JP2006348778A - Abnormality diagnosis device for pressure sensor - Google Patents

Abnormality diagnosis device for pressure sensor Download PDF

Info

Publication number
JP2006348778A
JP2006348778A JP2005173148A JP2005173148A JP2006348778A JP 2006348778 A JP2006348778 A JP 2006348778A JP 2005173148 A JP2005173148 A JP 2005173148A JP 2005173148 A JP2005173148 A JP 2005173148A JP 2006348778 A JP2006348778 A JP 2006348778A
Authority
JP
Japan
Prior art keywords
pressure sensor
intake
pressure
pressure sensors
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005173148A
Other languages
Japanese (ja)
Inventor
Yasuo Mukai
向井  弥寿夫
Masahiko Yamaguchi
正彦 山口
Kuniaki Ueda
邦明 上田
Yasuo Kosaka
匂坂  康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005173148A priority Critical patent/JP2006348778A/en
Priority to US11/447,036 priority patent/US7380448B2/en
Publication of JP2006348778A publication Critical patent/JP2006348778A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/144

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately determine existence of abnormality of an upstream side intake air pressure sensor, a downstream side intake air pressure sensor, and an atmospheric pressure sensor. <P>SOLUTION: A detection value of the upstream side intake air pressure sensor 15, a detection value of the downstream side intake air pressure 19, and a detection value of the atmospheric air pressure sensor 35 are compares during engine stop to determine existence of abnormality of the three pressure sensors (the upstream side intake air pressure sensor 15, the downstream side intake air pressure sensor 19 and the atmospheric air pressure sensor 35). Since pressure in an intake pipe 12 is roughly atmospheric pressure during engine stop, detection values of three pressure sensors are roughly same when all three pressure sensors are normal, the detection value of an abnormal pressure sensor becomes different from detection values of other two normal pressure sensors. Consequently, if the detection values of three pressure sensors are compared during engine stop, existence of abnormality of the three pressure sensors can be accurately determined. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の吸気圧センサ等の異常の有無を判定する圧力センサの異常診断装置に関するものである。   The present invention relates to an abnormality diagnosis device for a pressure sensor that determines the presence or absence of abnormality of an intake pressure sensor or the like of an internal combustion engine.

従来の吸気圧センサの異常診断技術としては、例えば、特許文献1(特開昭60−4838号公報)に記載されているように、内燃機関の吸気通路に低圧用の吸気圧センサと高圧用の吸気圧センサとを配置したシステムにおいて、高圧用の吸気圧センサの検出値VPBTCが所定値VPBTC17よりも低いときに、低圧用の吸気圧センサの検出値VPBNAが判定値VPBNAH よりも高ければ、低圧用の吸気圧センサの異常有りと判定し、一方、低圧用の吸気圧センサの検出値VPBNAが所定値VPBNA17よりも高いときに、高圧用の吸気圧センサの検出値VPBTCが判定値VPBTCL よりも低ければ、高圧用の吸気圧センサの異常有りと判定するようにしたものがある。
特開昭60−4838号公報(第4頁等)
As a conventional abnormality diagnosis technique for an intake pressure sensor, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 60-4838), a low pressure intake pressure sensor and a high pressure sensor are provided in an intake passage of an internal combustion engine. If the detection value VPBTC of the high-pressure intake pressure sensor is lower than the predetermined value VPBTC17 and the detection value VPBNA of the low-pressure intake pressure sensor is higher than the determination value VPBNAH, When the detection value VPBNA of the low pressure intake pressure sensor is higher than the predetermined value VPBNA17, the detection value VPBTC of the high pressure intake pressure sensor is determined from the determination value VPBTCL. If the value is too low, it is determined that there is an abnormality in the high-pressure intake pressure sensor.
JP-A-60-4838 (Page 4 etc.)

しかし、上記特許文献1の異常診断技術では、2つの吸気圧センサのうちの一方の吸気圧センサの検出値を基準にして他方の吸気圧センサの異常診断を行うため、例えば、一方の吸気圧センサに異常が発生した場合に、その一方の吸気圧センサの異常な検出値を基準にして他方の吸気圧センサ(正常なセンサ)の異常診断を行ってしまい、他方の吸気圧センサが正常であるにも拘らず異常有りと誤診断してしまう可能性がある。   However, in the abnormality diagnosis technique disclosed in Patent Document 1, abnormality diagnosis of the other intake pressure sensor is performed on the basis of the detection value of one intake pressure sensor of the two intake pressure sensors. When an abnormality occurs in the sensor, an abnormality diagnosis of the other intake pressure sensor (normal sensor) is performed based on the abnormal detection value of one intake pressure sensor, and the other intake pressure sensor is normal. Nevertheless, there is a possibility of misdiagnosing that there is an abnormality.

本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、複数の圧力センサの異常の有無を精度良く判定することができる圧力センサの異常診断装置を提供することにある。   The present invention has been made in view of such circumstances. Accordingly, an object of the present invention is to provide a pressure sensor abnormality diagnosis device that can accurately determine the presence or absence of abnormality of a plurality of pressure sensors. There is.

上記目的を達成するために、請求項1に係る発明は、内燃機関の吸気圧を検出する2つの圧力センサである第1の吸気圧センサ及び第2の吸気圧センサと、大気圧を検出する圧力センサである大気圧センサとを備えたシステムに適用され、内燃機関の停止中又は始動時に3つの圧力センサの検出値を比較して該3つの圧力センサの異常の有無を判定するようにしたものである。   In order to achieve the above object, the invention according to claim 1 detects the atmospheric pressure by the first intake pressure sensor and the second intake pressure sensor which are two pressure sensors for detecting the intake pressure of the internal combustion engine. This is applied to a system including an atmospheric pressure sensor that is a pressure sensor, and the detected values of the three pressure sensors are compared when the internal combustion engine is stopped or started, and the presence or absence of abnormality of the three pressure sensors is determined. Is.

