WO2008108501A1 - ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR - Google Patents

ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR Download PDF

Info

Publication number
WO2008108501A1
WO2008108501A1 PCT/JP2008/054555 JP2008054555W WO2008108501A1 WO 2008108501 A1 WO2008108501 A1 WO 2008108501A1 JP 2008054555 W JP2008054555 W JP 2008054555W WO 2008108501 A1 WO2008108501 A1 WO 2008108501A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nox
sensor
concentration
post
Prior art date
Application number
PCT/JP2008/054555
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Sawada
Shinichiro Imamura
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Denso Corporation filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2008800072572A priority Critical patent/CN101646855B/en
Priority to US12/449,892 priority patent/US8091404B2/en
Priority to EP08721970.5A priority patent/EP2119897B1/en
Publication of WO2008108501A1 publication Critical patent/WO2008108501A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an abnormality diagnosis device for an NO X sensor, and more particularly, to an abnormality diagnosis device for an NOx sensor provided on the downstream side of the NOx storage reduction catalyst.
  • NO X catalysts for purifying NO X (nitrogen oxides) contained in exhaust gas are known as exhaust gas purification devices installed in exhaust systems of internal combustion engines such as diesel engines and lean burn gasoline engines. Yes.
  • NO X catalysts Various types are known. Among them, NOx storage reduction (NSR), which stores and removes NO X in exhaust gas, is known. It is known.
  • NSR NOx storage reduction
  • the NOx storage reduction catalyst stores NO X in the exhaust gas when the air-fuel ratio of the supplied exhaust gas is leaner than the predetermined value (typically the stoichiometric air-fuel ratio) (ie, an oxygen-excess atmosphere) When the air-fuel ratio of the supplied exhaust gas is richer than the predetermined value (ie, oxygen-deficient atmosphere), the stored NO X is released and reduced to N 2 . When the NOx storage reduction catalyst stores NO X in a saturated state, that is, full, the NO X catalyst can no longer store NO X.
  • the predetermined value typically the stoichiometric air-fuel ratio
  • the predetermined value typically the stoichiometric air-fuel ratio
  • the stored NO X is released and reduced to N 2 .
  • the NOx storage reduction catalyst stores NO X in a saturated state, that is, full, the NO X catalyst can no longer store NO X.
  • a reducing agent is supplied to the Nx catalyst, the NOX catalyst is placed in an oxygen-deficient atmosphere, and the NOX storage capacity is released from the NOX catalyst to restore the NOX storage capacity of the NOX catalyst. Is done. This is called N0x regeneration.
  • a NOX sensor that detects the NOX concentration in the exhaust gas is provided downstream of the NO X catalyst. For example, when NO X is occluded until the NO X catalyst is full, NO X leaks to the downstream side of the catalyst, so NO X regeneration can be started when the NOX sensor detects this leaked NOX. Les. In addition, during NOx regeneration, when the NOx concentration detected by the NOx sensor has dropped sufficiently, it can be considered that all of the stored NOx has been released, so NOx regeneration can be terminated.
  • NO X sensors can be installed at the same position and their detected values can be compared relatively, or NO X sensors can be removed and checked with a fixed analyzer.
  • a way to do this is conceivable. However, in the former case, the cost is high, and in the latter case, on-board diagnosis is impossible.
  • Japanese Patent Laid-Open No. 2003-1 20399 discloses an abnormality detection apparatus for a NOx sensor provided downstream of a NOx absorbent.
  • NOx concentration of the exhaust gas that reaches the NO X sensor is forcibly changed and the fluctuation of the NOx sensor output value deviates from the fluctuation when the sensor is normal, the NOx sensor is judged to be abnormal.
  • the NOx concentration of the exhaust gas is the same as the concentration after NOx is absorbed by the NOx absorbent.
  • the output value of the NO X sensor reflects the effect of the NO X absorbent in front of the sensor, which causes a decrease in the accuracy of NOX sensor abnormality diagnosis. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to suitably detect an abnormality in a NOX sensor provided on the downstream side of the NOx storage reduction catalyst.
  • the object is to provide an abnormality diagnosis device for a NO x sensor.
  • An NOx storage reduction catalyst provided in the exhaust passage of the internal combustion engine
  • a post-catalyst N O X sensor for detecting the N O X concentration of exhaust gas downstream of the N O X catalyst
  • Pre-catalyst NO X concentration acquisition means for detecting or estimating the NOx concentration of exhaust gas upstream of the NOx catalyst
  • the post-catalyst NOx sensor can be determined to be abnormal. Abnormality diagnosis is performed in a state where the NOx catalyst is not present, so the influence of NOx catalyst in the abnormality diagnosis can be removed, and abnormalities in the NOX sensor after the catalyst can be detected appropriately, with high diagnostic accuracy. Can be secured. Even if the NOx sensor after the catalyst detects an abnormal value, there is no confusion about whether the NOx catalyst is abnormal or the post-catalyst NO X sensor is abnormal. Can be detected.
  • Catalyst temperature acquisition means for detecting or estimating the temperature of the NO X catalyst
  • the abnormality determination means is the catalyst temperature force detected or estimated by the catalyst temperature acquisition means.
  • the temperature should not substantially occlude NO X
  • the NOx concentration detected by the post-catalyst NOX sensor is compared with the NOx concentration detected or estimated by the pre-catalyst NOX concentration acquisition means under the above conditions, and the post-catalyst NOX sensor Judging abnormalities
  • the temperature of the N O X catalyst is not within a predetermined temperature range, N O X can be substantially not absorbed and released. Therefore, when the catalyst temperature is higher or lower than that temperature range, N O X cannot be stored.
  • the post-catalyst N O X concentration detected when the catalyst temperature is not in such a temperature range is compared with the pre-catalyst N O X concentration to determine the abnormality of the post-catalyst N O X sensor.
  • the N O X upstream of the N O X catalyst is passed through the N O X catalyst to reach the N O X catalyst downstream, so that the abnormality diagnosis of the post-catalyst N O X sensor can be suitably executed as in the first embodiment.
  • An air-fuel ratio acquisition means for detecting or estimating the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is provided;
  • the abnormality determination means includes the NOX concentration detected by the post-catalyst NOX sensor under the condition that the air-fuel ratio detected or estimated by the air-fuel ratio acquisition means is the stoichiometric air-fuel ratio or a richer than that, and the catalyst Comparing with the NOX concentration detected or estimated by the pre-NOX concentration acquisition means, the abnormality of the post-catalyst NOX sensor is judged.
  • a rich spike control means for executing a rich spike control for releasing NOx stored in the NOx catalyst.
  • the rich spike control means executes the rich spike control before detecting the NOx concentration by the post-catalyst NOX sensor. It is characterized by that.
  • the NOx stored in the NOx catalyst can be released in advance before the subsequent NOx concentration detection, and the influence of the stored NOx during the subsequent NOx concentration detection can be eliminated.
  • the pre-catalyst NOx concentration acquisition unit is configured to control exhaust gas discharged from the internal combustion engine based on an operating state of the internal combustion engine. It consists of at least one of an estimation means for estimating the NOx concentration and a pre-catalyst NOX sensor for detecting the NOx concentration of the exhaust gas upstream of the NOx catalyst.
  • the pre-catalyst N0 X concentration acquisition means comprises both the estimation means and the pre-catalyst NO X sensor,
  • the abnormality determination means compares the detected value of NOx concentration by the post-catalyst NOx sensor, the detected value of NOx concentration by the pre-catalyst NOX sensor, and the estimated value of NOX concentration by the estimation means, and compares the post-catalyst NOx sensor and Judgment is made by distinguishing the abnormality of the NOx sensor before the catalyst.
  • the abnormality determination unit is configured to perform the post-catalyst NOX sensor under the condition that the post-catalyst NOX sensor is in an active state. Based on the detected NOX concentration, the post-catalyst N0 X sensor is judged abnormal
  • FIG. 1 is a schematic system diagram of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a time chart showing the contents of the abnormality diagnosis of one embodiment.
  • FIG. 3 is a flowchart showing the contents of the abnormality diagnosis process of the embodiment.
  • FIG. 4 is a schematic system diagram of an internal combustion engine according to another embodiment of the present invention.
  • FIG. 5 is a flowchart showing the contents of the abnormality diagnosis process of another embodiment.
  • FIG. 1 is a schematic system diagram of an internal combustion engine according to an embodiment of the present invention.
  • the internal combustion engine 1 burns a fuel / air mixture in a combustion chamber 3 formed in a cylinder block 2 and reciprocates a piston 4 in the combustion chamber 3.
  • the internal combustion engine 1 is a vehicular multi-cylinder engine (only one cylinder is shown), and is a spark ignition internal combustion engine, more specifically, a gasoline engine.
  • the internal combustion engine to which the present invention is applied is not limited to a spark ignition type internal combustion engine, and may be, for example, a compression ignition type internal combustion engine, that is, a diesel engine.
  • an intake valve V i that opens and closes an intake port and an exhaust valve V e that opens and closes an exhaust port are provided for each cylinder.
  • Each intake valve V i and each exhaust valve V e are opened and closed by a camshaft (not shown).
  • An ignition brag 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.
  • an indicator (fuel injection valve) 1 2 is disposed in the cylinder head for each cylinder so that fuel is directly injected into the combustion chamber 3.
  • the bin 4 is configured as a so-called deep dish top surface type, and a concave portion 4a is formed on the top surface thereof.
  • each cylinder is connected to a surge tank 8 which is an intake air collecting chamber through a branch pipe for each cylinder.
  • An intake pipe 13 that forms an intake manifold is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13.
  • An air flow meter 5 for detecting the intake air amount and an electronically controlled throttle valve 10 are incorporated in the intake pipe 13 in order from the upstream side.
  • An intake passage is formed by the intake port, the surge tank 8 and the intake pipe 13.
  • the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through a branch pipe for each cylinder.
  • the exhaust pipe 6 is provided with a three-way catalyst 11 that can simultaneously purify C ⁇ , HC, and NOx in the exhaust gas at the upstream side, and NOx in the exhaust gas is purified at the downstream side.
  • a possible NOx catalyst 16 is provided.
  • a CCL catalyst unit CCL: Catalytic Converter Lean
  • the catalyst 11 and NOx catalyst 16 can be placed separately in separate casings.
  • the three-way catalyst 1 1 is not absolutely necessary and can be omitted. For example, in the case of a diesel engine, there are many cases where a ternary catalyst is not provided.
  • An air-fuel ratio sensor 17 for detecting the air-fuel ratio (AZF) of the exhaust gas is installed upstream of the three-way catalyst 11. Further, a NOx sensor for detecting the NOx concentration of the exhaust gas, that is, a post-catalyst NOx sensor 18 is installed downstream of the N0x catalyst 16.
  • the air-fuel ratio sensor 17 is a so-called wide-area air-fuel ratio sensor, can continuously detect an air-fuel ratio over a relatively wide area, and outputs a current signal proportional to the air-fuel ratio.
  • the air-fuel ratio sensor 1 7 may consist called 0 2 sensor you sudden change output voltage stoichiometric air-fuel ratio (stoichiometric) the boundary.
  • the spark plug 7, the throttle valve 10, the injector 12 and the like described above are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as a control means.
  • the ECU 20 includes a CPU, a ROM, a RAM, an input / output port, and a storage device, all not shown. Also, the ECU 20 has the above-mentioned as shown in the figure.
  • Airflow meter 5 Air-fuel ratio sensor 17, Post-catalyst NOx sensor 18 power, Crank angle sensor 14 to detect the crank angle of internal combustion engine 1, accelerator opening sensor 15 to detect accelerator opening, NO X catalyst 1
  • Exhaust temperature sensors installed upstream and downstream of 6 i.e., pre-catalyst exhaust temperature sensor 21 and post-catalyst exhaust temperature sensor 22 and other various sensors are electrically connected via an AZD converter (not shown), etc. Yes.
  • the ECU 20 controls the ignition plug 7, the throttle valve 10, the injector 12, etc. so that a desired output can be obtained based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, Control the throttle opening.
  • the pre-catalyst exhaust temperature sensor 21 is installed at a position between the ternary catalyst 11 and the NOx catalyst 16.
  • the post-catalyst NOx sensor 18 is equipped with a heater, and the ECU 20 executes temperature control (heater control) of the post-catalyst NOx sensor 18.
  • the output of the crank angle sensor 14 is also used to detect the engine speed Ne.
  • the air-fuel ratio range (window) that can simultaneously purify these three with high efficiency is relatively narrow. Therefore, in order for the three-way catalyst 11 to function effectively, as one aspect of the air-fuel ratio control, the air-fuel ratio of the air-fuel mixture is set so that the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 11 is close to the theoretical air-fuel ratio. Be controlled.
  • stoichiometric control This is referred to as stoichiometric control, and the engine operation mode when stoichiometric control is being executed is called stoichiometric operation.
  • the target air-fuel ratio is set equal to the stoichiometric air-fuel ratio, so that the fuel injection amount injected from the indicator 12 and thus the air-fuel ratio detected by the air-fuel ratio sensor 17 becomes equal to the target air-fuel ratio.
  • the air-fuel ratio is feedback controlled.
  • the target air-fuel ratio may be set higher than the stoichiometric air-fuel ratio, that is, a lean value.
  • This is called lean burn control
  • the operation mode of the engine when lean burn control is executed is called lean burn operation.
  • the fuel injection amount is adjusted so that the air-fuel ratio detected by the air-fuel ratio sensor 17 becomes equal to the target air-fuel ratio.
  • the air-fuel ratio is feedback controlled.
  • the air-fuel ratio of exhaust gas exhausted from the engine may be set to a lean value that makes NO X purification with the three-way catalyst 11 virtually impossible.
  • a NO X catalyst 16 is provided on the downstream side of the three-way catalyst 11 1 in order to purify the NO X that has passed through the three-way catalyst 11.
  • the NO X catalyst 16 uses an NOX storage reduction (NSR) catalyst.
  • NSR NOX storage reduction
  • the NOx storage reduction catalyst, the alumina A 1 2 0 oxide such as 3 or Ranaru substrate surface, a noble metal such as platinum P t as a catalyst component, and a NOx absorbing component is composed is carried Yes.
  • NOx absorption components include, for example, potassium K, sodium Na, lithium Li, alkali metals such as cesium C s, alkaline earths such as barium Ba, calcium ca, lanthanum La, yttrium Y It consists of at least one selected from rare earths such as
  • the NOx storage reduction catalyst 16 stores N0x in the exhaust gas in the form of nitrate when the air-fuel ratio of the exhaust gas flowing into it is leaner than the stoichiometric air-fuel ratio, and the exhaust gas that flows into the NOx catalyst 16 When the fuel ratio is the stoichiometric air-fuel ratio or higher than that, the stored NOx is released and the NOx is absorbed and released.
  • the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, and the NOx catalyst 16 absorbs N0x in the exhaust.
  • NOx catalyst 16 occludes NOx to saturation, that is, full, NOx catalyst 16 can no longer occlude NOx, so NOx catalyst 16 should release NOx occluded from NOx catalyst.
  • Rich spike control is performed to supply exhaust gas that is at the stoichiometric air-fuel ratio or richer than that.
  • the target air-fuel ratio is temporarily set to the stoichiometric air-fuel ratio or a value richer than that, and the air-fuel ratio and thus the air-fuel ratio of the exhaust gas is controlled to the stoichiometric air-fuel ratio or a rich value lower than that. .
  • NOx regeneration releasing NOx from the NOx catalyst 16 to restore the NOx storage capacity of the NOx catalyst 16 is called NOx regeneration.
  • Reducing agents include hydrocarbon HC and monoxide in the exhaust.
  • Carbon or other reducing components may be used, such as hydrogen, gas such as carbon monoxide, liquid such as propane, propylene, and butane or gaseous hydrocarbons, liquid fuel such as gasoline, light oil, and kerosene.
  • gas such as carbon monoxide
  • liquid such as propane, propylene, and butane or gaseous hydrocarbons
  • liquid fuel such as gasoline, light oil, and kerosene.
  • the temperature of the NO X catalyst 16 (catalyst bed temperature) is detected or estimated.
  • the temperature that can be directly detected by the temperature sensor embedded in the NO x catalyst is estimated as the temperature of the Nx catalyst 16 in this embodiment.
  • the ECU 20 estimates the catalyst temperature based on the pre-catalyst exhaust temperature and the post-catalyst exhaust temperature detected by the pre-catalyst exhaust temperature sensor 21 and the post-catalyst exhaust temperature sensor 22, respectively. Note that the estimation method is not limited to such an example.
