配装置, 包括:
请求发送模块 1210, 用于向所述局端发送带宽请求;
接收模块 1220,用于接收所述局端发送的带宽授权消息,所述带宽授权消 息用于通知所述终端对应的传输时隙, 所述传输时隙属于第 N+K个周期; 数据发送模块 1230, 用于利用所述接收模块 1220接收到的带宽授权消息 对应的传输时隙向所述局端发送上行数据;
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT,所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
综上所述,本发明实施例提供的带宽分配装置,通过向局端发送带宽请求, 接收局端发送的带宽授权消息, 带宽授权消息用于通知终端对应的传输时隙, 该传输时隙属于第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K* 周期长度) > Max RTT,从而周期长度只需要满足(周期长度)>(1/K)* Max RTT 即可, 上行时延为 (K+2 )个周期, 只需要大于 ((K+2 ) /K ) * Max RTT, 且 ( ( K+2 )/K )* Max RTT小于等于( 3/2 )* Max RTT,而非需要大于 3* Max RTT; 解决了由于要求周期长度大于最大终端往返传输时延而导致的上行时延过大 的问题, 达到了减小上行时延的效果。 请参考图 13,其示出了本发明一个实施例中提供的点到多点接入系统的结 构示意图。 该点到多点接入系统包括: 至少一个局端 1310和与所述局端 1310 对应的至少一个终端 1312。 所述局端 1310包括图 8、 图 9、 图 10和图 11任一 所示的带宽分配装置; 所述终端 1312包括图 12所示的带宽分配装置。 所述局 端 1310和所述终端 1312通过网络连接。 该点到多点接入系统可以是光网络系统,局端 1310可以是 OLT,终端 1312 可以是 ONU。
请参考图 14,其示出了本发明一个实施例中提供的局端的结构方框图。该 局端, 包括: 接收机 1410、 处理器 1420和发送机 1430。
所述接收机 1410, 用于接收至少一个终端发送的带宽请求。
所述处理器 1420, 用于在第 N个周期内, 向发送所述接收机 1410接收到 的带宽请求的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1个终 端所分配到的传输时隙属于第 N+K个周期。
所述发送机 1430, 用于根据所述处理器 1420分配的所述传输时隙向每个 终端发送带宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数 据。
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT。
综上所述, 本发明实施例提供的局端, 通过在第 N个周期内, 向发送带宽 请求的每个终端分配对应的传输时隙, 且每个终端中至少有 1个终端所分配到 的传输时隙属于第 N+K个周期, 其中, K为大于等于 2的整数, 且满足(K* 周期长度) > Max RTT,从而周期长度只需要满足(周期长度)>(1/K)* Max RTT 即可, 上行时延为 (K+2 )个周期, 只需要大于 ((K+2 ) /K ) * Max RTT, 且 ( ( K+2 )/K )* Max RTT小于等于( 3/2 )* Max RTT,而非需要大于 3* Max RTT; 解决了由于要求周期长度大于最大终端往返传输时延而导致的上行时延过大 的问题, 达到了减小上行时延的效果。 请参考图 15, 其示出了本发明另一个实施例中提供的局端的结构方框图。 该局端, 包括: 处理器 1510、 接收机 1520、 发送机 1530和存储器 1540。
所述处理器 1510, 用于预先获取每个终端各自对应的 RTT。
所述接收机 1520, 用于接收至少一个终端发送的带宽请求。
所述处理器 1510, 还用于在第 N个周期内, 向发送所述接收机 1510接收 到的带宽请求的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1个 终端所分配到的传输时隙属于第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时延 Max RTT。
具体的讲, 所述处理器 1510, 还具体用于根据所述存储器 1540存储的每 个终端各自对应的 RTT统计 RTT大小的差异程度;
所述处理器 1510, 还具体用于判断所述差异程度是否小于预定阈值; 所述处理器 1510,还具体用于若所述差异程度小于预定阈值, 则根据每个 终端各自对应的往返传输时延 RTT 向每个终端分配属于同一周期中的不同传 输时隙, 所述同一周期为第 N+K个周期。
所述发送机 1530,用于根据所述处理器分配的所述传输时隙向每个终端发 送带宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数据。
