WO2010109946A1 - Rationality diagnostic apparatus and rationality diagnostic method for nox sensor - Google Patents

Rationality diagnostic apparatus and rationality diagnostic method for nox sensor Download PDF

Info

Publication number
WO2010109946A1
WO2010109946A1 PCT/JP2010/051322 JP2010051322W WO2010109946A1 WO 2010109946 A1 WO2010109946 A1 WO 2010109946A1 JP 2010051322 W JP2010051322 W JP 2010051322W WO 2010109946 A1 WO2010109946 A1 WO 2010109946A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
rationality
reduction catalyst
diagnosis
amount
Prior art date
Application number
PCT/JP2010/051322
Other languages
French (fr)
Japanese (ja)
Inventor
弘之 笠原
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to JP2011505911A priority Critical patent/JPWO2010109946A1/en
Publication of WO2010109946A1 publication Critical patent/WO2010109946A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1814Tank level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1818Concentration of the reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a rationality diagnostic device and a rationality diagnostic method for a NO x sensor.
  • NO performing rationality diagnosis of the NO X sensor whether NO X sensor provided on the downstream side of the reduction catalyst with respect to the peak appearing in the transition of the upstream side of the NO X amount of the reduction catalyst is responding
  • the present invention relates to a rationality diagnostic device and a rationality diagnostic method for an X sensor.
  • exhaust gas discharged from an internal combustion engine such as a diesel engine contains NO x (nitrogen oxide) that may affect the environment.
  • NO x nitrogen oxide
  • an exhaust gas purification apparatus used to purify the NO X there is an exhaust gas purification apparatus using the disposed in an exhaust passage reduction catalyst.
  • a catalyst that selectively reduces NO x in exhaust gas is used, and a reducing agent such as urea aqueous solution or unburned fuel (HC) is supplied into the exhaust gas upstream of the reduction catalyst.
  • a reducing agent such as urea aqueous solution or unburned fuel (HC)
  • an NO x sensor may be provided in the exhaust passage downstream of the reduction catalyst.
  • This NO X sensor is used, for example, for calculating the injection amount of the reducing agent and for failure diagnosis of the exhaust purification device, etc., but the injection amount of the reducing agent and the failure diagnosis result of the exhaust purification device are the components of NO X or the reducing agent.
  • the tracking pattern as a reference for temporal changes of the exhaust NO X flow discharged from an internal combustion engine, the tracking pattern as a reference for temporal change detection NO X concentration detected by the NO X sensor, in advance, when discharged NO X flow rate remained with a predetermined relationship with a reference pattern, by determining whether the trend with a predetermined relationship to the detection NO X concentration following pattern, responsiveness of the NO X sensor Is disclosed (see Patent Document 1).
  • the above-described reduction catalyst has a property that the NO x purification efficiency is increased at a temperature equal to or higher than the catalyst activation temperature, and the NO x concentration on the downstream side of the reduction catalyst greatly depends on the active state of the reduction catalyst. . That is, in a situation where the reduction catalyst is in an activated state, even if a peak appears in the transition of the NO x amount upstream of the reduction catalyst, most of the NO x is reduced in the reduction catalyst as long as the reducing component is present. As a result, almost no outflow of NO x to the downstream side of the reduction catalyst occurs.
  • the inventors of the present invention have made diligent efforts to execute the rational diagnosis of the NO X sensor using the peak appearing in the transition of the NO X amount.
  • the catalyst temperature is less than a predetermined threshold, the rationality of the NO X sensor is obtained.
  • the present inventors have found that such a problem can be solved by executing sex diagnosis, and have completed the present invention. That is, the present invention is to provide a rationality diagnosis apparatus and rationality diagnosis method of the NO X sensor improved reliability is achieved rationality diagnosis of the NO X sensor using a peak appearing in the amount of NO X Trends With the goal.
  • the NO x for diagnosing the rationality of the NO x sensor provided on the downstream side of the reduction catalyst in the exhaust purification device that purifies NO x in the exhaust gas discharged from the internal combustion engine using the reduction catalyst.
  • the upstream amount of NO X calculation unit for calculating the amount of NO X at the upstream side of the reduction catalyst, a NO X sensor value detector for detecting a sensor value of the NO X sensor, upstream and rationality diagnosis unit for diagnosing the rationality of the NO X sensor by NO X sensor to determine whether or not the response to the peak appearing on the amount of NO X transition in, detects the temperature of the reduction catalyst catalyst temperature detecting unit and, rationality diagnosis apparatus of the NO X sensor temperature of the reduction catalyst, characterized in that it comprises a diagnosis execution judging unit to execute the rationality diagnosis of the NO X sensor when less than a predetermined threshold value to Provided the above-mentioned issues It is possible to attain.
  • rationality diagnosis apparatus of the NO X sensor of the present invention In constituting the rationality diagnosis apparatus of the NO X sensor of the present invention, rationality diagnosis apparatus of the NO X sensor, the exhaust gas upstream of the reduction catalyst in accordance with the amount of NO X at the upstream side of the reduction catalyst It is preferably used for rational diagnosis of the NO x sensor provided in the exhaust gas purification device that purifies NO x by the mixed reducing component.
  • the rationality diagnosis unit performs the reference pattern as the basis for the transition of the NO x amount on the upstream side and the transition of the sensor value of the NO x sensor. and follow pattern as a reference, is stored, changes the amount of NO X at the upstream side when the transition with a predetermined relationship with a reference pattern, the sensor value of the NO X sensor with a predetermined relationship to follow the pattern It is preferable to diagnose the rationality of the NO x sensor by determining whether or not it has been done.
  • Another aspect of the present invention is the rationality of the NO X sensor provided on the downstream side of the reduction catalyst in the exhaust purification apparatus that purifies NO X in the exhaust gas discharged from the internal combustion engine using the reduction catalyst.
  • rationality diagnosis method of the NO X sensor to diagnose, when the temperature of the reduction catalyst is less than the predetermined threshold value, it detects the transition of the sensor values of transition and NO X sensor of the NO X amount in the upstream side of the reduction catalyst while, NO X sensor, characterized in that diagnosing the rationality of the NO X sensor by NO X sensor with respect to the peak appearing in the NO X amount of transition of the upstream side to determine whether it is responding This is a rational diagnostic method.
  • the NO X rationality diagnosis apparatus and rationality diagnosis method of sensor of the present invention the catalyst temperature only when less than a predetermined threshold value, rationality diagnosis of the NO X sensor using a peak appearing in the NO X amount of transition row Is called. Therefore, when the peak appears in the NO X amount of transition of the upstream side of the reduction catalyst, since the NO X most in reducing catalyst flows out to the downstream side of the reduction catalyst without being reduced, upstream of the reduction catalyst It is accurately determined whether or not the downstream NO x sensor is responding to the peak appearing in the transition of the NO x amount on the side. Therefore, the reliability of the rational diagnosis of the NO X sensor is improved.
  • FIG. 1 It is a figure which shows the structural example of an exhaust gas purification apparatus. It is a block diagram for explaining a configuration example of a rationality diagnosis apparatus of the NO X sensor according to the embodiment of the present invention. It is a timing chart for explaining the rationality diagnosis method of the NO X sensor according to an embodiment of the present invention. It is a flow diagram illustrating an example of a rationality diagnosis method of the NO X sensor according to the embodiment of the present invention. It is a flow diagram illustrating an example of a rationality diagnosis method of the NO X sensor according to the embodiment of the present invention. It is a flow diagram illustrating an example of a rationality diagnosis method of the NO X sensor according to the embodiment of the present invention. It is a flow diagram illustrating an example of a rationality diagnosis method of the NO X sensor according to the embodiment of the present invention. It is a flow diagram illustrating an example of a rationality diagnosis method of the NO X sensor according to the embodiment of the present invention.
  • temperature sensors 15 and 16 are provided on the upstream side and the downstream side of the reduction catalyst 13 in the exhaust passage 11 respectively, and the NO x concentration in the exhaust gas is detected on the downstream side of the reduction catalyst 13.
  • NO x sensor 17 is provided.
  • known ones are used as the NO x sensor 17 and the temperature sensors 15 and 16, known ones are used.
  • the reduction catalyst 13 is a selective reduction catalyst that adsorbs ammonia generated by hydrolysis of an aqueous urea solution injected into the exhaust passage 11 at an upstream side thereof, and selectively reduces NO x in the inflowing exhaust gas. It is used.
  • the saturated adsorption amount of ammonia in the reduction catalyst 13 decreases as the catalyst temperature increases.
  • the NO x purification efficiency of the reduction catalyst 13 is increased at the catalyst activation temperature or higher.
  • the reducing agent supply device 20 includes a reducing agent injection valve 31, a reducing agent storage tank 50, and a pump 41 that pumps the reducing agent in the storage tank 50 toward the reducing agent injection valve 31. Further, the storage tank 50 and the pump 41 are connected by a first supply path 57, the pump 41 and the reducing agent injection valve 31 are connected by a second supply path 58, and further, the reducing agent injection valve 31 and the storage tank. 50 is also connected by a circulation path 59. The reducing agent injection valve 31 and the pump 41 are controlled by a control device 60 described later.
  • the storage tank 50 includes a temperature sensor for detecting the temperature of the reducing agent in the storage tank 50, a level sensor for detecting the remaining amount of the reducing agent, and a concentration for detecting the concentration of the reducing agent.
  • a sensor is provided. The values detected by these sensors are output to the control device 60.
  • known ones are appropriately used.
  • an aqueous urea solution is used as the reducing agent.
  • an aqueous ammonia solution or unburned fuel (HC) can also be used.
  • the pump 41 is an electric pump, for example, and is driven by the control device 60.
  • a pressure sensor 43 is provided in the second supply path 58 on the downstream side of the pump 41, and the sensor value of the pressure sensor 43 is output to the control device 60.
  • a known pressure sensor 43 is appropriately used.
  • the reducing agent injection valve 31 is, for example, an on / off valve that controls opening and closing of the valve by switching between energization and non-energization.
  • the reducing agent injection valve 31 is controlled to be opened and closed by the control device 60, and when the reducing agent injection valve 31 is opened, the reducing agent is injected into the exhaust passage 11.
  • a circulation path 59 disposed between the reducing agent injection valve 31 and the storage tank 50 is provided in the second supply path 58 when the pressure of the reducing agent pumped by the pump 41 exceeds a predetermined value. This is a passage for returning a part of the reducing agent to the storage tank 50.
  • Control device 60 mainly performs drive control of the pump 41 and the reducing agent injection valve 31 of the reducing agent supply device 20 so that an appropriate amount of the reducing agent is injected into the exhaust passage 11.
  • control device 60 of the present embodiment further has a function as a rationality diagnostic device for the NO X sensor 17.
  • the control device 60 is configured around a microcomputer having a known configuration, and includes a portion for controlling the operation of the reducing agent injection valve 31, a portion for controlling the drive of the pump 41, and the rationality of the exhaust purification device 10. It has a diagnostic part. Specifically, each of these units is realized by executing a program by a microcomputer (not shown).
  • the pump drive control unit continuously reads the sensor value of the pressure sensor 43 provided in the second supply path 58 and keeps the pressure in the second supply path 58 at a predetermined value. 41 feedback control is performed.
  • the reducing agent injection valve operation control unit reads the temperature of the exhaust gas, the catalyst temperature, the NO x concentration downstream of the reduction catalyst 13 and further information on the operating state of the internal combustion engine 5 to reduce NO x in the exhaust gas. The amount of reducing agent injection necessary for this is calculated, and a control signal for the reducing agent injection valve 31 is output to the actuator of the reducing agent injection valve 31.
  • FIG. 2 shows a configuration example in which a portion related to rationality diagnosis in the control device 60 of the present embodiment is represented by functional blocks.
  • Rationality diagnosis of the control device 60, the upstream-side amount of NO X calculation unit 61, an NO X sensor value detector 63, a rationality diagnosis portion 65, a catalyst temperature detection unit 67, and a diagnosis execution judging section 69 I have.
  • each of these units is realized by executing a program by a microcomputer.
  • the control device 60 is provided with a RAM (Random Access Memory) 71 and a timer 73.
  • the RAM 71 stores values calculated or detected by each unit.
  • the upstream NO x flow rate calculation unit 61 of the control device 60 of the present embodiment is configured to be able to calculate the mass flow rate Nfu of NO x per unit time discharged from the internal combustion engine.
  • the upstream NO x amount calculation unit 61 reads information relating to the operating state of the internal combustion engine 5, calculates the NO x concentration Nu discharged from the internal combustion engine 5, and the exhaust gas mass flow rate Gf. Based on the calculated value, the mass flow rate Nfu of NO x discharged from the internal combustion engine 5 per unit time is calculated.
  • the calculated values of the NO x concentration Nu, the exhaust gas mass flow rate Gf, and the NO x mass flow rate Nfu are stored in the RAM 71.
  • Information on the operating state of the internal combustion engine 5 includes the fuel injection amount, the rotational speed, the status of the exhaust circulation device, the exhaust circulation amount, the air intake amount, the cooling water temperature, and the like of the internal combustion engine 5. Based on such information, the calculation of the exhaust gas mass flow rate Gf and the NO x concentration Nu is performed by a known method.
  • the amount of NO X to be calculated on the upstream side the amount of NO X calculation unit 61, in addition of the NO X in the mass flow rate (g ⁇ L) as in the present embodiment in NO X concentration (ppm) and NO X flow rate (L), etc. There may be. Further, when the NO x sensor is provided on the upstream side of the reduction catalyst 13, it is possible to calculate the NO x amount not based on the operating state of the internal combustion engine 5, but based on the sensor value of the NO x sensor. is there.
  • the NO X sensor value detection unit 63 is configured to be able to read the sensor value of the NO X sensor 17 and calculate the NO X concentration Nd based on this sensor value.
  • the calculated value of the NO x concentration Nd is stored in the RAM 71.
  • the catalyst temperature detector 67 is configured to be able to estimate the catalyst temperature Tscr by reading the sensor values of the temperature sensors 15 and 16 provided on the upstream side and the downstream side of the reduction catalyst 13.
  • the estimated catalyst temperature Tscr is output to the diagnosis execution determination unit 69.
  • the catalyst temperature Tscr to be detected is detected by a temperature sensor provided in the exhaust passage 11 in the vicinity of the reduction catalyst 13 in addition to the estimated catalyst temperature estimated based on the sensor values of the temperature sensors 15 and 16 as in the present embodiment. If the measured value of the exhaust gas temperature to be measured or direct measurement is possible, the measured temperature of the reduction catalyst 13 may be used. That is, the detected catalyst temperature may be a temperature that is linked to the actual temperature of the reduction catalyst 13.
  • the diagnosis execution determination unit 69 compares the catalyst temperature Tscr estimated by the catalyst temperature detection unit 67 with a predetermined threshold value T0. When the catalyst temperature Tscr is less than the threshold value T0, the diagnosis execution signal is sent to the rationality diagnosis unit 65. Is output.
  • the threshold value T0 is typically the catalyst activation temperature of the reduction catalyst 13, but may not be completely coincident.
  • the catalyst temperature Tscr is less than the threshold value T0 state, based on the values of the NO X concentration Nd detected based on the mass flow rate Nfu and NO X sensor 17 of the NO X stored in the RAM71 to, by using a predetermined reference pattern and follow the pattern, by NO X mass flow Nfu transition appeared NO X concentration Nd corresponding to the peak of determining whether to remain, of the NO X sensor 17 It is configured to make a rational diagnosis.
  • Rationality diagnosis portion 65 of the present embodiment by NO X mass flow Nfu undergoes a transition so as to satisfy a predetermined condition with respect to the reference pattern, is recognized peak appeared in the course of the mass flow rate Nfu of the NO X shifts to the diagnostic mode when the stack checks NO X sensor 17 to determine whether the response to changes of the NO X concentration sensor value of the NO X sensor 17 accurately responds in accordance with the change of the NO X concentration And a peak check to determine whether or not
  • stack checking by transitioning to satisfy a predetermined condition with respect to the mass flow rate Nfu reference pattern on the upstream side of the NO X of the reduction catalyst 13, a peak in the course of the mass flow rate Nfu of the NO X Is recognized by determining whether or not the NO X concentration Nd detected by the NO X sensor 17 changes by more than a specified value ABS.
  • the peak check indicates that a peak appears in the transition of the NO x mass flow rate Nfu as the NO x mass flow rate Nfu on the upstream side of the reduction catalyst 13 changes so as to satisfy a predetermined condition with respect to the reference pattern.