内燃機関の停止中や始動時(例えば、イグニッションスイッチのオン直後で内燃機関がまだ回転していないか又はほとんど吸気していない極低回転時)には、吸気通路内の圧力がほぼ大気圧になっているため、3つの圧力センサ(第1の吸気圧センサと第2の吸気圧センサと大気圧センサ)が全て正常の場合には、これら3つの圧力センサの検出値がほぼ大気圧に相当する圧力で一致し、もし、いずれか1つの圧力センサが異常になれば、その異常な圧力センサの検出値が他の2つの正常な圧力センサの検出値と異なってくる。従って、内燃機関の停止中や始動時に、3つの圧力センサの検出値を比較して、3つの圧力センサの検出値がほぼ一致すると判断されれば、3つの圧力センサが全て正常と判断でき、一方、3つの圧力センサの検出値が一致しないと判断される場合は、3つの圧力センサの検出値の中から検出値が異なる圧力センサを選別することで、3つの圧力センサの中から異常な圧力センサを特定することができ、正常な圧力センサを異常有りと誤診断することを防止することができる。   When the internal combustion engine is stopped or started (for example, immediately after the ignition switch is turned on, the internal combustion engine is not yet rotating or is taking very little rotation), the pressure in the intake passage is almost atmospheric pressure. Therefore, when all of the three pressure sensors (the first intake pressure sensor, the second intake pressure sensor, and the atmospheric pressure sensor) are normal, the detection values of these three pressure sensors are substantially equivalent to the atmospheric pressure. If any one of the pressure sensors becomes abnormal, the detected value of the abnormal pressure sensor becomes different from the detected values of the other two normal pressure sensors. Therefore, when the internal combustion engine is stopped or started, the detection values of the three pressure sensors are compared, and if the detection values of the three pressure sensors are determined to be substantially the same, it can be determined that all three pressure sensors are normal. On the other hand, when it is determined that the detection values of the three pressure sensors do not match, by selecting a pressure sensor having a different detection value from the detection values of the three pressure sensors, an abnormal condition is detected from the three pressure sensors. The pressure sensor can be specified, and it can be prevented that a normal pressure sensor is erroneously diagnosed as having an abnormality.

具体的には、請求項2のように、3つの圧力センサの検出値の一致・不一致を多数決演算により判断し、検出値が一致すると判断される2つ以上の圧力センサを正常な圧力センサと判断し、検出値が不一致と判断される圧力センサを異常な圧力センサと判断するようにすれば良い。このようにすれば、いずれか1つの圧力センサが異常になった場合に、その異常な圧力センサを多数決演算により精度良く特定することができる。   Specifically, as in claim 2, the coincidence / disagreement of the detection values of the three pressure sensors is determined by majority calculation, and two or more pressure sensors determined to match the detection values are regarded as normal pressure sensors. The pressure sensor that is determined and the detected value is determined to be inconsistent may be determined as an abnormal pressure sensor. In this way, when any one of the pressure sensors becomes abnormal, the abnormal pressure sensor can be accurately identified by majority calculation.

ところで、内燃機関が停止した直後は、まだ、吸気通路内の圧力が大気圧付近になっていない可能性があるため、内燃機関の停止直後に、3つの圧力センサの異常診断を実行すると、圧力センサの異常の有無を誤診断する可能性がある。   By the way, immediately after the internal combustion engine is stopped, the pressure in the intake passage may not be close to the atmospheric pressure. There is a possibility of misdiagnosing the presence or absence of sensor abnormality.

そこで、請求項3のように、内燃機関が停止されてから所定時間が経過した後の停止中又は始動時に3つの圧力センサの異常診断を実行するようにすると良い。このようにすれば、内燃機関が停止されてから吸気通路内の圧力がほぼ大気圧となるのに必要な所定時間が経過して、確実に吸気通路内の圧力がほぼ大気圧になった状態で、3つの圧力センサの異常診断を実行することができ、圧力センサの異常診断の信頼性を向上させることができる。   Therefore, as described in claim 3, it is preferable to perform abnormality diagnosis of the three pressure sensors during stoppage or start-up after a predetermined time has elapsed since the internal combustion engine was stopped. In this way, after the internal combustion engine is stopped, a predetermined time required for the pressure in the intake passage to become almost atmospheric pressure has passed, and the pressure in the intake passage has been reliably made almost atmospheric. Thus, the abnormality diagnosis of the three pressure sensors can be executed, and the reliability of the abnormality diagnosis of the pressure sensor can be improved.

また、本発明は、請求項4のように、内燃機関の吸気通路のうちスロットルバルブよりも上流側に設けたコンプレッサで吸入空気を過給する過給機を備え、第1の吸気圧センサがコンプレッサとスロットルバルブとの間の吸気圧を検出し、第2の吸気圧センサがスロットルバルブの下流側の吸気圧を検出するシステムに適用すると良い。このようにすれば、過給機付き内燃機関のコンプレッサとスロットルバルブとの間の吸気圧(いわゆる過給圧)を検出する上流側吸気圧センサ(第1の吸気圧センサ)と、スロットルバルブ下流側の吸気圧を検出する下流側吸気圧センサ(第2の吸気圧センサ)の異常の有無を精度良く判定することができる。   According to a fourth aspect of the present invention, the turbocharger includes a supercharger that supercharges intake air with a compressor provided upstream of the throttle valve in the intake passage of the internal combustion engine. The present invention may be applied to a system in which the intake pressure between the compressor and the throttle valve is detected, and the second intake pressure sensor detects the intake pressure downstream of the throttle valve. In this way, the upstream intake pressure sensor (first intake pressure sensor) that detects the intake pressure (so-called supercharging pressure) between the compressor and the throttle valve of the internal combustion engine with a supercharger, and the throttle valve downstream It is possible to accurately determine whether there is an abnormality in the downstream side intake pressure sensor (second intake pressure sensor) that detects the side intake pressure.