  • the feature of the abnormality diagnosis of the post-catalyst NO X sensor 18 in this embodiment is that the NO X catalyst 16 is catalyzed by the post-catalyst NO X sensor 18 under the condition that the NO X catalyst 16 does not substantially store NO X in the exhaust gas.
  • the NOx concentration after the catalyst is detected, and the NOx concentration before the catalyst upstream of the NOx catalyst is detected or estimated, and the NOx concentration after the catalyst and the NOx concentration before the catalyst are compared with each other to compare the NOx concentration before the catalyst with each other. It is in the point of judging 18 abnormalities.
  • Nx catalyst does not substantially store NO X in exhaust gas
  • the normal and undegraded NOX catalyst does not substantially store NO X in exhaust gas.
  • the NOx storage capacity is temporarily extremely lowered even though the NOx catalyst is normal and undegraded. This includes a state where the NOx storage capacity of the NOx catalyst is completely absent (zero), but is not limited to the state of none.
  • NO X catalyst 16 Under the condition that NOx catalyst 16 does not substantially store NO X in the exhaust gas, NO X catalyst 16 does not work substantially and NO X flowing into NO X catalyst 16 passes through NO X catalyst 16 To the downstream side of the NO X catalyst 16. NO X upstream of NOx catalyst 16
  • the x concentration, that is, the pre-catalyst N ⁇ X concentration, and the NO x concentration downstream of the NOX catalyst 16, that is, the post-catalyst NOX concentration are approximately equal. Therefore, if the detected value of the post-catalyst NOX concentration deviates from the pre-catalyst NOX concentration by a certain value or more, the post-catalyst NO sensor 18 can be determined to be abnormal.
  • the post-catalyst NO X sensor 18 can be determined to be normal. N ⁇
  • the abnormality diagnosis is executed in the state where the X catalyst does not work, that is, the state where the NOX catalyst is not present, so the influence of the NO X catalyst in the abnormality diagnosis can be removed, and high diagnosis accuracy should be ensured. Can do. Even if the NO X sensor after the catalyst detects an abnormal value, there is no confusion as to whether the NO X catalyst is abnormal or the post-catalyst NO X sensor is abnormal. It can be detected as an abnormality.
  • the post-catalyst NOx concentration and the pre-catalyst NOX concentration detected under the condition that the catalyst temperature as the estimated temperature is a temperature at which the NOx catalyst 16 does not substantially store NOX in the exhaust gas, Are compared, and the abnormality of the Nx sensor after the catalyst is judged.
  • the NOx catalyst 16 cannot substantially absorb and release NO when the temperature is not within a predetermined operating temperature range, and therefore the catalyst temperature is at least one of a higher temperature and a lower temperature than the operating temperature range. When it is, NOx cannot be occluded.
  • the post-catalyst NOX concentration detected when the catalyst temperature is at least one of a higher temperature and a lower temperature than the operating temperature range is compared with the pre-catalyst NOX concentration to determine whether the post-catalyst NOX sensor is abnormal. judge.
  • Abnormal diagnosis of the post-catalyst NO X sensor is executed using the situation where the catalyst temperature is outside the operating temperature range.
  • the lower limit temperature T cmin of the operating temperature range is, for example, about 300 ° C
  • the upper limit temperature T cma X is, for example, about 550 ° C.
  • the air-fuel ratio detected by the air-fuel ratio sensor 17 in this embodiment is the stoichiometric air-fuel ratio or richer than that.
  • the post-catalyst NOX sensor abnormality may be judged. Even when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is the theoretical air-fuel ratio or higher, the NOx catalyst 16 releases NOx and cannot store NO X. NO X sensor abnormality after catalyst Diagnosis can be performed.
  • the detected post-catalyst N0x concentration is compared with the pre-catalyst N0x concentration.
  • An abnormality of the NOx sensor after the catalyst may be determined. Even at this time, the NOx catalyst 16 cannot occlude NOx, so this situation can be used to diagnose the abnormality of the NOx sensor after the catalyst.
  • the pre-catalyst NOx concentration is preferably the NOx concentration of exhaust gas discharged from the combustion chamber 13 of the engine 10 and estimated based on the operating state of the engine 10 (hereinafter referred to as pre-catalyst estimation). NOx concentration) and NOx concentration detected by the NOx sensor upstream of the NOx catalyst 16 (ie, NOx sensor before catalyst (see symbol 30 in FIG. 4)). Concentration), at least one of the following.
  • the former estimated pre-catalyst N O X concentration is used as the pre-catalyst N O X concentration.
  • the ECU 20 calculates the pre-catalyst estimated NOx concentration according to a map prepared in advance based on the detected value of the parameter representing the engine operating state. As such parameters, for example, at least one of the engine speed Ne, the intake air amount Ga, the air-fuel ratio A / F, the exhaust temperature Teg, and the fuel injection amount Q can be used.
  • a predetermined map or the like Calculate the pre-catalyst estimated NOx concentration.
  • the pre-catalyst NOx concentration needs to be an accurate value.
  • Other parts of the engine injectors, etc. are also diagnosed abnormally by ECU 20, and other parts If no abnormalities are detected, the pre-catalyst estimated NOx concentration can be regarded as an accurate value. This guarantees the accuracy of the estimated NOx concentration before the catalyst, and thus the reliability of the abnormality diagnosis result of the post-catalyst NO sensor 18.
  • the engine is lean burned when the abnormality of the post-catalyst NOx sensor 18 is diagnosed, and the three-way catalyst 1 1 reduces NOx.
  • the exhaust air / fuel ratio is increased to such an extent that it cannot be purified. Therefore, the influence of the three-way catalyst 1 1 is eliminated, and the three-way catalyst 1 1 can be regarded as if there is no one.
  • the NOx catalyst 16 does not substantially store NOx, it is assumed that the NOx exhausted from the engine reaches the NOx sensor 18 after the catalyst after the three-way catalyst 1 1 and NOx catalyst 1 6 are treated as it is. be able to.
  • FIG. Figure 2 shows the change in each value after the engine starts.
  • (A) is the catalyst temperature T c estimated by ECU20
  • (B) is the post-catalyst NOx sensor 18 temperature T s (hereinafter also simply referred to as sensor temperature)
  • (C) is the output of the air-fuel ratio sensor 17 (Converted value to air-fuel ratio AZF)
  • (D) shows the output of NOx sensor 18 after catalyst (converted value to NOx concentration Cr).
  • Time t 0 is the engine start completion time.
  • the temperature T s of the post-catalyst NO X sensor 18 is detected and controlled by the ECU 20.
  • the element impedance of the post-catalyst N0 X sensor 18 is detected by the ECU 20, and the post-catalyst NOx sensor 18 has a high impedance so that this element impedance becomes a predetermined value corresponding to the sensor activation. Data is controlled.
  • the catalyst temperature Tc and the sensor temperature Ts gradually rise, and eventually the catalyst temperature Tc exceeds the lower limit temperature Tcmin.
  • the sensor temperature T s exceeds the lower limit temperature T smin (for example, about 750 ° C) and enters the active temperature range (time t 2).
  • the sensor temperature T s is then maintained at a value slightly higher than the lower limit temperature T s m i n.
  • the air-fuel ratio control is shifted from the stoichiometric control to the lean burn control around these times t1 and t2, and the air-fuel ratio is higher than the stoichiometric air-fuel ratio (stoky).
  • the value is maintained (for example, about 16-18).
  • the air-fuel ratio at this time is such a high air-fuel ratio that NO X cannot be purified by the three-way catalyst 11. Therefore, the NO X exhausted from the engine passes through the three-way catalyst 11, but is trapped and occluded by the NOx catalyst 16 at the subsequent stage. Therefore, as shown in (D), NOx is not discharged downstream of the NOx catalyst 16.
  • the rich spike control is executed as indicated by symbol a in (C). Specifically, the air-fuel ratio of the air-fuel mixture and the exhaust gas is controlled to a rich value lower than the stoichiometric air-fuel ratio. As a result, NOx stored in the NOx catalyst 16 is released, and NOx is detected on the downstream side of the NOx catalyst 16 as indicated by the symbol b in (D).
  • a force before the NOx is detected by the post-catalyst NOx sensor 18, that is, before the NOx occlusion amount of the N0x catalyst 16 is full is applied.
  • the catalyst temperature Tc gradually increases thereafter, and the catalyst temperature Tc exceeds the upper limit temperature Tcmax and deviates from the operating temperature range (time t3).
  • abnormality diagnosis of the post-catalyst NOx sensor 18 is performed using this timing.
  • the rich spike control is immediately executed as indicated by the symbol c in (C). This is because NO X stored in the NOx catalyst 16 is released in advance before the subsequent NO X concentration detection, and the influence of the stored NO X in the subsequent NO X concentration detection is eliminated. In other words, it is rich spike control for pretreatment.
  • the NOx concentration C r detected by the post-catalyst NOx sensor 1 8 at this time is approximately equal to the pre-catalyst estimated NO X concentration C e estimated based on the engine operating condition. It is. Therefore, after the end of the rich spike, the post-catalyst NOx concentration C r detected by the post-catalyst NOx sensor 18 at the predetermined time (time ij t 4) where the post-catalyst NOx concentration C r is stable, for example. Acquire the pre-catalyst estimated NOx concentration Ce during the same period. These NOx concentrations are compared with each other.
  • the post-catalyst NOx sensor 1 Judge 8 as normal.
  • the post-catalyst N Ox concentration Cr is outside the predetermined concentration range ⁇ , the post-catalyst NO X sensor 18 is determined to be abnormal.
  • the illustrated example is an example in the case of being determined to be normal.
  • the catalyst temperature Tc gradually decreases, reaches the upper limit temperature T cma X at the time t5, and enters the operating temperature range.
  • the post-catalyst NOx concentration C r and the pre-catalyst estimated NOx concentration C e are acquired at any time from the end of the rich spike until the catalyst temperature T c falls below the upper limit temperature T cma X (t 5). .
  • the example described here is an example in which abnormality diagnosis is performed when the catalyst temperature Tc is higher than the operating temperature range. Instead of or in addition to this, the catalyst temperature Tc is within the operating temperature range. An example in which abnormality diagnosis is performed at a lower temperature is also possible. However, in this case, it is necessary that at least the element temperature of the post-catalyst NO X sensor 18 is in the active temperature range and the post-catalyst NO X sensor 18 is in the active state. '
  • step S 1 0 whether the estimated catalyst temperature T c is within the operating temperature range described above. It is determined whether the estimated catalyst temperature T c is equal to or higher than the lower limit temperature T cmin and lower than the upper limit temperature T cma ⁇ .
  • the catalyst temperature Tc When the catalyst temperature Tc is within the operating temperature range, this process is terminated.
  • the catalyst temperature Tc may be controlled so that the catalyst temperature Tc deviates from the operating temperature range. For example, if the air-fuel ratio is changed to the rich side, the catalyst temperature Tc increases, and if the air-fuel ratio is changed to the lean side, the catalyst temperature Tc decreases.
  • step S 1 0 2 whether or not the post-catalyst NOX sensor 18 temperature T s is the active temperature It is determined whether the temperature is higher than the lower limit temperature T smin.
  • step S 104 it is determined whether or not the rich spike control has been completed, that is, whether or not a predetermined rich spike termination condition has been established.
  • the rich spike control is not completed, that is, when it is being executed, this processing is terminated, and when the rich spike control is completed, the process proceeds to step S 1 0 5.
  • a step waiting for the elapse of a predetermined time may be added between step S 1 0 4 and step S 1 0 5.
  • step S 1 0 5 the value of the pre-catalyst estimated N O X concentration Ce that is estimated based on the engine operating state is acquired.
  • step S 1 0 6 the value of the post-catalyst N O X concentration C r detected by the post-catalyst N O X sensor 18 is acquired.
  • step S 107 the post-catalyst N O X concentration C r and the pre-catalyst estimated N O x concentration C e are compared to determine whether or not these concentrations are substantially equal to each other.
  • the post-catalyst NOX concentration C r is regarded as substantially equal to the pre-catalyst estimated NOX concentration C e, and the post-catalyst NOX sensor 1 8 in step S 1 0 8 Is determined to be normal.
  • the concentration difference AC is greater than the predetermined value AC s, the post-catalyst N Ox concentration C r is considered to be relatively deviated from the pre-catalyst estimated N0x concentration C e, and in step S 109 the post-catalyst NO X sensor 18 is determined to be abnormal. This process is completed.
  • the NO X concentration C r after the catalyst and the estimated NO X concentration C e before the catalyst are obtained under the conditions where the NO X catalyst 16 cannot substantially store NO X (under temperature conditions). Therefore, the abnormality of the post-catalyst NO X sensor 18 is judged, so that the abnormality diagnosis can be performed without being affected by the intervening NO X catalyst 16. Therefore, suitable for high diagnostic accuracy
  • a pre-catalyst NO X sensor 30 is additionally provided in the exhaust passage on the upstream side of the NOx catalyst 16.
  • the pre-catalyst NOx sensor 30 detects the NOx concentration upstream of the NOx catalyst (pre-catalyst detected NOx concentration).
  • the pre-catalyst NO X sensor 30 is arranged upstream of the three-way catalyst 11.
  • the present invention is not limited to this example.
  • the pre-catalyst NOx sensor 30 is connected to the three-way catalyst 11 and N. ⁇ You can place it between x catalyst 1 6.
  • the pre-catalyst NOx concentration detected by the post-catalyst NOx sensor 18, the pre-catalyst detected NOx concentration detected by the pre-catalyst NOx sensor 30, and the pre-catalyst estimate estimated based on the engine operating condition Comparison of NOx concentration is performed. Based on the comparison result, the abnormalities of the post-catalyst NOx sensor 18 and the pre-catalyst NOx sensor 30 are distinguished and determined.
  • the detected pre-catalyst NOx concentration is compared with the pre-catalyst estimated NOx concentration.
  • Pre-catalyst NOX sensor 30 is not affected by the three-way catalyst 1 1 and NOx catalyst 16 and directly detects NOx emitted from the engine Therefore, if the pre-catalyst detected NO x concentration deviates significantly from the pre-catalyst estimated NO x concentration, the pre-catalyst NO x sensor 30 can be determined to be abnormal. In this way, the abnormality of the pre-catalyst NO X sensor 30 can also be detected, so that the range of abnormality diagnosis can be expanded.
  • the after-catalyst NO X concentration is compared with the before-catalyst detected NO X concentration.
  • the post-catalyst NOx concentration and the pre-catalyst detected NOx concentration should be approximately equal to each other. Therefore, if the post-catalyst NOx concentration deviates significantly from the pre-catalyst detected NOx concentration, the post-catalyst NOx sensor 18 can be determined to be abnormal.
  • the post-catalyst N O X concentration may be compared with the pre-catalyst estimated N O X concentration.
  • FIG. 5 shows specific processing according to this other embodiment. As described above, the process shown in the figure is executed by the ECU 20, and it is assumed that the lean burn control is performed so that the three-way catalyst 11 cannot be NOx purified except during the rich spike control. .
  • Steps S 20 1 to S 206 are the same as Steps S 1 0 1 to S 1 06 described above.
  • step S 207 the value of the pre-catalyst detected NO X concentration C f detected by the pre-catalyst NOx sensor 30 is acquired.
  • step S208 the pre-catalyst detected NOx concentration C f is compared with the pre-catalyst estimated NOx concentration Ce to determine whether or not these concentrations are substantially equal to each other.
  • step S 20 9 determines that the pre-catalyst NOx sensor 30 is abnormal.
  • the pre-catalyst detected NOx concentration C f is regarded as substantially equal to the pre-catalyst estimated NOx concentration Ce, and step S 2 1 Go to 0.
  • step S 21 the post-catalyst NO X sensor 18 is determined to be abnormal.
  • the second concentration difference AC 2 is equal to or less than the second predetermined value AC 2 s
  • the post-catalyst NO x concentration Cr is regarded as substantially equal to the pre-catalyst detected NO x concentration C f, and the process proceeds to step S212.
  • step S 21 2 it is determined that both the before-catalyst NO X sensor 30 and the after-catalyst NO X sensor 18 are normal. This process is completed as described above.
  • this invention can also take other embodiment.
  • the comparison when comparing NOx concentrations, the comparison is made based on these differences.
  • the present invention is not limited to this.
  • the comparison may be performed based on these ratios.
  • the pre-treatment rich spike control (steps S 103 and S 203) is performed immediately after the catalyst temperature T c deviates from the operating temperature range as in the above embodiment, and immediately before the catalyst temperature T c deviates from the operating temperature range. It is also possible to do this. It is also possible to omit the pre-processing latch spike control. It is also possible to carry out a control that fluctuates the NOx concentration of the exhaust gas forcibly and compares the NOx concentrations detected at this time to determine the abnormality.
  • the present invention is applicable to an N O X sensor provided in an exhaust system of an internal combustion engine.