  • it is recognized, it is performed by determining whether or not the NO X concentration Nd detected by the NO X sensor 17 exceeds the follow-up pattern.
  • the method of rationality diagnosis of the NO X sensor 17 confirms that the peak appeared in the course of the upstream-side amount of NO X, determine the sensor value of the NO X sensor 17 is responding to this peak If it does, it is not limited to the diagnostic method mentioned above.
  • the occurrence of a peak in the upstream NO x amount can be detected based on the transition of the NO x concentration Nu or the NO x flow rate, and the occurrence of the peak is determined based on the transition of a plurality of these values. You can also
  • the reference pattern of the transition of the NO x mass flow rate Nfu upstream of the reduction catalyst 13 includes a front-stage steady region, an inclined region, and a back-stage steady region.
  • the reference pattern includes a delay area in which the start point of the inclined area is delayed by the timer 3.
  • the tracking pattern of the transition of the NO X concentration Nd detected by the NO X sensor 17 includes a tracking slope area and a tracking steady area.
  • the estimation of the catalyst temperature Tscr continuously performs calculation of the NO X concentration Nd based on the sensor value of the calculated mass flow rate Nfu at the upstream side of the NO X of the reduction catalyst 13 and the NO X sensor 17, catalyst temperature Tscr threshold
  • the timer 1 is activated.
  • the reason for operating the timer 1 is to execute a rational diagnosis of the NO X sensor 17 in a state where the diagnosis conditions are all stable.
  • the timer 1 is activated when both the upstream NO x mass flow rate Nfu and the catalyst temperature Tscr satisfy a predetermined condition, but each value satisfies a predetermined condition.
  • each timer may be operated.
  • the catalyst temperature Tscr With the catalyst temperature Tscr has remained below the threshold T0, from the time of the mass flow rate Nfu at the upstream side of the NO X set time of the timer 1 remains less than the reference value MINnfu elapses t2, the upstream side of the NO X mass The standby state is entered until the flow rate Nfu exceeds the reference value MINnfu. During this time, whether the catalyst temperature Tscr is lower than the threshold value T0 is continuously monitored. At this time, the timer is separately activated simultaneously with the end of the timer 1 to set the maximum waiting time, and the diagnosis is terminated when the NO x mass flow rate Nfu does not exceed the reference value MINnfu before the set time elapses. It can also be. In this way, it is possible to avoid an unstable state where the diagnostic program does not operate for a long time.
  • the timer 2, timer 3, timer 5 and timer 6 are activated and detected by the NO x sensor 17 at time t3.
  • storing NO X concentration Nd is as the starting value Nd0.
  • the mode is shifted to the rationality diagnosis mode, and the start value Nd0 of the follow-up gradient area of the follow-up pattern is set.
  • the start value Nd0, in peak check and stack checking of the NO X sensor 17 is performed in this embodiment, is detected by the NO X sensor 17 corresponding to the peak appearing on the mass flow rate Nfu at the upstream side of the NO X NO This is a reference for determining whether or not the X concentration Nd is accurately responding.
  • the transition of the upstream NO x mass flow rate Nfu and the reference pattern are not compared, and the time point t4 is the slope of the reference pattern It is the start time of the region.
  • the delay region between the time point t3 when the upstream NO x mass flow rate Nfu exceeds the reference value MINnfu and the start point t4 of the inclined region Even if the increase rate of the upstream NO x mass flow rate Nfu decreases after the time point, the risk that the NO x mass flow rate Nfu falls below the reference pattern is reduced, and the rationality diagnosis continues without interruption. It becomes easy to be done.
  • the upstream NO x mass flow rate Nfu after time t4 it is determined whether the NO x mass flow rate Nfu is equal to or greater than the slope region value SLOPE until t5 when the set time of timer 2 elapses. Further, it is determined whether the mass flow rate Nfu of NO x is equal to or greater than the value MAXnfu of the subsequent stage steady region until the set time of the timer 4 elapses after the time point t5. After this time t3, if the upstream NO x mass flow rate Nfu falls below the values SLOPE and MAXnfu of each region of the reference pattern at any time, the rational diagnosis of the NO x sensor 17 can be accurately determined.
  • NO X sensor 17 it is determined that the responding accurately to follow the peak appearing in the course of the mass flow rate Nfu of the upstream NO X.
  • the stack check is performed simultaneously with the peak check as described above. That is, the timer 6 is actuated at the time of t3, NO X NO X concentration Nd detected by the sensor 17, by the time of t7 the set time of the timer 6 has passed, the specified value ABS or more starting values Nd0 basis It is determined whether or not it changes. When the NO X concentration Nd does not change more than the specified value ABS with respect to the start value Nd0, the NO X sensor 17 does not react to the peak appearing in the transition of the upstream NO X mass flow rate Nfu. It is determined that the rationality of the NO X sensor 17 is lost.
  • the catalyst temperature Tscr is detected in step S10, and it is determined whether or not the detected catalyst temperature Tscr is less than a threshold value T0. If the catalyst temperature Tscr is equal to or higher than the threshold value T0, the rational diagnosis of the NO x sensor 17 may not be performed accurately. Therefore, the detection of the catalyst temperature Tscr is repeated without proceeding to the next step S11. If the catalyst temperature Tscr is less than the threshold value T0, the process proceeds to step S11.
  • step S11 it is determined whether or not the mass flow rate Gf of the exhaust gas discharged from the internal combustion engine 5 is less than the reference value MINgas. If the exhaust gas mass flow rate Gf is greater than or equal to the reference value MINgas, the rational diagnosis of the NO X sensor 17 may not be performed accurately, so the routine ends without proceeding to the next step S12. On the other hand, if the exhaust gas mass flow rate Gf is less than the reference value MINgas, the process proceeds to step S12.
  • step S12 based on the mass flow rate Gf and NO X concentration Nu of exhaust gas discharged from the internal combustion engine 5 in the step S12, with the mass flow rate Nfu of the NO X in the upstream side is calculated of the reduction catalyst 13, it is calculated It is determined whether or not the NO x mass flow rate Nfu is less than the reference value MINnfu in the preceding stationary region of the reference pattern and the NO x concentration Nu is less than the reference value MINnu. If the condition of step S12 is not satisfied, this routine is terminated. If the condition of step S12 is satisfied, the process proceeds to step S13, and the timer 1 is activated.
  • step S14 the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is lower than the threshold value T0. Further, in step S15, the mass flow rate Gf of the exhaust gas discharged from the internal combustion engine 5 is determined. Is less than the reference value MINgas. If either of the conditions of step S14 or step S15 is not satisfied, the rational diagnosis of the NO X sensor 17 may not be performed accurately. Therefore, after resetting the timer 1 in step S16, this routine is executed. On the other hand, if both conditions are satisfied, the process proceeds to step S17.
  • step S17 again based on the mass flow rate Gf and NO X concentration Nu exhaust gas, together with the mass flow rate Nfu of the NO X in the upstream side is calculated of the reduction catalyst 13, the mass flow rate Nfu of the calculated NO X a reference value of less than MINnfu of the preceding constant region of the reference pattern, and, NO X concentration Nu whether is less than the reference value MINnu is determined. Does not satisfy these conditions, since the mass flow rate Nfu at the upstream side of the NO X is unstable, the routine ends after resetting the timer 1 at step S16. On the other hand, if these conditions are satisfied, the process proceeds to step S18 to determine whether or not the set time of the timer 1 has elapsed. If the set time of timer 1 has not elapsed, the process returns to step S14. If the set time of timer 1 has elapsed, the process proceeds to step S19.
  • step S19 the catalyst temperature Tscr is detected again, and it is determined whether the catalyst temperature Tscr is less than the threshold value T0. Further, in step S20, based on the exhaust gas mass flow rate Gf and the NO x concentration Nu, with the mass flow rate Nfu of the NO X in the upstream side is calculated of the reduction catalyst 13, the mass flow rate Nfu of the calculated NO X is not less than the reference value MINnfu of the preceding constant region of the reference pattern, and, NO X concentration Nu Is greater than or equal to the reference value MINnu, and it is determined whether or not the mass flow rate Gf of the exhaust gas is greater than or equal to the reference value MINgas. If these conditions are not satisfied, the process returns to step S19. If these conditions are satisfied, the process proceeds to step S21, and the NO X concentration Nd detected by the NO X sensor 17 at this time is the start value. While being stored as Nd0, timers 2, 3, 5, and 6 are activated in step S22.
  • step S23 calculation of the absolute value D of the difference between the NO X concentration Nd detected by the NO X sensor 17 and the stored start value Nd0 is started. Further, in step S24, the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is lower than the threshold value T0. In step S25, the exhaust gas mass flow rate Gf becomes equal to or higher than the reference value MINgas. It is determined whether or not. Since the rationality diagnosis of the NO X sensor 17 when not meeting any of these criteria in step S24 or step S25 is may not accurately performed, the timer 2, 3, 5, 6 in step S26 While the routine ends after resetting, if both conditions are satisfied, the process proceeds to step S27.
  • step S27 it is determined whether or not the absolute value D started to be calculated in step S23 is greater than or equal to the specified value ABS. If the absolute value D is less than the specified value ABS, the process proceeds to step S29. On the other hand, if the absolute value D is equal to or greater than the specified value ABS, the NO X sensor 17 appears in the transition of the upstream NO X mass flow rate Nfu. Since the timer 6 is stopped in step S28 and the stack check OK flag is set in step S28, the process proceeds to step S29.
  • step S29 it is determined whether or not the set time of the timer 3 has elapsed. If the set time of the timer 3 has not elapsed, the process returns to step S24, whereas if the set time of the timer 3 has elapsed, the process proceeds to step S30. .
  • step S30 the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is lower than the threshold value T0. Further, in step S31, whether the exhaust gas mass flow rate Gf is equal to or higher than the reference value MINgas. It is determined whether or not.
  • step S30 or step S31 Since the rationality diagnosis of the NO X sensor 17 when not meeting any of these criteria in step S30 or step S31 may not be performed accurately, and resets the timer 2, 5, 6 in step S32 After the routine is finished, if both conditions are satisfied, the process proceeds to step S33.
  • step S33 the mass flow rate Nfu of NO x on the upstream side of the reduction catalyst 13 is calculated, and whether the calculated mass flow rate Nfu of NO x is equal to or greater than the value SLOPE of the slope region of the reference pattern. Determined.
  • SLOPE slope region value
  • step S34 the NO X concentration Nd detected by the NO X sensor 17 and the start value are determined. It is determined whether or not the absolute value D of the difference from Nd0 is greater than or equal to the specified value ABS. If the absolute value D is less than the specified value ABS, the process proceeds to step S37 as it is. If the absolute value D is greater than or equal to the specified value ABS, it is confirmed in step S35 whether the stack check OK flag is set. If the stack check OK flag is set, the process proceeds to step S37 as it is. If the stack check OK flag is not set, the timer 6 is stopped and the stack check OK flag is set in step S36. Proceed to S37.
  • step S37 it is determined whether or not the set time of the timer 2 has elapsed. If the set time of the timer 2 has not elapsed, the process returns to step S30, whereas if the set time of the timer 2 has elapsed, step S38. The timer 4 is started.
  • step S39 the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is less than the threshold value T0. Further, in step S40, the exhaust gas mass flow rate Gf becomes equal to or higher than the reference value MINgas. It is determined whether or not. If any of the conditions of step S39 or step S40 is not satisfied, the rational diagnosis of the NO X sensor 17 may not be performed accurately, so the timers 4, 5, and 6 are reset in step S41. After the routine is finished, if both conditions are satisfied, the process proceeds to step S42.
  • step S42 the mass flow rate Nfu of NO x on the upstream side of the reduction catalyst 13 is calculated, and whether the calculated mass flow rate Nfu of NO x is equal to or greater than the value MAXnfu in the subsequent steady region of the reference pattern. Is determined. If the mass flow rate Nfu of NO X is less than the value MAXnfu in the subsequent stage steady region, the peak is not sufficiently generated, so that the routine proceeds to step S41 and the timers 4, 5, and 6 are reset, and then this routine is terminated.
  • step S43 it is determined whether or not the set time of the timer 5 has elapsed. If the set time of the timer 5 has not elapsed, the process proceeds to step S44, and it is determined whether or not the absolute value D is greater than or equal to the specified value ABS.
  • step S44 if the absolute value D is less than the specified value ABS, the process directly returns to step S39. On the other hand, if the absolute value D is greater than or equal to the specified value ABS, it is determined in step S45 whether or not the stack check OK flag is set. If the stack check OK flag is set, the process directly returns to step S39. If the stack check OK flag is not set, the timer 6 is stopped in step S46, the stack check OK flag is set, and the process returns to step S39.
  • step S47 the NO X concentration Nd detected by the NO X sensor 17 is the value Ramp of the tracking pattern tracking slope region or the post-tracking steady region. It is determined whether or not the value is greater than or equal to max. If NO X concentration Nd is equal to or greater than the value max value Ramp or follow later stage constant region of the follow-up slope region, the process proceeds to step S48, the conjunction is detected again catalyst temperature Tscr, catalyst temperature Tscr is less than the threshold value T0 In step S49, it is determined whether or not the exhaust gas mass flow rate Gf is greater than or equal to the reference value MINgas.
  • step S48 If either of these conditions of step S48 or step S49 is not satisfied, the rational diagnosis of the NO X sensor 17 may not be performed accurately. Therefore, after resetting the timers 4 and 6 in step S50, While the routine is ended, if both conditions are satisfied, the process proceeds to step S51.
  • step S51 it is determined whether or not the set time of the timer 4 has elapsed. If the set time of the timer 4 has not elapsed, the process returns to step S47. If the set time of the timer 4 has elapsed, the NO x sensor 17 changes the mass flow rate Nfu of the upstream NO x. Since it responds to the peak that appears and responds appropriately following the peak, it is determined that the NO x sensor 17 is reasonable, and the diagnosis result of TestOK is output in step S52. Then, this routine ends.
  • step S47 the when NO X concentration Nd detected by the NO X sensor 17 is less than the value max value Ramp or follow later stage constant region of the follow-up slope region, the process proceeds to step S53, the absolute value D is stipulated value ABS It is determined whether or not this is the case.
  • the absolute value D is equal to or greater than the specified value ABS, the NO X sensor 17 responds to the peak appearing in the transition of the upstream NO X mass flow rate Nfu, but corresponds to the peak. Therefore, in step S54, the diagnosis result of responsiveness Error is output, and this routine is terminated.
  • step S55 whether stack checking OK flag is set is determined, if the stack checking OK flag is set, also NO X
  • the sensor 17 shows a response to the peak appearing in the transition of the upstream NO x mass flow rate Nfu, it is determined that the sensor 17 does not respond appropriately following the peak, in step S54, the diagnosis result of responsiveness Error is output, and this routine ends.
  • step S56 it is determined in step S56 whether the set time of the timer 6 has elapsed. Since the set time of the timer 6 in the case where the elapse is determined not to have little response to peak NO X sensor 17 appears in changes in the mass flow rate Nfu at the upstream side of the NO X even after the lapse of a predetermined time, In step S57, the diagnostic result of the reactive error is output, and this routine ends.
  • step S58 the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is lower than the threshold value T0.
  • step S59 it is determined whether or not the exhaust gas mass flow rate Gf is greater than or equal to a reference value MINgas. If any of these conditions of step S58 or step S59 is satisfied, the process returns to step S53. On the other hand, if any of the conditions is not satisfied, the NO X sensor 17 detects the mass flow rate of NO X on the upstream side.
  • the peak appearing in the transition of the NO x mass flow rate Nfu upstream of the reduction catalyst 13 only when the catalyst temperature Tscr is less than the threshold value T0. responsiveness and diagnosis of reactive of the NO X sensor utilizing are performed. Therefore, whether the downstream NO X sensor corresponding to a peak appearing in the NO X amount of transition of the upstream side of the reduction catalyst is responding is determined accurately, the possibility of misdiagnosis is greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is a rationality diagnostic apparatus and a rationality diagnostic method for an NOX sensor wherein the reliability is improved in rationality diagnosis of an NOX sensor utilizing the peak of the amount of NOX. The rationality diagnostic apparatus for an NOX sensor which diagnoses the rationality of an NOX sensor provided on the downstream side of a reduction catalyst in an exhaust gas purifier which purifies NOX in exhaust gas discharged from an internal combustion engine by using a reduction catalyst comprises an operation unit for upstream-side NOX amount which calculates the amount of NOX on the upstream side of the reduction catalyst, an NOX sensor value operation unit which detects the sensor value of the NOX sensor, a rationality diagnostic unit which diagnoses rationality of the NOX sensor by determining whether or not the NOX sensor responds to a peak appearing in the transition of the amount of NOX on the upstream side, a catalyst temperature operation unit which detects the temperature of the reduction catalyst, and a diagnosis execution determination unit which determines execution of rationality diagnosis of the NOX sensor when the temperature of the reduction catalyst is lower than a predetermined threshold.