以下、本発明の一実施例を図面に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12(吸気通路)の最上流部には、エアクリーナ(図示せず)が設けられ、このエアクリーナの下流側に、吸入空気量を検出するエアフローメータ13と、吸気温を検出する吸気温センサ14とが設けられている。このエアフローメータ13と吸気温センサ14の下流側には、後述する排気タービン駆動式過給機24のコンプレッサ26と、このコンプレッサ26で加圧された吸入空気を冷却するインタークーラー27とが設けられ、このインタークーラー27の下流側に、スロットルバルブ16上流側の吸気圧(いわゆる過給圧)を検出する上流側吸気圧センサ15(第1の吸気圧センサ)が設けられている。尚、上流側吸気圧センサ15に吸気温センサを一体的に設けるようにしても良い。この上流側吸気圧センサ15の下流側には、モータ等によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner (not shown) is provided at the uppermost stream portion of the intake pipe 12 (intake passage) of the engine 11 that is an internal combustion engine, and an air flow meter 13 for detecting the intake air amount is disposed downstream of the air cleaner. An intake air temperature sensor 14 for detecting the air temperature is provided. On the downstream side of the air flow meter 13 and the intake air temperature sensor 14, a compressor 26 of an exhaust turbine drive supercharger 24 described later and an intercooler 27 for cooling the intake air pressurized by the compressor 26 are provided. An upstream intake pressure sensor 15 (first intake pressure sensor) that detects an intake pressure upstream of the throttle valve 16 (so-called supercharging pressure) is provided downstream of the intercooler 27. An intake air temperature sensor may be provided integrally with the upstream intake pressure sensor 15. On the downstream side of the upstream intake pressure sensor 15, a throttle valve 16 whose opening is adjusted by a motor or the like and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided. ing.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18には、スロットルバルブ16下流側の吸気圧を検出する下流側吸気圧センサ19(第2の吸気圧センサ)が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって各気筒の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and a downstream intake pressure sensor 19 (second intake pressure sensor) that detects the intake pressure downstream of the throttle valve 16 is provided in the surge tank 18. Is provided. The surge tank 18 is provided with an intake manifold 20 for introducing air into each cylinder of the engine 11, and a fuel injection valve 21 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 20 of each cylinder. Yes. A spark plug 22 is attached to each cylinder of the cylinder head of the engine 11, and the air-fuel mixture of each cylinder is ignited by spark discharge of each spark plug 22.

このエンジン11には、排気タービン駆動式過給機24が搭載されている。この過給機24は、排気管23に排気タービン25が配置され、吸気管12のうちエアフローメータ13とスロットルバルブ16との間にコンプレッサ26が配置されている。過給機24は、排気タービン25とコンプレッサ26とが連結され、排出ガスの運動エネルギーで排気タービン25を回転駆動することでコンプレッサ26を回転駆動して吸入空気を過給するようになっている。   An exhaust turbine driven supercharger 24 is mounted on the engine 11. In the supercharger 24, an exhaust turbine 25 is disposed in the exhaust pipe 23, and a compressor 26 is disposed between the air flow meter 13 and the throttle valve 16 in the intake pipe 12. In the supercharger 24, an exhaust turbine 25 and a compressor 26 are connected, and the exhaust turbine 25 is rotationally driven by the kinetic energy of exhaust gas, whereby the compressor 26 is rotationally driven to supercharge intake air. .

更に、吸気管12には、スロットルバルブ16の上流側においてコンプレッサ26の上流側と下流側とをバイパスさせる吸気バイパス通路28が設けられ、この吸気バイパス通路28の途中に、吸気バイパス通路28を開閉するエアバイパスバルブ29が設けられている。一方、排気管23には、排気タービン25の上流側と下流側とをバイパスさせる排気バイパス通路30が設けられ、この排気バイパス通路30の途中に、排気バイパス通路30を開閉するウェイストゲートバルブ31が設けられている。   Further, the intake pipe 12 is provided with an intake bypass passage 28 that bypasses the upstream side and the downstream side of the compressor 26 on the upstream side of the throttle valve 16. An air bypass valve 29 is provided. On the other hand, the exhaust pipe 23 is provided with an exhaust bypass passage 30 that bypasses the upstream side and the downstream side of the exhaust turbine 25, and a waste gate valve 31 that opens and closes the exhaust bypass passage 30 is provided in the middle of the exhaust bypass passage 30. Is provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ32や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ33が取り付けられている。このクランク角センサ33の出力信号に基づいてクランク角やエンジン回転速度が検出される。また、アクセルセンサ34によってアクセルペダルの踏み込み量(アクセル開度)が検出され、大気圧センサ35によって大気圧が検出される。この大気圧センサ35は、後述するECU36のケース内に配置されている。   A cooling water temperature sensor 32 that detects the cooling water temperature and a crank angle sensor 33 that outputs a pulse signal each time the crankshaft of the engine 11 rotates a predetermined crank angle are attached to the cylinder block of the engine 11. Based on the output signal of the crank angle sensor 33, the crank angle and the engine speed are detected. The accelerator sensor 34 detects the amount of depression of the accelerator pedal (accelerator opening), and the atmospheric pressure sensor 35 detects the atmospheric pressure. The atmospheric pressure sensor 35 is disposed in a case of an ECU 36 described later.

前述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)36に入力される。このECU36は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。   The outputs of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 36. The ECU 36 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 21 according to the engine operating state. The ignition timing of the spark plug 22 is controlled.

また、ECU36は、後述する図2及び図3の圧力センサ異常診断ルーチンを実行することで、エンジン11の停止中に、上流側吸気圧センサ15の検出値MAP1 と下流側吸気圧センサ19の検出値MAP2 と大気圧センサ35の検出値ATPとを比較して、それらの検出値の一致・不一致を判定する多数決演算により上流側吸気圧センサ15と下流側吸気圧センサ19と大気圧センサ35の異常の有無を判定する。尚、エンジン停止中に圧力センサ異常診断を実行するために、図示しないIGスイッチ(イグニッションスイッチ)のオフ後も、暫くの間、ECU36への通電が継続されるようになっている。   Further, the ECU 36 executes a pressure sensor abnormality diagnosis routine of FIGS. 2 and 3 to be described later, so that the detection value MAP1 of the upstream intake pressure sensor 15 and the detection of the downstream intake pressure sensor 19 are detected while the engine 11 is stopped. The value MAP2 is compared with the detected value ATP of the atmospheric pressure sensor 35, and the upstream side intake pressure sensor 15, the downstream side intake pressure sensor 19 and the atmospheric pressure sensor 35 are determined by majority decision to determine whether the detected values match or not. Determine if there is an abnormality. In order to execute the pressure sensor abnormality diagnosis while the engine is stopped, the ECU 36 is continuously energized for a while after the IG switch (ignition switch) (not shown) is turned off.