Abstract

An exhaust path of an internal combustion engine is provided with a NOx storage reduction catalyst and a post-catalyst NOx sensor for detecting the NOx concentration downstream of the NOx catalyst. The NOx concentration upstream of the NOx catalyst is detected or estimated. Under the condition that the NOx catalyst substantially does not store NOx contained in exhaust gas, the detected or estimated NOx concentration upstream of the NOx catalyst and the NOx concentration detected by the post-catalyst NOx sensor are compared with each other to determine abnormality of the post-catalyst NOx sensor. Abnormality diagnosis is performed with an influence of the NOx catalyst eliminated.

Description

明細書  Specification
NO xセンサの異常診断装置 技術分野 NO x sensor abnormality diagnosis device Technical Field
本発明は NO Xセンサの異常診断装置に係り、特に、 吸蔵還元型 NO X触媒の下 流側に設けられた N O Xセンサの異常診断のための装置に関する。 背景技術  The present invention relates to an abnormality diagnosis device for an NO X sensor, and more particularly, to an abnormality diagnosis device for an NOx sensor provided on the downstream side of the NOx storage reduction catalyst. Background art
一般に、ディーゼルエンジンやリーンバーンガソリンエンジン等の内燃機関の排 気系に配置される排気浄化装置として、 排気ガスに含まれる NO X (窒素酸化物) を浄化するための NO X触媒が知られている。この NO X触媒としては様々なタイ プのものが知られているが、その中で、排気ガス中の NO Xを吸蔵して除去する吸 蔵還元型 NO X触媒 (NSR: NOx Storage Reduction) が公知である。 吸蔵還元型 NO X触媒は、 供給される排気ガスの空燃比が所定値 (典型的には理論空燃比) よ りリーン (即ち、 酸素過剰雰囲気) のときには排気ガス中の NO Xを吸蔵し、 供給 される排気ガスの空燃比が所定値より リツチ(即ち、 酸素不足雰囲気) のときには 吸蔵した NO Xを放出し N2 に還元するという、 NO Xの吸放出作用を有する。 吸蔵還元型 NO X触媒が NO Xを飽和状態即ち満杯まで吸蔵すると、 NO X触媒 がそれ以上 NO Xを吸蔵できなくなる。 そこで、 適宜の時間間隔において、 N〇x 触媒に還元剤を供給して N O X触媒を酸素不足雰囲気下におき、 N O X触媒から吸 蔵 NO Xを放出させて NO X触媒の NO X吸蔵能力を回復させることが行われる。 これを N〇x再生という。 In general, NO X catalysts for purifying NO X (nitrogen oxides) contained in exhaust gas are known as exhaust gas purification devices installed in exhaust systems of internal combustion engines such as diesel engines and lean burn gasoline engines. Yes. Various types of NO X catalysts are known. Among them, NOx storage reduction (NSR), which stores and removes NO X in exhaust gas, is known. It is known. The NOx storage reduction catalyst stores NO X in the exhaust gas when the air-fuel ratio of the supplied exhaust gas is leaner than the predetermined value (typically the stoichiometric air-fuel ratio) (ie, an oxygen-excess atmosphere) When the air-fuel ratio of the supplied exhaust gas is richer than the predetermined value (ie, oxygen-deficient atmosphere), the stored NO X is released and reduced to N 2 . When the NOx storage reduction catalyst stores NO X in a saturated state, that is, full, the NO X catalyst can no longer store NO X. Therefore, at appropriate time intervals, a reducing agent is supplied to the Nx catalyst, the NOX catalyst is placed in an oxygen-deficient atmosphere, and the NOX storage capacity is released from the NOX catalyst to restore the NOX storage capacity of the NOX catalyst. Is done. This is called N0x regeneration.
例えばこの NO X再生の開始や終了のタイミングを決定するため、 NO X触媒の 下流側には排気ガス中の N O X濃度を検出する N O Xセンサが設けられる。例えば、 NO X触媒が満杯まで NO Xを吸蔵すると触媒下流側に NO Xが漏れ出すので、 N O Xセンサがこの漏れ出した N〇 Xを検出したときに NO X再生を開始すればよ レ、。 また、 N〇x再生中に N〇xセンサによる検出 NO x濃度が十分低下したとき に吸蔵 NO Xが全て放出されたとみなせるので、 NO X再生を終了すればよい。 ところで、例えば自動車に搭載されたエンジンの場合、排ガスが悪化した状態で の走行を未然に防止するため、 車載状態 (オンボード) で触媒やセンサの異常を検 出することが各国法規等からも要請されている。触媒の異常検出については比較的 多くの技術が既に存在する。 しカゝしながら、 前述の如き、 NO X触媒の下流側に設 けられた N O Xセンサの異常検出に関しては効果的な技術が見当たらないのが現 状である。 特に排ガス規制が厳しくなりつつある現在、単に断線等の故障に止まら ず、 劣化等に関するセンサ出力の正確性 (rationality) についても正しく検出する ことが求められてきており、 これに対応できる抜本的な対策が必要である。 For example, in order to determine the start and end timing of this NO X regeneration, a NOX sensor that detects the NOX concentration in the exhaust gas is provided downstream of the NO X catalyst. For example, when NO X is occluded until the NO X catalyst is full, NO X leaks to the downstream side of the catalyst, so NO X regeneration can be started when the NOX sensor detects this leaked NOX. Les. In addition, during NOx regeneration, when the NOx concentration detected by the NOx sensor has dropped sufficiently, it can be considered that all of the stored NOx has been released, so NOx regeneration can be terminated. By the way, in the case of an engine mounted on an automobile, for example, it is also possible to detect abnormalities in the catalyst or sensor in the on-board state (on-board) according to the laws and regulations of each country in order to prevent traveling in a state where exhaust gas has deteriorated. It has been requested. Relatively many technologies already exist for the detection of catalyst abnormalities. However, as described above, there is currently no effective technique for detecting abnormalities in the NOX sensor installed downstream of the NOx catalyst. In particular, as exhaust gas regulations are becoming stricter, it is required to detect not only failures such as disconnection, but also the accuracy of sensor output related to deterioration, and so on. Countermeasures are necessary.
この NO Xセンサの異常診断方法として、例えば、 同じ位置に複数の NO Xセン サを設けてこれらの検出値を相対的に比較したり、 NO Xセンサを取り外して固定 式分析計でチェックしたりする方法が考えられる。 し力 し、前者の場合はコスト高 となり、 後者の場合はオンボードでの診断が不可能である。  As a method of diagnosing abnormalities in this NO X sensor, for example, multiple NO X sensors can be installed at the same position and their detected values can be compared relatively, or NO X sensors can be removed and checked with a fixed analyzer. A way to do this is conceivable. However, in the former case, the cost is high, and in the latter case, on-board diagnosis is impossible.
特開 2003— 1 20399号公報には、 NOx吸収剤の下流側に設けられた N O Xセンサの異常検出装置が開示されている。 NO Xセンサに到達する排気ガスの NOx濃度が強制的に変動させられ、 NOxセンサ出力値の変動がセンサ正常時の 変動からずれている場合に NOxセンサが異常と判定される。  Japanese Patent Laid-Open No. 2003-1 20399 discloses an abnormality detection apparatus for a NOx sensor provided downstream of a NOx absorbent. When the NOx concentration of the exhaust gas that reaches the NO X sensor is forcibly changed and the fluctuation of the NOx sensor output value deviates from the fluctuation when the sensor is normal, the NOx sensor is judged to be abnormal.
しかし、 N O Xセンサに到達する排気ガスが N〇 X吸収剤を通過した後の排気ガ スであることから、その排気ガスの NO X濃度は NO X吸収剤により NOxが吸収 された後の濃度となる。 つまり、 NO Xセンサの出力値にはセンサ手前の NO X吸 収剤の影響が反映されてしまい、これが N〇 Xセンサの異常診断の精度を低下させ る原因となる。 発明の開示  However, since the exhaust gas that reaches the NOX sensor is exhaust gas after passing through the NOx absorbent, the NOx concentration of the exhaust gas is the same as the concentration after NOx is absorbed by the NOx absorbent. Become. In other words, the output value of the NO X sensor reflects the effect of the NO X absorbent in front of the sensor, which causes a decrease in the accuracy of NOX sensor abnormality diagnosis. Disclosure of the invention
本発明は以上の事情に鑑みてなされたものであり、 その目的は、吸蔵還元型 NO X触媒の下流側に設けられた N O Xセンサの異常を好適に検出することができる NO xセンサの異常診断装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to suitably detect an abnormality in a NOX sensor provided on the downstream side of the NOx storage reduction catalyst. The object is to provide an abnormality diagnosis device for a NO x sensor.
本発明の第 1の形態によれば、  According to the first aspect of the present invention,
内燃機関の排気通路に設けられた吸蔵還元型 NO X触媒と、  An NOx storage reduction catalyst provided in the exhaust passage of the internal combustion engine;
前記 N O X触媒の下流側における排気ガスの N O X濃度を検出する触媒後 N O Xセンサと、  A post-catalyst N O X sensor for detecting the N O X concentration of exhaust gas downstream of the N O X catalyst;
前記 N O X触媒の上流側における排気ガスの N O X濃度を検出又は推定する触 媒前 NO X濃度取得手段と、  Pre-catalyst NO X concentration acquisition means for detecting or estimating the NOx concentration of exhaust gas upstream of the NOx catalyst;
前記 NO X触媒が排気ガス中の NO Xを実質的に吸蔵しない条件下で、前記触媒 後 N O Xセンサによって検出された N O X濃度と、前記触媒前 N O X濃度取得手段 によって検出又は推定された NOx濃度とを比較して、前記触媒後 N O Xセンサの 異常を判定する異常判定手段と  The NOX concentration detected by the post-catalyst NOX sensor and the NOx concentration detected or estimated by the pre-catalyst NOX concentration acquisition means under the condition that the NO X catalyst does not substantially store NO X in the exhaust gas. And an abnormality determination means for determining abnormality of the post-catalyst NOX sensor
を備えたことを特徴とする NOxセンサの異常診断装置が提供される。  An NOx sensor abnormality diagnosis device characterized by comprising:
N〇 X触媒が排気ガス中の NO Xを実質的に吸蔵しない条件下では、 NO X触媒 に流入した NOxが NOx触媒を素通りして NOx触媒下流に至る。よって NOx 触媒上流の NOx濃度と、 N〇x触媒下流の NOx濃度とが概ね等しくなる。 それ 故、触媒後 NOxセンサによって検出された NOx濃度が、 NOx触媒上流側の N O X濃度に対してずれていた場合に、触媒後 NOxセンサを異常と判定することが できる。 NOx触媒があたかも無いような状態で異常診断を実行するので、異常診 断における N〇 X触媒の影響を取り除くことができ、触媒後 N O Xセンサの異常を 好適に検出することができ、高い診断精度を確保することができる。 触媒後 NOx センサが異常な値を検出した場合であっても、 NOx触媒が異常なのか触媒後 NO Xセンサが異常なのかを混同することが無く、確実に触媒後 NO Xセンサの異常と して検出することができる。  Under the condition that NO X catalyst does not substantially store NO X in the exhaust gas, NOx flowing into the NO X catalyst passes through the NOx catalyst and reaches downstream of the NOx catalyst. Therefore, the NOx concentration upstream of the NOx catalyst is almost equal to the NOx concentration downstream of the N0x catalyst. Therefore, if the NOx concentration detected by the post-catalyst NOx sensor deviates from the NOx concentration upstream of the NOx catalyst, the post-catalyst NOx sensor can be determined to be abnormal. Abnormality diagnosis is performed in a state where the NOx catalyst is not present, so the influence of NOx catalyst in the abnormality diagnosis can be removed, and abnormalities in the NOX sensor after the catalyst can be detected appropriately, with high diagnostic accuracy. Can be secured. Even if the NOx sensor after the catalyst detects an abnormal value, there is no confusion about whether the NOx catalyst is abnormal or the post-catalyst NO X sensor is abnormal. Can be detected.
本発明の第 2の形態は、 前記第 1の形態において、  According to a second aspect of the present invention, in the first aspect,
前記 NO X触媒の温度を検出又は推定する触媒温度取得手段が備えられ、 前記異常判定手段は、前記触媒温度取得手段によって検出又は推定された触媒温 度力 前記 N〇 X触媒が排気ガス中の NO Xを実質的に吸蔵しない温度であるとい う条件下で、前記触媒後 N O Xセンサによって検出された N〇x濃度と、前記触媒 前 N O X濃度取得手段によつて検出又は推定された N〇 X濃度とを比較して、前記 触媒後 N O Xセンサの異常を判定する Catalyst temperature acquisition means for detecting or estimating the temperature of the NO X catalyst is provided, and the abnormality determination means is the catalyst temperature force detected or estimated by the catalyst temperature acquisition means. The temperature should not substantially occlude NO X The NOx concentration detected by the post-catalyst NOX sensor is compared with the NOx concentration detected or estimated by the pre-catalyst NOX concentration acquisition means under the above conditions, and the post-catalyst NOX sensor Judging abnormalities
ことを特徴とする。  It is characterized by that.
N O X触媒は、その温度が所定の温度域にないと N O Xの吸放出が実質的に行な えず、よって触媒温度がその温度域よりも高温又は低温であるときには N O Xの吸 蔵を行えない。 この第 2の形態では、触媒温度がそのような温度域にないときに検 出された触媒後 N O X濃度と触媒前 N〇 X濃度とを比較して、触媒後 N O Xセンサ の異常を判定する。これにより N O X触媒上流の N O Xを N O X触媒をすり抜けさ せて N O X触媒下流に至らしめ、第 1の形態と同様に好適に触媒後 N O Xセンサの 異常診断を実行できる。  If the temperature of the N O X catalyst is not within a predetermined temperature range, N O X can be substantially not absorbed and released. Therefore, when the catalyst temperature is higher or lower than that temperature range, N O X cannot be stored. In the second embodiment, the post-catalyst N O X concentration detected when the catalyst temperature is not in such a temperature range is compared with the pre-catalyst N O X concentration to determine the abnormality of the post-catalyst N O X sensor. As a result, the N O X upstream of the N O X catalyst is passed through the N O X catalyst to reach the N O X catalyst downstream, so that the abnormality diagnosis of the post-catalyst N O X sensor can be suitably executed as in the first embodiment.
本発明の第 3の形態は、 前記第 1の形態において、  According to a third aspect of the present invention, in the first aspect,
前記 N O X触媒に流入する排気ガスの空燃比を検出又は推定する空燃比取得手 段が備えられ、  An air-fuel ratio acquisition means for detecting or estimating the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is provided;
前記異常判定手段は、前記空燃比取得手段によって検出又は推定された空燃比が 理論空燃比又はそれよりリツチであるという条件下で、前記触媒後 N O Xセンサに よって検出された N O X濃度と、前記触媒前 N O X濃度取得手段によって検出又は 推定された N O X濃度とを比較して、 前記触媒後 N O Xセンサの異常を判定する ことを特徴とする。  The abnormality determination means includes the NOX concentration detected by the post-catalyst NOX sensor under the condition that the air-fuel ratio detected or estimated by the air-fuel ratio acquisition means is the stoichiometric air-fuel ratio or a richer than that, and the catalyst Comparing with the NOX concentration detected or estimated by the pre-NOX concentration acquisition means, the abnormality of the post-catalyst NOX sensor is judged.
N O X触媒に流入する排気ガスの空燃比が理論空燃比又はそれより リツチであ る場合にも、 N O X触媒が N O Xを放出し、 N O Xの吸蔵を行えないことから、 こ の状況を利用して触媒後 N〇 Xセンサの異常診断を実行することができる。  Even when the air-fuel ratio of the exhaust gas flowing into the NOX catalyst is the stoichiometric air-fuel ratio or higher, the NOX catalyst releases NOX and cannot store NOX. After N〇 X sensor abnormality diagnosis can be executed.
本発明の第 4の形態は、 前記第 1乃至第 3のいずれかの形態において、 前記 N O X触媒に吸蔵された N O Xを放出させるためのリツチスパイク制御を 実行するリツチスパイク制御手段が備えられ、  According to a fourth aspect of the present invention, in any one of the first to third aspects, there is provided a rich spike control means for executing a rich spike control for releasing NOx stored in the NOx catalyst.
前記リツチスパイク制御手段は、前記触媒後 N O Xセンサによる N O x濃度の検 出前に前記リツチスパイク制御を実行する ことを特徴とする。 The rich spike control means executes the rich spike control before detecting the NOx concentration by the post-catalyst NOX sensor. It is characterized by that.
これにより、 NOx触媒に吸蔵されている NOxを後の NOx濃度検出前に予め 放出させ、後の N〇x濃度検出時における吸蔵 N O Xの影響を排除することができ る。  As a result, the NOx stored in the NOx catalyst can be released in advance before the subsequent NOx concentration detection, and the influence of the stored NOx during the subsequent NOx concentration detection can be eliminated.