Description

NOXセンサの合理性診断装置及び合理性診断方法NOx sensor rationality diagnostic device and rationality diagnostic method
 本発明は、NOXセンサの合理性診断装置及び合理性診断方法に関する。特に、還元触媒の上流側のNOX量の推移に現れたピークに対して還元触媒の下流側に備えられたNOXセンサが応答しているか否かでNOXセンサの合理性診断を行うNOXセンサの合理性診断装置及び合理性診断方法に関する。 The present invention relates to a rationality diagnostic device and a rationality diagnostic method for a NO x sensor. In particular, NO performing rationality diagnosis of the NO X sensor whether NO X sensor provided on the downstream side of the reduction catalyst with respect to the peak appearing in the transition of the upstream side of the NO X amount of the reduction catalyst is responding The present invention relates to a rationality diagnostic device and a rationality diagnostic method for an X sensor.
 従来、ディーゼルエンジン等の内燃機関から排出される排気ガス中には、環境に影響を及ぼすおそれのあるNOX(窒素酸化物)が含まれている。このNOXを浄化するために用いられる排気浄化装置として、排気通路に配設した還元触媒を用いる排気浄化装置がある。
 この排気浄化装置は、例えば、排気ガス中のNOXを選択的に還元する触媒が用いられ、還元触媒の上流側で尿素水溶液や未燃燃料(HC)等の還元剤を排気ガス中に供給することで、生成される還元成分によって触媒中でNOXを還元させ、排気ガスの浄化が行われる。
Conventionally, exhaust gas discharged from an internal combustion engine such as a diesel engine contains NO x (nitrogen oxide) that may affect the environment. As an exhaust gas purification apparatus used to purify the NO X, there is an exhaust gas purification apparatus using the disposed in an exhaust passage reduction catalyst.
In this exhaust purification device, for example, a catalyst that selectively reduces NO x in exhaust gas is used, and a reducing agent such as urea aqueous solution or unburned fuel (HC) is supplied into the exhaust gas upstream of the reduction catalyst. Thus, NO x is reduced in the catalyst by the generated reducing component, and the exhaust gas is purified.
 このような排気浄化装置では、還元触媒の下流側の排気通路にNOXセンサが備えられる場合がある。このNOXセンサは、例えば、還元剤の噴射量の算出や排気浄化装置の故障診断等に用いられるが、還元剤の噴射量や排気浄化装置の故障診断結果は、NOXあるいは還元剤の成分が大気中に放出されるか否かに大きな影響を持っている。そのため、NOXセンサの出力には高い信頼性が要求されており、排気浄化装置の制御装置はNOXセンサの合理性の診断が可能であることが求められている。 In such an exhaust purification device, an NO x sensor may be provided in the exhaust passage downstream of the reduction catalyst. This NO X sensor is used, for example, for calculating the injection amount of the reducing agent and for failure diagnosis of the exhaust purification device, etc., but the injection amount of the reducing agent and the failure diagnosis result of the exhaust purification device are the components of NO X or the reducing agent. Has a major impact on whether or not is released into the atmosphere. For this reason, high reliability is required for the output of the NO X sensor, and the control device of the exhaust purification device is required to be able to diagnose the rationality of the NO X sensor.
 ここで、排気浄化装置に備えられたNOXセンサの合理性を診断する方法として、還元触媒の上流側でのNOX量に現れたピークに対応してNOXセンサが応答しているか否かを判定することでNOXセンサの合理性を診断する方法がある。 Here, as a method of diagnosing the rationality of the NO X sensor provided in the exhaust purification device, whether or not the NO X sensor is responding to the peak appearing in the NO X amount upstream of the reduction catalyst. There is a method of diagnosing the rationality of the NO X sensor by determining the above.
 例えば、内燃機関から排出される排出NOX流量の経時変化の基準としての基準パターンと、NOXセンサによって検出される検出NOX濃度の経時変化の基準としての追従パターンと、をあらかじめ設定し、排出NOX流量が基準パターンに対して所定の関係をもって推移したときに、検出NOX濃度が追従パターンに対して所定の関係をもって推移したか否かを判定することにより、NOXセンサの応答性を判定する方法が開示されている(特許文献1参照)。 For example, it sets the reference pattern as a reference for temporal changes of the exhaust NO X flow discharged from an internal combustion engine, the tracking pattern as a reference for temporal change detection NO X concentration detected by the NO X sensor, in advance, when discharged NO X flow rate remained with a predetermined relationship with a reference pattern, by determining whether the trend with a predetermined relationship to the detection NO X concentration following pattern, responsiveness of the NO X sensor Is disclosed (see Patent Document 1).
特開2008-190383号公報 (全文、全図)JP 2008-190383 A (full text, full diagram)
 ところで、上述した還元触媒は、触媒活性温度以上でNOXの浄化効率が高まる性質を有しており、還元触媒の下流側でのNOX濃度は、還元触媒の活性状態に大きく依存している。すなわち、還元触媒が活性化状態にある状況では、還元触媒の上流側でのNOX量の推移にピークが現れても、還元成分が存在する限り大部分のNOXが還元触媒中で還元されてしまい、還元触媒の下流側へのNOXの流出がほとんどなくなってしまう。 By the way, the above-described reduction catalyst has a property that the NO x purification efficiency is increased at a temperature equal to or higher than the catalyst activation temperature, and the NO x concentration on the downstream side of the reduction catalyst greatly depends on the active state of the reduction catalyst. . That is, in a situation where the reduction catalyst is in an activated state, even if a peak appears in the transition of the NO x amount upstream of the reduction catalyst, most of the NO x is reduced in the reduction catalyst as long as the reducing component is present. As a result, almost no outflow of NO x to the downstream side of the reduction catalyst occurs.
 そのため、還元触媒が活性化状態にある状況において、特許文献1等に記載されたようなNOX量の推移に現れるピークを利用したNOXセンサの合理性診断方法が行われると、NOXセンサが応答を示さないために、NOXセンサの合理性の有無にかかわらずNOXセンサの合理性がないものと判定されることになる。 Therefore, when the NO x sensor rationality diagnosis method using the peak appearing in the transition of the NO x amount as described in Patent Document 1 or the like is performed in a situation where the reduction catalyst is in the activated state, the NO x sensor There to show no response will be determined that there is no rationality of the nO X sensor or without rationality of the nO X sensor.
 そこで、本発明の発明者は鋭意努力し、NOX量の推移に現れるピークを利用したNOXセンサの合理性診断を実行するにあたり、触媒温度が所定の閾値未満のときにNOXセンサの合理性診断を実行させることにより、このような問題を解決できることを見出し、本発明を完成させたものである。すなわち、本発明は、NOX量の推移に現れるピークを利用したNOXセンサの合理性診断の信頼性の向上が図られたNOXセンサの合理性診断装置及び合理性診断方法を提供することを目的とする。 Accordingly, the inventors of the present invention have made diligent efforts to execute the rational diagnosis of the NO X sensor using the peak appearing in the transition of the NO X amount. When the catalyst temperature is less than a predetermined threshold, the rationality of the NO X sensor is obtained. The present inventors have found that such a problem can be solved by executing sex diagnosis, and have completed the present invention. That is, the present invention is to provide a rationality diagnosis apparatus and rationality diagnosis method of the NO X sensor improved reliability is achieved rationality diagnosis of the NO X sensor using a peak appearing in the amount of NO X Trends With the goal.
 本発明によれば、内燃機関から排出される排気ガス中のNOXを還元触媒を用いて浄化する排気浄化装置における、還元触媒の下流側に備えられたNOXセンサの合理性を診断するNOXセンサの合理性診断装置において、還元触媒の上流側でのNOX量を算出する上流側NOX量演算部と、NOXセンサのセンサ値を検出するNOXセンサ値検出部と、上流側でのNOX量の推移に現れたピークに対してNOXセンサが応答しているか否かを判定することによりNOXセンサの合理性を診断する合理性診断部と、還元触媒の温度を検出する触媒温度検出部と、還元触媒の温度が所定の閾値未満のときにNOXセンサの合理性診断を実行させる診断実行判定部と、を備えることを特徴とするNOXセンサの合理性診断装置が提供され、上述した課題を解決することができる。 According to the present invention, the NO x for diagnosing the rationality of the NO x sensor provided on the downstream side of the reduction catalyst in the exhaust purification device that purifies NO x in the exhaust gas discharged from the internal combustion engine using the reduction catalyst. in rationality diagnosis apparatus X sensor, the upstream amount of NO X calculation unit for calculating the amount of NO X at the upstream side of the reduction catalyst, a NO X sensor value detector for detecting a sensor value of the NO X sensor, upstream and rationality diagnosis unit for diagnosing the rationality of the NO X sensor by NO X sensor to determine whether or not the response to the peak appearing on the amount of NO X transition in, detects the temperature of the reduction catalyst catalyst temperature detecting unit and, rationality diagnosis apparatus of the NO X sensor temperature of the reduction catalyst, characterized in that it comprises a diagnosis execution judging unit to execute the rationality diagnosis of the NO X sensor when less than a predetermined threshold value to Provided the above-mentioned issues It is possible to attain.
 また、本発明のNOXセンサの合理性診断装置を構成するにあたり、NOXセンサの合理性診断装置は、還元触媒の上流側でのNOX量に応じて還元触媒の上流側で排気ガスに混合された還元成分によってNOXを浄化する排気浄化装置に備えられたNOXセンサの合理性診断に用いられることが好ましい。 In constituting the rationality diagnosis apparatus of the NO X sensor of the present invention, rationality diagnosis apparatus of the NO X sensor, the exhaust gas upstream of the reduction catalyst in accordance with the amount of NO X at the upstream side of the reduction catalyst It is preferably used for rational diagnosis of the NO x sensor provided in the exhaust gas purification device that purifies NO x by the mixed reducing component.
 また、本発明のNOXセンサの合理性診断装置を構成するにあたり、合理性診断部は、上流側でのNOX量の推移の基準としての基準パターンと、NOXセンサのセンサ値の推移の基準としての追従パターンと、が記憶され、上流側でのNOX量が基準パターンに対して所定の関係をもって推移したときに、NOXセンサのセンサ値が追従パターンに対して所定の関係をもって推移したか否かを判定することにより、NOXセンサの合理性を診断することが好ましい。 Further, in configuring the NO x sensor rationality diagnosis device according to the present invention, the rationality diagnosis unit performs the reference pattern as the basis for the transition of the NO x amount on the upstream side and the transition of the sensor value of the NO x sensor. and follow pattern as a reference, is stored, changes the amount of NO X at the upstream side when the transition with a predetermined relationship with a reference pattern, the sensor value of the NO X sensor with a predetermined relationship to follow the pattern It is preferable to diagnose the rationality of the NO x sensor by determining whether or not it has been done.
 また、本発明の別の態様は、内燃機関から排出される排気ガス中のNOXを還元触媒を用いて浄化する排気浄化装置における、還元触媒の下流側に備えられたNOXセンサの合理性を診断するNOXセンサの合理性診断方法において、還元触媒の温度が所定の閾値未満のときに、還元触媒の上流側でのNOX量の推移及びNOXセンサのセンサ値の推移を検出しながら、上流側でのNOX量の推移に現れたピークに対してNOXセンサが応答しているか否かを判定することによりNOXセンサの合理性を診断することを特徴とするNOXセンサの合理性診断方法である。 Another aspect of the present invention is the rationality of the NO X sensor provided on the downstream side of the reduction catalyst in the exhaust purification apparatus that purifies NO X in the exhaust gas discharged from the internal combustion engine using the reduction catalyst. in rationality diagnosis method of the NO X sensor to diagnose, when the temperature of the reduction catalyst is less than the predetermined threshold value, it detects the transition of the sensor values of transition and NO X sensor of the NO X amount in the upstream side of the reduction catalyst while, NO X sensor, characterized in that diagnosing the rationality of the NO X sensor by NO X sensor with respect to the peak appearing in the NO X amount of transition of the upstream side to determine whether it is responding This is a rational diagnostic method.
 本発明のNOXセンサの合理性診断装置及び合理性診断方法では、触媒温度が所定の閾値未満のときにのみ、NOX量の推移に現れるピークを利用したNOXセンサの合理性診断が行われる。そのため、還元触媒の上流側でのNOX量の推移にピークが現れたときに、還元触媒中で大部分のNOXが還元されることなく還元触媒の下流側に流れ出るため、還元触媒の上流側でのNOX量の推移に現れたピークに対応して下流側のNOXセンサが応答しているか否かが正確に判定される。したがって、NOXセンサの合理性診断の信頼性が向上する。 The NO X rationality diagnosis apparatus and rationality diagnosis method of sensor of the present invention, the catalyst temperature only when less than a predetermined threshold value, rationality diagnosis of the NO X sensor using a peak appearing in the NO X amount of transition row Is called. Therefore, when the peak appears in the NO X amount of transition of the upstream side of the reduction catalyst, since the NO X most in reducing catalyst flows out to the downstream side of the reduction catalyst without being reduced, upstream of the reduction catalyst It is accurately determined whether or not the downstream NO x sensor is responding to the peak appearing in the transition of the NO x amount on the side. Therefore, the reliability of the rational diagnosis of the NO X sensor is improved.
排気浄化装置の構成例を示す図である。It is a figure which shows the structural example of an exhaust gas purification apparatus. 本発明の実施の形態にかかるNOXセンサの合理性診断装置の構成例を説明するためのブロック図である。It is a block diagram for explaining a configuration example of a rationality diagnosis apparatus of the NO X sensor according to the embodiment of the present invention. 本発明の実施の形態にかかるNOXセンサの合理性診断方法を説明するためのタイミングチャートである。It is a timing chart for explaining the rationality diagnosis method of the NO X sensor according to an embodiment of the present invention. 本発明の実施の形態にかかるNOXセンサの合理性診断方法の一例を示すフロー図である。It is a flow diagram illustrating an example of a rationality diagnosis method of the NO X sensor according to the embodiment of the present invention. 本発明の実施の形態にかかるNOXセンサの合理性診断方法の一例を示すフロー図である。It is a flow diagram illustrating an example of a rationality diagnosis method of the NO X sensor according to the embodiment of the present invention. 本発明の実施の形態にかかるNOXセンサの合理性診断方法の一例を示すフロー図である。It is a flow diagram illustrating an example of a rationality diagnosis method of the NO X sensor according to the embodiment of the present invention. 本発明の実施の形態にかかるNOXセンサの合理性診断方法の一例を示すフロー図である。It is a flow diagram illustrating an example of a rationality diagnosis method of the NO X sensor according to the embodiment of the present invention.