エンジン11の停止中には、吸気管12内の圧力がほぼ大気圧となっているため、3つの圧力センサ(上流側吸気圧センサ15と下流側吸気圧センサ19と大気圧センサ35)が全て正常の場合には、これら3つの圧力センサの検出値がほぼ大気圧に相当する圧力で一致し、もし、いずれか1つの圧力センサが異常になれば、その異常な圧力センサの検出値が他の2つの正常な圧力センサの検出値と異なってくる。この点に着目して、本実施例では、エンジン11の停止中に、3つの圧力センサの検出値の一致・不一致を多数決演算により判断し、検出値が一致すると判断される2つ以上の圧力センサを正常な圧力センサと判断し、検出値が不一致と判断される圧力センサを異常な圧力センサと判断するようにしている。   While the engine 11 is stopped, the pressure in the intake pipe 12 is almost atmospheric pressure, so all three pressure sensors (upstream intake pressure sensor 15, downstream intake pressure sensor 19, and atmospheric pressure sensor 35) are all. In the normal case, the detected values of these three pressure sensors coincide with each other at a pressure corresponding to almost atmospheric pressure. If any one of the pressure sensors becomes abnormal, the detected value of the abnormal pressure sensor is different from the other. The detected values of the two normal pressure sensors are different. Focusing on this point, in the present embodiment, when the engine 11 is stopped, two or more pressures that are determined to be coincident with each other are determined by majority calculation by determining majority or non-matching of the detection values of the three pressure sensors. The sensor is determined to be a normal pressure sensor, and the pressure sensor whose detected value is determined to be inconsistent is determined to be an abnormal pressure sensor.

以下、ECU36が実行する図2及び図3の圧力センサ異常診断ルーチンの処理内容を説明する。   Hereinafter, processing contents of the pressure sensor abnormality diagnosis routine of FIGS. 2 and 3 executed by the ECU 36 will be described.

図2及び図3に示す圧力センサ異常診断ルーチンは、ECU36の電源オン中に所定周期で実行され、特許請求の範囲でいう異常診断手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、エンジン11が停止されたか否かを、例えば、IGスイッチがオフされたか否かによって判定する。   The pressure sensor abnormality diagnosis routine shown in FIGS. 2 and 3 is executed at a predetermined cycle while the ECU 36 is turned on, and serves as abnormality diagnosis means in the claims. When this routine is started, first, at step 101, it is determined whether or not the engine 11 has been stopped, for example, by whether or not the IG switch has been turned off.

このステップ101で、エンジン11が停止されていない(つまり、エンジン運転中)と判定された場合には、ステップ103以降の圧力センサ異常診断に関する処理を実行することなく、ステップ102に進み、エンジン停止時間(エンジン11が停止されてからの経過時間)を計測するカウンタCntのカウント値を「0」にリセットして、本ルーチンを終了する。   If it is determined in step 101 that the engine 11 has not been stopped (that is, the engine is operating), the process proceeds to step 102 without executing the processing related to the pressure sensor abnormality diagnosis in and after step 103, and the engine is stopped. The count value of the counter Cnt that measures time (elapsed time since the engine 11 was stopped) is reset to “0”, and this routine is finished.

その後、上記ステップ101で、エンジン11が停止されたと判定されたときに、ステップ103以降の圧力センサ異常診断に関する処理を次のようにして実行する。まず、ステップ103で、エンジン停止時間を計測するカウンタCntのカウント値をカウントアップした後、ステップ104に進み、カウンタCntのカウント値(エンジン停止時間)が所定値CONSTを越えたか否かを判定する。この所定値CONSTは、エンジン11が停止されてから吸気管12内の圧力がほぼ大気圧となるのに必要な所定時間に設定されている。   Thereafter, when it is determined in step 101 that the engine 11 has been stopped, the processing relating to the pressure sensor abnormality diagnosis after step 103 is executed as follows. First, in step 103, after the count value of the counter Cnt for measuring the engine stop time is counted up, the process proceeds to step 104, and it is determined whether or not the count value (engine stop time) of the counter Cnt exceeds a predetermined value CONST. . The predetermined value CONST is set to a predetermined time required for the pressure in the intake pipe 12 to be almost atmospheric pressure after the engine 11 is stopped.

このステップ104で、カウンタCntのカウント値(エンジン停止時間)が所定値CONSTを越えていないと判定された場合には、まだ、吸気管12内の圧力が大気圧付近になっていない可能性があると判断して、そのまま本ルーチンを終了する。   If it is determined in step 104 that the count value (engine stop time) of the counter Cnt does not exceed the predetermined value CONST, there is a possibility that the pressure in the intake pipe 12 has not yet become close to the atmospheric pressure. It is determined that there is, and this routine is finished as it is.

その後、上記ステップ104で、カウンタCntのカウント値(エンジン停止時間)が所定値CONSTを越えたと判定されたとき、吸気管12内の圧力がほぼ大気圧になったと判断して、図3のステップ105に進み、上流側吸気圧センサ15の検出値MAP1 と下流側吸気圧センサ19の検出値MAP2 と大気圧センサ35の検出値ATPとを比較してこれら3つの検出値の一致・不一致を判定する多数決演算を次のようにして行う。まず、各圧力センサの検出値MAP1 ,MAP2 ,ATPについて、それぞれ偏差(ずれの度合)ΔMAP1 ,ΔMAP2 ,ΔATPを算出する。具体的には、各圧力センサの検出値MAP1 ,MAP2 ,ATPについて、それぞれ他の2つの圧力センサの検出値の平均値に対する差の絶対値を求め、それらを各圧力センサの検出値の偏差ΔMAP1 ,ΔMAP2 ,ΔATPとする。
ΔMAP1 =|MAP1 −(MAP2 +ATP)/2|
ΔMAP2 =|MAP2 −(MAP1 +ATP)/2|
ΔATP=|ATP−(MAP1 +MAP2 )/2|
Thereafter, when it is determined in step 104 that the count value (engine stop time) of the counter Cnt has exceeded the predetermined value CONST, it is determined that the pressure in the intake pipe 12 has become substantially atmospheric pressure, and the step of FIG. Proceeding to 105, the detected value MAP1 of the upstream intake pressure sensor 15, the detected value MAP2 of the downstream intake pressure sensor 19, and the detected value ATP of the atmospheric pressure sensor 35 are compared to determine whether these three detected values match or not. The majority operation is performed as follows. First, deviations (degrees of deviation) ΔMAP1, ΔMAP2, and ΔATP are calculated for the detected values MAP1, MAP2, and ATP of the respective pressure sensors. Specifically, with respect to the detection values MAP1, MAP2, and ATP of the respective pressure sensors, absolute values of differences from the average values of the detection values of the other two pressure sensors are obtained, and these are obtained as deviations ΔMAP1 of the detection values of the respective pressure sensors. , ΔMAP 2, ΔATP.
ΔMAP 1 = | MAP 1 − (MAP 2 + ATP) / 2 |
ΔMAP2 = | MAP2− (MAP1 + ATP) / 2 |
ΔATP = | ATP− (MAP1 + MAP2) / 2 |