综上所述, 本发明实施例提供的局端, 通过统计各个终端对应的 RTT 的 RTT大小的差异程度, 并判断差异程度是否小于预定阈值, 若差异程度小于预 定阈值, 则向每个终端分配属于同一周期中的不同传输时隙, 且该同一周期为 第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K*周期长度) > Max RTT, 从而周期长度只需要满足(周期长度) >(1/K)* Max RTT即可, 上行时 延为 (K+2 ) 个周期, 只需要大于 ((K+2 ) /K ) * Max RTT, 且(( K+2 ) /K ) * Max RTT小于等于( 3/2 ) * Max RTT, 而非需要大于 3* Max RTT; 解决了由 于要求周期长度大于最大终端往返传输时延而导致的上行时延过大的问题, 达 到了减小上行时延的效果。 请参考图 15, 其示出了本发明另一个实施例中提供的局端的结构方框图。 该局端, 包括: 处理器 1510、 接收机 1520、 发送机 1530和存储器 1540。
所述处理器 1510, 用于预先获取每个终端各自对应的 RTT。
所述接收机 1520, 用于接收至少一个终端发送的带宽请求。
所述处理器 1510, 还用于在第 N个周期内, 向发送所述接收机 1510接收 到的带宽请求的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1个 终端所分配到的传输时隙属于第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时延 Max RTT。
具体的讲, 所述处理器 1510, 还具体用于根据所述存储器 1540存储的每 个终端各自对应的 RTT统计 RTT大小的差异程度;
所述处理器 1510, 还具体用于判断所述差异程度是否大于预定阈值; 所述处理器 1510,还具体用于若所述差异程度大于预定阈值, 则判断每个 终端所对应的 RTT是否大于第二阈值;
所述处理器 1510, 还具体用于若所述终端所对应的 RTT小于第二阈值, 则向所述终端分配第 N+k个周期内的传输时隙;
所述处理器 1510, 还具体用于若所述终端所对应的 RTT大于第二阈值, 则向所述终端分配第 N+K个周期内的传输时隙;
所述 k不等于所述 K, 所述 k为大于等于 1的整数, 所述 K为大于等于 2 的整数。
所述发送机 1530, 用于根据所述处理器 1510分配的所述传输时隙向每个 终端发送带宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数 据。
综上所述, 本发明实施例提供的局端, 通过在判断出每个终端对应的 RTT 的 RTT大小的差异程度大于预定阈值时, 再次判断每个终端对应的 RTT是否 大于第二阈值,向 RTT小于第二阈值的终端分配第 N+k个周期内的传输时隙, 向 RTT大于第二阈值的终端分配第 N+K个周期内的传输时隙,且 k不等于 K。 其中, Κ为大于等于 2的整数, 且满足(Κ*周期长度) > Max RTT, 从而周期 长度只需要满足(周期长度) >(1/K)* Max RTT即可, 上行时延为 ( K+2 )个 周期, 只需要大于(( K+2 ) /K ) * Max RTT, 且(( K+2 ) /K ) * Max RTT小于 等于 (3/2 ) * Max RTT, 而非需要大于 3* Max RTT; 解决了由于要求周期长 度大于最大终端往返传输时延而导致的上行时延过大的问题, 达到了减小上行 时延的效果, 且 RTT不同的终端具有不同的上行时延。 请参考图 15, 其示出了本发明另一个实施例中提供的局端的结构方框图。 该局端, 包括: 处理器 1510、 接收机 1520、 发送机 1530和存储器 1540。
所述处理器 1510, 用于预先获取每个终端各自对应的 RTT。
所述接收机 1520, 用于接收至少一个终端发送的带宽请求。
所述处理器 1510, 还用于在第 N个周期内, 向发送所述接收机 1510接收 到的带宽请求的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1个 终端所分配到的传输时隙属于第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时延 Max RTT。
具体的讲, 所述处理器 1510, 还具体用于根据所述存储器 1540存储的每 个终端各自对应的 RTT统计 RTT大小的差异程度; 所述处理器 1510, 还具体用于判断所述差异程度是否大于预定阈值; 所述处理器 1510,还具体用于若所述差异程度大于预定阈值, 则获取预设 所述处理器 1510, 还用于根据每个终端所对应的 RTT确定每个终端所对 应的 RTT区间;
所述处理器 1510, 还用于根据每个终端所对应的 RTT区间和所述对应关 系, 向每个终端分配对应周期内的传输时隙。
所述发送机 1530, 用于根据所述处理器 1510分配的所述传输时隙向每个 终端发送带宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数 据。
