WO2008116991A2 - Pilotage optimal a la frequence de resonance d'un resonateur d'un allumage radiofrequence - Google Patents

Pilotage optimal a la frequence de resonance d'un resonateur d'un allumage radiofrequence Download PDF

Info

Publication number
WO2008116991A2
WO2008116991A2 PCT/FR2008/050216 FR2008050216W WO2008116991A2 WO 2008116991 A2 WO2008116991 A2 WO 2008116991A2 FR 2008050216 W FR2008050216 W FR 2008050216W WO 2008116991 A2 WO2008116991 A2 WO 2008116991A2
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
ignition
control
supply circuit
resonator
Prior art date
Application number
PCT/FR2008/050216
Other languages
English (en)
Other versions
WO2008116991A3 (fr
Inventor
André AGNERAY
Julien Couillaud
Xavier Jaffrezic
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to JP2010500324A priority Critical patent/JP5208194B2/ja
Priority to EP08762068.8A priority patent/EP2134959B1/fr
Priority to US12/593,482 priority patent/US8528532B2/en
Priority to CN2008800125334A priority patent/CN101663481B/zh
Priority to MX2009010324A priority patent/MX2009010324A/es
Publication of WO2008116991A2 publication Critical patent/WO2008116991A2/fr
Publication of WO2008116991A3 publication Critical patent/WO2008116991A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • H01T13/44Sparking plugs structurally combined with other devices with transformers, e.g. for high-frequency ignition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator

Definitions

  • the present invention relates generally to systems for generating plasma between two electrodes of a spark plug, used in particular for radiofrequency ignition control of a gaseous mixture in combustion chambers of an internal combustion engine.
  • plasma generation circuits incorporating coils-candles are used to generate multi-filament discharges between their electrodes, to initiate the combustion of the mixture in the chambers of combustion of the engine.
  • the multi-spark plug which is mentioned here is described in detail in the following patent applications filed in the name of the applicant FR 03-10766, FR 03-10767 and FR 03-10768.
  • the coil-candle is conventionally modeled by a resonator 1, whose resonance frequency F c is greater than 1 MHz, and typically close to 5 MHz.
  • the resonator disposed at the level of the spark plug, comprises in series a resistor R, an inductance L and a capacitance C. Ignition electrodes 10 and 12 of the coil-plug are connected across the capacitor C.
  • the amplitude across the capacitor C is amplified, making it possible to develop multi-filament discharges between the electrodes of the candle, on distances of the order of one centimeter at high pressure and for peak voltages below 20 kV.
  • branched sparks These are referred to as branched sparks, insofar as they involve the simultaneous generation of at least several lines or ionization paths in a given volume, their branches being moreover omnidirectional.
  • This radiofrequency ignition application requires the use of a power supply capable of generating voltage pulses, typically of the order of 100 ns, which can reach amplitudes of the order of 1 kV, at a very similar frequency. of the resonant frequency of the radio frequency resonator of the coil-candle. The greater the difference between the resonance frequency of the resonator and the operating frequency of the power supply, the higher the resonator overvoltage coefficient (ratio between the amplitude of its output voltage and its input voltage) is high.
  • Figures 2 and 2 bis schematically illustrate such power supplies.
  • Figure 2 is further detailed in the patent application FR 03-10767.
  • the power supply conventionally implements a so-called "Class E power amplifier” assembly. This type of DC / AC converter makes it possible to create the voltage pulses with the aforementioned characteristics.
  • the power supply comprises a power supply circuit 2, respectively having a MOSFET transistor of power M, used as a switch for controlling the commutations at the terminals of the plasma generation resonator 1 intended to be connected. at the output of the supply circuit.
  • a control device 5 of the supply circuit generates a control logic signal Vl and applies this signal to the gate of the power MOSFET transistor M at a frequency which must be substantially set to the resonance frequency of the resonator 1.
  • the radiofrequency ignition system constituted by the supply circuit 2 and the resonator 1 is powered by a supply voltage Vinter, designed to be applied by the switch M to an output of the supply circuit, at the frequency defined by the control signal Vl.
  • the supply voltage Vinter is more precisely provided via a parallel resonant circuit 4, comprising an inductance Lp in parallel with a capacitance Cp, and connected between a capacitance Cb of the supply circuit, charged to the voltage d Vinter power supply, and the drain of the switch M.
  • the capacitance Cb, charged to the supply voltage Vinter allows in particular to stabilize the current during an ignition control.
  • Figure 2 bis details a variant of the power supply of Figure 2 with a transformer T, allowing galvanic isolation to avoid the secondary mass problems, the inductance Lp then forming the primary transformer.
  • This transformer is low gain of the order of 1.5 to 2.
  • the parallel resonator 4 transforms the supply voltage Vinter into an amplified voltage Va, corresponding to the supply voltage multiplied by the overvoltage coefficient of the parallel resonator. It is therefore the amplified power supply voltage Va which is applied on the output of the supply circuit at the drain of the switch transistor M.
  • the switch M then applies the amplified supply voltage Va to the output of the power supply, at the frequency defined by the control signal Vl, which is sought to make as close as possible to the resonant frequency of the coil-candle. Indeed, during an ignition command, in order to resonate the radiofrequency ignition system and thus maximize the energy transfer to the resonator forming the coil-candle, the latter must be driven substantially at its frequency of resonance.
  • the present invention aims to determine this optimal resonance frequency of the radiofrequency coil-plug, in order to achieve optimum control at this resonant frequency of the coil-plug.
  • the invention thus proposes a radiofrequency ignition supply device, comprising a supply circuit configured to apply to an output intended to be connected to a plasma generation resonator, a supply voltage at a frequency defined by a control signal provided by a control device of the supply circuit, characterized in that the control device comprises: an interface for receiving a request for determining an optimum control frequency,
  • an interface for receiving signals for measuring the voltage across a capacitance of the supply circuit, a module for determining the optimal control frequency, configured to successively supply different control frequencies to the power supply circuit for successive ignition commands during the reception of a request and to determine an optimum control frequency based on measurement signals received by the reception interface.
  • the optimal control frequency determining module is configured to determine an optimum control frequency substantially equal to the resonance frequency of the plasma generation resonator.
  • the power supply circuit comprises a switch controlled by the control signal and connected to the output.
  • the capacity of the supply circuit is charged to the supply voltage at the beginning of each ignition command.
  • the module for determining the optimal control frequency is configured to compare two successive values of deviations between a value of the voltage at the terminals of the capacity of the supply at the start of ignition control and a value of the voltage. at the terminals of the power supply capacity at the end of the ignition control, to modify the control frequency in a first direction if the difference between the successive values of deviations has a first sign and determine that the previous control frequency is the optimal control frequency if the difference between the successive values has a second sign.
  • the invention also relates to a radiofrequency ignition device comprising a supply device according to any one of the preceding claims and a plasma generation resonator connected to the output of the supply device.
  • the plasma generation resonator is adapted to achieve ignition in one of the following implementations: controlled ignition of combustion engine, ignition in a particulate filter, ignition decontamination in an air conditioning system.
  • FIG. 1 is a diagram of a resonator modeling a plasma generating radiofrequency coil-candle
  • FIG. 2 is a diagram illustrating a power supply used for controlling the resonator of the spark plug coil of FIG. 1;
  • FIG. 3 is an example of an algorithm for determining the resonance frequency of the bobbin.
  • the optimum control frequency for applying the supply voltage to the plasma generation resonator is a control frequency as close as possible to the resonance frequency of the resonator.
  • the control device 5 of the power supply comprises a module 53 for determining the optimum control frequency, when receiving a request for determining an optimum control frequency on an interface 52 provided for in FIG. this effect, to determine and provide this optimal control frequency to a module 54, delivering the control signal Vl at the determined frequency on an output interface 55 of the control device to which is connected the gate of the switch M.
  • the switch M then applies the high voltage at the frequency thus defined, at the output of the supply circuit to which the plasma generation resonator is connected.
  • T Cb (t) be the voltage across the capacitance Cb as a function of time.
  • control signal Vl is applied to the control gate of the switch M, thus allowing the application of the high voltage across the resonator of the coil-spark plug, at the frequency defined by the control signal Vl.
  • the aforementioned voltage values used for the calculation of ⁇ T cb are squared.
  • the radiofrequency plasma generation resonator 1 is driven at its resonant frequency if and only if:
  • the module 53 for determining the optimum control frequency is, during successive ignitions, an electrical measurement of the voltage across the capacitor Cb of the supply at the start of ignition and at the end of ignition, by via an interface 51 for receiving such measurement signals.
  • the plasma generating device may comprise a plasma generation resonator adapted to achieve a combustion engine controlled ignition, adapted to achieve ignition in a particulate filter or adapted to perform a decontamination ignition in an air conditioning system.
  • FIG. 3 illustrates an exemplary algorithm for determining an optimal control frequency corresponding to the resonance frequency of the resonator.
  • a step 101 it is verified that a request to determine the resonant frequency F c of the resonator has been received.
  • step 109 a plasma is generated by the resonator 1 using the optimal control frequency for the application of the high voltage on the resonator 1 by the switch M
  • the switch M is then controlled to apply to the resonator 1 a voltage suitable for the generation of a plasma, in a manner known per se.
  • the capacitance Cb of the power supply is charged to the voltage T ct> (0) intended to be applied by the switch M on the resonator 1 during the step 102 to control an ignition.
  • This tension is applied to a predetermined control frequency Ftemp, chosen for example equal to Fmin, corresponding to the minimum driving frequency of the radiofrequency plasma generation resonator.
  • Ftemp a predetermined control frequency
  • a measurement T cb (D) of the voltage across the capacitance Cb of the power supply is carried out after a duration D of applying the control signal Vl to the control gate of the switch. M at the frequency Ftemp.
  • step 104 from the measurement signals T ct> (0) and T cb (D) received on the reception interface, the difference ⁇ T cb between the square value of the voltage across the terminals of the capacitance Cb at the start of ignition T cb (0) and the voltage at the terminals of capacitor Cb at the end of ignition T C b (D), is calculated and compared with a reference ⁇ Tref, whose initial value is chosen by example equal to 0 during an initialization phase of this reference executed in step 102.
  • the reference ⁇ Tref is first updated with the value ⁇ T cb previously calculated during step 105.
  • step 106 It is also verified in step 106 that the current value of the control frequency F temp is less than F max, corresponding to the maximum control frequency of the radiofrequency plasma generation resonator. If the value Ftemp does not exceed Fmax, the value of the control frequency Ftemp is increased by a certain frequency step ⁇ F during step 107.
  • Steps 102 to 104 are then repeated with the new values of Ftemp and ⁇ Tref.
  • the optimal control frequency of the resonator was the previous control frequency.
  • the control frequency is updated with its previous value and the optimal control frequency of the resonator is set to this value, corresponding then substantially to the value of the resonance frequency F c of the generation resonator. of plasma.
  • the optimum control frequency F c thus determined can then be used for the generation of plasma in step 109.
  • the algorithm that has just been described implemented by the module 53 of the control device 5 then makes it possible to obtain optimum control of the resonance frequency of the plasma generation resonator.