この後、ステップ106に進み、上流側吸気圧センサ15の検出値の偏差ΔMAP1 が該上流側吸気圧センサ15の最大許容検出誤差に応じて設定された判定値TMap1 よりも大きいか否かを判定し、上流側吸気圧センサ15の検出値の偏差ΔMAP1 が判定値TMap1 よりも大きいと判定されれれば、上流側吸気圧センサ15の検出値MAP1 が他の2つの圧力センサの検出値と不一致であると判断して、ステップ109に進み、上流側吸気圧センサ15が異常であると判定する。   Thereafter, the routine proceeds to step 106, where it is determined whether or not the deviation ΔMAP1 of the detected value of the upstream side intake pressure sensor 15 is larger than the determination value TMap1 set according to the maximum allowable detection error of the upstream side intake pressure sensor 15. If it is determined that the deviation ΔMAP1 of the detection value of the upstream intake pressure sensor 15 is larger than the determination value TMap1, the detection value MAP1 of the upstream intake pressure sensor 15 is inconsistent with the detection values of the other two pressure sensors. If it is determined that there is, the routine proceeds to step 109, where it is determined that the upstream side intake pressure sensor 15 is abnormal.

これに対して、上記ステップ106で、上流側吸気圧センサ15の検出値の偏差ΔMAP1 が判定値TMap1 以下であると判定された場合には、ステップ107に進み、下流側吸気圧センサ19の検出値の偏差ΔMAP2 が該下流側吸気圧センサ19の最大許容検出誤差に応じて設定された判定値TMap2 よりも大きいか否かを判定し、下流側吸気圧センサ19の検出値の偏差ΔMAP2 が判定値TMap2 よりも大きいと判定された場合は、下流側吸気圧センサ19の検出値MAP2 が他の2つの圧力センサの検出値と不一致であると判断して、ステップ110に進み、下流側吸気圧センサ19が異常であると判定する。   On the other hand, when it is determined in step 106 that the deviation ΔMAP1 of the detection value of the upstream intake pressure sensor 15 is equal to or smaller than the determination value TMap1, the process proceeds to step 107 and the detection of the downstream intake pressure sensor 19 is performed. It is determined whether or not the deviation ΔMAP2 of the value is larger than a determination value TMap2 set according to the maximum allowable detection error of the downstream side intake pressure sensor 19, and the deviation ΔMAP2 of the detection value of the downstream side intake pressure sensor 19 is determined. If it is determined that the value is greater than the value TMap2, it is determined that the detected value MAP2 of the downstream intake pressure sensor 19 is inconsistent with the detected values of the other two pressure sensors, and the routine proceeds to step 110, where the downstream intake pressure is determined. It is determined that the sensor 19 is abnormal.

また、上記ステップ107で、下流側吸気圧センサ19の検出値の偏差ΔMAP2 が判定値TMap2 以下であると判定された場合には、ステップ108に進み、大気圧センサ35の検出値の偏差ΔATPが該大気圧センサ35の最大許容検出誤差に応じて設定された判定値TAtpよりも大きいか否かを判定し、大気圧センサ35の検出値の偏差ΔATPが判定値TAtpよりも大きいと判定された場合は、大気圧センサ35の検出値ATPが他の2つの圧力センサの検出値と不一致であると判断して、ステップ111に進み、大気圧センサ35が異常であると判定する。   If it is determined in step 107 that the deviation ΔMAP2 of the detection value of the downstream intake pressure sensor 19 is equal to or smaller than the determination value TMap2, the process proceeds to step 108 where the deviation ΔATP of the detection value of the atmospheric pressure sensor 35 is It is determined whether or not the determination value TAtp set in accordance with the maximum allowable detection error of the atmospheric pressure sensor 35 is larger, and it is determined that the deviation ΔATP of the detection value of the atmospheric pressure sensor 35 is larger than the determination value TAtp. In this case, it is determined that the detection value ATP of the atmospheric pressure sensor 35 is inconsistent with the detection values of the other two pressure sensors, the process proceeds to step 111, and it is determined that the atmospheric pressure sensor 35 is abnormal.

一方、上記ステップ106で上流側吸気圧センサ15の検出値の偏差ΔMAP1 が判定値TMap1 以下であると判定され、且つ、上記ステップ107で下流側吸気圧センサ19の検出値の偏差ΔMAP2 が判定値TMap2 以下であると判定され、且つ、上記ステップ108で、大気圧センサ35の検出値の偏差ΔATPが判定値TAtp以下であると判定された場合は、上流側吸気圧センサ15の検出値MAP1 と下流側吸気圧センサ19の検出値MAP2 と大気圧センサ35の検出値ATPとが一致すると判断して、ステップ112に進み、上流側吸気圧センサ15と下流側吸気圧センサ19と大気圧センサ35が全て正常であると判定する。   On the other hand, in step 106, it is determined that the deviation ΔMAP1 of the detection value of the upstream intake pressure sensor 15 is equal to or smaller than the determination value TMap1, and in step 107, the deviation ΔMAP2 of the detection value of the downstream intake pressure sensor 19 is determined as the determination value. If it is determined that it is equal to or less than TMap2, and it is determined in step 108 that the deviation ΔATP of the detection value of the atmospheric pressure sensor 35 is equal to or less than the determination value TAtp, the detection value MAP1 of the upstream intake pressure sensor 15 and It is determined that the detected value MAP2 of the downstream side intake pressure sensor 19 and the detected value ATP of the atmospheric pressure sensor 35 coincide with each other, the process proceeds to step 112, and the upstream side intake pressure sensor 15, the downstream side intake pressure sensor 19, and the atmospheric pressure sensor 35 are advanced. Are all normal.