综上所述, 本发明实施例提供的局端, 通过在判断出每个终端对应的 RTT 的 RTT大小的差异程度大于预定阈值时,获取每个终端对应的 RTT所处的 RTT 区间和不同 RTT区间和各个周期之间的对应关系,根据每个终端所对应的 RTT 区间和对应关系, 向每个终端分配对应周期内的传输时隙。 且每个终端中至少 有 1个终端所分配到的传输时隙属于第 N+K个周期, 其中, K为大于等于 2 的整数, 且满足(K*周期长度) > Max RTT, 从而周期长度只需要满足(周期 长度) >(l/K)* Max RTT即可,上行时延为( K+2 )个周期,只需要大于((K+2 ) /K ) * Max RTT, 且(( K+2 ) /K ) * Max RTT小于等于 ( 3/2 ) * Max RTT, 而 非需要大于 3* Max RTT; 解决了由于要求周期长度大于最大终端往返传输时 延而导致的上行时延过大的问题, 达到了减小上行时延的效果, 且 RTT 不同 的终端具有不同的上行时延。 请参考图 16,其示出了本发明一个实施例中提供的终端的结构方框图。该 终端, 包括: 发送机 1610、 接收机 1620和处理器 1630。
所述发送机 1610, 用于向局端发送带宽请求;
所述接收机 1620,用于接收所述局端发送的带宽授权消息,所述带宽授权 消息用于通知所述终端对应的传输时隙, 所述传输时隙属于第 N+K个周期; 所述处理器 1630, 还用于利用所述接收机 1620接收到的带宽授权消息中 的传输时隙控制所述发送机 1610向所述局端发送上行数据;
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT,所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
综上所述, 本发明实施例提供的终端, 通过向局端发送带宽请求, 接收局 端发送的带宽授权消息, 带宽授权消息用于通知终端对应的传输时隙, 该传输 时隙属于第 N+K个周期。 其中, K为大于等于 2的整数, 且满足(K*周期长 度) > Max RTT, 从而周期长度只需要满足(周期长度) >(l/K)* Max RTT即 可,上行时延为(K+2 )个周期,只需要大于 +? / ^ ^^ !^!1,且((K+2 ) /K ) * Max RTT小于等于( 3/2 ) * Max RTT, 而非需要大于 3* Max RTT; 解决 了由于要求周期长度大于最大终端往返传输时延而导致的上行时延过大的问 题, 达到了减小上行时延的效果。 请参考图 13 ,其示出了本发明一个实施例提供的点到多点接入系统的结构 示意图。 该点到多点接入系统, 包括: 至少一个局端 1310和与所述局端 1310 对应的至少一个终端 1312。 所述局端 1310包括图 14和图 15所示的带宽分配 装置; 所述终端 1312包括图 16所示的带宽分配装置。
所述局端 1310和所述终端 1312通过网络连接。
该点到多点接入系统可以是光网络系统,局端 1310可以是 OLT,终端 1312 可以是 ONU。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种带宽分配方法, 用于点到多点接入系统中的局端中, 所述点到多点 接入系统中包括所述局端和与所述局端对应的至少一个终端, 其特征在于, 所 述方法包括:
接收所述至少一个终端发送的带宽请求;
在第 N个周期内, 向发送所述带宽请求的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1个终端所分配到的传输时隙属于第 N+K个周期; 根据分配的所述传输时隙向每个终端发送带宽授权消息, 以便每个终端利 用对应的所述传输时隙发送上行数据;
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT, 所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
2、 根据权利要求 1所述的带宽分配方法, 其特征在于, 所述向发送所述带 宽请求的每个终端分配对应的传输时隙, 包括:
根据每个终端各自对应的往返传输时延 RTT向每个终端分配属于同一周期 中的不同传输时隙, 所述同一周期为第 N+K个周期。
3、 根据权利要求 2所述的带宽分配方法, 其特征在于, 所述根据每个终端 各自对应的往返传输时延 RTT向每个终端分配属于同一周期中的不同传输时隙 之前, 还包括:
根据每个终端各自对应的 RTT统计 RTT大小的差异程度;
判断所述差异程度是否小于预定阈值; 若所述差异程度小于预定阈值, 则 执行所述根据每个终端各自对应的往返传输时延 RTT向每个终端分配属于同一 周期中的不同传输时隙的步骤。
4、 根据权利要求 1所述的带宽分配方法, 其特征在于, 所述向发送所述带 宽请求的每个终端分配对应的传输时隙, 包括:
根据每个终端各自对应的往返传输时延 RTT向每个终端分配属于不同周期 中的不同传输时隙。
5、 根据权利要求 4所述的带宽分配方法, 其特征在于, 所述根据每个终端 各自对应的往返传输时延 RTT 向每个终端分配属于不同周期中的不同传输时 隙, 包括:
判断每个终端所对应的 RTT是否大于第二阈值;
若所述终端所对应的 RTT小于第二阈值, 则向所述终端分配第 N+k个周期 内的传输时隙;
若所述终端所对应的 RTT大于第二阈值,则向所述终端分配第 N+K个周期 内的传输时隙;
所述 k不等于所述 K, 所述 k为大于等于 1的整数, 所述 K为大于等于 2 的整数。