Abstract

L'invention concerne un dispositif d'alimentation d'un allumage radiofréquence, comprenant un circuit d'alimentation (2, 2') configuré pour appliquer sur une sortie connectée à un résonateur (1) de génération de plasma, une tension d'alimentation à une fréquence définie par un signal de commande (Vl) fourni par un dispositif de commande (5) du circuit d'alimentation, caractérisé en ce que le dispositif de commande comprend: - une interface (52) de réception d'une requête de détermination d'une fréquence de commande optimale, - une interface (51) de réception de signaux de mesure de la tension aux bornes d'une capacité (Cb) du circuit d'alimentation (2), - un module (53) de détermination de la fréquence de commande optimale, configuré pour fournir successivement différentes fréquences de commande au circuit d'alimentation pour des commandes d'allumage successives lors de la réception d'une requête et pour déterminer une fréquence de commande optimale en fonction des signaux de mesure reçus.

Description

PILOTAGE OPTIMAL A LA FREQUENCE DE RESONANCE D'UN RESONATEUR D'UN ALLUMAGE RADIOFREQUENCE
La présente invention concerne, de façon générale, les systèmes de génération de plasma entre deux électrodes d'une bougie, utilisés notamment pour l'allumage radiofréquence commande d'un mélange gazeux dans des chambres de combustion d'un moteur à combustion interne . Pour une telle application à l'allumage automobile à génération de plasma, des circuits de génération de plasma intégrant des bobines-bougies sont utilisées pour générer des décharges multi-filamentaires entre leurs électrodes, permettant d'initier la combustion du mélange dans les chambres de combustion du moteur. La bougie multi étincelles dont il est fait état ici est décrite en détail dans les demandes de brevet suivantes déposées au nom de la demanderesse FR 03-10766, FR 03-10767 et FR 03- 10768. En référence à la figure 1, une telle bobine-bougie est classiquement modélisée par un résonateur 1, dont la fréquence de résonance Fc est supérieure à 1 MHz, et typiquement voisine de 5 MHz. Le résonateur, disposé au niveau de la bougie, comprend en série une résistance R, une inductance L et une capacité C. Des électrodes d'allumage 10 et 12 de la bobine-bougie sont connectées aux bornes de la capacité C.
Lorsque le résonateur est alimenté par une haute tension à sa fréquence de résonance fc ≈ (1/
Figure imgf000003_0001
) , l'amplitude aux bornes de la capacité C est amplifiée, permettant de développer des décharges multi- filamentaires entre les électrodes de la bougie, sur des distances de l'ordre du centimètre, à forte pression et pour des tensions de crête inférieures à 20 kV.
On parle alors d'étincelles ramifiées, dans la mesure où elles impliquent la génération simultanée d'au moins plusieurs lignes ou chemin d'ionisation dans un volume donné, leurs ramifications étant en outre omnidirectionnelles .
Cette application à l'allumage radiofréquence nécessite l'utilisation d'une alimentation, capable de générer des impulsions de tension, typiquement de l'ordre de 100 ns, pouvant atteindre des amplitudes de l'ordre de 1 kV, à une fréquence très proche de la fréquence de résonance du résonateur radiofréquence de la bobine- bougie. Plus la différence entre la fréquence de résonance du résonateur et la fréquence de fonctionnement de l'alimentation est réduite, plus le coefficient de surtension du résonateur (rapport entre l'amplitude de sa tension de sortie et sa tension d'entrée) est élevé.
Les figures 2 et 2bis illustrent schématiquement de telles alimentations . La figure 2 est détaillée par ailleurs dans la demande de brevet FR 03-10767. L'alimentation met classiquement en œuvre un montage dit « amplificateur de puissance Classe E ». Ce type de convertisseur DC/AC permet de créer les impulsions de tension avec les caractéristiques précitées.
Selon le mode de réalisation de la figure 2, l'alimentation comprend un circuit d'alimentation 2, respectivement présentant un transistor MOSFET de puissance M, utilisé comme interrupteur pour commander les commutations aux bornes du résonateur 1 de génération de plasma destiné à être connecté en sortie du circuit d' alimentation . Un dispositif de commande 5 du circuit d'alimentation génère un signal logique de commande Vl et applique ce signal sur la grille du transistor MOSFET de puissance M, à une fréquence qui doit être sensiblement calée sur la fréquence de résonance du résonateur 1.
Le système d'allumage radiofréquence constitué par le circuit d'alimentation 2 et le résonateur 1 est alimenté par une tension d'alimentation Vinter, prévue pour être appliquée par l'interrupteur M sur une sortie de du circuit d'alimentation, à la fréquence définie par le signal de commande Vl.
La tension d'alimentation Vinter est plus précisément fournie par l'intermédiaire d'un circuit résonant parallèle 4, comprenant une inductance Lp en parallèle avec une capacité Cp, et connecté entre une capacité Cb du circuit d'alimentation, chargée à la tension d'alimentation Vinter, et le drain de l'interrupteur M. La capacité Cb, chargée à la tension d'alimentation Vinter, permet notamment de stabiliser le courant lors d'une commande d'allumage.
La figure 2bis détaille une variante de l'alimentation de la figure 2 avec un transformateur T, permettant une isolation galvanique pour éviter les problèmes de masse au secondaire, l'inductance Lp formant alors le primaire du transformateur. Ce transformateur est à faible gain de l'ordre de 1,5 à 2.
A proximité de sa fréquence de résonance, le résonateur parallèle 4 transforme la tension d'alimentation Vinter en une tension amplifiée Va, correspondant à la tension d'alimentation multipliée par le coefficient de surtension du résonateur parallèle. C'est donc la tension d'alimentation amplifiée Va qui est appliquée sur la sortie du circuit d'alimentation au niveau du drain du transistor interrupteur M.