本発明の第 5の形態は、 前記第 1乃至第 4のいずれかの形態において、 前記触媒前 NO X濃度取得手段は、前記内燃機関の運転状態に基づき前記内燃機 関から排出される排気ガスの NOx濃度を推定する推定手段、及び前記 NOx触媒 の上流側における排気ガスの N O X濃度を検出する触媒前 N O Xセンサの少なく とも一方からなる  According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the pre-catalyst NOx concentration acquisition unit is configured to control exhaust gas discharged from the internal combustion engine based on an operating state of the internal combustion engine. It consists of at least one of an estimation means for estimating the NOx concentration and a pre-catalyst NOX sensor for detecting the NOx concentration of the exhaust gas upstream of the NOx catalyst.
ことを特徴とする。  It is characterized by that.
本発明の第 6の形態は、 前記第 5の形態において、  According to a sixth aspect of the present invention, in the fifth aspect,
前記触媒前 N〇 X濃度取得手段は前記推定手段及び前記触媒前 NO Xセンサの 両方からなり、  The pre-catalyst N0 X concentration acquisition means comprises both the estimation means and the pre-catalyst NO X sensor,
前記異常判定手段は、前記触媒後 NOxセンサによる NOx濃度の検出値、前記 触媒前 N O Xセンサによる NOx濃度の検出値及び前記推定手段による N O X濃 度の推定値を比較して前記触媒後 NOxセンサ及び前記触媒前 NOxセンサの異 常を区別して判定する  The abnormality determination means compares the detected value of NOx concentration by the post-catalyst NOx sensor, the detected value of NOx concentration by the pre-catalyst NOX sensor, and the estimated value of NOX concentration by the estimation means, and compares the post-catalyst NOx sensor and Judgment is made by distinguishing the abnormality of the NOx sensor before the catalyst.
ことを特徴とする。  It is characterized by that.
本発明の第 7の形態は、 前記第 1乃至第 6のいずれかの形態において、 前記異常判定手段は、前記触媒後 N〇 Xセンサが活性状態にあるという条件下で 前記触媒後 N O Xセンサによって検出された N O X濃度に基づき、前記触媒後 N〇 Xセンサの異常を判定する  According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the abnormality determination unit is configured to perform the post-catalyst NOX sensor under the condition that the post-catalyst NOX sensor is in an active state. Based on the detected NOX concentration, the post-catalyst N0 X sensor is judged abnormal
ことを特徴とする。  It is characterized by that.
本発明によれば、吸蔵還元型 N O X触媒の下流側に設けられた N O Xセンサの異 常を好適に検出することができるという、 優れた効果が発揮される。 図面の簡単な説明 According to the present invention, an excellent effect that an abnormality of the NOX sensor provided on the downstream side of the NOx storage reduction catalyst can be suitably detected is exhibited. Brief Description of Drawings
図 1は、 本発明の一実施形態に係る内燃機関の概略的なシステム図である。 図 2は、 一実施形態の異常診断の内容を示すタイムチャートである。  FIG. 1 is a schematic system diagram of an internal combustion engine according to an embodiment of the present invention. FIG. 2 is a time chart showing the contents of the abnormality diagnosis of one embodiment.
図 3は、 一実施形態の異常診断処理の内容を示すフローチャートである。  FIG. 3 is a flowchart showing the contents of the abnormality diagnosis process of the embodiment.
図 4は、 本発明の別の実施形態に係る内燃機関の概略的なシステム図である。 図 5は、 別の実施形態の異常診断処理の内容を示すフローチヤ一トである。 発明を実施するための最良の形態  FIG. 4 is a schematic system diagram of an internal combustion engine according to another embodiment of the present invention. FIG. 5 is a flowchart showing the contents of the abnormality diagnosis process of another embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明を実施するための最良の形態を説明する。 図 1は、本発明の一実施形態に係る内燃機関の概略的なシステム図である。 図示 されるように、 内燃機関 1は、 シリンダブ口ック 2に形成された燃焼室 3の内部で 燃料および空気の混合気を燃焼させ、燃焼室 3内でピス トン 4を往復移動させるこ とにより動力を発生する。 内燃機関 1は車両用多気筒エンジン (1気筒のみ図示) であり、 火花点火式内燃機関、 より具体的にはガソリンエンジンである。 但し、 本 発明が適用される内燃機関は火花点火式内燃機関に限られず、例えば圧縮着火式内 燃機関即ちディ一ゼルェンジンであってもよい。  The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic system diagram of an internal combustion engine according to an embodiment of the present invention. As shown in the figure, the internal combustion engine 1 burns a fuel / air mixture in a combustion chamber 3 formed in a cylinder block 2 and reciprocates a piston 4 in the combustion chamber 3. To generate power. The internal combustion engine 1 is a vehicular multi-cylinder engine (only one cylinder is shown), and is a spark ignition internal combustion engine, more specifically, a gasoline engine. However, the internal combustion engine to which the present invention is applied is not limited to a spark ignition type internal combustion engine, and may be, for example, a compression ignition type internal combustion engine, that is, a diesel engine.
内燃機関 1のシリンダへッドには、 吸気ポートを開閉する吸気弁 V i と、排気ポ ートを開閉する排気弁 V eとが気筒ごとに配設されている。各吸気弁 V iおよび各 排気弁 V eは図示しないカムシャフトによって開閉させられる。 また、 シリンダへ ッドの頂部には、燃焼室 3内の混合気に点火するための点火ブラグ 7が気筒ごとに 取り付けられている。 さらにシリンダヘッドにはインジヱクタ (燃料噴射弁) 1 2 が気筒ごとに配設され、燃焼室 3内に直接燃料噴射するようになっている。 ビスト ン 4はいわゆる深皿頂面型に構成されており、その上面には凹部 4 aが形成されて いる。 そして内燃機関 1では、 燃焼室 3内に空気を吸入させた状態で、 インジェク タ 1 2からビストン 4の凹部 4 aに向けて燃料が直接噴射される。これにより点火 ブラグ 7の近傍に、燃料と空気との混合気の層が周囲の空気層と分離された状態で 形成 (成層化) され、 安定した成層燃焼が実行される。 各気筒の吸気ポートは気筒毎の枝管を介して吸気集合室であるサージタンク 8 に接続されている。サージタンク 8の上流側には吸気集合通路をなす吸気管 1 3が 接続されており、 吸気管 1 3の上流端にはエアクリーナ 9が設けられている。 そし て吸気管 1 3には、上流側から順に、吸入空気量を検出するためのエアフローメー タ 5と、電子制御式ス口ットルバルブ 10とが組み込まれている。なお吸気ポート、 サージタンク 8及び吸気管 1 3により吸気通路が形成される。 In the cylinder head of the internal combustion engine 1, an intake valve V i that opens and closes an intake port and an exhaust valve V e that opens and closes an exhaust port are provided for each cylinder. Each intake valve V i and each exhaust valve V e are opened and closed by a camshaft (not shown). An ignition brag 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder. Further, an indicator (fuel injection valve) 1 2 is disposed in the cylinder head for each cylinder so that fuel is directly injected into the combustion chamber 3. The bin 4 is configured as a so-called deep dish top surface type, and a concave portion 4a is formed on the top surface thereof. In the internal combustion engine 1, fuel is directly injected from the injector 12 2 toward the concave portion 4 a of the biston 4 with air being sucked into the combustion chamber 3. As a result, a mixture layer of fuel and air is formed (stratified) in the vicinity of the ignition brag 7 in a state separated from the surrounding air layer, and stable stratified combustion is executed. The intake port of each cylinder is connected to a surge tank 8 which is an intake air collecting chamber through a branch pipe for each cylinder. An intake pipe 13 that forms an intake manifold is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13. An air flow meter 5 for detecting the intake air amount and an electronically controlled throttle valve 10 are incorporated in the intake pipe 13 in order from the upstream side. An intake passage is formed by the intake port, the surge tank 8 and the intake pipe 13.
一方、各気筒の排気ポートは気筒毎の枝管を介して排気集合通路をなす排気管 6 に接続されている。 これら排気ポート、枝管及び排気管 6により排気通路が形成さ れる。 排気管 6には、 その上流側に、 排気ガス中の C〇, HC, NO xを同時に浄 化可能な三元触媒 1 1が設けられ、その下流側に、排気ガス中の NO Xを浄化可能 な NOx触媒 16が設けられている。本実施形態では、三元触媒 1 1と NO X触媒 1 6を同一のケーシングに収容してなる C C L触媒ュニッ ト (CCL: Catalytic Converter Lean) が用いられているが、 これに限らず、 三元触媒 1 1と NOx触 媒 1 6を別々のケーシングに収容して個別に配置してもよレ、。三元触媒 1 1は必ず しも必須ではなく、省略も可能である。 例えばディーゼルエンジンの場合、 三元触 媒を設けない例が多い。  On the other hand, the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through a branch pipe for each cylinder. These exhaust ports, branch pipes and exhaust pipe 6 form an exhaust passage. The exhaust pipe 6 is provided with a three-way catalyst 11 that can simultaneously purify C〇, HC, and NOx in the exhaust gas at the upstream side, and NOx in the exhaust gas is purified at the downstream side. A possible NOx catalyst 16 is provided. In this embodiment, a CCL catalyst unit (CCL: Catalytic Converter Lean) in which the three-way catalyst 1 1 and the NO X catalyst 16 are accommodated in the same casing is used. The catalyst 11 and NOx catalyst 16 can be placed separately in separate casings. The three-way catalyst 1 1 is not absolutely necessary and can be omitted. For example, in the case of a diesel engine, there are many cases where a ternary catalyst is not provided.
三元触媒 1 1の上流側に、 排気ガスの空燃比 (AZF) を検出するための空燃比 センサ 1 7が設置されている。 また、 N〇x触媒 16の下流側に、 排気ガスの NO X濃度を検出するための NOxセンサ、即ち触媒後 NOxセンサ 18が設置されて いる。 空燃比センサ 1 7は所謂広域空燃比センサからなり、比較的広範囲に亘る空 燃比を連続的に検出可能で、 その空燃比に比例した電流信号を出力する。 但しこれ に限らず、 空燃比センサ 1 7は、 理論空燃比 (ストイキ) を境に出力電圧が急変す る所謂 02 センサからなってもよい。 An air-fuel ratio sensor 17 for detecting the air-fuel ratio (AZF) of the exhaust gas is installed upstream of the three-way catalyst 11. Further, a NOx sensor for detecting the NOx concentration of the exhaust gas, that is, a post-catalyst NOx sensor 18 is installed downstream of the N0x catalyst 16. The air-fuel ratio sensor 17 is a so-called wide-area air-fuel ratio sensor, can continuously detect an air-fuel ratio over a relatively wide area, and outputs a current signal proportional to the air-fuel ratio. However not limited thereto, the air-fuel ratio sensor 1 7 may consist called 0 2 sensor you sudden change output voltage stoichiometric air-fuel ratio (stoichiometric) the boundary.
上述の点火プラグ 7、 スロッ トルバルブ 10及びィンジヱクタ 1 2等は、制御手 段としての電子制御ュニット(以下 ECUと称す) 20に電気的に接続されている。 ECU20は、 何れも図示されない C PU、 ROM, RAM, 入出力ポート、 およ び記憶装置等を含むものである。 また ECU 20には、 図示されるように、 前述の エアフローメータ 5、 空燃比センサ 1 7、 触媒後 NOxセンサ 18のほ力、 内燃機 関 1のクランク角を検出するクランク角センサ 14、アクセル開度を検出するァク セル開度センサ 15、 NO X触媒 1 6の上下流側にそれぞれ設置された排気温セン サ即ち触媒前排気温センサ 21及び触媒後排気温センサ 22、その他の各種センサ が図示されない AZD変換器等を介して電気的に接続されている。 ECU 20は、 各種センサの検出値等に基づいて、 所望の出力が得られるように、 点火プラグ 7、 スロッ トルバルブ 10、 インジヱクタ 12等を制御し、 点火時期、 燃料噴射量、 燃 料噴射時期、 スロットル開度等を制御する。 なお触媒前排気温センサ 21は三元触 媒 1 1と NOx触媒 16の間の位置に設置される。触媒後 NOxセンサ 18にはヒ ータ付きのものが採用され、 触媒後 NOxセンサ 18の温度制御 (ヒータ制御) が ECU 20によって実行される。クランク角センサ 14の出力はエンジン回転速度 Neの検出にも用いられる。 The spark plug 7, the throttle valve 10, the injector 12 and the like described above are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as a control means. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, and a storage device, all not shown. Also, the ECU 20 has the above-mentioned as shown in the figure. Airflow meter 5, Air-fuel ratio sensor 17, Post-catalyst NOx sensor 18 power, Crank angle sensor 14 to detect the crank angle of internal combustion engine 1, accelerator opening sensor 15 to detect accelerator opening, NO X catalyst 1 Exhaust temperature sensors installed upstream and downstream of 6 (i.e., pre-catalyst exhaust temperature sensor 21 and post-catalyst exhaust temperature sensor 22 and other various sensors are electrically connected via an AZD converter (not shown), etc. Yes. The ECU 20 controls the ignition plug 7, the throttle valve 10, the injector 12, etc. so that a desired output can be obtained based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, Control the throttle opening. The pre-catalyst exhaust temperature sensor 21 is installed at a position between the ternary catalyst 11 and the NOx catalyst 16. The post-catalyst NOx sensor 18 is equipped with a heater, and the ECU 20 executes temperature control (heater control) of the post-catalyst NOx sensor 18. The output of the crank angle sensor 14 is also used to detect the engine speed Ne.
三元触媒 1 1は、 これに流入する排気ガスの空燃比が理論空燃比 (例えば AZF = 14. 6) 付近のときに CO, HC及び NOxを同時に浄化する。 この三者を同 時に高効率で浄化できる空燃比の幅 (ウィンドウ) は比較的狭い。 よって三元触媒 1 1を有効に機能させるため、空燃比制御の一態様として、三元触媒 1 1に流入す る排気ガスの空燃比が理論空燃比付近となるように混合気の空燃比が制御される。 これをストイキ制御とレ、い、ストイキ制御が実行されているときのエンジンの運転 態様をストイキ運転という。このストイキ制御では目標空燃比が理論空燃比と等し く設定され、空燃比センサ 1 7により検出された空燃比が目標空燃比と等しくなる ように、インジヱクタ 1 2から噴射される燃料噴射量ひいては空燃比がフィードバ ック制御される。  The three-way catalyst 11 simultaneously purifies CO, HC and NOx when the air-fuel ratio of the exhaust gas flowing into the catalyst is close to the stoichiometric air-fuel ratio (for example, AZF = 14.6). The air-fuel ratio range (window) that can simultaneously purify these three with high efficiency is relatively narrow. Therefore, in order for the three-way catalyst 11 to function effectively, as one aspect of the air-fuel ratio control, the air-fuel ratio of the air-fuel mixture is set so that the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 11 is close to the theoretical air-fuel ratio. Be controlled. This is referred to as stoichiometric control, and the engine operation mode when stoichiometric control is being executed is called stoichiometric operation. In this stoichiometric control, the target air-fuel ratio is set equal to the stoichiometric air-fuel ratio, so that the fuel injection amount injected from the indicator 12 and thus the air-fuel ratio detected by the air-fuel ratio sensor 17 becomes equal to the target air-fuel ratio. The air-fuel ratio is feedback controlled.
他方、 燃費低減等の観点から、 空燃比制御の別の態様として、 目標空燃比が理論 空燃比より高い値即ちリーンな値に設定される場合がある。これをリーンバーン制 御といい、リーンバーン制御が実行されているときのエンジンの運転態様をリーン バーン運転という。 なおリーンバーン制御時もストイキ制御時と同様、空燃比セン サ 1 7により検出された空燃比が目標空燃比と等しくなるように燃料噴射量ひレヽ ては空燃比がフィードバック制御される。 リーンバーン制御時には、 エンジンから 排出される排気ガスの空燃比が、三元触媒 1 1での NO X浄化を実質的に不可能と するほどにリーンな値とされる場合がある。この場合に三元触媒 1 1をすり抜けた NO Xを浄化すべく、 三元触媒 1 1の下流側に NO X触媒 1 6が設けられている。 On the other hand, as another aspect of air-fuel ratio control from the viewpoint of reducing fuel consumption, the target air-fuel ratio may be set higher than the stoichiometric air-fuel ratio, that is, a lean value. This is called lean burn control, and the operation mode of the engine when lean burn control is executed is called lean burn operation. During lean burn control, as with stoichiometric control, the fuel injection amount is adjusted so that the air-fuel ratio detected by the air-fuel ratio sensor 17 becomes equal to the target air-fuel ratio. Thus, the air-fuel ratio is feedback controlled. During lean burn control, the air-fuel ratio of exhaust gas exhausted from the engine may be set to a lean value that makes NO X purification with the three-way catalyst 11 virtually impossible. In this case, a NO X catalyst 16 is provided on the downstream side of the three-way catalyst 11 1 in order to purify the NO X that has passed through the three-way catalyst 11.