6、 根据权利要求 4所述的带宽分配方法, 其特征在于, 所述根据每个终端 各自对应的往返传输时延 RTT 向每个终端分配属于不同周期中的不同传输时 隙, 包括:
获取预设的不同 RTT区间与各个周期之间的对应关系;
根据每个终端所对应的 RTT确定每个终端所对应的 RTT区间;
居每个终端所对应的 RTT区间和所述对应关系, 向每个终端分配对应周 期内的传输时隙。
7、 根据权利要求 4至 6任一所述的带宽分配方法, 其特征在于, 所述根据 每个终端各自对应的往返传输时延 RTT向每个终端分配属于不同周期中的不同 传输时隙之前, 还包括:
根据每个终端各自对应的 RTT统计 RTT大小的差异程度;
判断所述差异程度是否大于预定阈值;
若所述差异程度大于预定阈值, 则执行所述根据每个终端各自对应的往返 传输时延 RTT向每个终端分配属于不同周期中的不同传输时隙的步骤。
8、 一种带宽分配方法, 用于点到多点接入系统中的局端中, 所述点到多点 接入系统中包括所述局端和与所述局端对应的至少一个终端, 其特征在于, 所 述方法包括: 向所述局端发送带宽请求;
接收所述局端发送的带宽授权消息, 所述带宽授权消息用于通知所述终端 对应的传输时隙, 所述传输时隙属于第 N+K个周期;
利用所述传输时隙向所述局端发送上行数据;
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT, 所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
9、 一种带宽分配装置, 用于点到多点接入系统中的局端中, 所述点到多点 接入系统中包括所述局端和与所述局端对应的至少一个终端, 其特征在于, 所 述装置包括:
接收模块, 用于接收所述至少一个终端发送的带宽请求;
分配模块, 用于在第 N个周期内, 向发送所述接收模块接收到的带宽请求 的每个终端分配对应的传输时隙, 且所述每个终端中至少有 1 个终端所分配到 的传输时隙属于第 N+K个周期;
发送模块, 用于根据所述分配模块分配的所述传输时隙向每个终端发送带 宽授权消息, 以便每个终端利用对应的所述传输时隙发送上行数据;
其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT, 所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
10、 根据权利要求 9所述的带宽分配装置, 其特征在于, 所述分配模块, 包括:
第一分配单元, 用于根据每个终端各自对应的往返传输时延 RTT向每个终 端分配属于同一周期中的不同传输时隙, 所述同一周期为第 N+K个周期。
11、 根据权利要求 10所述的带宽分配装置, 其特征在于, 所述分配模块, 还包括:
第一统计单元和第一判断单元;
所述第一统计单元,用于根据每个终端各自对应的 RTT统计 RTT大小的差 异程度; 所述第一判断单元, 用于判断所述第一统计单元统计出的差异程度是否小 于预定阈值;
所述第一分配单元, 用于若所述第一判断单元的判断结果为所述差异程度 小于预定阈值, 则执行所述根据每个终端各自对应的往返传输时延 RTT向每个 终端分配属于同一周期中的不同传输时隙的步骤。
12、 根据权利要求 9所述的带宽分配装置, 其特征在于, 所述分配模块, 包括:
第二分配单元, 用于根据每个终端各自对应的往返传输时延 RTT向每个终 端分配属于不同周期中的不同传输时隙。
13、 根据权利要求 12所述的带宽分配装置, 其特征在于, 所述第二分配单 元, 包括:
判断子单元, 用于判断每个终端所对应的 RTT是否大于第二阈值; 第一分配子单元, 用于若所述判断子单元的判断结果为所述终端所对应的 RTT小于第二阈值, 则向所述终端分配第 N+k个周期内的传输时隙;
第二分配子单元, 用于若所述判断子单元的判断结果为所述终端所对应的 RTT大于第二阈值, 则向所述终端分配第 N+K个周期内的传输时隙;
所述 k不等于所述 K, 所述 k为大于等于 1的整数, 所述 K为大于等于 2 的整数。
14、 根据权利要求 12所述的带宽分配装置, 其特征在于, 所述第二分配单 元, 包括:
获取子单元, 用于获取预设的不同 RTT区间与各个周期之间的对应关系; 确定子单元, 用于根据每个终端所对应的 RTT确定每个终端所对应的 RTT 区间; 和所述获取子单元获取到的对应关系, 向每个终端分配对应周期内的传输时隙。
15、 根据权利要求 12至 14任一所述的带宽分配装置, 其特征在于, 所述 分配模块, 还包括: 第二统计单元和第二判断单元
所述第二统计单元,用于根据每个终端各自对应的 RTT统计 RTT大小的差 异程度;
所述第二判断单元, 用于判断所述第二统计单元统计出的差异程度是否大 于预定阈值;
所述第二分配单元, 用于若所述第二判断单元的判断结果为所述差异程度 大于预定阈值, 则执行所述根据每个终端各自对应的往返传输时延 RTT向每个 终端分配属于不同周期中的不同传输时隙的步骤。
16、 一种带宽分配装置, 用于点到多点接入系统中的终端中, 所述点到多 点接入系统中包括所述局端和与所述局端对应的至少一个终端, 其特征在于, 所述终端包括:
请求发送模块, 用于向所述局端发送带宽请求;
接收模块, 用于接收所述局端发送的带宽授权消息, 所述带宽授权消息用 于通知所述终端对应的传输时隙, 所述传输时隙属于第 N+K个周期;