L'interrupteur M applique alors la tension d'alimentation amplifiée Va sur la sortie de l'alimentation, à la fréquence définie par le signal de commande Vl, que l'on cherche à rendre la plus proche possible de la fréquence de résonance de la bobine- bougie. En effet, lors d'une commande d'allumage, afin de pouvoir mettre en résonance le système d'allumage radiofréquence et maximiser ainsi le transfert d'énergie vers le résonateur formant la bobine-bougie, cette dernière doit être pilotée sensiblement à sa fréquence de résonance .
La présente invention vise à déterminer cette fréquence optimale de résonance de la bobine-bougie radiofréquence, afin de réaliser un pilotage optimal à cette fréquence de résonance de la bobine-bougie.
L'invention propose ainsi un dispositif d'alimentation d'un allumage radiofréquence, comprenant un circuit d'alimentation configuré pour appliquer sur une sortie destinée à être connectée à un résonateur de génération de plasma, une tension d'alimentation à une fréquence définie par un signal de commande fourni par un dispositif de commande du circuit d'alimentation, caractérisé en ce que le dispositif de commande comprend : une interface de réception d'une requête de détermination d'une fréquence de commande optimale,
- une interface de réception de signaux de mesure de la tension aux bornes d'une capacité du circuit d' alimentation, - un module de détermination de la fréquence de commande optimale, configuré pour fournir successivement différentes fréquences de commande au circuit d'alimentation pour des commandes d'allumage successives lors de la réception d'une requête et pour déterminer une fréquence de commande optimale en fonction des signaux de mesure reçus par l'interface de réception.
De préférence, le module de détermination de la fréquence de commande optimale est configuré pour déterminer une fréquence de commande optimale sensiblement égale à la fréquence de résonance du résonateur de génération de plasma.
Selon un mode de réalisation, le circuit d'alimentation comprend un interrupteur commandé par le signal de commande et connecté à la sortie.
De préférence, la capacité du circuit d'alimentation est chargée à la tension d'alimentation en début de chaque commande d'allumage.
Avantageusement, le module de détermination de la fréquence de commande optimale est configuré pour comparer deux valeurs successives d'écarts entre une valeur de la tension aux bornes de la capacité de l'alimentation en début de commande d'allumage et une valeur de la tension aux bornes de la capacité de l'alimentation en fin de commande d'allumage, pour modifier la fréquence de commande dans un premier sens si la différence entre les valeurs successives d'écarts présente un premier signe et déterminer que la précédente fréquence de commande est la fréquence de commande optimale si la différence entre les valeurs successives présente un second signe. L'invention concerne aussi un dispositif d'allumage radiofréquence comprenant un dispositif d'alimentation selon l'une quelconque des revendications précédentes et un résonateur de génération de plasma connecté à la sortie du dispositif d'alimentation.
Avantageusement, le résonateur de génération de plasma est adapté pour réaliser un allumage dans l'une des mises en œuvre suivantes : allumage commandé de moteur à combustion, allumage dans un filtre à particules, allumage de décontamination dans un système de climatisation.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence aux figures annexées dans lesquelles : la figure 1 est un schéma d'un résonateur modélisant une bobine-bougie radiofréquence de génération de plasma; - la figure 2 est un schéma illustrant une alimentation, utilisée pour la commande du résonateur de la bobine bougie de la figure 1;
- la figure 2bis est une variante de l'alimentation de la figure 2 ; - la figure 3 est un exemple d' algorithme de détermination de la fréquence de résonance de la bobine- bougie .
Comme on l'a vu, pour que l'allumage puisse avoir lieu, il est nécessaire de déterminer une fréquence de commande optimale pour le signal de commande Vl, commandant l'interrupteur M pour l'application de la haute tension d'alimentation sur la sortie du circuit d'alimentation à laquelle est connecté le résonateur 1.
La fréquence de commande optimale pour l'application de la tension d'alimentation au résonateur de génération de plasma est une fréquence de commande se rapprochant le plus possible de la fréquence de résonance du résonateur.
Pour ce faire, le dispositif de commande 5 de l'alimentation comprend un module 53 de détermination de la fréquence de commande optimale permettant, lors de la réception d'une requête de détermination d'une fréquence de commande optimale sur une interface 52 prévue à cet effet, de déterminer et de fournir cette fréquence de commande optimale à un module 54, délivrant le signal de commande Vl à la fréquence déterminée sur une interface de sortie 55 du dispositif de commande à laquelle est connectée la grille de l'interrupteur M. L'interrupteur M applique alors la haute tension à la fréquence ainsi définie, en sortie du circuit d'alimentation à laquelle est connecté le résonateur de génération de plasma.
Il va maintenant être décrit plus en détail le processus de détermination de la fréquence de commande optimale mis en œuvre par le dispositif de commande, lors de la réception d'une requête de détermination d'une fréquence de commande optimale.
Soit TCb (t) la tension aux bornes de la capacité Cb en fonction du temps .
A l'instant t=0, le signal de commande Vl est appliqué sur la grille de commande de l'interrupteur M, permettant ainsi l'application de la haute tension aux bornes du résonateur de la bobine-bougie, à la fréquence définie par le signal de commande Vl .