NO X触媒 1 6には吸蔵還元型 N O X触媒 (NSR: NOx Storage Reduction) が 用いられている。 この吸蔵還元型 NOx触媒は、 アルミナ A 12 03等の酸化物か らなる基材表面に、触媒成分としての白金 P tのような貴金属と、 NOx吸収成分 とが担持されて構成されている。 NOx吸収成分は、 例えばカリウム K、 ナトリウ ム Na, リチウム L i、 セシウム C sのようなアルカリ金属、 バリ ウム B a、 カル シゥム C aのようなアル力リ土類、 ランタン L a、イツトリゥム Yのような希土類 から選ばれた少なくとも一つから成る。 The NO X catalyst 16 uses an NOX storage reduction (NSR) catalyst. The NOx storage reduction catalyst, the alumina A 1 2 0 oxide such as 3 or Ranaru substrate surface, a noble metal such as platinum P t as a catalyst component, and a NOx absorbing component is composed is carried Yes. NOx absorption components include, for example, potassium K, sodium Na, lithium Li, alkali metals such as cesium C s, alkaline earths such as barium Ba, calcium ca, lanthanum La, yttrium Y It consists of at least one selected from rare earths such as
吸蔵還元型 NOx触媒 16は、これに流入される排気ガスの空燃比が理論空燃比 よりリーンのときには排気ガス中の N〇xを硝酸塩の形で吸蔵し、これに流入され る排気ガスの空燃比が理論空燃比又はそれより リツチのときには吸蔵した NOx を放出するという、 NOxの吸放出作用を行う。 リーンバーン運転中では、 排気空 燃比が理論空燃比よりリーンであり、 NOx触媒 16は排気中の N〇xの吸収を行 う。 一方、 NOx触媒 16が NOxを飽和状態即ち満杯まで吸蔵すると、 NOx触 媒 16がそれ以上 NOxを吸蔵できなくなることから、 NOx触媒から吸蔵 NOx を放出させるベく、 N〇x触媒 16に一時的に理論空燃比又はそれよりリツチな排 気ガスを供給するリツチスパイク制御が実行される。このリツチスパイク制御では 目標空燃比が一時的に理論空燃比又はそれよりリツチな値に設定され、混合気ひい ては排気ガスの空燃比が理論空燃比又はそれより低いリツチな値に制御される。こ のように、 N〇x触媒 16から吸蔵 NOxを放出して N〇x触媒 16の NOx吸蔵 能力を回復させることを NOx再生と称する。  The NOx storage reduction catalyst 16 stores N0x in the exhaust gas in the form of nitrate when the air-fuel ratio of the exhaust gas flowing into it is leaner than the stoichiometric air-fuel ratio, and the exhaust gas that flows into the NOx catalyst 16 When the fuel ratio is the stoichiometric air-fuel ratio or higher than that, the stored NOx is released and the NOx is absorbed and released. During lean burn operation, the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, and the NOx catalyst 16 absorbs N0x in the exhaust. On the other hand, if NOx catalyst 16 occludes NOx to saturation, that is, full, NOx catalyst 16 can no longer occlude NOx, so NOx catalyst 16 should release NOx occluded from NOx catalyst. Rich spike control is performed to supply exhaust gas that is at the stoichiometric air-fuel ratio or richer than that. In this rich spike control, the target air-fuel ratio is temporarily set to the stoichiometric air-fuel ratio or a value richer than that, and the air-fuel ratio and thus the air-fuel ratio of the exhaust gas is controlled to the stoichiometric air-fuel ratio or a rich value lower than that. . In this way, releasing NOx from the NOx catalyst 16 to restore the NOx storage capacity of the NOx catalyst 16 is called NOx regeneration.
なお、 リッチスパイク制御についてはこれ以外にも様々な方法がある。 例えば、 NOx触媒上流側に還元剤供給弁を別途設け、還元剤供給弁を開弁制御して排気中 に還元剤を供給する方法がある。還元剤としては、排気中で炭化水素 HCや一酸化 炭素 CO等の還元成分を発生するものであれば良く、 水素、 一酸化炭素等の気体、 プロパン、 プロピレン、 ブタン等の液体又は気体の炭化水素、 ガソリン、 軽油、 灯 油等の液体燃料等が使用できる。好ましくはエンジンの燃料即ちガソリンが使用さ れる。 代替的に、インジ クタ 1 2から燃焼室 3に膨張行程後期又は排気行程で燃 料を噴射し、 未燃燃料を排気中に多く含ませるいわゆるポス ト噴射が可能である。 一方、 NO X触媒 16の NO X吸放出作用は NO X触媒 16が所定の作動温度域 にないと実質的に行えない。 そこで本実施形態では NO X触媒 16の温度 (触媒床 温) が検出又は推定される。 N〇x触媒 16の温度は、 NO X触媒に埋設した温度 センサにより直接検出することもできる力 本実施形態ではそれを推定することと している。 具体的には、 ECU 20が、 触媒前排気温センサ 21及び触媒後排気温 センサ 22によりそれぞれ検出された触媒前排気温及び触媒後排気温に基づき、触 媒温度を推定する。 なお推定方法はこのような例に限られない。 There are various other methods for rich spike control. For example, there is a method of providing a reducing agent supply valve separately on the upstream side of the NOx catalyst and controlling the opening of the reducing agent supply valve to supply the reducing agent into the exhaust. Reducing agents include hydrocarbon HC and monoxide in the exhaust. Carbon or other reducing components may be used, such as hydrogen, gas such as carbon monoxide, liquid such as propane, propylene, and butane or gaseous hydrocarbons, liquid fuel such as gasoline, light oil, and kerosene. Can be used. Preferably engine fuel or gasoline is used. Alternatively, so-called post injection is possible in which fuel is injected from the injectors 12 into the combustion chamber 3 in the later stage of the expansion stroke or in the exhaust stroke, and a large amount of unburned fuel is contained in the exhaust. On the other hand, the NO X absorption and release action of the NO X catalyst 16 cannot be practically performed unless the NO X catalyst 16 is within a predetermined operating temperature range. Therefore, in the present embodiment, the temperature of the NO X catalyst 16 (catalyst bed temperature) is detected or estimated. The temperature that can be directly detected by the temperature sensor embedded in the NO x catalyst is estimated as the temperature of the Nx catalyst 16 in this embodiment. Specifically, the ECU 20 estimates the catalyst temperature based on the pre-catalyst exhaust temperature and the post-catalyst exhaust temperature detected by the pre-catalyst exhaust temperature sensor 21 and the post-catalyst exhaust temperature sensor 22, respectively. Note that the estimation method is not limited to such an example.
次に、 触媒後 NO Xセンサ 18の異常診断について説明する。  Next, abnormality diagnosis of the post-catalyst NO X sensor 18 will be described.
概して、本実施形態における触媒後 NO Xセンサ 1 8の異常診断の特徴は、 NO X触媒 16が排気ガス中の NO Xを実質的に吸蔵しない条件下で、触媒後 NO Xセ ンサ 18により触媒後 NO X濃度を検出すると共に、 NO X触媒上流側における触 媒前 NO X濃度を検出又は推定し、これら触媒後 NO X濃度と触媒前 NO X濃度と を互いに比較して触媒後 NO Xセンサ 18の異常を判定する点にある。  In general, the feature of the abnormality diagnosis of the post-catalyst NO X sensor 18 in this embodiment is that the NO X catalyst 16 is catalyzed by the post-catalyst NO X sensor 18 under the condition that the NO X catalyst 16 does not substantially store NO X in the exhaust gas. The NOx concentration after the catalyst is detected, and the NOx concentration before the catalyst upstream of the NOx catalyst is detected or estimated, and the NOx concentration after the catalyst and the NOx concentration before the catalyst are compared with each other to compare the NOx concentration before the catalyst with each other. It is in the point of judging 18 abnormalities.
ここで、 「N〇x触媒が排気ガス中の NO Xを実質的に吸蔵しない」 とは、 正常 で未劣化の N O X触媒が排気ガス中の N O Xを殆ど吸蔵しなレ、状態を意味し、言い 換えれば NO X触媒が正常で未劣化であるにも拘わらずその NO X吸蔵能力が一 時的に極めて低下した状態であることを意味する。これには N O X触媒の N O X吸 蔵能力が皆無 (ゼロ) である状態を含むが、 その皆無の状態に限定されるわけでは ない。  Here, “Nx catalyst does not substantially store NO X in exhaust gas” means that the normal and undegraded NOX catalyst does not substantially store NO X in exhaust gas. In other words, it means that the NOx storage capacity is temporarily extremely lowered even though the NOx catalyst is normal and undegraded. This includes a state where the NOx storage capacity of the NOx catalyst is completely absent (zero), but is not limited to the state of none.
N〇x触媒 16が排気ガス中の NO Xを実質的に吸蔵しない条件下では、 NO X 触媒 16が実質的に働かなくなり、 NO X触媒 16に流入した NO Xは NO X触媒 1 6を素通りして NO X触媒 16の下流側に至る。 NO X触媒 16の上流側の NO x濃度即ち触媒前 N◦ X濃度と、 N O X触媒 1 6の下流側の N O x濃度即ち触媒後 N O X濃度とは概ね等しくなる。よつて触媒後 N O X濃度の検出値が触媒前 N O X 濃度に対して一定値以上ずれていれば触媒後 N〇 Xセンサ 1 8を異常と判定する ことができ、 逆に、触媒後 NO X濃度の検出値が触媒前 NO X濃度に対して一定値 以上ずれていなければ触媒後 NO Xセンサ 1 8を正常と判定することができる。 N 〇 X触媒が働かない状態、即ち N O X触媒があたかも無レ、ような状態で異常診断を 実行するので、 異常診断における NO X触媒の影響を取り除くことができ、高い診 断精度を確保することができる。触媒後 NO Xセンサが異常な値を検出した場合で あっても、 NO X触媒が異常なのか触媒後 NO Xセンサが異常なのかを混同するこ とが無く、 確実に触媒後 NO Xセンサの異常として検出することが可能である。 本実施形態では、推定温度としての触媒温度が、 NOx触媒 16が排気ガス中の N O Xを実質的に吸蔵しない温度であるという条件下で、検出された触媒後 NOx 濃度と、触媒前 N O X濃度とを比較して、触媒後 N〇 Xセンサの異常が判定される。 前述したように、 NOx触媒 16は、 その温度が所定の作動温度域にないと N〇 Xの吸放出が実質的に行なえず、よって触媒温度がその作動温度域よりも高温及び 低温の少なくとも一方であるときには NOxの吸蔵を行えない。よって本実施形態 では、触媒温度が作動温度域よりも高温及び低温の少なくとも一方であるときに検 出された触媒後 N O X濃度と触媒前 N O X濃度とを比較して、触媒後 N O Xセンサ の異常を判定する。触媒温度が作動温度域を外れた状況を利用して触媒後 NO Xセ ンサの異常診断を実行するのである。作動温度域の下限温度 T c m i nは例えば約 300°C、 上限温度 T cma Xは例えば約 550°Cである。 Under the condition that NOx catalyst 16 does not substantially store NO X in the exhaust gas, NO X catalyst 16 does not work substantially and NO X flowing into NO X catalyst 16 passes through NO X catalyst 16 To the downstream side of the NO X catalyst 16. NO X upstream of NOx catalyst 16 The x concentration, that is, the pre-catalyst N◦ X concentration, and the NO x concentration downstream of the NOX catalyst 16, that is, the post-catalyst NOX concentration, are approximately equal. Therefore, if the detected value of the post-catalyst NOX concentration deviates from the pre-catalyst NOX concentration by a certain value or more, the post-catalyst NO sensor 18 can be determined to be abnormal. If the detected value does not deviate from the pre-catalyst NO X concentration by a certain value or more, the post-catalyst NO X sensor 18 can be determined to be normal. N 〇 The abnormality diagnosis is executed in the state where the X catalyst does not work, that is, the state where the NOX catalyst is not present, so the influence of the NO X catalyst in the abnormality diagnosis can be removed, and high diagnosis accuracy should be ensured. Can do. Even if the NO X sensor after the catalyst detects an abnormal value, there is no confusion as to whether the NO X catalyst is abnormal or the post-catalyst NO X sensor is abnormal. It can be detected as an abnormality. In this embodiment, the post-catalyst NOx concentration and the pre-catalyst NOX concentration detected under the condition that the catalyst temperature as the estimated temperature is a temperature at which the NOx catalyst 16 does not substantially store NOX in the exhaust gas, Are compared, and the abnormality of the Nx sensor after the catalyst is judged. As described above, the NOx catalyst 16 cannot substantially absorb and release NO when the temperature is not within a predetermined operating temperature range, and therefore the catalyst temperature is at least one of a higher temperature and a lower temperature than the operating temperature range. When it is, NOx cannot be occluded. Therefore, in this embodiment, the post-catalyst NOX concentration detected when the catalyst temperature is at least one of a higher temperature and a lower temperature than the operating temperature range is compared with the pre-catalyst NOX concentration to determine whether the post-catalyst NOX sensor is abnormal. judge. Abnormal diagnosis of the post-catalyst NO X sensor is executed using the situation where the catalyst temperature is outside the operating temperature range. The lower limit temperature T cmin of the operating temperature range is, for example, about 300 ° C, and the upper limit temperature T cma X is, for example, about 550 ° C.
代替的に、 NOx触媒 16に流入する排気ガスの空燃比 (本実施形態では空燃比 センサ 1 7により検出された空燃比)が理論空燃比又はそれよりリッチという条件 下で、 検出された触媒後 NOx濃度と、 触媒前 NOx濃度とを比較して、 触媒後 N O Xセンサの異常を判定してもよい。 NOx触媒に流入する排気ガスの空燃比が理 論空燃比又はそれよりリツチである場合にも、 NOx触媒 16が NOxを放出し、 NO Xの吸蔵を行えないことから、この状況を利用して触媒後 NO Xセンサの異常 診断を実行することができる。 Alternatively, after the detected catalyst under the condition that the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 16 (the air-fuel ratio detected by the air-fuel ratio sensor 17 in this embodiment) is the stoichiometric air-fuel ratio or richer than that. By comparing the NOx concentration with the pre-catalyst NOx concentration, the post-catalyst NOX sensor abnormality may be judged. Even when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is the theoretical air-fuel ratio or higher, the NOx catalyst 16 releases NOx and cannot store NO X. NO X sensor abnormality after catalyst Diagnosis can be performed.
さらに代替的には、 NOx触媒 16に NOxが飽和状態 (満杯) まで吸蔵されて いるという条件下で、検出された触媒後 N〇x濃度と、触媒前 N〇x濃度とを比較 して、触媒後 NOxセンサの異常を判定してもよい。 このときにも NOx触媒 1 6 が N O Xを吸蔵し得ないことから、この状況を利用して触媒後 N〇 Xセンサの異常 診断を実行することができる。  Further alternatively, under the condition that NOx is stored in the NOx catalyst 16 until it is saturated (full), the detected post-catalyst N0x concentration is compared with the pre-catalyst N0x concentration. An abnormality of the NOx sensor after the catalyst may be determined. Even at this time, the NOx catalyst 16 cannot occlude NOx, so this situation can be used to diagnose the abnormality of the NOx sensor after the catalyst.
他方、 触媒前 NOx濃度は、 好ましくは、 エンジン 10の燃焼室 1 3から排出さ れる排気ガスの N〇x濃度であってエンジン 10の運転状態に基づき推定される NOx濃度 (以下、 触媒前推定 NOx濃度という)、 及び、 NOx触媒 1 6の上流 側に設けられた NOxセンサ即ち触媒前 NOxセンサ (図 4の符号 30参照) によ り検出された N〇x濃度 (以下、 触媒前検出 NOx濃度という)、 の少なくとも一 方からなる。  On the other hand, the pre-catalyst NOx concentration is preferably the NOx concentration of exhaust gas discharged from the combustion chamber 13 of the engine 10 and estimated based on the operating state of the engine 10 (hereinafter referred to as pre-catalyst estimation). NOx concentration) and NOx concentration detected by the NOx sensor upstream of the NOx catalyst 16 (ie, NOx sensor before catalyst (see symbol 30 in FIG. 4)). Concentration), at least one of the following.
本実施形態では、触媒前 N O X濃度として前者の触媒前推定 N O X濃度が用レ、ら れる。 ECU 20は、 エンジン運転状態を表すパラメータの検出値に基づき、 予め 作製されたマップ等に従って、触媒前推定 NOx濃度を算出する。 かかるパラメ一 タとしては例えばエンジン回転速度 N e、 吸入空気量 G a、 空燃比 A/F、排気温 度 T e g及び燃料噴射量 Qの少なくとも一つを用いることができる。 好ましくは、 エンジン回転速度 N eと吸入空気量 G aとから求められる負荷率 (二 G a,N e) と、 空燃比センサ 1 7で検出される空燃比 AZFとに基づき、所定のマップ等に従 つて触媒前推定 NOx濃度を算出する。  In the present embodiment, the former estimated pre-catalyst N O X concentration is used as the pre-catalyst N O X concentration. The ECU 20 calculates the pre-catalyst estimated NOx concentration according to a map prepared in advance based on the detected value of the parameter representing the engine operating state. As such parameters, for example, at least one of the engine speed Ne, the intake air amount Ga, the air-fuel ratio A / F, the exhaust temperature Teg, and the fuel injection amount Q can be used. Preferably, based on the load factor (2 G a, N e) obtained from the engine speed N e and the intake air amount G a and the air-fuel ratio AZF detected by the air-fuel ratio sensor 17, a predetermined map or the like Calculate the pre-catalyst estimated NOx concentration.