以上説明した本実施例では、エンジン11の停止中は、吸気管12内の圧力がほぼ大気圧となっていることに着目して、エンジン11の停止中に、上流側吸気圧センサ15の検出値MAP1 と下流側吸気圧センサ19の検出値MAP2 と大気圧センサ35の検出値ATPとを比較して、これら3つの検出値の一致・不一致を判定する多数決演算によって、上流側吸気圧センサ15と下流側吸気圧センサ19と大気圧センサ35の異常の有無を判定するようにしたので、3つの圧力センサの異常の有無を精度良く判定することができる。これにより、異常な圧力センサがある場合には、その異常な圧力センサを特定することができて、正常な圧力センサを異常有りと誤診断することを防止することができる。   In the present embodiment described above, paying attention to the fact that the pressure in the intake pipe 12 is substantially atmospheric pressure while the engine 11 is stopped, the detection of the upstream intake pressure sensor 15 while the engine 11 is stopped. By comparing the value MAP1, the detection value MAP2 of the downstream intake pressure sensor 19 with the detection value ATP of the atmospheric pressure sensor 35, and determining the coincidence / mismatch of these three detection values, the upstream intake pressure sensor 15 Since the presence / absence of abnormality of the downstream side intake pressure sensor 19 and the atmospheric pressure sensor 35 is determined, the presence / absence of abnormality of the three pressure sensors can be accurately determined. Thereby, when there is an abnormal pressure sensor, the abnormal pressure sensor can be specified, and it can be prevented that a normal pressure sensor is erroneously diagnosed as having an abnormality.

しかも、本実施例では、多数決演算を行う際に、各圧力センサの検出値と他の2つの圧力センサの検出値の平均値との差の絶対値が判定値以上であるか否かで、各圧力センサの検出値が他の2つの圧力センサの検出値と不一致であるか否かを判定して、異常な圧力センサを特定するようにしたので、いずれかの圧力センサが異常の場合に、その異常な圧力センサを多数決演算により簡単に精度良く特定することができる利点がある。   In addition, in the present embodiment, when the majority operation is performed, whether or not the absolute value of the difference between the detection value of each pressure sensor and the average value of the detection values of the other two pressure sensors is equal to or greater than the determination value, Since the detection value of each pressure sensor is inconsistent with the detection value of the other two pressure sensors, an abnormal pressure sensor is identified, so if any of the pressure sensors is abnormal There is an advantage that the abnormal pressure sensor can be easily and accurately specified by majority calculation.

また、本実施例では、エンジン11が停止されてから所定時間が経過した後の停止中に、3つの圧力センサの異常診断を実行するようにしたので、エンジン11が停止されてから吸気管11内の圧力がほぼ大気圧となるのに必要な所定時間が経過して、確実に吸気管12内の圧力がほぼ大気圧になった状態で、3つの圧力センサの異常診断を実行することができ、圧力センサの異常診断の信頼性を向上させることができる。   Further, in this embodiment, since the abnormality diagnosis of the three pressure sensors is executed during the stop after a predetermined time has elapsed since the engine 11 was stopped, the intake pipe 11 is stopped after the engine 11 is stopped. The abnormality diagnosis of the three pressure sensors can be executed in a state where the predetermined time required for the internal pressure to become almost atmospheric pressure has elapsed and the pressure in the intake pipe 12 has become almost atmospheric pressure. It is possible to improve the reliability of pressure sensor abnormality diagnosis.

尚、上記実施例では、エンジン11の停止中に、3つの圧力センサの異常診断を実行するようにしたが、エンジン11の始動時(例えば、IGスイッチのオン直後でエンジン11がまだ回転していないか又はほとんど吸気していない極低回転時)に、3つの圧力センサの異常診断を実行するようにしても良い。   In the above embodiment, the abnormality diagnosis of the three pressure sensors is executed while the engine 11 is stopped. However, when the engine 11 is started (for example, immediately after the IG switch is turned on, the engine 11 is still rotating). Abnormal diagnosis of the three pressure sensors may be executed at the time of extremely low rotation with little or no intake.

また、上記実施例では、3つの圧力センサの検出値の一致・不一致を判定する多数決演算を行う際に、各圧力センサの検出値と他の2つの圧力センサの検出値の平均値との差を算出するようにしたが、各圧力センサの検出値と他の2つの圧力センサの検出値の平均値との比を算出し、この比が1付近であるか否かで検出値の一致・不一致を判定するようにしても良い。或は、3つの圧力センサの中から2つの圧力センサを選択する3種類の組み合わせについて、それぞれ、2つの圧力センサの検出値の差が判定値以下であるか否かで、2つの圧力センサの検出値が一致するか否か(2つの圧力センサが正常であるか否か)を判定し、3種類の組み合わせの判定結果から、検出値が不一致となる異常な圧力センサを特定するようにしても良い等、3つの圧力センサの中から検出値が不一致となる異常な圧力センサを特定する方法は、適宜変更しても良い。   Further, in the above-described embodiment, when the majority calculation for determining the coincidence / mismatch of the detection values of the three pressure sensors is performed, the difference between the detection value of each pressure sensor and the average value of the detection values of the other two pressure sensors. Is calculated, but the ratio between the detection value of each pressure sensor and the average value of the detection values of the other two pressure sensors is calculated. A mismatch may be determined. Or, for each of the three types of combinations for selecting two pressure sensors from among the three pressure sensors, whether the difference between the detected values of the two pressure sensors is less than or equal to a determination value is determined. It is determined whether or not the detected values match (whether or not the two pressure sensors are normal), and the abnormal pressure sensor that does not match the detected values is identified from the determination results of the three types of combinations. For example, the method for identifying an abnormal pressure sensor in which detected values do not match among the three pressure sensors may be appropriately changed.

尚、本発明の適用範囲は、排気タービン駆動式過給機(いわゆるターボチャージャ)を備えた過給機付きエンジン11に限定されず、機械駆動式過給機(いわゆるスーパーチャージャ)等の他の方式の過給機を備えた過給機付きエンジンや、過給機を備えていない自然吸気エンジンに本発明を適用しても良く、本発明は2つの吸気圧センサと大気圧センサとを備えたシステムに広く適用して実施できる。   The scope of application of the present invention is not limited to the supercharged engine 11 provided with an exhaust turbine drive supercharger (so-called turbocharger), and other machine drive supercharger (so-called supercharger) and the like. The present invention may be applied to a supercharged engine having a supercharger of a system or a naturally aspirated engine not having a supercharger. The present invention includes two intake pressure sensors and an atmospheric pressure sensor. It can be widely applied to various systems.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. 圧力センサ異常診断ルーチンの処理の流れを示すフローチャート(その1)である。It is a flowchart (the 1) which shows the flow of a process of a pressure sensor abnormality diagnosis routine. 圧力センサ異常診断ルーチンの処理の流れを示すフローチャート(その2)である。It is a flowchart (the 2) which shows the flow of a process of a pressure sensor abnormality diagnosis routine.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管(吸気通路)、15…上流側吸気圧センサ(第1の吸気圧センサ)、16…スロットルバルブ、19…下流側吸気圧センサ(第2の吸気圧センサ)、21…燃料噴射弁、22…点火プラグ、23…排気管、24…過給機、25…排気タービン、26…コンプレッサ、35…大気圧センサ、36…ECU(異常診断手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe (intake passage), 15 ... Upstream intake pressure sensor (first intake pressure sensor), 16 ... Throttle valve, 19 ... Downstream intake pressure sensor (second intake) Pressure sensor), 21 ... fuel injection valve, 22 ... spark plug, 23 ... exhaust pipe, 24 ... supercharger, 25 ... exhaust turbine, 26 ... compressor, 35 ... atmospheric pressure sensor, 36 ... ECU (abnormality diagnosis means)

Claims (4)

内燃機関の吸気圧を検出する2つの圧力センサである第1の吸気圧センサ及び第2の吸気圧センサと、大気圧を検出する圧力センサである大気圧センサとを備えたシステムに適用され、
内燃機関の停止中又は始動時に前記3つの圧力センサの検出値を比較して該3つの圧力センサの異常の有無を判定する異常診断手段を備えていることを特徴とする圧力センサの異常診断装置。
Applied to a system including two intake pressure sensors that detect two intake pressures of an internal combustion engine, a first intake pressure sensor and a second intake pressure sensor, and an atmospheric pressure sensor that is a pressure sensor that detects atmospheric pressure;
An abnormality diagnosing device for a pressure sensor, comprising abnormality diagnosing means for comparing the detected values of the three pressure sensors when the internal combustion engine is stopped or started to determine whether or not the three pressure sensors are abnormal. .
前記異常診断手段は、前記3つの圧力センサの検出値の一致・不一致を多数決演算により判断し、検出値が一致すると判断される2つ以上の圧力センサを正常な圧力センサと判断し、検出値が不一致と判断される圧力センサを異常な圧力センサと判断することを特徴とする請求項1に記載の圧力センサの異常診断装置。   The abnormality diagnosing means determines whether the detected values of the three pressure sensors match or not by majority decision, determines two or more pressure sensors determined to match the detected values as normal pressure sensors, and detects the detected values. The pressure sensor abnormality diagnosing device according to claim 1, wherein a pressure sensor determined to be inconsistent is determined as an abnormal pressure sensor. 前記異常診断手段は、内燃機関が停止されてから所定時間が経過した後の停止中又は始動時に前記3つの圧力センサの異常診断を実行することを特徴とする請求項1又は2に記載の圧力センサの異常診断装置。   3. The pressure according to claim 1, wherein the abnormality diagnosis unit performs abnormality diagnosis of the three pressure sensors during stoppage or start-up after a predetermined time has elapsed since the internal combustion engine was stopped. Sensor abnormality diagnosis device. 内燃機関の吸気通路のうちスロットルバルブよりも上流側に設けたコンプレッサで吸入空気を過給する過給機を備え、
前記第1の吸気圧センサは、前記コンプレッサと前記スロットルバルブとの間の吸気圧を検出し、
前記第2の吸気圧センサは、前記スロットルバルブの下流側の吸気圧を検出することを特徴とする請求項1乃至3のいずれかに記載の圧力センサの異常診断装置。
A supercharger that supercharges intake air with a compressor provided upstream of the throttle valve in the intake passage of the internal combustion engine;
The first intake pressure sensor detects an intake pressure between the compressor and the throttle valve;
4. The pressure sensor abnormality diagnosis device according to claim 1, wherein the second intake pressure sensor detects an intake pressure downstream of the throttle valve. 5.
JP2005173148A 2005-06-09 2005-06-14 Abnormality diagnosis device for pressure sensor Pending JP2006348778A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005173148A JP2006348778A (en) 2005-06-14 2005-06-14 Abnormality diagnosis device for pressure sensor
US11/447,036 US7380448B2 (en) 2005-06-09 2006-06-06 Malfunction detection apparatus for pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173148A JP2006348778A (en) 2005-06-14 2005-06-14 Abnormality diagnosis device for pressure sensor

Publications (1)

Publication Number Publication Date
JP2006348778A true JP2006348778A (en) 2006-12-28

Family

ID=37644898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173148A Pending JP2006348778A (en) 2005-06-09 2005-06-14 Abnormality diagnosis device for pressure sensor

Country Status (1)

Country Link
JP (1) JP2006348778A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099693A1 (en) * 2007-02-13 2008-08-21 Toyota Jidosha Kabushiki Kaisha Boosting system failure diagnosis device, boosting circuit control device, and vehicle
JP2008215260A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR
JP2010069941A (en) * 2008-09-16 2010-04-02 Toyota Motor Corp Vehicle control system
JP2010190090A (en) * 2009-02-17 2010-09-02 Toyota Motor Corp Deterioration determining device for intake pressure sensor
US7828094B2 (en) 2008-01-31 2010-11-09 Toyota Jidosha Kabushiki Kaisha Driving system, control method of driving system, and vehicle equipped with driving system
FR2945321A3 (en) * 2009-05-07 2010-11-12 Renault Sas Diagnosis device operating method for diagnosing state of pressure sensor in supercharged spark ignition engine of vehicle, involves comparing pressure values provided by three pressure sensors when engine is stopped
FR2956438A1 (en) * 2010-02-18 2011-08-19 Snecma METHOD AND DEVICE FOR CORRECTING A PRESSURE MEASUREMENT OF A GAS FLOW CIRCULATING IN AN AIRCRAFT ENGINE
WO2011135656A1 (en) * 2010-04-26 2011-11-03 三菱電機株式会社 Safety device and malfunction detection method
WO2013084890A1 (en) * 2011-12-09 2013-06-13 ヤンマー株式会社 Engine
WO2013175589A1 (en) 2012-05-23 2013-11-28 トヨタ自動車株式会社 Controller for internal combustion engine with supercharger
JP2014009590A (en) * 2012-06-27 2014-01-20 Toyota Motor Corp Control device of internal combustion engine with supercharger system
JP2014141915A (en) * 2013-01-23 2014-08-07 Denso Corp Abnormality diagnosis device of fuel pressure sensor
JP2016118175A (en) * 2014-12-22 2016-06-30 ダイハツ工業株式会社 Anomaly detection device
JP2017015040A (en) * 2015-07-06 2017-01-19 ヤンマー株式会社 engine

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8443779B2 (en) 2007-02-13 2013-05-21 Toyota Jidosha Kabushiki Kaisha Boosting system failure diagnosis device, boosting circuit controller and vehicle
JP2008199769A (en) * 2007-02-13 2008-08-28 Toyota Motor Corp Failure diagnosis device of boosting system, control device of boosting circuit, and vehicle
WO2008099693A1 (en) * 2007-02-13 2008-08-21 Toyota Jidosha Kabushiki Kaisha Boosting system failure diagnosis device, boosting circuit control device, and vehicle
JP4715766B2 (en) * 2007-02-13 2011-07-06 トヨタ自動車株式会社 Boosting system failure diagnosis device, boosting circuit control device, and vehicle
JP2008215260A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR
JP4537417B2 (en) * 2007-03-06 2010-09-01 トヨタ自動車株式会社 NOx sensor abnormality diagnosis device
US8091404B2 (en) 2007-03-06 2012-01-10 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus for NOx sensor
US7828094B2 (en) 2008-01-31 2010-11-09 Toyota Jidosha Kabushiki Kaisha Driving system, control method of driving system, and vehicle equipped with driving system
JP2010069941A (en) * 2008-09-16 2010-04-02 Toyota Motor Corp Vehicle control system
JP4497238B2 (en) * 2008-09-16 2010-07-07 トヨタ自動車株式会社 Vehicle control system
US7813849B2 (en) 2008-09-16 2010-10-12 Toyota Jidosha Kabushiki Kaisha Vehicle control system
JP2010190090A (en) * 2009-02-17 2010-09-02 Toyota Motor Corp Deterioration determining device for intake pressure sensor
FR2945321A3 (en) * 2009-05-07 2010-11-12 Renault Sas Diagnosis device operating method for diagnosing state of pressure sensor in supercharged spark ignition engine of vehicle, involves comparing pressure values provided by three pressure sensors when engine is stopped
WO2011101579A1 (en) * 2010-02-18 2011-08-25 Snecma Method and device for correcting a pressure measurement of a flow of gas flowing in an aircraft engine
RU2552895C2 (en) * 2010-02-18 2015-06-10 Снекма Method and device for gas flow pressure measurement correction which flow circulates in aircraft engine
FR2956438A1 (en) * 2010-02-18 2011-08-19 Snecma METHOD AND DEVICE FOR CORRECTING A PRESSURE MEASUREMENT OF A GAS FLOW CIRCULATING IN AN AIRCRAFT ENGINE
US9182310B2 (en) 2010-02-18 2015-11-10 Snecma Method and a device for correcting a measurement of the pressure of a gas stream flowing in an aircraft engine
JP5318284B2 (en) * 2010-04-26 2013-10-16 三菱電機株式会社 Safety device and failure detection method
US8803654B2 (en) 2010-04-26 2014-08-12 Mitsubishi Electric Corporation Safety apparatus and fault detection method
WO2011135656A1 (en) * 2010-04-26 2011-11-03 三菱電機株式会社 Safety device and malfunction detection method
WO2013084890A1 (en) * 2011-12-09 2013-06-13 ヤンマー株式会社 Engine
WO2013175589A1 (en) 2012-05-23 2013-11-28 トヨタ自動車株式会社 Controller for internal combustion engine with supercharger
US9567924B2 (en) 2012-05-23 2017-02-14 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine with supercharger
JP2014009590A (en) * 2012-06-27 2014-01-20 Toyota Motor Corp Control device of internal combustion engine with supercharger system
JP2014141915A (en) * 2013-01-23 2014-08-07 Denso Corp Abnormality diagnosis device of fuel pressure sensor
JP2016118175A (en) * 2014-12-22 2016-06-30 ダイハツ工業株式会社 Anomaly detection device
JP2017015040A (en) * 2015-07-06 2017-01-19 ヤンマー株式会社 engine

Similar Documents

Publication Publication Date Title
JP2006348778A (en) Abnormality diagnosis device for pressure sensor
US7380448B2 (en) Malfunction detection apparatus for pressure sensor
US9163590B2 (en) Vaporized-fuel processing system
US9903320B2 (en) Control system for internal combustion engine
US8775011B2 (en) Distinguishing between EGR valve and oxygen sensor degradation
JP5673896B2 (en) Control device for internal combustion engine
JP2011185159A (en) Abnormality diagnosing device of internal combustion engine with supercharger
JPH09158775A (en) Abnormality detecting device of intake air pressure sensor of internal combustion engine
JP2006342720A (en) Abnormality diagnostic system of upstream intake pressure sensor
JP2003120304A (en) Diagnosing system for variable displacement supercharger
WO2012077214A1 (en) Error detection device for egr device
JP2013096372A (en) Control device of internal combustion engine with supercharger
JP2009287409A (en) Exhaust temperature detection device of engine with turbocharger and its deterioration diagnostic system
JP2019019800A (en) Abnormality diagnosis device for blow-by gas reduction device in engine with supercharger with low-pressure loop type egr device
JP5660323B2 (en) EGR control device for internal combustion engine
JP3721671B2 (en) Fault diagnosis device for vehicles
JP2010242617A (en) Abnormality detection system for internal combustion engine
JP2007303294A (en) Control device for internal combustion engine with supercharger
US20160108858A1 (en) Control apparatus and control method for internal combustion engine
JP2010151038A (en) Control device for internal combustion engine
JP2010169008A (en) Abnormality detector for pressure sensor
WO2017038517A1 (en) Error diagnosis device for internal combustion engine having supercharger
US20170363025A1 (en) Control apparatus for internal combustion engine
JP2006057526A (en) Failure diagnosis device for internal combustion engine
JP5930288B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512