A l'instant t=D, consécutif à l'application de la haute-tension aux bornes du résonateur de la bobine- bougie pendant une durée D, l'étincelle se produit entre les électrodes de la bobine-bougie.
Lors d'une telle commande d'allumage, le résonateur radiofréquence de la bobine-bougie est piloté à sa fréquence de résonance si et seulement si l'écart, noté ΔTcb, entre la valeur de la tension aux bornes de la capacité Cb du circuit d' alimentation en début d'allumage, notée Tcb(O), (i.e. à l'instant t=0, où le signal de commande Vl est appliqué sur la grille de commande de l'interrupteur M) et en fin d'allumage, notée Tcb(D), (i.e. après une durée D d'application du signal de commande Vl au terme de laquelle l'étincelle se produit entre les électrodes de la bougie) est maximal. De préférence, les valeurs de tensions précitées utilisées pour le calcul de ΔTcb sont prises au carré.
Autrement dit, le résonateur 1 de génération de plasma radiofréquence est piloté à sa fréquence de résonance si et seulement si :
ΔTcb = ( [Tcb (0) ] 2-[Tcb(D) ] 2) est maximal. Aussi, le module 53 de détermination de la fréquence de commande optimale relève, lors d'allumages successifs, une mesure électrique de la tension aux bornes de la capacité Cb de l'alimentation en début d'allumage et en fin d'allumage, par l'intermédiaire d'une interface 51 de réception de tels signaux de mesure .
Ces mesures électriques de la valeur de la tension aux bornes de la capacité Cb en début et en fin d'allumage lors d'allumages successifs vont alors permettre, sur la base des principes exposés plus haut et comme il sera vu plus en détail par la suite, de déterminer une fréquence de commande optimale pour le pilotage du résonateur de génération de plasma, correspondant sensiblement à la fréquence de résonance du résonateur. La fréquence de commande optimale est alors mémorisée, puis utilisée comme fréquence de commande pour l'interrupteur M, lors d'une phase de fonctionnement normal du dispositif d'allumage radiofréquence, durant laquelle un plasma doit être généré entre les électrodes de la bobine-bougie.
Le dispositif de génération de plasma peut comprendre un résonateur de génération de plasma adapté pour réaliser un allumage commandé de moteur à combustion, adapté pour réaliser un allumage dans un filtre à particules ou adapté pour réaliser un allumage de décontamination dans un système de climatisation. La figure 3 illustre un exemple d'algorithme de détermination d'une fréquence de commande optimale correspondant à la fréquence de résonance du résonateur.
Lors d'une étape 101, on vérifie qu'une requête de détermination de la fréquence de résonance Fc du résonateur a été reçue.
En l'absence d'une telle requête, on passe à l'étape 109 et un plasma est généré par le résonateur 1 en utilisant la fréquence de commande optimale pour l'application de la haute tension sur le résonateur 1 par l'interrupteur M. L'interrupteur M est alors commandé pour appliquer sur le résonateur 1 une tension adéquate pour la génération d'un plasma, de façon connue en soi.
En présence d'une requête de recherche de la fréquence de résonance, la capacité Cb de l'alimentation est chargée à la tension Tct>(0) prévue pour être appliquée par l'interrupteur M sur le résonateur 1 lors de l'étape 102 pour commander un allumage. Cette tension est appliquée à une fréquence de commande Ftemp prédéterminée, choisie par exemple égale à Fmin, correspondant à la fréquence minimale de pilotage du résonateur de génération de plasma radiofréquence . Lors de l'étape 103, on réalise une mesure Tcb(D) de la tension aux bornes de la capacité Cb de l'alimentation après une durée D d'application du signal de commande Vl sur la grille de commande de l'interrupteur M à la fréquence Ftemp. Lors de l'étape 104, à partir des signaux de mesure Tct>(0) et Tcb(D) reçus sur l'interface de réception, l'écart ΔTcb entre la valeur au carré de la tension aux bornes de la capacité Cb en début d'allumage Tcb(0) et de la tension aux bornes de la capacité Cb en fin d'allumage TCb(D), est calculé et comparé à une référence ΔTref, dont la valeur initiale est choisie par exemple égale à 0 lors d'une phase d'initialisation de cette référence exécutée à l'étape 102.
Si l'écart calculé ΔTcb dépasse la référence ΔTref, la référence ΔTref est tout d'abord mise à jour avec la valeur ΔTcb précédemment calculée lors de l'étape 105.
On vérifie également lors de l'étape 106 que la valeur courante de la fréquence de commande Ftemp est inférieure à Fmax, correspondant à la fréquence maximale de pilotage du résonateur de génération de plasma radiofréquence . Si la valeur Ftemp ne dépasse pas Fmax, la valeur de la fréquence de commande Ftemp est augmentée d'un certain pas de fréquence ΔF lors de l'étape 107.
Pour plus de détail sur le calcul du pas de fréquence utilisé pour augmenter la valeur courante de la fréquence de commande, il est demandé au lecteur de se reporter au contenu de la demande de brevet français n°05 12769, déposée au nom de la demanderesse.
Les étapes 102 à 104 sont alors répétées avec les nouvelles valeurs de Ftemp et ΔTref. Lorsqu'on a déterminé à l'étape 104 que l'écart ΔTcb est inférieur à la référence ΔTref, on détermine que la fréquence de commande optimale du résonateur était la précédente fréquence de commande. Lors de l'étape 108, on met à jour la fréquence de commande avec sa valeur précédente et on fixe la fréquence de commande optimale du résonateur à cette valeur, correspondant alors sensiblement à la valeur de la fréquence de résonance Fc du résonateur de génération de plasma.
La fréquence de commande optimale Fc ainsi déterminée peut alors être utilisée pour la génération de plasma à l'étape 109.
L'algorithme qui vient d'être décrit mis en œuvre par le module 53 du dispositif de commande 5 permet alors d'obtenir un pilotage optimal en fréquence de résonance du résonateur de génération de plasma.

Claims

Revendications
1. Dispositif d'alimentation d'un allumage radiofréquence, comprenant un circuit d'alimentation (2) configuré pour appliquer sur une sortie destinée à être connectée à un résonateur (1) de génération de plasma, une tension d'alimentation à une fréquence définie par un signal de commande (Vl) fourni par un dispositif de commande (5) du circuit d'alimentation, ledit circuit d'alimentation comprenant un circuit résonant parallèle (4) connecté entre une capacité (Cb) dudit circuit d'alimentation et le drain d'un transistor interrupteur commandé par ledit signal de commande (Vl) et connecté à ladite sortie, caractérisé en ce que le dispositif de commande comprend :
- une interface (52) de réception d'une requête de détermination d'une fréquence de commande optimale,
- une interface (51) de réception de signaux de mesure de la tension aux bornes d'une capacité (Cb) du circuit d'alimentation (2),
- un module (53) de détermination de la fréquence de commande optimale, configuré pour fournir successivement différentes fréquences de commande au circuit d'alimentation pour des commandes d'allumage successives lors de la réception d'une requête et pour déterminer une fréquence de commande optimale en fonction des signaux de mesure reçus par l'interface de réception.
2. Dispositif selon la revendication 1, caractérisé en ce que le module de détermination de la fréquence de commande optimale est configuré pour déterminer une fréquence de commande optimale sensiblement égale à la fréquence de résonance du résonateur de génération de plasma .
3. Dispositif selon l'une quelconque des revendications 1 à 2, caractérisé en ce que la capacité (Cb) du circuit d'alimentation est chargée à la tension d'alimentation en début de chaque commande d'allumage.
4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le module (53) de détermination de la fréquence de commande optimale est configuré pour comparer deux valeurs successives d'écarts entre une valeur de la tension aux bornes de la capacité (Cb) de l'alimentation en début de commande d'allumage et une valeur de la tension aux bornes de la capacité (Cb) de l'alimentation en fin de commande d'allumage, pour modifier la fréquence de commande dans un premier sens si la différence entre les valeurs successives d'écarts présente un premier signe et déterminer que la précédente fréquence de commande est la fréquence de commande optimale si la différence entre les valeurs successives présente un second signe.
5. Dispositif d'allumage radiofréquence comprenant un dispositif d'alimentation selon l'une quelconque des revendications précédentes et un résonateur (1) de génération de plasma connecté à la sortie du dispositif d'alimentation.
6. Dispositif d'allumage radiofréquence selon la revendication 6, dans lequel le résonateur de génération de plasma est adapté pour réaliser un allumage dans l'une des mises en œuvre suivantes : allumage commandé de moteur à combustion, allumage dans un filtre à particules, allumage de décontamination dans un système de climatisation.
PCT/FR2008/050216 2007-03-28 2008-02-12 Pilotage optimal a la frequence de resonance d'un resonateur d'un allumage radiofrequence WO2008116991A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010500324A JP5208194B2 (ja) 2007-03-28 2008-02-12 給電デバイス及び高周波式点火デバイス
EP08762068.8A EP2134959B1 (fr) 2007-03-28 2008-02-12 Pilotage optimal a la frequence de resonance d'un resonateur d'un allumage radiofrequence
US12/593,482 US8528532B2 (en) 2007-03-28 2008-02-12 Optimum control of the resonant frequency of a resonator in a radiofrequency ignition system
CN2008800125334A CN101663481B (zh) 2007-03-28 2008-02-12 对射频点火系统中的谐振器的谐振频率的最佳控制
MX2009010324A MX2009010324A (es) 2007-03-28 2008-02-12 Control optimo de la frecuencia de resonancia de un resonador en un sistema de encendido de radiofrecuencia.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0702275 2007-03-28
FR0702275A FR2914530B1 (fr) 2007-03-28 2007-03-28 Pilotage optimal a la frequence de resonance d'un resonateur d'un allumage radiofrequence.