なお、 触媒前 NOx濃度として後者の触媒前検出 N〇x濃度を用いた場合には、 実際の検出値を用いることになるため、 N O X濃度推定マップのデ一タが経時的に 不適切になった場合の推定誤差を排除できる可能性がある。前者と後者の両方を用 レ、れば、 2値との比較になるため診断精度を向上できる可能性がある。  Note that when the latter pre-catalyst detection N0x concentration is used as the pre-catalyst NOx concentration, the actual detection value is used, so the data in the NOX concentration estimation map becomes inappropriate over time. Estimation error can be eliminated. If both the former and the latter are used, there is a possibility that the accuracy of diagnosis can be improved because of comparison with two values.
触媒後 NOxセンサ 18の正常 '異常が触媒前 NOx濃度を基準として判定され るため、 触媒前 NOx濃度は正確な値である必要がある。 エンジンの他の部位 (ィ ンジェクタ等) についても ECU 20により異常診断がなされており、他の部位の 異常が検出されていなければ、触媒前推定 NOx濃度は正確な値とみなすことがで きる。 これによつて触媒前推定 NOx濃度の正確性、 ひいては触媒後 N〇 Xセンサ 18の異常診断結果の信頼性が保証される。 Since the post-catalyst NOx sensor 18 normal 'abnormality is judged based on the pre-catalyst NOx concentration, the pre-catalyst NOx concentration needs to be an accurate value. Other parts of the engine (injectors, etc.) are also diagnosed abnormally by ECU 20, and other parts If no abnormalities are detected, the pre-catalyst estimated NOx concentration can be regarded as an accurate value. This guarantees the accuracy of the estimated NOx concentration before the catalyst, and thus the reliability of the abnormality diagnosis result of the post-catalyst NO sensor 18.
本実施形態では NO X触媒 16の上流側に三元触媒 1 1があるが、後述するよう に、 触媒後 NOxセンサ 18の異常診断時にはエンジンがリーンバーン運転され、 三元触媒 1 1が NOxを浄化できないほどに排気空燃比が高められる。 よって、 三 元触媒 1 1の影響は排除され、三元触媒 1 1はあたかも無いものとみなすことがで きる。 NOx触媒 16が NOxを実質的に吸蔵しない条件下では、 エンジンから排 出された NO Xがそのまま三元触媒 1 1及び NOx触媒 1 6を素逋りして触媒後 NOxセンサ 18に到達するとみなすことができる。  In this embodiment, there is a three-way catalyst 11 on the upstream side of the NO X catalyst 16, but as will be described later, the engine is lean burned when the abnormality of the post-catalyst NOx sensor 18 is diagnosed, and the three-way catalyst 1 1 reduces NOx. The exhaust air / fuel ratio is increased to such an extent that it cannot be purified. Therefore, the influence of the three-way catalyst 1 1 is eliminated, and the three-way catalyst 1 1 can be regarded as if there is no one. Under the condition that the NOx catalyst 16 does not substantially store NOx, it is assumed that the NOx exhausted from the engine reaches the NOx sensor 18 after the catalyst after the three-way catalyst 1 1 and NOx catalyst 1 6 are treated as it is. be able to.
次に、 触媒後 NOxセンサ 18の異常診断の概要を図 2を用いて説明する。 図 2には、 エンジン始動後における各値の変化を示す。 (A) が ECU20にて 推定される触媒温度 T c、 (B) が触媒後 NOxセンサ 18の温度 T s (以下、 単 にセンサ温度ともいう)、 (C) が空燃比センサ 1 7の出力 (空燃比 AZFへの換算 値)、 (D)が触媒後 NOxセンサ 18の出力(NOx濃度 C rへの換算値)を示す。 時刻 t 0がエンジン始動完了時刻である。触媒後 NO Xセンサ 18の温度 T sは E CU 20によって検出且つ制御されている。 より具体的には、 ECU 20によって 触媒後 N〇 Xセンサ 18の素子インピーダンスが検出されており、この素子ィンピ 一ダンスがセンサ活性時相当の所定値になるように触媒後 NOxセンサ 1 8のヒ ータが制御される。  Next, an outline of the abnormality diagnosis of the post-catalyst NOx sensor 18 will be described with reference to FIG. Figure 2 shows the change in each value after the engine starts. (A) is the catalyst temperature T c estimated by ECU20, (B) is the post-catalyst NOx sensor 18 temperature T s (hereinafter also simply referred to as sensor temperature), and (C) is the output of the air-fuel ratio sensor 17 (Converted value to air-fuel ratio AZF), (D) shows the output of NOx sensor 18 after catalyst (converted value to NOx concentration Cr). Time t 0 is the engine start completion time. The temperature T s of the post-catalyst NO X sensor 18 is detected and controlled by the ECU 20. More specifically, the element impedance of the post-catalyst N0 X sensor 18 is detected by the ECU 20, and the post-catalyst NOx sensor 18 has a high impedance so that this element impedance becomes a predetermined value corresponding to the sensor activation. Data is controlled.
(A)、 (B) に示されるように、 エンジンが始動されると、 触媒温度 T c及びセ ンサ温度 T sが次第に上昇し、やがて触媒温度 T cが下限温度 T cm i nを上回つ て作動温度域に入り (時刻 t 1)、 センサ温度 T sも下限温度 T s m i n (例えば 約 750°C) を上回って活性温度域に入る (時刻 t 2)。 センサ温度 T sはその後 下限温度 T s m i nより若干高い値に維持される。  As shown in (A) and (B), when the engine is started, the catalyst temperature Tc and the sensor temperature Ts gradually rise, and eventually the catalyst temperature Tc exceeds the lower limit temperature Tcmin. The sensor temperature T s exceeds the lower limit temperature T smin (for example, about 750 ° C) and enters the active temperature range (time t 2). The sensor temperature T s is then maintained at a value slightly higher than the lower limit temperature T s m i n.
(C) に示されるように、 これら時刻 t 1, t 2付近から空燃比制御がス トィキ 制御からリーンバーン制御に移行され、 空燃比が理論空燃比 (ストィキ) より高い 値 (例えば 16〜18程度) に維持される。 As shown in (C), the air-fuel ratio control is shifted from the stoichiometric control to the lean burn control around these times t1 and t2, and the air-fuel ratio is higher than the stoichiometric air-fuel ratio (stoky). The value is maintained (for example, about 16-18).
このときの空燃比は三元触媒 1 1で NO Xを浄化できないような高い空燃比で ある。 よってエンジンから排出された NO Xは三元触媒 1 1を素通りするが、後段 の NOx触媒 1 6でトラップ、 吸蔵される。 従って (D) に示されるように NOx 触媒 16の下流側には NOxが排出されない。  The air-fuel ratio at this time is such a high air-fuel ratio that NO X cannot be purified by the three-way catalyst 11. Therefore, the NO X exhausted from the engine passes through the three-way catalyst 11, but is trapped and occluded by the NOx catalyst 16 at the subsequent stage. Therefore, as shown in (D), NOx is not discharged downstream of the NOx catalyst 16.
一方、リーンバーン運転を継続すると NOx触媒 1 6における NOx吸蔵量が増 カロしていく。 そこでこの吸蔵 NOxを排出して NOx触媒 1 6を再生すべく、 (C) に符号 aで示されるようにリツチスパイク制御が実行される。 具体的には、混合気 ひいては排気ガスの空燃比が理論空燃比より低いリツチな値に制御される。これに より NOx触媒 16に吸蔵されていた NOxが放出され、 (D) に符号 bで示され るように NOx触媒 16の下流側で NOxが検出される。 なお、 図示例では触媒後 NOxセンサ 1 8で NOxが検出される前、即ち N〇x触媒 16の NOx吸蔵量が 満杯になる前にリツチスパイクが実行されている力 触媒後 NOxセンサ 18で N Oxが検出された後、即ち NOx触媒 16,の NOx吸蔵量が満杯になった後にリッ チスパイクを実行してもよレ、。  On the other hand, if the lean burn operation is continued, the NOx occlusion amount in the NOx catalyst 16 increases. Therefore, in order to discharge this occluded NOx and regenerate the NOx catalyst 16, the rich spike control is executed as indicated by symbol a in (C). Specifically, the air-fuel ratio of the air-fuel mixture and the exhaust gas is controlled to a rich value lower than the stoichiometric air-fuel ratio. As a result, NOx stored in the NOx catalyst 16 is released, and NOx is detected on the downstream side of the NOx catalyst 16 as indicated by the symbol b in (D). In the example shown in the figure, a force before the NOx is detected by the post-catalyst NOx sensor 18, that is, before the NOx occlusion amount of the N0x catalyst 16 is full is applied. You can perform a rich spike after Ox is detected, that is, after the NOx storage capacity of the NOx catalyst 16 is full.
図示例では、 この後も徐々に触媒温度 T cが上昇しており、触媒温度 T cが上限 温度 T c ma Xを上回って作動温度域から外れている (時刻 t 3)。 本実施形態で はこのタイミングを利用して触媒後 NOxセンサ 18の異常診断を行う。  In the illustrated example, the catalyst temperature Tc gradually increases thereafter, and the catalyst temperature Tc exceeds the upper limit temperature Tcmax and deviates from the operating temperature range (time t3). In this embodiment, abnormality diagnosis of the post-catalyst NOx sensor 18 is performed using this timing.
まず、 触媒温度 T cが上限温度 T c ma Xを上回ったら、 (C) に符号 cで示さ れるように、直ちにリッチスパイク制御が実行される。 NOx触媒 16に吸蔵され ている NO Xを後の NO X濃度検出前に予め放出させ、後の NO X濃度検出時にお ける吸蔵 N O Xの影響を排除するためである。いわば前処理用のリッチスパイク制 御である。  First, when the catalyst temperature T c exceeds the upper limit temperature T cm a X, the rich spike control is immediately executed as indicated by the symbol c in (C). This is because NO X stored in the NOx catalyst 16 is released in advance before the subsequent NO X concentration detection, and the influence of the stored NO X in the subsequent NO X concentration detection is eliminated. In other words, it is rich spike control for pretreatment.
リツチスパイク制御中に所定のリツチスパイク終了条件が成立したら(例えば触 媒後 NOxセンサ 18で NOx濃度のピークが検出されたら)、 吸蔵 NOxが全て 放出されたとみなして、 リッチスパイク制御を終了し、 (C) に符号 dで示される ようにリーンバーン制御に移行する。 すると、触媒温度 T cが上限温度 T cma X を上回っているので、 NOx触媒 1 6も NO Xを吸蔵することができず、 エンジン から排出された NO xは三元触媒 1 1及び NO x触媒 1 6を素通りして触媒後 N O Xセンサ 1 8に到達する。 If a predetermined condition for the end of the rich spike is satisfied during the rich spike control (for example, if a NOx concentration peak is detected by the post-catalyst NOx sensor 18), it is considered that all the stored NOx has been released, and the rich spike control is terminated. (C) Shifts to lean burn control as indicated by symbol d. Then, the catalyst temperature T c becomes the upper limit temperature T cma X NOx catalyst 1 6 is also unable to occlude NO X, and NO x exhausted from the engine passes through the three-way catalyst 1 1 and NO x catalyst 1 6 and passes through the NOx sensor 1 8 To reach.
触媒後 NOxセンサ 1 8が正常ならば、このとき触媒後 NOxセンサ 1 8で検出 される NOx濃度 C rは、エンジン運転状態に基づいて推定される触媒前推定 NO X濃度 C eとほぼ等しい答である。 よって、 リッチスパイク終了後、 例えば触媒後 NOx濃度 C rが安定しているような所定時期 (時亥 ij t 4) に、 触媒後 NOxセン サ 1 8で検出された触媒後 NOx濃度 C rを取得すると共に、同時期における触媒 前推定 NOx濃度 C eを取得する。 そしてこれら NOx濃度同士を比較し、触媒後 NOx濃度 C rが、触媒前推定 NOx濃度 C eを基準とした所定の濃度幅 Δ ((D) 参照) に入っていれば、 触媒後 NOxセンサ 1 8を正常と判定する。 逆に触媒後 N Ox濃度 C rが所定の濃度幅 Δから外れていれば触媒後 NO Xセンサ 1 8を異常 と判定する。 図示例は正常と判定される場合の例である。  If the post-catalyst NOx sensor 1 8 is normal, the NOx concentration C r detected by the post-catalyst NOx sensor 1 8 at this time is approximately equal to the pre-catalyst estimated NO X concentration C e estimated based on the engine operating condition. It is. Therefore, after the end of the rich spike, the post-catalyst NOx concentration C r detected by the post-catalyst NOx sensor 18 at the predetermined time (time ij t 4) where the post-catalyst NOx concentration C r is stable, for example. Acquire the pre-catalyst estimated NOx concentration Ce during the same period. These NOx concentrations are compared with each other. If the post-catalyst NOx concentration C r falls within a predetermined concentration range Δ (see (D)) based on the pre-catalyst estimated NOx concentration C e, the post-catalyst NOx sensor 1 Judge 8 as normal. On the contrary, if the post-catalyst N Ox concentration Cr is outside the predetermined concentration range Δ, the post-catalyst NO X sensor 18 is determined to be abnormal. The illustrated example is an example in the case of being determined to be normal.
図示例ではこの後触媒温度 T cが徐々に低下し、時刻 t 5で上限温度 T cma X 以下となって作動温度域に入っている。触媒後 NOx濃度 C rと触媒前推定 NOx 濃度 C eの取得は、リツチスパイクの終了時から触媒温度 T cが上限温度 T cma X以下となる時 (t 5) までのいずれかの時期で行う。  In the illustrated example, thereafter, the catalyst temperature Tc gradually decreases, reaches the upper limit temperature T cma X at the time t5, and enters the operating temperature range. The post-catalyst NOx concentration C r and the pre-catalyst estimated NOx concentration C e are acquired at any time from the end of the rich spike until the catalyst temperature T c falls below the upper limit temperature T cma X (t 5). .
なお、ここで説明した例は触媒温度 T cが作動温度域より高温であるときに異常 診断を行う例であるが、 これに代えて或いはこれに加えて、触媒温度 T cが作動温 度域より低温であるときに異常診断を行う例も可能である。 但しこの場合、少なく とも触媒後 NO Xセンサ 1 8の素子温度が活性温度域にあり、触媒後 NO Xセンサ 1 8が活性状態にあるという条件が必要である。 '  The example described here is an example in which abnormality diagnosis is performed when the catalyst temperature Tc is higher than the operating temperature range. Instead of or in addition to this, the catalyst temperature Tc is within the operating temperature range. An example in which abnormality diagnosis is performed at a lower temperature is also possible. However, in this case, it is necessary that at least the element temperature of the post-catalyst NO X sensor 18 is in the active temperature range and the post-catalyst NO X sensor 18 is in the active state. '
次に、ここで説明したような異常診断を実行するための具体的処理を図 3を参照 して説明する。 図示される処理は ECU 20により実行される。 なお、 ここでの処 理の前提として、 リツチスパイク制御時以外は、三元触媒 1 1が NOx浄化不能と なるようなリーンバーン制御が実行されているものとする。  Next, a specific process for executing the abnormality diagnosis as described here will be described with reference to FIG. The illustrated process is executed by the ECU 20. As a precondition for the processing here, it is assumed that lean burn control is performed so that the three-way catalyst 11 becomes incapable of NOx purification except during the rich spike control.
最初のステップ S 1 0 1では、推定触媒温度 T cが前述の作動温度域にあるか否 力 \即ち、推定触媒温度 T cが下限温度 T c m i n以上で且つ上限温度 T c m a χ 以下であるか否かが判断される。 In the first step S 1 0 1, whether the estimated catalyst temperature T c is within the operating temperature range described above. It is determined whether the estimated catalyst temperature T c is equal to or higher than the lower limit temperature T cmin and lower than the upper limit temperature T cma χ.
触媒温度 T cが作動温度域にある場合、 本処理が終了される。 なおこの場合に、 触媒温度 T cが作動温度域から外れるように触媒温度 T cを制御してもよレ、。例え ば空燃比をよりリツチ側に変化させれば触媒温度 T cが上昇し、空燃比をよりリ一 ン側に変化させれば触媒温度 T cが下降する。  When the catalyst temperature Tc is within the operating temperature range, this process is terminated. In this case, the catalyst temperature Tc may be controlled so that the catalyst temperature Tc deviates from the operating temperature range. For example, if the air-fuel ratio is changed to the rich side, the catalyst temperature Tc increases, and if the air-fuel ratio is changed to the lean side, the catalyst temperature Tc decreases.
他方、触媒温度 T cが作動温度域にない場合、 ステップ S 1 0 2において触媒後 Ν Ο χセンサ 1 8が活性状態にあるか否力 即ち触媒後 N O Xセンサ 1 8の温度 T sが活性温度域の下限温度 T s m i nより高いか否かが判断される。  On the other hand, if the catalyst temperature Tc is not in the operating temperature range, whether or not the post-catalyst Ν Ο χ sensor 18 is active in step S 1 0 2, that is, the post-catalyst NOX sensor 18 temperature T s is the active temperature It is determined whether the temperature is higher than the lower limit temperature T smin.
触媒後 N O Xセンサ 1 8が活性状態にない場合、本処理が終了され、触媒後 N O Xセンサ 1 8が活性状態にある場合、ステップ S 1 0 3にてリツチスパイク制御が 実行される。  If the post-catalyst N O X sensor 18 is not in the active state, this process is terminated. If the post-catalyst N O X sensor 18 is in the active state, the rich spike control is executed in step S 1 0 3.