 以下、図面を参照して、本発明のNOXセンサの合理性診断装置及び合理性診断方法に関する実施の形態について具体的に説明する。ただし、この実施の形態は、本発明の一態様を示すものでありこの発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。なお、それぞれの図中、同じ符号を付してあるものについては同一の部材を示しており、適宜説明が省略されている。 Embodiments relating to a rationality diagnostic apparatus and rationality diagnostic method for a NO x sensor according to the present invention will be specifically described below with reference to the drawings. However, this embodiment shows one aspect of the present invention and does not limit the present invention, and can be arbitrarily changed within the scope of the present invention. In addition, in each figure, what has attached | subjected the same code | symbol has shown the same member, and description is abbreviate | omitted suitably.
1.NOXセンサの合理性診断装置
(1)排気浄化装置
 まず、本発明の実施の形態にかかるNOXセンサの合理性診断装置を備えた排気浄化装置の構成例について図1を参照しつつ説明する。
 図1に示す排気浄化装置10は、尿素水溶液を還元剤として用い、排気ガスを還元剤とともに還元触媒13中に流入させてNOXを選択的に還元する排気浄化装置10である。この排気浄化装置10は、内燃機関の排気通路11中に配設され、排気ガス中に含まれるNOXを選択的に還元するための還元触媒13と、還元触媒13の上流側で排気通路11中に還元剤を噴射するための還元剤噴射弁31を含む還元剤供給装置20とを備えている。
1. NO X Sensor Rationality Diagnosis Device (1) Exhaust Gas Purification Device First, a configuration example of an exhaust gas purification device provided with an NO X sensor rationality diagnostic device according to an embodiment of the present invention will be described with reference to FIG. .
Exhaust purifying apparatus 10 shown in Figure 1, using urea aqueous solution as the reducing agent, an exhaust purifying apparatus 10 for the exhaust gas flowed into the reduction catalyst 13 with the reducing agent to selectively reduce NO X to. The exhaust purification device 10 is disposed in an exhaust passage 11 of an internal combustion engine, and a reduction catalyst 13 for selectively reducing NO x contained in exhaust gas, and an exhaust passage 11 upstream of the reduction catalyst 13. And a reducing agent supply device 20 including a reducing agent injection valve 31 for injecting the reducing agent therein.
 また、排気通路11の還元触媒13の上流側及び下流側にはそれぞれ温度センサ15、16が備えられているとともに、還元触媒13の下流側には、排気ガス中のNOX濃度を検出するためのNOXセンサ17が備えられている。このNOXセンサ17や温度センサ15、16は公知のものが用いられる。 Further, temperature sensors 15 and 16 are provided on the upstream side and the downstream side of the reduction catalyst 13 in the exhaust passage 11 respectively, and the NO x concentration in the exhaust gas is detected on the downstream side of the reduction catalyst 13. NO x sensor 17 is provided. As the NO x sensor 17 and the temperature sensors 15 and 16, known ones are used.
 還元触媒13は、その上流側で排気通路11内に噴射される尿素水溶液が加水分解して生成されるアンモニアを吸着し、流入する排気ガス中のNOXを選択的に還元する選択還元触媒が用いられている。
 この還元触媒13におけるアンモニアの飽和吸着量は、触媒温度が高くなるにつれて減少する。一方、還元触媒13は、触媒活性温度以上においてそのNOX浄化効率が高められる。
The reduction catalyst 13 is a selective reduction catalyst that adsorbs ammonia generated by hydrolysis of an aqueous urea solution injected into the exhaust passage 11 at an upstream side thereof, and selectively reduces NO x in the inflowing exhaust gas. It is used.
The saturated adsorption amount of ammonia in the reduction catalyst 13 decreases as the catalyst temperature increases. On the other hand, the NO x purification efficiency of the reduction catalyst 13 is increased at the catalyst activation temperature or higher.
 還元剤供給装置20は、還元剤噴射弁31と、還元剤の貯蔵タンク50と、貯蔵タンク50内の還元剤を還元剤噴射弁31に向けて圧送するポンプ41とを備えている。また、貯蔵タンク50とポンプ41とは第1の供給経路57で接続され、ポンプ41と還元剤噴射弁31とは第2の供給経路58で接続され、さらに、還元剤噴射弁31と貯蔵タンク50とは循環経路59によっても接続されている。還元剤噴射弁31やポンプ41は、後述する制御装置60によって制御が行われる。 The reducing agent supply device 20 includes a reducing agent injection valve 31, a reducing agent storage tank 50, and a pump 41 that pumps the reducing agent in the storage tank 50 toward the reducing agent injection valve 31. Further, the storage tank 50 and the pump 41 are connected by a first supply path 57, the pump 41 and the reducing agent injection valve 31 are connected by a second supply path 58, and further, the reducing agent injection valve 31 and the storage tank. 50 is also connected by a circulation path 59. The reducing agent injection valve 31 and the pump 41 are controlled by a control device 60 described later.
 貯蔵タンク50には、図示しないものの、貯蔵タンク50内の還元剤の温度を検知するための温度センサや還元剤の残量を検知するためのレベルセンサ、還元剤の濃度を検知するための濃度センサが備えられている。これらのセンサによって検知された値は制御装置60に出力される。これらのセンサについても、公知のものが適宜使用される。
 なお、本実施形態では還元剤として尿素水溶液が用いられているが、この他にも、アンモニア水溶液や未燃燃料(HC)を用いることもできる。
Although not shown, the storage tank 50 includes a temperature sensor for detecting the temperature of the reducing agent in the storage tank 50, a level sensor for detecting the remaining amount of the reducing agent, and a concentration for detecting the concentration of the reducing agent. A sensor is provided. The values detected by these sensors are output to the control device 60. As these sensors, known ones are appropriately used.
In this embodiment, an aqueous urea solution is used as the reducing agent. However, an aqueous ammonia solution or unburned fuel (HC) can also be used.
 ポンプ41は、例えば電動ポンプが用いられ、制御装置60によって駆動される。また、ポンプ41の下流側の第2の供給経路58には圧力センサ43が設けられ、この圧力センサ43のセンサ値は制御装置60に出力される。圧力センサ43は公知のものが適宜使用される。 The pump 41 is an electric pump, for example, and is driven by the control device 60. A pressure sensor 43 is provided in the second supply path 58 on the downstream side of the pump 41, and the sensor value of the pressure sensor 43 is output to the control device 60. A known pressure sensor 43 is appropriately used.
 還元剤噴射弁31は、例えば、通電、非通電の切換えにより弁の開閉を制御するオンオフ弁が用いられる。還元剤噴射弁31は制御装置60によって開閉の制御が行われ、還元剤噴射弁31が開かれたときに還元剤が排気通路11中に噴射される。 The reducing agent injection valve 31 is, for example, an on / off valve that controls opening and closing of the valve by switching between energization and non-energization. The reducing agent injection valve 31 is controlled to be opened and closed by the control device 60, and when the reducing agent injection valve 31 is opened, the reducing agent is injected into the exhaust passage 11.
 還元剤噴射弁31と貯蔵タンク50との間に配設された循環経路59は、ポンプ41によって圧送される還元剤の圧力が所定値以上になったときに、第2の供給経路58内の還元剤の一部を貯蔵タンク50に還流させるための通路である。還元剤噴射弁31に供給される還元剤の圧力が所定値に保たれることで、還元剤の噴射量の制御が容易になる。 A circulation path 59 disposed between the reducing agent injection valve 31 and the storage tank 50 is provided in the second supply path 58 when the pressure of the reducing agent pumped by the pump 41 exceeds a predetermined value. This is a passage for returning a part of the reducing agent to the storage tank 50. By controlling the pressure of the reducing agent supplied to the reducing agent injection valve 31 at a predetermined value, it becomes easy to control the injection amount of the reducing agent.
(2)制御装置(合理性診断装置)
 制御装置60は、主として、適切な量の還元剤が排気通路11中に噴射されるように、還元剤供給装置20のポンプ41や還元剤噴射弁31の駆動制御を行う。また、本実施形態の制御装置60は、さらにNOXセンサ17の合理性診断装置としての機能を有している。
(2) Control device (rationality diagnosis device)
The control device 60 mainly performs drive control of the pump 41 and the reducing agent injection valve 31 of the reducing agent supply device 20 so that an appropriate amount of the reducing agent is injected into the exhaust passage 11. In addition, the control device 60 of the present embodiment further has a function as a rationality diagnostic device for the NO X sensor 17.
 この制御装置60は、公知の構成からなるマイクロコンピュータを中心に構成されており、還元剤噴射弁31の動作制御を行う部分、ポンプ41の駆動制御を行う部分、さらに排気浄化装置10の合理性診断を行う部分を備えている。これらの各部は、具体的にはマイクロコンピュータ(図示せず)によるプラグラムの実行によって実現される。 The control device 60 is configured around a microcomputer having a known configuration, and includes a portion for controlling the operation of the reducing agent injection valve 31, a portion for controlling the drive of the pump 41, and the rationality of the exhaust purification device 10. It has a diagnostic part. Specifically, each of these units is realized by executing a program by a microcomputer (not shown).
 このうち、ポンプ駆動制御部は、第2の供給経路58に備えられた圧力センサ43のセンサ値を継続的に読み込み、第2の供給経路58内の圧力が所定値で維持されるようにポンプ41のフィードバック制御を行う。 Among these, the pump drive control unit continuously reads the sensor value of the pressure sensor 43 provided in the second supply path 58 and keeps the pressure in the second supply path 58 at a predetermined value. 41 feedback control is performed.
 還元剤噴射弁動作制御部は、排気ガスの温度、触媒温度、還元触媒13の下流側におけるNOX濃度、さらには内燃機関5の運転状態に関する情報等を読み込み、排気ガス中のNOXを還元するために必要な還元剤の噴射量を演算し、還元剤噴射弁31の制御信号を還元剤噴射弁31のアクチュエータに出力する。 The reducing agent injection valve operation control unit reads the temperature of the exhaust gas, the catalyst temperature, the NO x concentration downstream of the reduction catalyst 13 and further information on the operating state of the internal combustion engine 5 to reduce NO x in the exhaust gas. The amount of reducing agent injection necessary for this is calculated, and a control signal for the reducing agent injection valve 31 is output to the actuator of the reducing agent injection valve 31.
 診断部は、還元触媒13の下流側に備えられたNOXセンサ17の合理性診断を行う。図2は、本実施形態の制御装置60のうちの合理性診断に関する部分について機能的なブロックで表した構成例を示している。制御装置60の合理性診断部は、上流側NOX量演算部61と、NOXセンサ値検出部63と、合理性診断部65と、触媒温度検出部67と、診断実行判定部69とを備えている。これらの各部は、具体的には、マイクロコンピュータによるプログラムの実行によって実現される。また、制御装置60にはRAM(Random Access Memory)71及びタイマ73が備えられている。RAM71には、各部で演算あるいは検出される値が記憶される。 The diagnosis unit performs rational diagnosis of the NO X sensor 17 provided on the downstream side of the reduction catalyst 13. FIG. 2 shows a configuration example in which a portion related to rationality diagnosis in the control device 60 of the present embodiment is represented by functional blocks. Rationality diagnosis of the control device 60, the upstream-side amount of NO X calculation unit 61, an NO X sensor value detector 63, a rationality diagnosis portion 65, a catalyst temperature detection unit 67, and a diagnosis execution judging section 69 I have. Specifically, each of these units is realized by executing a program by a microcomputer. The control device 60 is provided with a RAM (Random Access Memory) 71 and a timer 73. The RAM 71 stores values calculated or detected by each unit.
 このうち、本実施形態の制御装置60の上流側NOX流量演算部61は、内燃機関から排出される単位時間ごとのNOXの質量流量Nfuを算出可能に構成されている。具体的には、上流側NOX量演算部61は、内燃機関5の運転状態に関する情報を読み込み、内燃機関5から排出されるNOX濃度Nu及び排気ガスの質量流量Gfを算出し、これらの算出値に基づいて、単位時間あたりに内燃機関5から排出されるNOXの質量流量Nfuを算出する。算出されたNOX濃度Nuや排気ガスの質量流量Gf、NOXの質量流量Nfuの値はRAM71に記憶される。 Among these, the upstream NO x flow rate calculation unit 61 of the control device 60 of the present embodiment is configured to be able to calculate the mass flow rate Nfu of NO x per unit time discharged from the internal combustion engine. Specifically, the upstream NO x amount calculation unit 61 reads information relating to the operating state of the internal combustion engine 5, calculates the NO x concentration Nu discharged from the internal combustion engine 5, and the exhaust gas mass flow rate Gf. Based on the calculated value, the mass flow rate Nfu of NO x discharged from the internal combustion engine 5 per unit time is calculated. The calculated values of the NO x concentration Nu, the exhaust gas mass flow rate Gf, and the NO x mass flow rate Nfu are stored in the RAM 71.
 内燃機関5の運転状態に関する情報としては、内燃機関5の燃料噴射量、回転数、排気循環装置のステータス、排気循環量、空気吸入量、冷却水温度等が挙げられる。これらの情報をもとに、排気ガスの質量流量GfやNOX濃度Nuを算出することは公知の方法によって行われる。 Information on the operating state of the internal combustion engine 5 includes the fuel injection amount, the rotational speed, the status of the exhaust circulation device, the exhaust circulation amount, the air intake amount, the cooling water temperature, and the like of the internal combustion engine 5. Based on such information, the calculation of the exhaust gas mass flow rate Gf and the NO x concentration Nu is performed by a known method.