Publications (2)

Publication Number Publication Date
WO2008116991A2 true WO2008116991A2 (fr) 2008-10-02
WO2008116991A3 WO2008116991A3 (fr) 2008-12-11

Family

ID=38650986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050216 WO2008116991A2 (fr) 2007-03-28 2008-02-12 Pilotage optimal a la frequence de resonance d'un resonateur d'un allumage radiofrequence

Country Status (8)

Country Link
US (1) US8528532B2 (fr)
EP (1) EP2134959B1 (fr)
JP (1) JP5208194B2 (fr)
KR (1) KR101548728B1 (fr)
CN (1) CN101663481B (fr)
FR (1) FR2914530B1 (fr)
MX (1) MX2009010324A (fr)
WO (1) WO2008116991A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160317A1 (fr) * 2011-05-25 2012-11-29 Renault S.A.S. Alimentation pour allumage radiofrequence avec amplificateur a double etage
US11827989B2 (en) 2020-06-18 2023-11-28 Third Pole, Inc. Systems and methods for preventing and treating infections with nitric oxide
US11833309B2 (en) 2017-02-27 2023-12-05 Third Pole, Inc. Systems and methods for generating nitric oxide
US11975139B2 (en) 2021-09-23 2024-05-07 Third Pole, Inc. Systems and methods for delivering nitric oxide

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934942B1 (fr) * 2008-08-05 2010-09-10 Renault Sas Controle de la frequence d'excitation d'une bougie radiofrequence.
FR2955710B1 (fr) * 2010-01-22 2012-01-13 Renault Sa Bougie, systeme d'allumage, moteur et procede d'allumage pour le moteur.
DE102011052096B4 (de) * 2010-09-04 2019-11-28 Borgwarner Ludwigsburg Gmbh Verfahren zum Erregen eines HF-Schwingkreises, welcher als Bestandteil einen Zünder zum Zünden eines Brennstoff-Luft-Gemisches in einer Verbrennungskammer hat
DE102010045174B4 (de) * 2010-09-04 2012-06-21 Borgwarner Beru Systems Gmbh Schaltungsanordnung für eine HF-Zündung von Verbrennungsmotoren
CN102121447B (zh) * 2011-01-21 2013-04-03 电子科技大学 一种微波等离子体汽车发动机点火器
US8760067B2 (en) * 2011-04-04 2014-06-24 Federal-Mogul Ignition Company System and method for controlling arc formation in a corona discharge ignition system
CN102278252A (zh) * 2011-05-13 2011-12-14 清华大学 一种基于电磁波谐振频率的发动机点火方法
JP5873709B2 (ja) 2011-08-22 2016-03-01 株式会社日本自動車部品総合研究所 高周波プラズマ生成システム及びこれを用いた高周波プラズマ点火装置。
JP5676721B1 (ja) * 2013-10-24 2015-02-25 三菱電機株式会社 高周波放電点火装置
KR20160097339A (ko) 2013-12-12 2016-08-17 페더럴-모굴 이그니션 컴퍼니 코로나 점화 시스템 내에서의 공진 주파수 검출 방법
CN105003376B (zh) * 2015-07-20 2017-04-26 英国Sunimex有限公司 一种发动机射频点火控制方法和装置
WO2018157175A1 (fr) * 2017-02-27 2018-08-30 Third Pole, Inc. Systèmes et méthodes pour la génération ambulatoire d'oxyde nitrique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2649759A1 (fr) * 1989-07-13 1991-01-18 Siemens Bendix Automotive Elec Dispositif d'allumage pour moteur a combustion interne
US5587630A (en) * 1993-10-28 1996-12-24 Pratt & Whitney Canada Inc. Continuous plasma ignition system
FR2859831A1 (fr) * 2003-09-12 2005-03-18 Renault Sa Bougie de generation de plasma.
WO2007017481A1 (fr) * 2005-08-05 2007-02-15 Siemens Aktiengesellschaft Systeme d'allumage au plasma et procede pour le faire fonctionner
WO2007071865A1 (fr) * 2005-12-15 2007-06-28 Renault S.A.S Optimisation de la frequence d'excitation d'un resonateur

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756668A (en) * 1980-09-18 1982-04-05 Nissan Motor Co Ltd Plasma igniter
US5361737A (en) * 1992-09-30 1994-11-08 West Virginia University Radio frequency coaxial cavity resonator as an ignition source and associated method
JP3669600B2 (ja) * 1994-12-29 2005-07-06 本田技研工業株式会社 内燃機関の点火装置
JPH08200190A (ja) * 1995-01-18 1996-08-06 Technova:Kk 内燃機関点火装置
JP3557506B2 (ja) * 1995-06-23 2004-08-25 東洋電装株式会社 エンジンの点火コイル
FI954843A (fi) * 1995-10-11 1997-04-12 Valtion Teknillinen Menetelmä ja laite plasman muodostamiseksi
JP2002106455A (ja) * 2000-10-03 2002-04-10 Ngk Spark Plug Co Ltd 内燃機関用点火装置
DE10157029A1 (de) * 2001-11-21 2003-06-05 Bosch Gmbh Robert Hochfrequenzzündung für eine Brennkraftmaschine
FR2895170B1 (fr) 2005-12-15 2008-03-07 Renault Sas Optimisation de la frequence d'excitation d'un resonateur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2649759A1 (fr) * 1989-07-13 1991-01-18 Siemens Bendix Automotive Elec Dispositif d'allumage pour moteur a combustion interne
US5587630A (en) * 1993-10-28 1996-12-24 Pratt & Whitney Canada Inc. Continuous plasma ignition system
FR2859831A1 (fr) * 2003-09-12 2005-03-18 Renault Sa Bougie de generation de plasma.
WO2007017481A1 (fr) * 2005-08-05 2007-02-15 Siemens Aktiengesellschaft Systeme d'allumage au plasma et procede pour le faire fonctionner
WO2007071865A1 (fr) * 2005-12-15 2007-06-28 Renault S.A.S Optimisation de la frequence d'excitation d'un resonateur

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160317A1 (fr) * 2011-05-25 2012-11-29 Renault S.A.S. Alimentation pour allumage radiofrequence avec amplificateur a double etage
FR2975863A1 (fr) * 2011-05-25 2012-11-30 Renault Sa Alimentation pour allumage radiofrequence avec amplificateur a double etage
US11833309B2 (en) 2017-02-27 2023-12-05 Third Pole, Inc. Systems and methods for generating nitric oxide
US11911566B2 (en) 2017-02-27 2024-02-27 Third Pole, Inc. Systems and methods for ambulatory generation of nitric oxide
US11827989B2 (en) 2020-06-18 2023-11-28 Third Pole, Inc. Systems and methods for preventing and treating infections with nitric oxide
US11975139B2 (en) 2021-09-23 2024-05-07 Third Pole, Inc. Systems and methods for delivering nitric oxide

Also Published As

Publication number Publication date
MX2009010324A (es) 2009-12-16
US8528532B2 (en) 2013-09-10
EP2134959A2 (fr) 2009-12-23
WO2008116991A3 (fr) 2008-12-11
KR20090126309A (ko) 2009-12-08
FR2914530B1 (fr) 2014-06-20
FR2914530A1 (fr) 2008-10-03
JP5208194B2 (ja) 2013-06-12
US20100116257A1 (en) 2010-05-13
JP2010522841A (ja) 2010-07-08
CN101663481B (zh) 2011-09-21
CN101663481A (zh) 2010-03-03
KR101548728B1 (ko) 2015-09-01
EP2134959B1 (fr) 2016-09-28

Similar Documents

Publication Publication Date Title
EP2134959B1 (fr) Pilotage optimal a la frequence de resonance d'un resonateur d'un allumage radiofrequence
EP1961279B1 (fr) Optimisation de la frequence d'excitation d'un resonateur
EP2153056B1 (fr) Dispositif de mesure dans un systeme d'allumage radiofrequence pour un moteur a combustion interne
EP2115296B1 (fr) Pilotage d'une pluralite de bobines bougies via un unique etage de puissance
EP2205858B1 (fr) Dispositif de mesure du courant d'ionisation dans un systeme d'allumage radiofrequence pour un moteur a combustion interne
EP2126341B1 (fr) Optimisation de la generation d'une etincelle d'allumage radio-frequence
EP2315932B1 (fr) Controle de la frequence d'excitation d'une bougie radiofrequence
EP2250366B1 (fr) Optimisation de la frequence d'excitation d'une bougie radiofrequence
FR2857516A1 (fr) Appareil de surveillance de l'etat d'une batterie d'automobile
EP2156160A1 (fr) Diagnostic de l'etat d'encrassement des bougies d'un systeme d'allumage radiofrequence
FR2864172A1 (fr) Circuit de detection d'ionisation a double etage
EP2321524B1 (fr) Dispositif de mesure du courant d'ionisation dans un systeme d'allumage radiofrequence pour un moteur a combustion interne
FR2859536A1 (fr) Appareil de detection d'un enroulement secondaire ouvert d'une bobine d'allumage
FR3047573A1 (fr) Procede de commande en tension d'un equipement monte dans un vehicule automobile
WO2010136727A1 (fr) Procéde de détection du type d'étincelle générée par une bobine-bougie d'allumage radiofrequence, et dispositif correpondant
WO2023025586A1 (fr) Procédé d'allumage d'un moteur thermique d'un véhicule automobile

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880012533.4

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2008762068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008762068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/010324

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2010500324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20097022444

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08762068

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12593482

Country of ref document: US