その後、 ステップ S 1 0 4にて、 リツチスパイク制御が終了したか否か、 即ち所 定のリツチスパイク終了条件が成立したか否かが判断される。 リツチスパイク制御 が終了していない即ち実行中のときは本処理が終了され、リツチスパイク制御が終 了した場合はステップ S 1 0 5に進む。 なお、 ステップ S 1 0 4とステップ S 1 0 5との間に所定時間の経過を待つステツプを追加してもよレ、。  Thereafter, in step S 104, it is determined whether or not the rich spike control has been completed, that is, whether or not a predetermined rich spike termination condition has been established. When the rich spike control is not completed, that is, when it is being executed, this processing is terminated, and when the rich spike control is completed, the process proceeds to step S 1 0 5. Note that a step waiting for the elapse of a predetermined time may be added between step S 1 0 4 and step S 1 0 5.
ステップ S 1 0 5では、エンジン運転状態に基づいて推定される触媒前推定 N O X濃度 C eの値が取得される。 次いでステップ S 1 0 6では、触媒後 N O Xセンサ 1 8により検出された触媒後 N O X濃度 C rの値が取得される。  In step S 1 0 5, the value of the pre-catalyst estimated N O X concentration Ce that is estimated based on the engine operating state is acquired. Next, at step S 1 0 6, the value of the post-catalyst N O X concentration C r detected by the post-catalyst N O X sensor 18 is acquired.
次に、 ステップ S 1 0 7において、 これら触媒後 N O X濃度 C rと触媒前推定 N O x濃度 C eとが比較され、これら濃度同士が互いに略等しいか否かが判断される。 具体的には、これら触媒後 N O X濃度 C rと触媒前推定 N O X濃度 C eとの差即ち 濃度差 A Cが、式: A C = I C r— C e | により計算され、 この濃度差△〇が所定 値 A C sより大きいか否かが判断される。  Next, in step S 107, the post-catalyst N O X concentration C r and the pre-catalyst estimated N O x concentration C e are compared to determine whether or not these concentrations are substantially equal to each other. Specifically, the difference between the post-catalyst NOX concentration C r and the pre-catalyst estimated NOX concentration C e, that is, the concentration difference AC is calculated by the formula: AC = IC r−C e | It is determined whether the value AC s is greater.
濃度差 Δ Cが所定値 Δ C s以下の場合、触媒後 N O X濃度 C rは触媒前推定 N O X濃度 C eと略等しいとみなされ、ステップ S 1 0 8にて触媒後 N O Xセンサ 1 8 は正常と判定される。 他方、 濃度差 ACが所定値 AC sより大きい場合、 触媒後 N Ox濃度 C rが触媒前推定 N〇x濃度 C eから比較的大きくずれているとみなさ れ、 ステップ S 109にて触媒後 NO Xセンサ 18は異常と判定される。 以上で本 処理が終了される。 When the concentration difference ΔC is equal to or less than the predetermined value ΔC s, the post-catalyst NOX concentration C r is regarded as substantially equal to the pre-catalyst estimated NOX concentration C e, and the post-catalyst NOX sensor 1 8 in step S 1 0 8 Is determined to be normal. On the other hand, if the concentration difference AC is greater than the predetermined value AC s, the post-catalyst N Ox concentration C r is considered to be relatively deviated from the pre-catalyst estimated N0x concentration C e, and in step S 109 the post-catalyst NO X sensor 18 is determined to be abnormal. This process is completed.
このように、 NO X触媒 1 6が NO Xを実質的に吸蔵し得ない条件下 (温度条件 下) で触媒後 NO X濃度 C rと触媒前推定 NO X濃度 C eとを取得し、 これらを比 較して触媒後 NO Xセンサ 18の異常を判定するので、介在する NO X触媒 16の 影響を受けずに異常診断を実施することができる。 よって、診断精度の高い好適な  As described above, the NO X concentration C r after the catalyst and the estimated NO X concentration C e before the catalyst are obtained under the conditions where the NO X catalyst 16 cannot substantially store NO X (under temperature conditions). Therefore, the abnormality of the post-catalyst NO X sensor 18 is judged, so that the abnormality diagnosis can be performed without being affected by the intervening NO X catalyst 16. Therefore, suitable for high diagnostic accuracy
7  7
異常診断を実現することができる。 しかも、 同一位置に NO Xセンサを追加する等 の特定部品の追加も必要ないので、 コスト的に有利であり、複雑な制御を追加する 必要もない。 オンボードでの診断にも勿論適している。 Abnormal diagnosis can be realized. In addition, there is no need to add a specific part such as adding a NO X sensor at the same position, which is advantageous in terms of cost and does not require complicated control. Of course, it is also suitable for on-board diagnosis.
次に、本発明の別の実施形態を説明する。 この別の実施形態は前記実施形態と大 略同様であるので、 以下、 相違点を中心に説明する。  Next, another embodiment of the present invention will be described. Since this another embodiment is substantially the same as the previous embodiment, the following description will focus on the differences.
図 4に示されるように、本実施形態の内燃機関 1では、 N O X触媒 16の上流側 の排気通路に触媒前 NO Xセンサ 30が追加して設けられている。そして触媒前 N Oxセンサ 30により NOx触媒上流側の N O X濃度(触媒前検出 N O x濃度) が 検出される。なお図示例では触媒前 NO Xセンサ 30が三元触媒 1 1の上流側に配 置されているが、 この例には限定されず、例えば触媒前 NOxセンサ 30を三元触 媒 1 1と N〇x触媒 1 6の間に配置してもよレ、。  As shown in FIG. 4, in the internal combustion engine 1 of the present embodiment, a pre-catalyst NO X sensor 30 is additionally provided in the exhaust passage on the upstream side of the NOx catalyst 16. The pre-catalyst NOx sensor 30 detects the NOx concentration upstream of the NOx catalyst (pre-catalyst detected NOx concentration). In the illustrated example, the pre-catalyst NO X sensor 30 is arranged upstream of the three-way catalyst 11. However, the present invention is not limited to this example. For example, the pre-catalyst NOx sensor 30 is connected to the three-way catalyst 11 and N. 〇 You can place it between x catalyst 1 6.
概して、 この別の実施形態では、触媒後 NOxセンサ 18により検出された触媒 後 NOx濃度、 触媒前 NOxセンサ 30により検出された触媒前検出 NOx濃度、 及びエンジン運転状態に基づき推定された触媒前推定 NOx濃度の比較が行われ る。 そして、 この比較結果に基づき、 触媒後 NOxセンサ 18及び触媒前 NOxセ ンサ 30の異常が区別して判定される。  Generally, in this alternative embodiment, the pre-catalyst NOx concentration detected by the post-catalyst NOx sensor 18, the pre-catalyst detected NOx concentration detected by the pre-catalyst NOx sensor 30, and the pre-catalyst estimate estimated based on the engine operating condition Comparison of NOx concentration is performed. Based on the comparison result, the abnormalities of the post-catalyst NOx sensor 18 and the pre-catalyst NOx sensor 30 are distinguished and determined.
より具体的には、 触媒前推定 NOx濃度を基準として、 まず、 触媒前検出 NOx 濃度が触媒前推定 N O X濃度と比較される。触媒前 N O Xセンサ 30は三元触媒 1 1と NOx触媒 16との影響を受けず、エンジンから排出された NOxを直接検知 するため、触媒前検出 NO x濃度が触媒前推定 NO x濃度から大きくずれていれば、 触媒前 NO Xセンサ 30を異常と判定できる。このように触媒前 NO Xセンサ 30 の異常をも検出することができるので異常診断の幅を拡大することができる。 More specifically, based on the estimated pre-catalyst NOx concentration, first, the detected pre-catalyst NOx concentration is compared with the pre-catalyst estimated NOx concentration. Pre-catalyst NOX sensor 30 is not affected by the three-way catalyst 1 1 and NOx catalyst 16 and directly detects NOx emitted from the engine Therefore, if the pre-catalyst detected NO x concentration deviates significantly from the pre-catalyst estimated NO x concentration, the pre-catalyst NO x sensor 30 can be determined to be abnormal. In this way, the abnormality of the pre-catalyst NO X sensor 30 can also be detected, so that the range of abnormality diagnosis can be expanded.
次いで、触媒前 NO Xセンサ 30が正常判定された場合に、触媒後 NO X濃度が 触媒前検出 NO X濃度と比較される。三元触媒 1 1と NOx触媒 1 6が NOxを浄 化、 吸蔵できないような条件下では、触媒後 NOx濃度と触媒前検出 NOx濃度と が互いにほぼ等しくなるはずである。よつて触媒後 N O X濃度が触媒前検出 N O X 濃度から大きくずれていれば、触媒後 NO Xセンサ 1 8を異常と判定できる。なお、 このときの比較については、触媒後 N O X濃度を触媒前推定 N O X濃度と比較して もよい。  Next, when the before-catalyst NO X sensor 30 is determined to be normal, the after-catalyst NO X concentration is compared with the before-catalyst detected NO X concentration. Under conditions where the three-way catalyst 11 and the NOx catalyst 16 cannot purify and store NOx, the post-catalyst NOx concentration and the pre-catalyst detected NOx concentration should be approximately equal to each other. Therefore, if the post-catalyst NOx concentration deviates significantly from the pre-catalyst detected NOx concentration, the post-catalyst NOx sensor 18 can be determined to be abnormal. For comparison at this time, the post-catalyst N O X concentration may be compared with the pre-catalyst estimated N O X concentration.
図 5にはこの別の実施形態に係る具体的処理を示す。 前記同様、 図示される処理 は ECU 20により実行され、処理の前提として、 リツチスパイク制御時以外は三 元触媒 1 1が NOx浄化不能となるようなリーンバーン制御が実行されているも のとする。  FIG. 5 shows specific processing according to this other embodiment. As described above, the process shown in the figure is executed by the ECU 20, and it is assumed that the lean burn control is performed so that the three-way catalyst 11 cannot be NOx purified except during the rich spike control. .
ステップ S 20 1〜S 206は前記ステップ S 1 0 1〜S 1 06と同様である。 ステップ S 20 7では、触媒前 NOxセンサ 30により検出された触媒前検出 NO X濃度 C f の値が取得される。  Steps S 20 1 to S 206 are the same as Steps S 1 0 1 to S 1 06 described above. In step S 207, the value of the pre-catalyst detected NO X concentration C f detected by the pre-catalyst NOx sensor 30 is acquired.
この後、 ステップ S 208において、触媒前検出 NOx濃度 C f と触媒前推定 N O X濃度 C eとが比較され、これら濃度同士が互いに略等しいか否かが判断される。 具体的には、これら触媒前検出 NOx濃度 C f と触媒前推定 NOx濃度 C eとの差 即ち第 1濃度差 Δ。 1力 式: AC l = | C f — C e | により計算され、 この第 1 濃度差 Δ〇 1が第 1所定値 Δ〇 1 sより大きいか否かが判断される。  Thereafter, in step S208, the pre-catalyst detected NOx concentration C f is compared with the pre-catalyst estimated NOx concentration Ce to determine whether or not these concentrations are substantially equal to each other. Specifically, the difference between the pre-catalyst detected NOx concentration C f and the pre-catalyst estimated NOx concentration C e, that is, the first concentration difference Δ. 1 force Formula: AC l = | C f — C e | It is determined whether this first concentration difference Δ〇 1 is greater than a first predetermined value Δ〇 1 s.
第 1濃度差△〇 1が第 1所定値 Δ〇 1 sより大きい場合、触媒前検出 NOx濃度 C f が触媒前推定 NO X濃度 C eから比較的大きくずれているとみなされ、ステツ プ S 20 9にて触媒前 NOxセンサ 3 0は異常と判定される。他方、第 1濃度差 Δ C 1が第 1所定値 Δ C 1 s以下の場合、触媒前検出 NO X濃度 C f は触媒前推定 N Ox濃度 C eと略等しいとみなされ、 ステップ S 2 1 0に進む。 ステップ S 210では、触媒後 NO x濃度 C rと触媒前検出 NO x濃度 C f とが 比較され、 これら濃度同士が互いに略等しいか否かが判断される。 具体的には、 こ れら触媒後 NO X濃度 C rと触媒前検出 NO X濃度 C f との差即ち第 2濃度差 Δ C 2力 式: AC 2= | C r— C f | により計算され、 この第 2濃度差 AC 2が第 2所定値 AC 2 sより大きいか否かが判断される。 If the first concentration difference △ ○ 1 is larger than the first predetermined value △ ○ 1 s, it is considered that the pre-catalyst detected NOx concentration C f is relatively deviated from the pre-catalyst estimated NO X concentration Ce, and step S 20 9 determines that the pre-catalyst NOx sensor 30 is abnormal. On the other hand, if the first concentration difference ΔC 1 is equal to or less than the first predetermined value ΔC 1 s, the pre-catalyst detected NO X concentration C f is regarded as substantially equal to the pre-catalyst estimated NOx concentration Ce, and step S 2 1 Go to 0. In step S210, the after-catalyst NO x concentration C r and the before-catalyst detected NO x concentration C f are compared, and it is determined whether or not these concentrations are substantially equal to each other. Specifically, the difference between the post-catalyst NO X concentration C r and the pre-catalyst detected NO X concentration C f, that is, the second concentration difference Δ C 2 force formula: AC 2 = | Cr − C f | It is then determined whether or not the second concentration difference AC2 is greater than a second predetermined value AC2s.
第 2濃度差 AC 2が第 2所定値 Δ〇 2 sより大きい場合、触媒後 Ν Ο χ濃度 C r が触媒前検出 NO X濃度 C f から比較的大きくずれているとみなされ、ステップ S 21 1にて触媒後 NO Xセンサ 18は異常と判定される。 他方、第 2濃度差 AC 2 が第 2所定値 AC 2 s以下の場合、触媒後 NO X濃度 C rは触媒前検出 NO x濃度 C f と略等しいとみなされ、 ステップ S 212に進む。  If the second concentration difference AC2 is greater than the second predetermined value Δ〇2 s, the post-catalyst Ν Ο χ concentration C r is considered to be relatively deviated from the pre-catalyst detected NO X concentration C f, and step S 21 At 1, the post-catalyst NO X sensor 18 is determined to be abnormal. On the other hand, if the second concentration difference AC 2 is equal to or less than the second predetermined value AC 2 s, the post-catalyst NO x concentration Cr is regarded as substantially equal to the pre-catalyst detected NO x concentration C f, and the process proceeds to step S212.
ステップ S 21 2では、触媒前 NO Xセンサ 30及び触媒後 NO Xセンサ 1 8の いずれもが正常と判定される。 以上により本処理が終了される。  In step S 21 2, it is determined that both the before-catalyst NO X sensor 30 and the after-catalyst NO X sensor 18 are normal. This process is completed as described above.
以上、本発明の実施形態について説明したが、本発明は他の実施形態を採ること も可能である。例えば、前記実施形態では NO X濃度同士を比較するときにこれら の差に基づき比較を行ったが、 これに限定されず、例えばこれらの比に基づいて比 較を行ってもよレ、。前処理用のリツチスパイク制御(ステップ S 103, S 203) は、 前記実施形態のように触媒温度 T cが作動温度域から外れた直後に行うほか、 触媒温度 T cが作動温度域から外れる直前に行うことも可能である。前処理用のリ ツチスパイク制御を省略することも可能である。排気ガスの NO X濃度を敢えて強 制的に変動させる制御を実施し、 このときに検出 '取得された NO X濃度同士を比 較して異常判定を行ってもよい。  As mentioned above, although embodiment of this invention was described, this invention can also take other embodiment. For example, in the above embodiment, when comparing NOx concentrations, the comparison is made based on these differences. However, the present invention is not limited to this. For example, the comparison may be performed based on these ratios. The pre-treatment rich spike control (steps S 103 and S 203) is performed immediately after the catalyst temperature T c deviates from the operating temperature range as in the above embodiment, and immediately before the catalyst temperature T c deviates from the operating temperature range. It is also possible to do this. It is also possible to omit the pre-processing latch spike control. It is also possible to carry out a control that fluctuates the NOx concentration of the exhaust gas forcibly and compares the NOx concentrations detected at this time to determine the abnormality.
本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定 される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含ま れる。 従って本発明は、 限定的に解釈されるべきではなく、 本発明の思想の範囲内 に帰属する他の任意の技術にも適用することが可能である。 産業上の利用可能性 The embodiment of the present invention is not limited to the above-described embodiment, and includes all modifications, applications, and equivalents included in the concept of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention. Industrial applicability
本発明は、 内燃機関の排気系に設けられた N O Xセンサに適用可能である。 The present invention is applicable to an N O X sensor provided in an exhaust system of an internal combustion engine.