 上流側NOX量演算部61で算出するNOX量は、本実施形態のようにNOXの質量流量(g・L)の他、NOX濃度(ppm)やNOX流量(L)等であってもよい。また、還元触媒13の上流側にNOXセンサが設けられる場合には、内燃機関5の運転状態に基づいてではなく、NOXセンサのセンサ値に基づいてNOX量を算出することが可能である。 The amount of NO X to be calculated on the upstream side the amount of NO X calculation unit 61, in addition of the NO X in the mass flow rate (g · L) as in the present embodiment in NO X concentration (ppm) and NO X flow rate (L), etc. There may be. Further, when the NO x sensor is provided on the upstream side of the reduction catalyst 13, it is possible to calculate the NO x amount not based on the operating state of the internal combustion engine 5, but based on the sensor value of the NO x sensor. is there.
 NOXセンサ値検出部63は、NOXセンサ17のセンサ値を読込み、このセンサ値に基づいてNOX濃度Ndを算出可能に構成されている。算出されたNOX濃度Ndの値はRAM71に記憶される。 The NO X sensor value detection unit 63 is configured to be able to read the sensor value of the NO X sensor 17 and calculate the NO X concentration Nd based on this sensor value. The calculated value of the NO x concentration Nd is stored in the RAM 71.
 触媒温度検出部67は、還元触媒13の上流側及び下流側に備えられた温度センサ15、16のセンサ値を読み込み、触媒温度Tscrを推定可能に構成されている。推定された触媒温度Tscrは、診断実行判定部69に出力される。 The catalyst temperature detector 67 is configured to be able to estimate the catalyst temperature Tscr by reading the sensor values of the temperature sensors 15 and 16 provided on the upstream side and the downstream side of the reduction catalyst 13. The estimated catalyst temperature Tscr is output to the diagnosis execution determination unit 69.
 検出する触媒温度Tscrは、本実施形態のように温度センサ15、16のセンサ値に基づいて推定される推定触媒温度の他、還元触媒13の近傍の排気通路11に備えられた温度センサで検出される排気ガス温度の測定値や、直接的な測定が可能である場合においては、還元触媒13の実測温度であってもよい。すなわち、検出する触媒温度は、還元触媒13の実際の温度に連動する温度であればよい。 The catalyst temperature Tscr to be detected is detected by a temperature sensor provided in the exhaust passage 11 in the vicinity of the reduction catalyst 13 in addition to the estimated catalyst temperature estimated based on the sensor values of the temperature sensors 15 and 16 as in the present embodiment. If the measured value of the exhaust gas temperature to be measured or direct measurement is possible, the measured temperature of the reduction catalyst 13 may be used. That is, the detected catalyst temperature may be a temperature that is linked to the actual temperature of the reduction catalyst 13.
 診断実行判定部69は、触媒温度検出部67で推定された触媒温度Tscrを所定の閾値T0と比較し、触媒温度Tscrが閾値T0未満のときに、合理性診断部65に対して診断実行信号を出力する。この閾値T0は代表的には還元触媒13の触媒活性温度とされるが、完全に一致していなくてもよい。 The diagnosis execution determination unit 69 compares the catalyst temperature Tscr estimated by the catalyst temperature detection unit 67 with a predetermined threshold value T0. When the catalyst temperature Tscr is less than the threshold value T0, the diagnosis execution signal is sent to the rationality diagnosis unit 65. Is output. The threshold value T0 is typically the catalyst activation temperature of the reduction catalyst 13, but may not be completely coincident.
 合理性診断部65は、触媒温度Tscrが閾値T0未満の状態で、RAM71に記憶されているNOXの質量流量NfuやNOXセンサ17に基づいて検出されるNOX濃度Ndの値をもとに、所定の基準パターン及び追従パターンを用いて、NOXの質量流量Nfuの推移に現れたピークに対応してNOX濃度Ndが推移するか否かを判定することにより、NOXセンサ17の合理性診断を行うように構成されている。 Rationality diagnosis portion 65, the catalyst temperature Tscr is less than the threshold value T0 state, based on the values of the NO X concentration Nd detected based on the mass flow rate Nfu and NO X sensor 17 of the NO X stored in the RAM71 to, by using a predetermined reference pattern and follow the pattern, by NO X mass flow Nfu transition appeared NO X concentration Nd corresponding to the peak of determining whether to remain, of the NO X sensor 17 It is configured to make a rational diagnosis.
 本実施形態の合理性診断部65は、NOX質量流量Nfuが基準パターンに対して所定の条件を満たすように推移することで、NOXの質量流量Nfuの推移にピークが現れたと認識されたときに診断モードに移行し、NOXセンサ17がNOX濃度の変化に反応しているかを判別するスタックチェックと、NOXセンサ17のセンサ値がNOX濃度の変化に応じて正確に応答しているかを判定するピークチェックとを実行する。 Rationality diagnosis portion 65 of the present embodiment, by NO X mass flow Nfu undergoes a transition so as to satisfy a predetermined condition with respect to the reference pattern, is recognized peak appeared in the course of the mass flow rate Nfu of the NO X shifts to the diagnostic mode when the stack checks NO X sensor 17 to determine whether the response to changes of the NO X concentration sensor value of the NO X sensor 17 accurately responds in accordance with the change of the NO X concentration And a peak check to determine whether or not
 具体的には、スタックチェックは、還元触媒13の上流側のNOXの質量流量Nfuが基準パターンに対して所定の条件を満たすように推移することで、NOXの質量流量Nfuの推移にピークが現れたと認識されたときに、NOXセンサ17で検出されるNOX濃度Ndが規定値ABS以上変化するか否かを判定することで行われる。
 また、ピークチェックは、還元触媒13の上流側のNOXの質量流量Nfuが基準パターンに対して所定の条件を満たすように推移することで、NOXの質量流量Nfuの推移にピークが現れたと認識されたときに、NOXセンサ17で検出されるNOX濃度Ndが追従パターンを上回って推移するか否かを判定することで行われる。
Specifically, stack checking, by transitioning to satisfy a predetermined condition with respect to the mass flow rate Nfu reference pattern on the upstream side of the NO X of the reduction catalyst 13, a peak in the course of the mass flow rate Nfu of the NO X Is recognized by determining whether or not the NO X concentration Nd detected by the NO X sensor 17 changes by more than a specified value ABS.
In addition, the peak check indicates that a peak appears in the transition of the NO x mass flow rate Nfu as the NO x mass flow rate Nfu on the upstream side of the reduction catalyst 13 changes so as to satisfy a predetermined condition with respect to the reference pattern. When it is recognized, it is performed by determining whether or not the NO X concentration Nd detected by the NO X sensor 17 exceeds the follow-up pattern.
 ただし、NOXセンサ17の合理性診断の方法は、上流側NOX量の推移にピークが現れたことを確認し、このピークに対してNOXセンサ17のセンサ値が応答しているかを判定するものであれば、上述した診断方法に限定されるのもではない。例えば、上流側のNOX量のピークの発生はNOX濃度NuやNOX流量の推移に基づいて検出することもできるし、これらのうちの複数の値の推移に基づいてピークの発生を判定することもできる。 However, the method of rationality diagnosis of the NO X sensor 17 confirms that the peak appeared in the course of the upstream-side amount of NO X, determine the sensor value of the NO X sensor 17 is responding to this peak If it does, it is not limited to the diagnostic method mentioned above. For example, the occurrence of a peak in the upstream NO x amount can be detected based on the transition of the NO x concentration Nu or the NO x flow rate, and the occurrence of the peak is determined based on the transition of a plurality of these values. You can also
2.NOXセンサの合理性診断方法
(1)合理性診断のタイミングチャート
 次に、本実施形態の制御装置(合理性診断装置)60によって、触媒温度Tscrが触媒温度閾値T0未満のときにNOXセンサ17の合理性を診断する方法について、図3に示すタイミングチャートを参照して詳細に説明する。
2. NO x sensor rationality diagnosis method (1) Rationality diagnosis timing chart Next, when the catalyst temperature Tscr is less than the catalyst temperature threshold value T0 by the control device (rationality diagnostic device) 60 of the present embodiment, the NO x sensor. A method for diagnosing the rationality of 17 will be described in detail with reference to the timing chart shown in FIG.
 図3のタイミングチャートでは、還元触媒13の上流側のNOXの質量流量Nfuの推移の基準パターンは、前段定常領域と傾斜領域と後段定常領域とを含む。また、この基準パターンは、タイマ3によって傾斜領域の開始時点が遅延処理される遅延領域を含む。さらに、NOXセンサ17で検出されるNOX濃度Ndの推移の追従パターンは、追従傾斜領域と追従定常領域とを含む。 In the timing chart of FIG. 3, the reference pattern of the transition of the NO x mass flow rate Nfu upstream of the reduction catalyst 13 includes a front-stage steady region, an inclined region, and a back-stage steady region. The reference pattern includes a delay area in which the start point of the inclined area is delayed by the timer 3. Further, the tracking pattern of the transition of the NO X concentration Nd detected by the NO X sensor 17 includes a tracking slope area and a tracking steady area.
 まず、触媒温度Tscrの推定、還元触媒13の上流側のNOXの質量流量Nfuの算出及びNOXセンサ17のセンサ値に基づくNOX濃度Ndの算出を継続的に行い、触媒温度Tscrが閾値T0未満であるとともに、上流側のNOXの質量流量Nfuが基準パターンの前段定常領域の基準値MINnfu以下になったt1の時点で、タイマ1が作動する。タイマ1を作動させるのは、診断条件がそろって安定した状態でNOXセンサ17の合理性診断を実行させるためである。図3のタイムチャートでは、上流側のNOXの質量流量Nfu及び触媒温度Tscrがともに所定の条件を満たしたときにタイマ1が作動しているが、各値がそれぞれ所定の条件を満たしたときに、それぞれタイマを作動させてもよい。 First, the estimation of the catalyst temperature Tscr, continuously performs calculation of the NO X concentration Nd based on the sensor value of the calculated mass flow rate Nfu at the upstream side of the NO X of the reduction catalyst 13 and the NO X sensor 17, catalyst temperature Tscr threshold At the time t1 when the mass flow rate Nfu of the upstream NO x becomes equal to or less than the reference value MINnfu in the upstream stationary region of the reference pattern, the timer 1 is activated. The reason for operating the timer 1 is to execute a rational diagnosis of the NO X sensor 17 in a state where the diagnosis conditions are all stable. In the time chart of FIG. 3, the timer 1 is activated when both the upstream NO x mass flow rate Nfu and the catalyst temperature Tscr satisfy a predetermined condition, but each value satisfies a predetermined condition. In addition, each timer may be operated.
 触媒温度Tscrが閾値T0未満で推移するとともに、上流側のNOXの質量流量Nfuが基準値MINnfu以下のままでタイマ1の設定時間が経過したt2の時点からは、上流側のNOXの質量流量Nfuが基準値MINnfuを越えるまで待機状態に入る。この間も、触媒温度Tscrが閾値T0未満となっているかの監視が継続される。
 このとき、タイマ1の終了と同時に別途タイマを作動させて待機時間の最大時間を設定し、設定時間が経過するまでにNOX質量流量Nfuが基準値MINnfuを超えない場合に診断を終了させるようにすることもできる。このようにすれば、診断プログラムが動作しない不安定な状態が長時間継続することを避けることができる。
With the catalyst temperature Tscr has remained below the threshold T0, from the time of the mass flow rate Nfu at the upstream side of the NO X set time of the timer 1 remains less than the reference value MINnfu elapses t2, the upstream side of the NO X mass The standby state is entered until the flow rate Nfu exceeds the reference value MINnfu. During this time, whether the catalyst temperature Tscr is lower than the threshold value T0 is continuously monitored.
At this time, the timer is separately activated simultaneously with the end of the timer 1 to set the maximum waiting time, and the diagnosis is terminated when the NO x mass flow rate Nfu does not exceed the reference value MINnfu before the set time elapses. It can also be. In this way, it is possible to avoid an unstable state where the diagnostic program does not operate for a long time.
 その後、上流側のNOXの質量流量Nfuが基準値MINnfuを超えたt3の時点で、タイマ2、タイマ3、タイマ5及びタイマ6が作動するとともに、t3の時点でのNOXセンサ17で検出されるNOX濃度Ndを開始値Nd0として記憶する。このt3の時点において、合理性診断モードに移行されるとともに、追従パターンの追従傾斜領域の開始値Nd0が設定される。この開始値Nd0は、本実施形態で行われるNOXセンサ17のピークチェックやスタックチェックにおいて、上流側のNOXの質量流量Nfuに現れたピークに対応してNOXセンサ17で検出されるNOX濃度Ndが正確に応答しているか否かを判定するための基準となる。 Thereafter, at time t3 when the upstream NO x mass flow rate Nfu exceeds the reference value MINnfu, the timer 2, timer 3, timer 5 and timer 6 are activated and detected by the NO x sensor 17 at time t3. storing NO X concentration Nd is as the starting value Nd0. At the time t3, the mode is shifted to the rationality diagnosis mode, and the start value Nd0 of the follow-up gradient area of the follow-up pattern is set. The start value Nd0, in peak check and stack checking of the NO X sensor 17 is performed in this embodiment, is detected by the NO X sensor 17 corresponding to the peak appearing on the mass flow rate Nfu at the upstream side of the NO X NO This is a reference for determining whether or not the X concentration Nd is accurately responding.
 t3の時点以降、タイマ3の設定時間が経過するt4の時点までの間は、上流側のNOXの質量流量Nfuの推移と基準パターンとの比較は行われず、t4の時点が規準パターンの傾斜領域の開始時点になっている。このように、上流側のNOXの質量流量Nfuが基準値MINnfuを超えたt3の時点から、傾斜領域の開始時点t4までの間に遅延領域を設けることにより、診断モードに移行されたt3の時点の後に、上流側のNOXの質量流量Nfuの上昇率が減少した場合であっても、NOXの質量流量Nfuが基準パターンを下回るおそれが低くなり、合理性診断が中断されずに継続されやすくなる。 From the time point t3 to the time point t4 when the set time of the timer 3 elapses, the transition of the upstream NO x mass flow rate Nfu and the reference pattern are not compared, and the time point t4 is the slope of the reference pattern It is the start time of the region. In this way, by providing the delay region between the time point t3 when the upstream NO x mass flow rate Nfu exceeds the reference value MINnfu and the start point t4 of the inclined region, Even if the increase rate of the upstream NO x mass flow rate Nfu decreases after the time point, the risk that the NO x mass flow rate Nfu falls below the reference pattern is reduced, and the rationality diagnosis continues without interruption. It becomes easy to be done.
 t4の時点以降、上流側のNOXの質量流量Nfuについては、タイマ2の設定時間が経過するt5までの間、NOXの質量流量Nfuが傾斜領域の値SLOPE以上になっているかが判別され、さらに、t5の時点以降タイマ4の設定時間が経過するまでの間、NOXの質量流量Nfuが後段定常領域の値MAXnfu以上になっているかが判別される。このt3の時点以降、いずれかの時点で上流側のNOXの質量流量Nfuが基準パターンの各領域の値SLOPE、MAXnfuを下回ったときには、NOXセンサ17の合理性診断を正確に判定できるようなピークが生じていないと判断され、RAM71に記憶された値がリセットされる。この間、触媒温度Tscrが閾値T0を下回ったときにも、NOXセンサ17の合理性診断を正確に判定できないおそれがあるため、RAM71に記憶された値がリセットされる。 For the upstream NO x mass flow rate Nfu after time t4, it is determined whether the NO x mass flow rate Nfu is equal to or greater than the slope region value SLOPE until t5 when the set time of timer 2 elapses. Further, it is determined whether the mass flow rate Nfu of NO x is equal to or greater than the value MAXnfu of the subsequent stage steady region until the set time of the timer 4 elapses after the time point t5. After this time t3, if the upstream NO x mass flow rate Nfu falls below the values SLOPE and MAXnfu of each region of the reference pattern at any time, the rational diagnosis of the NO x sensor 17 can be accurately determined. It is determined that no peak has occurred, and the value stored in the RAM 71 is reset. During this time, the catalyst temperature Tscr even when below the threshold T0, since there may not be determined accurately rationality diagnosis of the NO X sensor 17, the value stored in the RAM71 is reset.
 一方、NOXセンサ17で検出されるNOX濃度Ndについては、t3の時点以降、追従パターンと比較されることでピークチェックが行われる。すなわち、t3の時点で作動させたタイマ5の設定時間が経過するt6の時点を基点として追従パターンが設定され、t6の時点以降、上流側のNOXの質量流量Nfuが後段定常領域の値MAXnfu以上で推移するタイマ4の設定時間が経過するまでの間、NOX濃度Ndが追従傾斜領域の値Ramp及び追従後段定常領域の値max以上のまま推移するか否かが判別される。 On the other hand, the NO X concentration Nd detected by the NO X sensor 17, after the timing t3, the peak check is made by being compared with the follow pattern. That is, the follow-up pattern is set based on the time point t6 when the set time of the timer 5 activated at the time point t3 elapses. After the time point t6, the mass flow rate Nfu of the upstream NO x becomes the value MAXnfu of the subsequent steady region. It is determined whether or not the NO x concentration Nd remains higher than the value Ramp of the follow-up gradient region and the value max of the follow-up steady-state region until the set time of the timer 4 changing as described above elapses.
 t6の時点以降、タイマ4の設定時間が経過するまでの間、NOX濃度Ndが追従傾斜領域の値Ramp及び追従後段定常領域の値max以上のままで推移していれば、NOXセンサ17は上流側のNOXの質量流量Nfuの推移に現れたピークに追従して正確に応答していると判定される。一方、t6の時点以降、タイマ4の設定時間が経過するまでの間に、NOX濃度Ndが追従傾斜領域の値Ramp及び追従後段定常領域の値maxを下回ったときには、NOXセンサ17が上流側のNOXの質量流量Nfuの推移に現れたピークに追従して応答していないため、NOXセンサ17の合理性が失われているものと判定される。 after the timing t6, until the set time of timer 4 has elapsed, if it be NO X concentration Nd is remained remains above value max value Ramp and follow later stage constant region of the follow-up slope region, NO X sensor 17 it is determined that the responding accurately to follow the peak appearing in the course of the mass flow rate Nfu of the upstream NO X. On the other hand, after the timing t6, until the set time of timer 4 has elapsed, when the NO X concentration Nd is less than the value max value Ramp and follows subsequent constant regions in the follow-up slope region, NO X sensor 17 upstream because to follow the peak appearing in the transition of a mass flow rate Nfu side of the nO X not responding, it is determined that rationality of the nO X sensor 17 is lost.
 また、本実施形態のNOXセンサ17の合理性診断では、上述のようにピークチェックと同時にスタックチェックが行われる。すなわち、t3の時点でタイマ6が作動し、NOXセンサ17で検出されるNOX濃度Ndが、タイマ6の設定時間が経過するt7の時点までに、開始値Nd0を基準として規定値ABS以上変化するか否かが判別される。NOX濃度Ndが開始値Nd0を基準として規定値ABS以上変化しなかった場合には、NOXセンサ17が上流側のNOXの質量流量Nfuの推移に現れたピークに反応していないため、NOXセンサ17の合理性が失われているものと判定される。 Further, in the rationality diagnosis of the NO x sensor 17 of the present embodiment, the stack check is performed simultaneously with the peak check as described above. That is, the timer 6 is actuated at the time of t3, NO X NO X concentration Nd detected by the sensor 17, by the time of t7 the set time of the timer 6 has passed, the specified value ABS or more starting values Nd0 basis It is determined whether or not it changes. When the NO X concentration Nd does not change more than the specified value ABS with respect to the start value Nd0, the NO X sensor 17 does not react to the peak appearing in the transition of the upstream NO X mass flow rate Nfu. It is determined that the rationality of the NO X sensor 17 is lost.
(2)合理性診断方法のフロー
 次に、図2に示す制御装置60によって行われるNOXセンサ17の合理性診断方法の具体的なルーチンの一例を図4~図7のフローチャートを参照しつつ説明する。なお、このルーチンは、内燃機関の運転中に常時実行されるようにしてもよく、あるいは一定時間ごとの割り込みによって実行されるようにしてもよい。
(2) Flow of Rationality Diagnosis Method Next, an example of a specific routine of the rationality diagnosis method of the NO X sensor 17 performed by the control device 60 shown in FIG. 2 will be described with reference to the flowcharts of FIGS. explain. This routine may be executed constantly during operation of the internal combustion engine, or may be executed by interruption every predetermined time.
 まず、スタート後、ステップS10で触媒温度Tscrが検出されるとともに、検出された触媒温度Tscrが閾値T0未満であるか否かが判別される。触媒温度Tscrが閾値T0以上である場合にはNOXセンサ17の合理性診断が正確に行われないおそれがあるため、次のステップS11には進まずに触媒温度Tscrの検出が繰り返される一方、触媒温度Tscrが閾値T0未満である場合にはステップS11に進む。 First, after the start, the catalyst temperature Tscr is detected in step S10, and it is determined whether or not the detected catalyst temperature Tscr is less than a threshold value T0. If the catalyst temperature Tscr is equal to or higher than the threshold value T0, the rational diagnosis of the NO x sensor 17 may not be performed accurately. Therefore, the detection of the catalyst temperature Tscr is repeated without proceeding to the next step S11. If the catalyst temperature Tscr is less than the threshold value T0, the process proceeds to step S11.
 次いで、ステップS11では、内燃機関5から排出される排気ガスの質量流量Gfが基準値MINgas未満になっているか否かが判別される。排気ガスの質量流量Gfが基準値MINgas以上になっている場合にはNOXセンサ17の合理性診断が正確に行われないおそれがあるため、次のステップS12には進まずに本ルーチンを終了する一方、排気ガスの質量流量Gfが基準値MINgas未満になっている場合にはステップS12に進む。 Next, in step S11, it is determined whether or not the mass flow rate Gf of the exhaust gas discharged from the internal combustion engine 5 is less than the reference value MINgas. If the exhaust gas mass flow rate Gf is greater than or equal to the reference value MINgas, the rational diagnosis of the NO X sensor 17 may not be performed accurately, so the routine ends without proceeding to the next step S12. On the other hand, if the exhaust gas mass flow rate Gf is less than the reference value MINgas, the process proceeds to step S12.
 次いで、ステップS12で内燃機関5から排出される排気ガスの質量流量Gf及びNOX濃度Nuに基づいて、還元触媒13の上流側でのNOXの質量流量Nfuが算出されるとともに、算出されたNOXの質量流量Nfuが基準パターンの前段定常領域の基準値MINnfu未満であり、かつ、NOX濃度Nuが基準値MINnu未満であるか否かが判別される。ステップS12の条件を満たしていない場合には本ルーチンを終了する一方、ステップS12の条件を満たしている場合にはステップS13に進み、タイマ1が作動する。 Then, based on the mass flow rate Gf and NO X concentration Nu of exhaust gas discharged from the internal combustion engine 5 in the step S12, with the mass flow rate Nfu of the NO X in the upstream side is calculated of the reduction catalyst 13, it is calculated It is determined whether or not the NO x mass flow rate Nfu is less than the reference value MINnfu in the preceding stationary region of the reference pattern and the NO x concentration Nu is less than the reference value MINnu. If the condition of step S12 is not satisfied, this routine is terminated. If the condition of step S12 is satisfied, the process proceeds to step S13, and the timer 1 is activated.
 次いで、ステップS14で、再び触媒温度Tscrが検出されるとともに、触媒温度Tscrが閾値T0未満であるか否かが判別され、さらに、ステップS15で内燃機関5から排出される排気ガスの質量流量Gfが基準値MINgas未満であるか否かが判別される。これらのステップS14又はステップS15のいずれかの条件を満たしていない場合にはNOXセンサ17の合理性診断が正確に行われないおそれがあるため、ステップS16でタイマ1をリセットした後本ルーチンを終了する一方、いずれの条件をも満たしている場合にはステップS17に進む。 Next, in step S14, the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is lower than the threshold value T0. Further, in step S15, the mass flow rate Gf of the exhaust gas discharged from the internal combustion engine 5 is determined. Is less than the reference value MINgas. If either of the conditions of step S14 or step S15 is not satisfied, the rational diagnosis of the NO X sensor 17 may not be performed accurately. Therefore, after resetting the timer 1 in step S16, this routine is executed. On the other hand, if both conditions are satisfied, the process proceeds to step S17.
 ステップS17では、再び排気ガスの質量流量Gf及びNOX濃度Nuに基づいて、還元触媒13の上流側でのNOXの質量流量Nfuが算出されるとともに、算出されたNOXの質量流量Nfuが基準パターンの前段定常領域の基準値MINnfu未満であり、かつ、NOX濃度Nuが基準値MINnu未満であるか否かが判別される。これらの条件を満たしていなければ、上流側のNOXの質量流量Nfuが不安定であるため、ステップS16でタイマ1をリセットした後本ルーチンを終了する。一方、これらの条件を満たしていれば、ステップS18に進み、タイマ1の設定時間が経過したか否かが判別される。タイマ1の設定時間が経過していなければステップS14に戻る一方、タイマ1の設定時間が経過した場合にはステップS19に進む。 In step S17, again based on the mass flow rate Gf and NO X concentration Nu exhaust gas, together with the mass flow rate Nfu of the NO X in the upstream side is calculated of the reduction catalyst 13, the mass flow rate Nfu of the calculated NO X a reference value of less than MINnfu of the preceding constant region of the reference pattern, and, NO X concentration Nu whether is less than the reference value MINnu is determined. Does not satisfy these conditions, since the mass flow rate Nfu at the upstream side of the NO X is unstable, the routine ends after resetting the timer 1 at step S16. On the other hand, if these conditions are satisfied, the process proceeds to step S18 to determine whether or not the set time of the timer 1 has elapsed. If the set time of timer 1 has not elapsed, the process returns to step S14. If the set time of timer 1 has elapsed, the process proceeds to step S19.
 ステップS19では、再び触媒温度Tscrが検出されるとともに、触媒温度Tscrが閾値T0未満であるか否かが判別され、さらに、ステップS20で排気ガスの質量流量Gf及びNOX濃度Nuに基づいて、還元触媒13の上流側でのNOXの質量流量Nfuが算出されるとともに、算出されたNOXの質量流量Nfuが基準パターンの前段定常領域の基準値MINnfu以上であり、かつ、NOX濃度Nuが基準値MINnu以上であり、かつ、排気ガスの質量流量Gfが基準値MINgas以上であるか否かが判別される。これらの条件を満たしていない場合にはステップS19に戻る一方、これらの条件を満たしている場合にはステップS21に進み、この時点でのNOXセンサ17で検出されるNOX濃度Ndが開始値Nd0として記憶されるとともに、ステップS22でタイマ2、3、5、6が作動する。 In step S19, the catalyst temperature Tscr is detected again, and it is determined whether the catalyst temperature Tscr is less than the threshold value T0. Further, in step S20, based on the exhaust gas mass flow rate Gf and the NO x concentration Nu, with the mass flow rate Nfu of the NO X in the upstream side is calculated of the reduction catalyst 13, the mass flow rate Nfu of the calculated NO X is not less than the reference value MINnfu of the preceding constant region of the reference pattern, and, NO X concentration Nu Is greater than or equal to the reference value MINnu, and it is determined whether or not the mass flow rate Gf of the exhaust gas is greater than or equal to the reference value MINgas. If these conditions are not satisfied, the process returns to step S19. If these conditions are satisfied, the process proceeds to step S21, and the NO X concentration Nd detected by the NO X sensor 17 at this time is the start value. While being stored as Nd0, timers 2, 3, 5, and 6 are activated in step S22.
 次いで、ステップS23では、NOXセンサ17で検出されるNOX濃度Ndと記憶された開始値Nd0との差の絶対値Dの演算が開始される。さらに、ステップS24では、再び触媒温度Tscrが検出されるとともに、触媒温度Tscrが閾値T0未満であるか否かが判別され、さらに、ステップS25で排気ガスの質量流量Gfが基準値MINgas以上になっているか否かが判別される。これらのステップS24又はステップS25のいずれかの条件を満たしていない場合にはNOXセンサ17の合理性診断が正確に行われないおそれがあるため、ステップS26でタイマ2、3、5、6をリセットした後本ルーチンを終了する一方、いずれの条件をも満たしている場合にはステップS27に進む。 Next, in step S23, calculation of the absolute value D of the difference between the NO X concentration Nd detected by the NO X sensor 17 and the stored start value Nd0 is started. Further, in step S24, the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is lower than the threshold value T0. In step S25, the exhaust gas mass flow rate Gf becomes equal to or higher than the reference value MINgas. It is determined whether or not. Since the rationality diagnosis of the NO X sensor 17 when not meeting any of these criteria in step S24 or step S25 is may not accurately performed, the timer 2, 3, 5, 6 in step S26 While the routine ends after resetting, if both conditions are satisfied, the process proceeds to step S27.
 ステップS27では、ステップS23で算出開始された絶対値Dが規定値ABS以上であるか否かが判別される。絶対値Dが規定値ABS未満であればそのままステップS29に進む一方、絶対値Dが規定値ABS以上であれば、NOXセンサ17が上流側のNOXの質量流量Nfuの推移に現れたピークに対して反応していると判定されるため、ステップS28でタイマ6が停止されるとともにスタックチェックOKフラグを立てた後、ステップS29に進む。 In step S27, it is determined whether or not the absolute value D started to be calculated in step S23 is greater than or equal to the specified value ABS. If the absolute value D is less than the specified value ABS, the process proceeds to step S29. On the other hand, if the absolute value D is equal to or greater than the specified value ABS, the NO X sensor 17 appears in the transition of the upstream NO X mass flow rate Nfu. Since the timer 6 is stopped in step S28 and the stack check OK flag is set in step S28, the process proceeds to step S29.
 ステップS29ではタイマ3の設定時間が経過したか否かが判別され、タイマ3の設定時間が経過していなければステップS24に戻る一方、タイマ3の設定時間が経過した場合にはステップS30に進む。ステップS30では、再び触媒温度Tscrが検出されるとともに、触媒温度Tscrが閾値T0未満であるか否かが判別され、さらに、ステップS31で排気ガスの質量流量Gfが基準値MINgas以上になっているか否かが判別される。これらのステップS30又はステップS31のいずれかの条件を満たしていない場合にはNOXセンサ17の合理性診断が正確に行われないおそれがあるため、ステップS32でタイマ2、5、6をリセットした後本ルーチンを終了する一方、いずれの条件をも満たしている場合にはステップS33に進む。 In step S29, it is determined whether or not the set time of the timer 3 has elapsed. If the set time of the timer 3 has not elapsed, the process returns to step S24, whereas if the set time of the timer 3 has elapsed, the process proceeds to step S30. . In step S30, the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is lower than the threshold value T0. Further, in step S31, whether the exhaust gas mass flow rate Gf is equal to or higher than the reference value MINgas. It is determined whether or not. Since the rationality diagnosis of the NO X sensor 17 when not meeting any of these criteria in step S30 or step S31 may not be performed accurately, and resets the timer 2, 5, 6 in step S32 After the routine is finished, if both conditions are satisfied, the process proceeds to step S33.
 ステップS33では、還元触媒13の上流側でのNOXの質量流量Nfuが算出されるとともに、算出されたNOXの質量流量Nfuが基準パターンの傾斜領域の値SLOPE以上となっているか否かが判別される。NOXの質量流量Nfuが傾斜領域の値SLOPE未満である場合には、NOXの質量流量Nfuの推移にピークが現れていないために、ステップS32に進みタイマ2、5、6をリセットした後本ルーチンを終了する。 In step S33, the mass flow rate Nfu of NO x on the upstream side of the reduction catalyst 13 is calculated, and whether the calculated mass flow rate Nfu of NO x is equal to or greater than the value SLOPE of the slope region of the reference pattern. Determined. When the mass flow rate Nfu of NO X is less than the slope region value SLOPE, no peak appears in the transition of the mass flow rate Nfu of NO X , so the process proceeds to step S32 and the timers 2, 5, 6 are reset. This routine ends.
 一方、ステップS33で、算出されるNOXの質量流量Nfuが傾斜領域の値SLOPE以上となっている場合には、ステップS34に進み、NOXセンサ17で検出されるNOX濃度Ndと開始値Nd0との差の絶対値Dが規定値ABS以上であるか否かが判別される。絶対値Dが規定値ABS未満である場合にはそのままステップS37に進む一方、絶対値Dが規定値ABS以上である場合には、ステップS35でスタックチェックOKフラグが立っているかを確認する。スタックチェックOKフラグが立っている場合にはそのままステップS37に進む一方、スタックチェックOKフラグが立っていない場合には、ステップS36でタイマ6が停止されるとともにスタックチェックOKフラグを立てた後、ステップS37に進む。 On the other hand, if the calculated NO X mass flow rate Nfu is equal to or greater than the slope region value SLOPE in step S33, the process proceeds to step S34, where the NO X concentration Nd detected by the NO X sensor 17 and the start value are determined. It is determined whether or not the absolute value D of the difference from Nd0 is greater than or equal to the specified value ABS. If the absolute value D is less than the specified value ABS, the process proceeds to step S37 as it is. If the absolute value D is greater than or equal to the specified value ABS, it is confirmed in step S35 whether the stack check OK flag is set. If the stack check OK flag is set, the process proceeds to step S37 as it is. If the stack check OK flag is not set, the timer 6 is stopped and the stack check OK flag is set in step S36. Proceed to S37.
 ステップS37ではタイマ2の設定時間が経過したか否かが判別され、タイマ2の設定時間が経過していない場合にはステップS30に戻る一方、タイマ2の設定時間が経過した場合にはステップS38に進みタイマ4が作動する。 In step S37, it is determined whether or not the set time of the timer 2 has elapsed. If the set time of the timer 2 has not elapsed, the process returns to step S30, whereas if the set time of the timer 2 has elapsed, step S38. The timer 4 is started.
 次いで、ステップS39では、再び触媒温度Tscrが検出されるとともに、触媒温度Tscrが閾値T0未満であるか否かが判別され、さらに、ステップS40で排気ガスの質量流量Gfが基準値MINgas以上になっているか否かが判別される。これらのステップS39又はステップS40のいずれかの条件を満たしていない場合にはNOXセンサ17の合理性診断が正確に行われないおそれがあるため、ステップS41でタイマ4、5、6をリセットした後本ルーチンを終了する一方、いずれの条件をも満たしている場合にはステップS42に進む。 Next, in step S39, the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is less than the threshold value T0. Further, in step S40, the exhaust gas mass flow rate Gf becomes equal to or higher than the reference value MINgas. It is determined whether or not. If any of the conditions of step S39 or step S40 is not satisfied, the rational diagnosis of the NO X sensor 17 may not be performed accurately, so the timers 4, 5, and 6 are reset in step S41. After the routine is finished, if both conditions are satisfied, the process proceeds to step S42.
 ステップS42では、還元触媒13の上流側でのNOXの質量流量Nfuが算出されるとともに、算出されたNOXの質量流量Nfuが基準パターンの後段定常領域の値MAXnfu以上となっているか否かが判別される。NOXの質量流量Nfuが後段定常領域の値MAXnfu未満である場合にはピークの発生が不十分であることから、ステップS41に進みタイマ4、5、6をリセットした後本ルーチンを終了する。一方、NOXの質量流量Nfuが後段定常領域の値MAXnfu以上となっている場合にはステップS43に進み、タイマ5の設定時間が経過したか否かが判別される。タイマ5の設定時間が経過していない場合にはステップS44に進み、絶対値Dが規定値ABS以上であるか否かが判別される。 In step S42, the mass flow rate Nfu of NO x on the upstream side of the reduction catalyst 13 is calculated, and whether the calculated mass flow rate Nfu of NO x is equal to or greater than the value MAXnfu in the subsequent steady region of the reference pattern. Is determined. If the mass flow rate Nfu of NO X is less than the value MAXnfu in the subsequent stage steady region, the peak is not sufficiently generated, so that the routine proceeds to step S41 and the timers 4, 5, and 6 are reset, and then this routine is terminated. On the other hand, if the mass flow rate Nfu of NO X is equal to or greater than the value MAXnfu in the subsequent steady region, the process proceeds to step S43, and it is determined whether or not the set time of the timer 5 has elapsed. If the set time of the timer 5 has not elapsed, the process proceeds to step S44, and it is determined whether or not the absolute value D is greater than or equal to the specified value ABS.
 ステップS44で、絶対値Dが規定値ABS未満である場合にはそのままステップS39に戻る。一方、絶対値Dが規定値ABS以上である場合には、ステップS45でスタックチェックOKフラグが立っているか否かを判別し、スタックチェックOKフラグが立っている場合にはそのままステップS39に戻る一方、スタックチェックOKフラグが立っていない場合には、ステップS46でタイマ6が停止されるとともにスタックチェックOKフラグを立てた後、ステップS39に戻る。 In step S44, if the absolute value D is less than the specified value ABS, the process directly returns to step S39. On the other hand, if the absolute value D is greater than or equal to the specified value ABS, it is determined in step S45 whether or not the stack check OK flag is set. If the stack check OK flag is set, the process directly returns to step S39. If the stack check OK flag is not set, the timer 6 is stopped in step S46, the stack check OK flag is set, and the process returns to step S39.
 一方、ステップS43でタイマ5の設定時間が経過した場合には、ステップS47に進み、NOXセンサ17で検出されるNOX濃度Ndが追従パターンの追従傾斜領域の値Ramp又は追従後段定常領域の値max以上であるか否かが判別される。NOX濃度Ndが追従傾斜領域の値Ramp又は追従後段定常領域の値max以上である場合には、ステップS48に進み、再び触媒温度Tscrが検出されるとともに、触媒温度Tscrが閾値T0未満であるか否かが判別され、さらに、ステップS49で排気ガスの質量流量Gfが基準値MINgas以上になっているか否かが判別される。これらのステップS48又はステップS49のいずれかの条件を満たしていない場合にはNOXセンサ17の合理性診断が正確に行われないおそれがあるため、ステップS50でタイマ4、6をリセットした後本ルーチンを終了する一方、いずれの条件をも満たしている場合にはステップS51に進む。 On the other hand, when the set time of the timer 5 has elapsed in step S43, the process proceeds to step S47, where the NO X concentration Nd detected by the NO X sensor 17 is the value Ramp of the tracking pattern tracking slope region or the post-tracking steady region. It is determined whether or not the value is greater than or equal to max. If NO X concentration Nd is equal to or greater than the value max value Ramp or follow later stage constant region of the follow-up slope region, the process proceeds to step S48, the conjunction is detected again catalyst temperature Tscr, catalyst temperature Tscr is less than the threshold value T0 In step S49, it is determined whether or not the exhaust gas mass flow rate Gf is greater than or equal to the reference value MINgas. If either of these conditions of step S48 or step S49 is not satisfied, the rational diagnosis of the NO X sensor 17 may not be performed accurately. Therefore, after resetting the timers 4 and 6 in step S50, While the routine is ended, if both conditions are satisfied, the process proceeds to step S51.
 ステップS51ではタイマ4の設定時間が経過したか否かが判別される。そして、タイマ4の設定時間が経過していない場合にはステップS47に戻る一方、タイマ4の設定時間が経過した場合には、NOXセンサ17は上流側のNOXの質量流量Nfuの推移に現れたピークに対して反応し、かつ、当該ピークに応じて適正に追従して応答を示していることからNOXセンサ17に合理性があると判定され、ステップS52でTestOKの診断結果を出力し、本ルーチンを終了する。 In step S51, it is determined whether or not the set time of the timer 4 has elapsed. If the set time of the timer 4 has not elapsed, the process returns to step S47. If the set time of the timer 4 has elapsed, the NO x sensor 17 changes the mass flow rate Nfu of the upstream NO x. Since it responds to the peak that appears and responds appropriately following the peak, it is determined that the NO x sensor 17 is reasonable, and the diagnosis result of TestOK is output in step S52. Then, this routine ends.
 ステップS47で、NOXセンサ17で検出されるNOX濃度Ndが追従傾斜領域の値Ramp又は追従後段定常領域の値max未満である場合には、ステップS53に進み、絶対値Dが規定値ABS以上であるか否かが判別される。絶対値Dが規定値ABS以上である場合には、NOXセンサ17は上流側のNOXの質量流量Nfuの推移に現れたピークに対して反応を示してはいるものの、当該ピークに対応して適正に追従して応答していないと判定されるため、ステップS54で応答性Errorの診断結果を出力し、本ルーチンを終了する。 In step S47, the when NO X concentration Nd detected by the NO X sensor 17 is less than the value max value Ramp or follow later stage constant region of the follow-up slope region, the process proceeds to step S53, the absolute value D is stipulated value ABS It is determined whether or not this is the case. When the absolute value D is equal to or greater than the specified value ABS, the NO X sensor 17 responds to the peak appearing in the transition of the upstream NO X mass flow rate Nfu, but corresponds to the peak. Therefore, in step S54, the diagnosis result of responsiveness Error is output, and this routine is terminated.
 一方、絶対値Dが規定値ABS未満である場合には、ステップS55に進み、スタックチェックOKフラグが立っているか否かが判別され、スタックチェックOKフラグが立っている場合には、やはりNOXセンサ17は上流側のNOXの質量流量Nfuの推移に現れたピークに対して反応を示してはいるものの、当該ピークに対応して適正に追従して応答していないと判定されるため、ステップS54で応答性Errorの診断結果を出力し、本ルーチンを終了する。 On the other hand, when the absolute value D is less than the stipulated value ABS, the processing proceeds to step S55, whether stack checking OK flag is set is determined, if the stack checking OK flag is set, also NO X Although the sensor 17 shows a response to the peak appearing in the transition of the upstream NO x mass flow rate Nfu, it is determined that the sensor 17 does not respond appropriately following the peak, In step S54, the diagnosis result of responsiveness Error is output, and this routine ends.
 ステップS55においてスタックチェックOKフラグが立っていない場合には、ステップS56でタイマ6の設定時間が経過したか否かが判別される。タイマ6の設定時間が経過した場合には、所定時間経過してもNOXセンサ17が上流側のNOXの質量流量Nfuの推移に現れたピークにほとんど反応していないと判定されるため、ステップS57で反応性Errorの診断結果を出力し、本ルーチンを終了する。 If the stack check OK flag is not set in step S55, it is determined in step S56 whether the set time of the timer 6 has elapsed. Since the set time of the timer 6 in the case where the elapse is determined not to have little response to peak NO X sensor 17 appears in changes in the mass flow rate Nfu at the upstream side of the NO X even after the lapse of a predetermined time, In step S57, the diagnostic result of the reactive error is output, and this routine ends.
 一方、タイマ6の設定時間が経過していない場合には、ステップS58に進み、再び触媒温度Tscrが検出されるとともに、触媒温度Tscrが閾値T0未満であるか否かが判別され、さらに、ステップS59で排気ガスの質量流量Gfが基準値MINgas以上になっているか否かが判別される。これらのステップS58又はステップS59のいずれの条件をも満たしている場合にはステップS53に戻る一方、いずれかの条件を満たしていない場合には、NOXセンサ17は上流側のNOXの質量流量Nfuの推移に現れたピークに対応して適正に追従して応答していないと判定されるものの、当該ピークに対して反応を示しているか否かを判定するに至らない状態でテスト環境条件を満たさなくなったため、ステップS60で応答性Errorの診断結果を出力して、本ルーチンを終了する処理が行われる。 On the other hand, if the set time of the timer 6 has not elapsed, the process proceeds to step S58, the catalyst temperature Tscr is detected again, and it is determined whether or not the catalyst temperature Tscr is lower than the threshold value T0. In S59, it is determined whether or not the exhaust gas mass flow rate Gf is greater than or equal to a reference value MINgas. If any of these conditions of step S58 or step S59 is satisfied, the process returns to step S53. On the other hand, if any of the conditions is not satisfied, the NO X sensor 17 detects the mass flow rate of NO X on the upstream side. In response to the peak appearing in the transition of Nfu, it is determined that it is not responding properly, but the test environment condition is not determined to determine whether or not it has responded to the peak. Since it is no longer satisfied, the diagnosis result of responsiveness Error is output in step S60, and the routine is terminated.
 以上説明した本実施形態のNOXセンサの合理性診断方法であれば、触媒温度Tscrが閾値T0未満のときにのみ、還元触媒13よりも上流側のNOXの質量流量Nfuの推移に現れるピークを利用したNOXセンサの応答性及び反応性の診断が行われる。そのため、還元触媒の上流側でのNOX量の推移に現れるピークに対応して下流側のNOXセンサが応答しているか否かが正確に判定され、誤診断の可能性が大幅に低減される。
 
In the NO x sensor rationality diagnosis method of the present embodiment described above, the peak appearing in the transition of the NO x mass flow rate Nfu upstream of the reduction catalyst 13 only when the catalyst temperature Tscr is less than the threshold value T0. responsiveness and diagnosis of reactive of the NO X sensor utilizing are performed. Therefore, whether the downstream NO X sensor corresponding to a peak appearing in the NO X amount of transition of the upstream side of the reduction catalyst is responding is determined accurately, the possibility of misdiagnosis is greatly reduced The

Claims (4)

  1.  内燃機関から排出される排気ガス中のNOXを還元触媒を用いて浄化する排気浄化装置における、前記還元触媒の下流側に備えられたNOXセンサの合理性を診断するNOXセンサの合理性診断装置において、
     前記還元触媒の上流側でのNOX量を算出する上流側NOX量演算部と、
     前記NOXセンサのセンサ値を検出するNOXセンサ値検出部と、
     前記上流側でのNOX量の推移に現れたピークに対して前記NOXセンサが応答しているか否かを判定することにより前記NOXセンサの合理性を診断する合理性診断部と、
     前記還元触媒の温度を検出する触媒温度検出部と、
     前記還元触媒の温度が所定の閾値未満のときに前記NOXセンサの合理性診断を実行させる診断実行判定部と、
     を備えることを特徴とするNOXセンサの合理性診断装置。
    In the exhaust purification apparatus that purifies with NO X reduction catalyst in the exhaust gas discharged from an internal combustion engine, rationality of the NO X sensor for diagnosing the rationality of the NO X sensor provided on the downstream side of the reduction catalyst In the diagnostic device,
    An upstream NO x amount calculation unit for calculating the NO x amount on the upstream side of the reduction catalyst;
    And NO X sensor value detector for detecting a sensor value of the NO X sensor,
    And rationality diagnosis unit for diagnosing the reasonableness of the NO X sensor by determining whether the NO X sensor with respect to the peak appearing in the transition of the amount of NO X at the upstream side is responding,
    A catalyst temperature detector for detecting the temperature of the reduction catalyst;
    A diagnosis execution determination unit for executing a rational diagnosis of the NO X sensor when the temperature of the reduction catalyst is lower than a predetermined threshold;
    An NO x sensor rationality diagnostic device comprising:
  2.  前記NOXセンサの合理性診断装置は、前記還元触媒の上流側でのNOX量に応じて前記還元触媒の上流側で前記排気ガスに混合された還元成分によって前記NOXを浄化する排気浄化装置に備えられた前記NOXセンサの合理性診断に用いられることを特徴とする請求項1に記載のNOXセンサの合理性診断装置。 The NO x sensor rationality diagnostic device purifies the NO x by reducing components mixed with the exhaust gas upstream of the reduction catalyst according to the amount of NO x upstream of the reduction catalyst. rationality diagnosis apparatus of the NO X sensor according to claim 1, characterized in that used in the rationality diagnosis of the NO X sensor provided in the apparatus.
  3.  前記合理性診断部は、前記上流側でのNOX量の推移の基準としての基準パターンと、前記NOXセンサのセンサ値の推移の基準としての追従パターンと、が記憶され、前記上流側でのNOX量が前記基準パターンに対して所定の関係をもって推移したときに、前記NOXセンサのセンサ値が前記追従パターンに対して所定の関係をもって推移したか否かを判定することにより、前記NOXセンサの合理性を診断することを特徴とする請求項1又は2に記載のNOXセンサの合理性診断装置。 The rationality diagnosis unit stores a reference pattern as a reference for the transition of the NO x amount on the upstream side and a follow-up pattern as a reference for the transition of the sensor value of the NO x sensor. By determining whether or not the sensor value of the NO X sensor has changed with a predetermined relationship with respect to the tracking pattern when the amount of NO X has changed with a predetermined relationship with respect to the reference pattern, rationality diagnosis apparatus of the NO X sensor according to claim 1 or 2, characterized in that diagnosing the rationality of the NO X sensor.
  4.  内燃機関から排出される排気ガス中のNOXを還元触媒を用いて浄化する排気浄化装置における、前記還元触媒の下流側に備えられたNOXセンサの合理性を診断するNOXセンサの合理性診断方法において、
     前記還元触媒の温度が所定の閾値未満のときに、
     前記還元触媒の上流側でのNOX量の推移及び前記NOXセンサのセンサ値の推移を検出しながら、前記上流側でのNOX量の推移に現れたピークに対して前記NOXセンサが応答しているか否かを判定することにより前記NOXセンサの合理性を診断することを特徴とするNOXセンサの合理性診断方法。
    In the exhaust purification apparatus that purifies with NO X reduction catalyst in the exhaust gas discharged from an internal combustion engine, rationality of the NO X sensor for diagnosing the rationality of the NO X sensor provided on the downstream side of the reduction catalyst In the diagnostic method,
    When the temperature of the reduction catalyst is below a predetermined threshold,
    While detecting the transition of sensor values of the NO X amount changes and the NO X sensor on the upstream side of the reduction catalyst, said NO X sensor with respect to the peak appearing on the amount of NO X transition in the upstream rationality diagnosis method of the NO X sensor, wherein diagnosing the reasonableness of the NO X sensor by determining whether or not the response.
PCT/JP2010/051322 2009-03-23 2010-02-01 Rationality diagnostic apparatus and rationality diagnostic method for nox sensor WO2010109946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505911A JPWO2010109946A1 (en) 2009-03-23 2010-02-01 NOX sensor rationality diagnostic device and rationality diagnostic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009069416 2009-03-23
JP2009-069416 2009-03-23

Publications (1)

Publication Number Publication Date
WO2010109946A1 true WO2010109946A1 (en) 2010-09-30

Family

ID=42780642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051322 WO2010109946A1 (en) 2009-03-23 2010-02-01 Rationality diagnostic apparatus and rationality diagnostic method for nox sensor

Country Status (2)

Country Link
JP (1) JPWO2010109946A1 (en)
WO (1) WO2010109946A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102666A1 (en) * 2011-01-25 2012-08-02 Scania Cv Ab Exhaust post-treatment system for a combustion engine
CN106988845A (en) * 2016-01-20 2017-07-28 罗伯特·博世有限公司 method for monitoring NOx sensor
US9784166B2 (en) 2014-12-30 2017-10-10 Cummins Inc. NOx sensor diagnostic for an exhaust aftertreatment system
US10151262B2 (en) 2013-11-25 2018-12-11 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047979A (en) * 2000-08-03 2002-02-15 Hitachi Ltd Engine controller ! exhaust air particulate treatment device for internal combustion engine
JP2003120399A (en) * 2001-10-09 2003-04-23 Toyota Motor Corp APPARATUS FOR DETECTING ABNORMALITY OF NOx SENSOR
JP2008002440A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Abnormality determination device for exhaust gas concentration sensor of internal combustion engine
WO2008108501A1 (en) * 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4475271B2 (en) * 2006-11-28 2010-06-09 トヨタ自動車株式会社 NOx sensor abnormality diagnosis device and abnormality diagnosis method
JP4297379B2 (en) * 2007-02-02 2009-07-15 ボッシュ株式会社 NOX sensor failure diagnosis apparatus and failure diagnosis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047979A (en) * 2000-08-03 2002-02-15 Hitachi Ltd Engine controller ! exhaust air particulate treatment device for internal combustion engine
JP2003120399A (en) * 2001-10-09 2003-04-23 Toyota Motor Corp APPARATUS FOR DETECTING ABNORMALITY OF NOx SENSOR
JP2008002440A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Abnormality determination device for exhaust gas concentration sensor of internal combustion engine
WO2008108501A1 (en) * 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha ABNORMALITY DIAGNOSIS DEVICE FOR NOx SENSOR

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102666A1 (en) * 2011-01-25 2012-08-02 Scania Cv Ab Exhaust post-treatment system for a combustion engine
US10151262B2 (en) 2013-11-25 2018-12-11 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensors
US9784166B2 (en) 2014-12-30 2017-10-10 Cummins Inc. NOx sensor diagnostic for an exhaust aftertreatment system
US10156176B2 (en) 2014-12-30 2018-12-18 Cummins, Inc. NOx sensor diagnostic for an exhaust aftertreatment system
CN106988845A (en) * 2016-01-20 2017-07-28 罗伯特·博世有限公司 method for monitoring NOx sensor

Also Published As

Publication number Publication date
JPWO2010109946A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US8387366B2 (en) Reducing agent injection valve abnormality detection device and abnormality detection method, and internal combustion engine exhaust gas purification system
JP4964353B1 (en) Abnormality diagnosis device for reducing agent supply device and reducing agent supply device
JP5534602B2 (en) Abnormality detection device and abnormality detection method for reducing agent injection valve
JP5121240B2 (en) Failure diagnosis device for exhaust purification system and failure diagnosis method for exhaust purification system
US8359826B2 (en) Trouble diagnosis device and trouble diagnosis method for NOx sensor
JP5462056B2 (en) Exhaust purification system abnormality diagnosis device, abnormality diagnosis method, and exhaust purification system
JP5087188B2 (en) Exhaust purification system and control method of exhaust purification system
JP4906525B2 (en) Clogging determination device for reducing agent injection valve and clogging determination method for reducing agent injection valve
US9145817B2 (en) Reducing agent injection valve abnormality detection unit and reducing agent supply apparatus
JP4215808B2 (en) Control device and control method for exhaust gas purification device, and exhaust gas purification device for internal combustion engine
JP3552653B2 (en) Diagnosis processing device for reducing agent supply device of internal combustion engine
JP5786280B2 (en) Validity diagnosis system for urea water temperature sensor
JP2012241594A (en) Function diagnostic device of oxidation catalyst, and exhaust emission control device
JP2011149366A (en) Clogging diagnostic device and clogging diagnostic method for reducing agent injection valve, and exhaust emission control device for internal combustion engine
WO2010109946A1 (en) Rationality diagnostic apparatus and rationality diagnostic method for nox sensor
JP5914180B2 (en) Abnormality detection device for reducing agent supply device and reducing agent supply device
JP2012127214A (en) Reducing agent supplying system, and exhaust gas purifying system of internal combustion engine
JP2009270449A (en) Exhaust emission control device
JP2010265781A (en) Rationality diagnostic device and rationality diagnostic method for nox sensor
JP5346798B2 (en) Exhaust purification device
JP7403274B2 (en) Reducing agent supply control device
JP2023040851A (en) Reducing agent supply device and method for estimating air amount in reducing agent supply passage
JP5914151B2 (en) Reducing agent injection valve abnormality detection device and reducing agent supply device
JP7108714B2 (en) Control device for reducing agent supply device
JP2012197757A (en) Abnormality diagnostic device of reducing agent supply device and reducing agent supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505911

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755747

Country of ref document: EP

Kind code of ref document: A1