数据发送模块, 用于利用所述传输时隙向所述局端发送上行数据; 其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT, 所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
17、 一种点到多点接入系统, 包括局端和与所述局端对应的至少一个终端, 其特征在于, 所述局端包括如权利要求 9至 15任一所述的带宽分配装置, 所述 终端包括如权利要求 16所述的带宽分配装置。
18、 一种局端, 其特征在于, 所述局端包括:
接收机, 用于接收至少一个终端发送的带宽请求;
处理器, 用于在第 N个周期内, 向发送所述接收机接收到的带宽请求的每 个终端分配对应的传输时隙, 且所述每个终端中至少有 1 个终端所分配到的传 输时隙属于第 N+K个周期;
发送机, 用于根据所述处理器分配的所述传输时隙向每个终端发送带宽授 权消息, 以便每个终端利用对应的所述传输时隙发送上行数据; 其中, K为大于等于 2的整数, 且满足(Κ*周期长度) >最大往返传输时 延 Max RTT, 所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
19、 一种终端, 其特征在于, 所述终端包括:
发送机, 用于向局端发送带宽请求;
接收机, 用于接收所述局端发送的带宽授权消息, 所述带宽授权消息用于 通知所述终端对应的传输时隙, 所述传输时隙属于第 N+K个周期;
所述发送机, 还用于利用所述传输时隙向所述局端发送上行数据; 其中, K为大于等于 2的整数, 且满足(K*周期长度) >最大往返传输时 延 Max RTT, 所述最大往返传输时延为所述局端和所述至少一个终端之间的最 大的往返传输时延。
20、 一种点到多点接入系统, 其特征在于, 所述点到多点接入系统包括如 权利要求 18所述的局端和与所述局端对应的至少一个如权利要求 19所述的终 端。
PCT/CN2013/077323 2013-06-17 2013-06-17 带宽分配方法、装置、局端、终端和系统 WO2014201605A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/077323 WO2014201605A1 (zh) 2013-06-17 2013-06-17 带宽分配方法、装置、局端、终端和系统
CN201380000814.9A CN104488236A (zh) 2013-06-17 2013-06-17 带宽分配方法、装置、局端、终端和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/077323 WO2014201605A1 (zh) 2013-06-17 2013-06-17 带宽分配方法、装置、局端、终端和系统

Publications (1)

Publication Number Publication Date
WO2014201605A1 true WO2014201605A1 (zh) 2014-12-24

Family

ID=52103779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077323 WO2014201605A1 (zh) 2013-06-17 2013-06-17 带宽分配方法、装置、局端、终端和系统

Country Status (2)

Country Link
CN (1) CN104488236A (zh)
WO (1) WO2014201605A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109041235A (zh) * 2018-08-20 2018-12-18 广东工业大学 一种差分定位系统的差分定位数据传输方法、装置及系统
CN111327391B (zh) * 2018-12-17 2023-06-30 深圳市中兴微电子技术有限公司 一种时分复用方法及装置、系统、存储介质
CN114520938A (zh) * 2020-11-20 2022-05-20 华为技术有限公司 一种数据传输方法及相关设备
CN113328824B (zh) * 2021-04-19 2023-01-13 华为技术有限公司 一种传输方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087238A (zh) * 2003-10-21 2007-12-12 华为技术有限公司 无源光网络的动态带宽分配装置及方法
US20100239255A1 (en) * 2009-03-18 2010-09-23 Hiroki Ikeda Optical line terminal, passive optical network system, and bandwidth assignment method
CN101883294A (zh) * 2009-05-07 2010-11-10 华为技术有限公司 上行带宽分配方法和装置
WO2012090274A1 (ja) * 2010-12-27 2012-07-05 三菱電機株式会社 中継装置、局側光通信装置、通信システムおよび帯域割当方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114184B2 (ja) * 2007-12-21 2013-01-09 株式会社日立製作所 ネットワークシステム、onu及びolt
CN101340246B (zh) * 2008-08-11 2012-04-25 武汉长光科技有限公司 一种可延长传输距离的以太无源光网络
EP2608438B1 (en) * 2011-10-25 2017-04-05 Shenzhen Hisilicon Technologies Co., Ltd. Dynamic bandwidth allocation method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101087238A (zh) * 2003-10-21 2007-12-12 华为技术有限公司 无源光网络的动态带宽分配装置及方法
US20100239255A1 (en) * 2009-03-18 2010-09-23 Hiroki Ikeda Optical line terminal, passive optical network system, and bandwidth assignment method
CN101883294A (zh) * 2009-05-07 2010-11-10 华为技术有限公司 上行带宽分配方法和装置
WO2012090274A1 (ja) * 2010-12-27 2012-07-05 三菱電機株式会社 中継装置、局側光通信装置、通信システムおよび帯域割当方法

Also Published As

Publication number Publication date
CN104488236A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
TWI455501B (zh) 用以延伸乙太網路被動光學網路(epon)中之媒體存取控制(mac)控制訊息的設備
CA2295563C (en) Method and apparatus for controlling communications in a passive optical network
US8718473B2 (en) Efficient MAC protocol for OFDMA passive optical networks (PONs)
TWI478534B (zh) 用於對雙層網路中的上行傳輸時間進行調度的頭端節點、分支節點及其方法
JP2004528740A (ja) 光アクセスネットワークにおけるダイナミックな帯域幅割り当ての方法及びシステム
WO2008122183A1 (fr) Procédé et terminal de transmission de données
WO2009012728A1 (fr) Procédé, appareil et système permettant à une unité de réseau optique d'avoir accès au réseau
WO2011060734A1 (zh) 在无源光网络中测距的方法和装置
Uzawa et al. Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON
JP6429225B2 (ja) 光ネットワークの光端局装置および上りスケジューリング方式
WO2012009997A1 (zh) 带宽分配方法及装置
WO2014139267A1 (zh) 一种提高带宽分配效率的方法及系统
WO2011017992A1 (zh) 带宽分配方法及光纤线路终端
WO2018112981A1 (zh) 数据通信系统、光线路终端及基带单元
CN108370270A (zh) 动态带宽的分配方法、装置和无源光网络系统
WO2014201605A1 (zh) 带宽分配方法、装置、局端、终端和系统
JP2008270898A (ja) 光加入者線端局装置
US20140241724A1 (en) Transmission Prioritization Based on Polling Time
JP5876427B2 (ja) 光ネットワークシステム、局側終端装置、及び加入者側終端装置
TW201115945A (en) PON system and residential side device used therein and transmission controlling method thereof
WO2014117510A1 (zh) 一种光电混合系统中资源的管理方法和系统
JP2017147618A (ja) 端局装置及び帯域割当方法
WO2015013941A1 (zh) 一种信号传输的方法、设备及系统
WO2014169483A1 (zh) 一种带宽分配的方法、设备及系统
JP4877483B2 (ja) 送信割当て方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887459

Country of ref document: EP

Kind code of ref document: A1