Claims

請求の範囲 The scope of the claims
1. 内燃機関の排気通路に設けられた吸蔵還元型 NO x触媒と、 1. an NOx storage reduction catalyst provided in an exhaust passage of an internal combustion engine;
前記 N O X触媒の下流側における排気ガスの N O X濃度を検出する触媒後 N O Xセンサと、  A post-catalyst N O X sensor for detecting the N O X concentration of exhaust gas downstream of the N O X catalyst;
前記 N O X触媒の上流側における排気ガスの N O X濃度を検出又は推定する触 媒前 N〇x濃度取得手段と、  A pre-catalyst N0x concentration acquisition means for detecting or estimating the NOx concentration of exhaust gas upstream of the NOx catalyst;
前記 NO X触媒が排気ガス中の NO Xを実質的に吸蔵しない条件下で、前記触媒 後 N O Xセンサによって検出された N O X濃度と、前記触媒前 N O X濃度取得手段 によって検出又は推定された NO X濃度とを比較して、前記触媒後 NO Xセンサの 異常を判定する異常判定手段と  The NOX concentration detected by the post-catalyst NOX sensor and the NO X concentration detected or estimated by the pre-catalyst NOX concentration acquisition means under the condition that the NO X catalyst does not substantially store NO X in the exhaust gas. And an abnormality determination means for determining abnormality of the post-catalyst NO X sensor
を備えたことを特徴とする N O Xセンサの異常診断装置。  An N O X sensor abnormality diagnosis device characterized by comprising:
2. 前記 NO X触媒の温度を検出又は推定する触媒温度取得手段が備えられ、 前記異常判定手段は、前記触媒温度取得手段によって検出又は推定された触媒温 度が、前記 N〇 X触媒が排気ガス中の NO Xを実質的に吸蔵しない温度であるとい う条件下で、前記触媒後 NO Xセンサによって検出された NO X濃度と、前記触媒 前 NO X濃度取得手段によって検出又は推定された NO X濃度とを比較して、前記 触媒後 NO Xセンサの異常を判定する 2. A catalyst temperature acquisition means for detecting or estimating the temperature of the NO X catalyst is provided, and the abnormality determination means is configured such that the catalyst temperature detected or estimated by the catalyst temperature acquisition means is exhausted by the NOX catalyst. The NO X concentration detected by the post-catalyst NO X sensor and the NO detected or estimated by the pre-catalyst NO X concentration acquisition means under the condition that the NO X in the gas is not substantially occluded. Compare the X concentration to determine the NO X sensor abnormality after the catalyst
ことを特徴とする請求項 1記載の N O Xセンサの異常診断装置。  The apparatus for diagnosing abnormality of an N O X sensor according to claim 1.
3. 前記 NO X触媒に流入する排気ガスの空燃比を検出又は推定する空燃比取得 手段が備えられ、 3. Air-fuel ratio acquisition means for detecting or estimating the air-fuel ratio of the exhaust gas flowing into the NO X catalyst is provided,
前記異常判定手段は、前記空燃比取得手段によって検出又は推定された空燃比が 理論空燃比又はそれよりリツチであるという条件下で、前記触媒後 NOxセンサに よって検出された N O X濃度と、前記触媒前 N O X濃度取得手段によつて検出又は 推定された NOx濃度とを比較して、 前記触媒後 NOxセンサの異常を判定する ことを特徴とする請求項 1記載の NO Xセンサの異常診断装置。 The abnormality determination means includes the NOX concentration detected by the post-catalyst NOx sensor under the condition that the air-fuel ratio detected or estimated by the air-fuel ratio acquisition means is the stoichiometric air-fuel ratio or a richer than that, and the catalyst Compare the NOx concentration detected or estimated by the pre-NOX concentration acquisition means to determine the abnormality of the post-catalyst NOx sensor The abnormality diagnosis device for a NO X sensor according to claim 1, wherein
4. 前記 NO X触媒に吸蔵された NO Xを放出させるためのリツチスパイク制御 を実行するリツチスパイク制御手段が備えられ、 4. Rich spike control means for performing rich spike control for releasing NO X stored in the NO X catalyst is provided,
前記リツチスパイク制御手段は、前記触媒後 NO Xセンサによる NO X濃度の検 出前に前記リツチスパイク制御を実行する  The rich spike control means executes the rich spike control before detecting the NO X concentration by the post-catalyst NO X sensor.
ことを特徴とする請求項 1乃至 3のいずれかに記載の N〇 Xセンサの異常診断 装置。  4. The abnormality diagnosis apparatus for an N0 X sensor according to claim 1, wherein
5. 前記触媒前 NO X濃度取得手段は、前記内燃機関の運転状態に基づき前記内 燃機関から排出される排気ガスの NO X濃度を推定する推定手段、及び前記 NO X 触媒の上流側における排気ガスの N O X濃度を検出する触媒前 N O Xセンサの少 なくとも一方からなる 5. The pre-catalyst NO X concentration acquisition means includes estimation means for estimating the NO X concentration of exhaust gas discharged from the internal combustion engine based on the operating state of the internal combustion engine, and exhaust gas upstream of the NO X catalyst. Consists of at least one pre-catalyst NOX sensor that detects gas NOX concentration
ことを特徴とする請求項 1乃至 4のいずれかに記載の NO Xセンサの異常診断 装置。  The apparatus for diagnosing abnormality of a NO X sensor according to any one of claims 1 to 4.
6. 前記触媒前 NO X濃度取得手段は前記推定手段及び前記触媒前 NO Xセンサ の両方からなり、 6. The pre-catalyst NO X concentration acquisition means comprises both the estimation means and the pre-catalyst NO X sensor,
前記異常判定手段は、前記触媒後 NO Xセンサによる NO X濃度の検出値、前記 触媒前 NO Xセンサによる N〇 X濃度の検出値及び前記推定手段による NO X濃 度の推定値を比較して前記触媒後 N O Xセンサ及び前記触媒前 N O Xセンサの異 常を区別して判定する  The abnormality determination means compares the detected value of NO X concentration by the post-catalyst NO X sensor, the detected value of NO x concentration by the pre-catalyst NO X sensor, and the estimated value of NO X concentration by the estimation means. Judgment is made by distinguishing the abnormality of the post-catalyst NOX sensor and the pre-catalyst NOX sensor.
ことを特徴とする請求項 5記載の N O Xセンサの異常診断装置。  6. The abnormality diagnosis apparatus for an N O X sensor according to claim 5.
7. 前記異常判定手段は、前記触媒後 NO Xセンサが活性状態にあるという条件 下で前記触媒後 N O Xセンサによって検出された N O X濃度に基づき、前記触媒後 N O Xセンサの異常を判定する ことを特徴とする請求項 1乃至 6のいずれかに記載の NO xセンサの異常診断 装置。 7. The abnormality determination means determines an abnormality of the post-catalyst NOX sensor based on a NOX concentration detected by the post-catalyst NOX sensor under a condition that the post-catalyst NO X sensor is in an active state. The apparatus for diagnosing abnormality of a NO x sensor according to any one of claims 1 to 6.
PCT/JP2008/054555 2007-03-06 2008-03-06 ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR WO2008108501A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008800072572A CN101646855B (en) 2007-03-06 2008-03-06 Abnormality diagnosis device for nox sensor
US12/449,892 US8091404B2 (en) 2007-03-06 2008-03-06 Abnormality diagnosis apparatus for NOx sensor
EP08721970.5A EP2119897B1 (en) 2007-03-06 2008-03-06 ABNORMALITY DIAGNOSIS APPARATUS FOR NOx SENSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-056043 2007-03-06
JP2007056043A JP4537417B2 (en) 2007-03-06 2007-03-06 NOx sensor abnormality diagnosis device

Publications (1)

Publication Number Publication Date
WO2008108501A1 true WO2008108501A1 (en) 2008-09-12

Family

ID=39738363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054555 WO2008108501A1 (en) 2007-03-06 2008-03-06 ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR

Country Status (5)

Country Link
US (1) US8091404B2 (en)
EP (1) EP2119897B1 (en)
JP (1) JP4537417B2 (en)
CN (1) CN101646855B (en)
WO (1) WO2008108501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109946A1 (en) * 2009-03-23 2010-09-30 ボッシュ株式会社 Rationality diagnostic apparatus and rationality diagnostic method for nox sensor

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162181A (en) * 2008-01-09 2009-07-23 Denso Corp NOx SENSOR DIAGNOSTIC DEVICE AND EXHAUST EMISSION CONTROL SYSTEM USING THE SAME
JP5500867B2 (en) * 2009-04-30 2014-05-21 日野自動車株式会社 Exhaust purification device
JP4853548B2 (en) * 2009-05-29 2012-01-11 株式会社デンソー Exhaust sensor diagnostic device
CN102667090B (en) * 2009-06-24 2015-03-04 康明斯知识产权公司 Apparatus, system, and method for estimating deterioration of a NOX sensor response rate
JP4816773B2 (en) * 2009-07-16 2011-11-16 株式会社デンソー Exhaust component concentration sensor response detection device
SE535748C2 (en) * 2010-04-08 2012-12-04 Scania Cv Ab Apparatus and method for detecting a state of a NOx sensor of a motor vehicle
US8683856B2 (en) * 2010-04-23 2014-04-01 Toyota Jidosha Kabushiki Kaisha Catalyst abnormality diagnosis apparatus
JP5533235B2 (en) * 2010-05-17 2014-06-25 いすゞ自動車株式会社 NOx sensor diagnostic device and SCR system
US9080528B2 (en) 2010-05-17 2015-07-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP5789925B2 (en) * 2010-07-08 2015-10-07 いすゞ自動車株式会社 NOx sensor diagnostic device and SCR system
JP2012082710A (en) * 2010-10-07 2012-04-26 Toyota Motor Corp Degradation detection system for nox sensor
JP5831162B2 (en) * 2011-11-18 2015-12-09 いすゞ自動車株式会社 NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine
JP5790545B2 (en) * 2012-03-05 2015-10-07 三菱自動車工業株式会社 Catalyst diagnostic apparatus and catalyst diagnostic method
AT512760B1 (en) * 2012-03-21 2014-05-15 Avl List Gmbh Method for operating an internal combustion engine
JP6036772B2 (en) * 2013-09-25 2016-11-30 トヨタ自動車株式会社 Control device for internal combustion engine
US9624804B2 (en) * 2013-09-25 2017-04-18 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis device for a sensor
US9562486B2 (en) * 2014-10-24 2017-02-07 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
DE102015224935B4 (en) * 2015-12-11 2017-12-14 Continental Automotive Gmbh Method, apparatus and system for operating a nitrogen oxide sensor
CN105653071B (en) * 2015-12-28 2018-12-18 联想(北京)有限公司 A kind of information processing method and electronic equipment
DE102016200721A1 (en) * 2016-01-20 2017-07-20 Robert Bosch Gmbh Method for monitoring NOx sensors
DE102016218794A1 (en) * 2016-09-29 2018-03-29 Robert Bosch Gmbh Stationary natural gas engine with at least one nitrogen oxide sensor
JP7169826B2 (en) * 2018-09-21 2022-11-11 日本碍子株式会社 Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
JP2020060120A (en) * 2018-10-09 2020-04-16 日本碍子株式会社 Deterioration diagnosis device of catalyst and deterioration diagnosis method of catalyst
KR102527191B1 (en) * 2018-11-20 2023-05-02 에이치에스디엔진 주식회사 Selective catalytic reduction system
CN110631835B (en) * 2019-09-25 2021-07-09 潍坊内燃机质量检验中心有限公司 Supercharging pressure credibility detection method and device
CN111044684A (en) * 2019-12-30 2020-04-21 潍柴动力股份有限公司 Method and device for judging tampering of nitrogen-oxygen sensor
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
EP4080024A1 (en) * 2021-04-22 2022-10-26 Volvo Truck Corporation A method for detecting a sensor anomality

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047979A (en) * 2000-08-03 2002-02-15 Hitachi Ltd Engine controller ! exhaust air particulate treatment device for internal combustion engine
JP2003120399A (en) 2001-10-09 2003-04-23 Toyota Motor Corp APPARATUS FOR DETECTING ABNORMALITY OF NOx SENSOR
US20030192305A1 (en) 2001-09-28 2003-10-16 Hitachi, Ltd. Controller of compression-ignition engine
JP2004270468A (en) * 2003-03-05 2004-09-30 Mitsubishi Fuso Truck & Bus Corp Abnormality determining device for nox sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472446A (en) * 1990-07-13 1992-03-06 Nippondenso Co Ltd Accelerator operation quantity detecting device for internal combustion engine
DE19828929A1 (en) * 1998-06-29 2000-01-05 Siemens Ag Method for checking the dynamic behavior of a sensor in the exhaust tract of an internal combustion engine
DE19945374A1 (en) * 1999-09-22 2001-03-29 Volkswagen Ag Method for monitoring the function of a NO¶x¶ sensor arranged in an exhaust gas duct of an internal combustion engine
DE10049685A1 (en) * 2000-10-07 2002-04-11 Volkswagen Ag Process for single diagnosis of a nitrogen oxides sensor arranged in the exhaust gas line of an internal combustion engine comprises using a lambda signal characterizing the lambda value of the exhaust gas
JP2003120339A (en) 2001-10-10 2003-04-23 Toyota Motor Corp Accelerator reaction force control device
JP3873904B2 (en) * 2003-02-26 2007-01-31 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
DE10310954A1 (en) * 2003-03-13 2004-09-23 Robert Bosch Gmbh Diagnostic procedure for a NOx sensor
DE102004051747A1 (en) * 2004-10-23 2006-04-27 Robert Bosch Gmbh Internal-combustion engine operation comprises determining nitrogen oxide concentration, fill level, and operating temperature of the nitrogen oxide accumulator catalyst and correcting a signal off set
JP2006348778A (en) * 2005-06-14 2006-12-28 Denso Corp Abnormality diagnosis device for pressure sensor
FR2906312B1 (en) * 2006-09-27 2016-04-15 Bosch Gmbh Robert METHOD FOR DIAGNOSING AN EXHAUST GAS SENSOR EQUIPPED WITH AN INTERNAL COMBUSTION ENGINE AND DEVICE FOR CARRYING OUT SAID METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047979A (en) * 2000-08-03 2002-02-15 Hitachi Ltd Engine controller ! exhaust air particulate treatment device for internal combustion engine
US20030192305A1 (en) 2001-09-28 2003-10-16 Hitachi, Ltd. Controller of compression-ignition engine
JP2003120399A (en) 2001-10-09 2003-04-23 Toyota Motor Corp APPARATUS FOR DETECTING ABNORMALITY OF NOx SENSOR
JP2004270468A (en) * 2003-03-05 2004-09-30 Mitsubishi Fuso Truck & Bus Corp Abnormality determining device for nox sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2119897A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109946A1 (en) * 2009-03-23 2010-09-30 ボッシュ株式会社 Rationality diagnostic apparatus and rationality diagnostic method for nox sensor
JPWO2010109946A1 (en) * 2009-03-23 2012-09-27 ボッシュ株式会社 NOX sensor rationality diagnostic device and rationality diagnostic method

Also Published As

Publication number Publication date
EP2119897A1 (en) 2009-11-18
US8091404B2 (en) 2012-01-10
EP2119897A4 (en) 2012-03-07
EP2119897B1 (en) 2013-09-18
JP4537417B2 (en) 2010-09-01
JP2008215260A (en) 2008-09-18
US20100024520A1 (en) 2010-02-04
CN101646855A (en) 2010-02-10
CN101646855B (en) 2013-01-16

Similar Documents

Publication Publication Date Title
WO2008108501A1 (en) ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR
JP4485553B2 (en) NOx sensor abnormality diagnosis device
JP4729518B2 (en) NOx catalyst deterioration diagnosis device
JP4475271B2 (en) NOx sensor abnormality diagnosis device and abnormality diagnosis method
JP4915256B2 (en) Catalyst degradation diagnosis apparatus and degradation diagnosis method
US20090199543A1 (en) Catalyst monitoring system and monitoring method
US6484493B2 (en) Exhaust emission control device for internal combustion engine
JP2009138604A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP4867909B2 (en) NOx catalyst deterioration diagnosis device
JP2010236458A (en) Deterioration diagnostic device for nox catalyst
JP5494571B2 (en) Fuel property determination device and catalyst abnormality diagnosis device provided with the same
JP2009121330A (en) Catalyst poisoning determining method and device, and exhaust emission control method and device
JP4789016B2 (en) NOx catalyst deterioration diagnosis device
JP2009138605A (en) Deterioration diagnosing device of nox catalyst
JP4835989B2 (en) Catalyst deterioration detection device for internal combustion engine
JP2009046994A (en) Deterioration diagnostic system of nox catalyst
JP6380264B2 (en) Oxygen sensor abnormality diagnosis device
JP2013024118A (en) Catalyst failure diagnosis apparatus
JP2019157671A (en) Abnormality detection device of exhaust emission purification catalyst
Sawada et al. Abnormality diagnosis apparatus for NO x sensor
JP2011185205A (en) Abnormal condition diagnostic device of air-fuel ratio sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880007257.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721970

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12449892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008721970

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE