WO2008104701A1 - Composition thermoplastique comprenant une matrice thermoplastique et un terpolymere methacrylate d'alkyle - acrylate d'alkyle - monomere styrenique - Google Patents

Composition thermoplastique comprenant une matrice thermoplastique et un terpolymere methacrylate d'alkyle - acrylate d'alkyle - monomere styrenique Download PDF

Info

Publication number
WO2008104701A1
WO2008104701A1 PCT/FR2008/050219 FR2008050219W WO2008104701A1 WO 2008104701 A1 WO2008104701 A1 WO 2008104701A1 FR 2008050219 W FR2008050219 W FR 2008050219W WO 2008104701 A1 WO2008104701 A1 WO 2008104701A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic composition
composition according
thermoplastic
alkyl
acrylate
Prior art date
Application number
PCT/FR2008/050219
Other languages
English (en)
Inventor
Jean-Pierre Disson
Rosangela Pirri
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to US12/526,809 priority Critical patent/US8859678B2/en
Priority to JP2009548728A priority patent/JP5474568B2/ja
Priority to EP08762071.2A priority patent/EP2118196B1/fr
Publication of WO2008104701A1 publication Critical patent/WO2008104701A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article

Definitions

  • the invention relates to a thermoplastic composition
  • a thermoplastic composition comprising a thermoplastic matrix and a specific implementation agent having in particular excellent mechanical properties, in particular an isotropy of its properties.
  • the invention also relates to a method for preparing an article from said composition and to an article obtained from this composition.
  • the processing agents are agents intended to confer on a thermoplastic matrix in which they are incorporated, improved properties of mechanical strength of the composition in the state melted (especially in terms of elongation at break, elasticity, tensile strength).
  • the processing agents are copolymers obtained by copolymerization of methyl methacrylate with one or more acrylate and / or methacrylate monomers, said copolymers having a molecular weight which may be equal to several million.
  • the acrylate monomers are generally d-Cs alkyl acrylate monomers, while the methacrylate monomers are generally C 1 -C 6 alkyl methacrylates.
  • these processing agents consist of copolymer chains having an inhomogeneous composition.
  • methyl methacrylate and n-butyl acrylate have very high reactivity ratios. different, which results in a faster incorporation of methyl methacrylate compared to n-butyl acrylate.
  • the mixture of copolymer chains obtained at the end of the copolymerization thus has a great inhomogeneity.
  • these copolymers Once incorporated into a thermoplastic matrix, these copolymers give the resulting composition a heterogeneous character and induces anisotropy in the properties of this composition.
  • This heterogeneous character is manifested in particular by an irregular surface appearance, for example after extrusion.
  • PVC foams and in particular so-called rigid foams, are today often unsatisfactory in terms of surface appearance, density, and mechanical properties.
  • thermoplastic composition comprising a thermoplastic matrix and a copolymer having a function of implementation agent, which composition has a homogeneous appearance, even when the polymerization is implemented in the mode discontinuous, and consequently uniform mechanical properties.
  • the inventors have surprisingly found that by incorporating a particular monomer in a specific range in the copolymer acting as a processing agent, it was possible to overcome the disadvantages of the prior art.
  • thermoplastic composition comprising:
  • thermoplastic matrix * At least one thermoplastic matrix
  • the copolymer is obtained by batchwise copolymerization ("batch") of a C1-C4 alkyl methacrylate, preferably methyl methacrylate, a C 1 -C 5 acrylate comonomer and a styrenic monomer.
  • total mass of the monomers is meant the sum of the introduced masses of C1-C4 alkyl methacrylate, C1-C5 alkyl acrylate comonomer and styrene monomer.
  • the introduction of the styrenic monomer in the abovementioned range thus generating a change in the reactivity ratio of the three monomers, contributes to facilitating the introduction into the copolymer chains of the acrylate monomer.
  • homogeneity of composition of the chains is meant chains all having substantially the same ratios of acrylate / methacrylate / styrenic comonomers.
  • This homogeneity of composition of the chains can be determined by any method known per se, and for example by "Liquid Adsorption Chromatography” (LAC).
  • LAC Liquid Adsorption Chromatography
  • the homogeneity of the chains allows, after incorporation into the thermoplastic resin, obtaining a thermoplastic composition with improved rheological properties, and thus improved mechanical properties, whether in terms of elongation at break, d elasticity, tensile strength.
  • the introduction of the styrenic monomer does not degrade the mechanical properties of the composition and the compatibility of the copolymer with the thermoplastic matrix. It is important that the styrenic monomer is not present at more than 20% in order to avoid the loss of compatibility with the matrix.
  • the copolymer results from the copolymerization of a C 1 -C 4 alkyl methacrylate, a C 1 -C 5 alkyl acrylate comonomer and a styrenic monomer, said alkyl methacrylate. CrC 4 and said styrenic monomer being present in specific contents.
  • the C 1 -C 4 alkyl methacrylate is present in a content ranging from 75 to 92% by weight relative to the total weight of monomers, and preferably from 80 to 87%.
  • the C 1 -C 4 alkyl methacrylate is methyl methacrylate.
  • the alkyl acrylate comonomer d-Cs may be selected from ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and preferably n-butyl acrylate.
  • the alkyl acrylate comonomer d-Cs is advantageously present in a content ranging from 5% to 25% by weight relative to the total weight of the monomers, and preferably from 10% to 20% by weight.
  • the styrenic monomer may be selected from styrene, ethylstyrene, ⁇ -methylstyrene.
  • the styrenic monomer is generally present in a content ranging from 3 to 20% by weight relative to the total weight of the monomers, advantageously from 4 to 12%.
  • a particular copolymer that may advantageously be in the compositions of the invention is a copolymer obtained by polymerization of methyl methacrylate, n-butyl acrylate and styrene.
  • the copolymer defined above has a ratio of methyl methacrylate / n-butyl acrylate / styrene between 80-90 / 7-20 / 3-10.
  • the copolymers advantageously have, according to the invention, a mass average molecular weight M w ranging from 2 million to 10 million, preferably from 4 to 8 million.
  • the copolymer advantageously represents from 0.3% to 20% by weight relative to the total mass of the composition, preferably from 4 to 15%, and more preferably from 5 to 12%.
  • the copolymers introduced into the compositions of the invention may be prepared by emulsion polymerization of C 1 -C 4 alkyl methacrylate, C 1 -C 5 alkyl acrylate comonomer and styrene monomer, in the presence of an initiator. polymerization, an emulsifier and optionally a chain transfer agent.
  • the polymerization medium used is usually water.
  • anionic surfactants such as a fatty acid salt, an alkyl sulphate salt, an alkyl benzene sulphate salt, an alkyl phosphate salt or a diester sulphosuccinate salt or nonionic surfactants, such as a polyoxyethylene alkyl ether or a polyoxyethylene fatty acid ester.
  • persulfate (s) salt (s) such as sodium persulfate, potassium persulfate, ammonium persulfate, an organic peroxide such as hydroperoxide te tert-butyl, cumene hydroperoxide, benzoyl peroxide, lauroyl peroxide or an azo compound.
  • chain transfer agents there may be mentioned te / t-dodecylmercaptan, te / t-decylmercaptan, n-dodecylmercaptan, n-decylmercaptan, n-octylmercaptan.
  • the thermoplastic matrix may be a matrix based on polyvinyl chloride, ABS (corresponding to an acrylonitrile-butadiene-styrene copolymer), ASA (corresponding to an acrylate-styrene-acrylonitrile comonomer), polycarbonate, polyester, polycarbonate-ABS, polycarbonate-ASA, or a blend of two or more of these polymers.
  • the matrix is based on polyvinyl chloride.
  • the composition may also comprise thermal stabilizers such as organotin compounds, lead salts, mixed metal salts based on calcium and zinc, lubricants, mineral fillers such as calcium carbonate, pigments, flame retardants, blowing agents, and other commonly used additives known in the art.
  • thermal stabilizers such as organotin compounds, lead salts, mixed metal salts based on calcium and zinc, lubricants, mineral fillers such as calcium carbonate, pigments, flame retardants, blowing agents, and other commonly used additives known in the art.
  • the invention also relates to a second object to a method of manufacturing an article comprising: - a step of forming a mixture of the thermoplastic composition as defined above, and - a formation step said article from said composition.
  • the forming step can be implemented by any method known to those skilled in the art, for example molding process, such as injection molding, or extrusion.
  • the article may be an expanded article, more preferably an expanded article when the matrix is polyvinyl chloride.
  • at least one blowing agent such as azodicarbonamide, sodium bicarbonate, and other blowing agents known from the skilled person.
  • the invention relates, according to a third object, to an article formed from said thermoplastic composition as defined above.
  • this article may take the form of a compact or expanded profile, a compact or expanded plate, a compact or expanded tube.
  • Said articles are preferably polyvinyl chloride, and preferably in expanded form.
  • thermoplastic composition of the invention said articles have regular surfaces, especially free of corrugations, and have closed cell structures and regular size.
  • the homogeneity of composition between the copolymer chains is determined by the width of the half-height peak obtained by adsorption chromatography in the liquid phase (corresponding to the English terminology "Liquid Adsorption Chromatography” (LAC). ), this method of classifying the copolymers according to the elution volume according to their polarity and not their molecular weight. More specifically, the method consists of dissolving the copolymer to be analyzed in a solvent (for example tetrahydrofuran or THF), injecting the resulting solution at the beginning of the column and then eluting the copolymer chains with a mixing gradient. of solvents.
  • a solvent for example tetrahydrofuran or THF
  • This mixture will be pure hexane in the beginning (the hexane being a non-solvent of the copolymer) and then enrich in THF until it becomes pure THF.
  • This technique is described in particular in Macromolecules, 34 (8), (2001), pages 2667-2672.
  • the mixture is introduced rapidly into the reactor using a pump.
  • the temperature of the reaction medium reaches 55 ° C.
  • 7.8 g of potassium persulfate dissolved in 148 g of water are introduced.
  • the line is rinsed with 50 g of water.
  • the mixture is introduced rapidly into the reactor using a pump.
  • the temperature of the reaction medium reaches 55 ° C.
  • 7.81 g of potassium persulfate dissolved in 98.08 g of water are introduced.
  • the line is rinsed with 50 g of water.
  • the reactor is cooled to 30 0 C and the latex is withdrawn.
  • a mixture comprising 4206 g of methyl methacrylate, 260.4 g of styrene and 742 g of n-butyl acrylate was degassed with nitrogen for 30 minutes. Then, the mixture is rapidly introduced into the reactor using a pump. When the temperature of the reaction medium reaches 55 ° C., 7.81 g of potassium persulfate dissolved in 148.39 g of water are introduced. The line is rinsed with 50 g of water. We expect the temperature rise of the reaction medium to reach the peak of the exotherm. The polymerization is allowed to finish for 60 minutes. The reactor is cooled to 30 ° C. and the latex is withdrawn.
  • the mixture is introduced rapidly into the reactor using a pump.
  • the temperature of the reaction medium reaches 55 ° C.
  • 7.81 g of potassium persulfate dissolved in 98.08 g of water are introduced.
  • the line is rinsed with 50 g of water.
  • the mixture is introduced rapidly into the reactor using a pump.
  • the temperature of the reaction medium reaches 55 ° C.
  • 7.81 g of potassium persulfate dissolved in 148.39 g of water are introduced.
  • the line is rinsed with 50 g of water.
  • the polymerization is allowed to finish for 60 minutes after the peak of the exotherm.
  • the reactor is cooled to 30 ° C. and the latex is withdrawn.
  • the mixture is rapidly introduced into the reactor using a pump.
  • the temperature of the reaction medium reaches 55 ° C.
  • 7.81 g of potassium persulfate dissolved in 98.08 g of water are introduced.
  • the line is rinsed with 50 g of water.
  • MMA methyl methacrylate ( 2)
  • BA n-butyl acrylate
  • EXAMPLE 4 This example illustrates the use of the copolymers prepared in Example 3 and Comparative Example 3 in a polyvinyl chloride (PVC) resin.
  • the copolymers are introduced into a formulation comprising a PVC resin of K value 57, about 5 phr of a "one pack" type Naftosafe ® 30175 (containing thermal stabilizers based on calcium salts and zinc costabilisés and lubricants, and available from the Chemson Company), about 5 phr of calcium carbonate (1 phr corresponding to 1 part of additive per 100 parts of PVC resin), about 2 phr of titanium oxide, and about 0.5 phr of calcium carbonate. a blowing agent, such as azodicarbonamide.
  • the copolymers are introduced at 10 phr. The mixture is homogenized in a fast mixer Papenmeyer type.
  • dry mixture (corresponding to the English terminology "dry blend") is extruded with a laboratory Haake-Polylab extruder equipped with a mono + screw and a rod ring diameter of 4 mm.
  • the rotation of the screw is 32 revolutions / min.
  • the set temperatures are 140 ° C., 170 ° C. and 185 ° C., from the rear of the extruder barrel to the die.
  • the set temperature of the die is 160 ° C.
  • the two formulations have an equivalent flow rate of the order of 2.1 kg / h.
  • the sample according to Example 3 leads to an expanded extrudate of regular surface and density 0.52. This shows the homogeneity of the copolymer chains, thanks to the addition of styrene in a specific range.
  • the sample according to Comparative Example 3 leads to a very irregular expanded rod, forming numerous waves on the surface and of density 0.56, which attests to the inhomogeneity of the copolymer chains.
  • EXAMPLE 5 This example illustrates the use of the copolymers prepared in Example 2 and Comparative Example 2 in a polyvinyl chloride (PVC) resin.
  • PVC polyvinyl chloride
  • the copolymers are introduced into a formulation comprising a PVC resin of K value 57, about 5 phr of a "one pack" type Naftosafe ® 30175 (containing thermal stabilizers based on calcium salts and zinc costabilisés and lubricants and available from the Chemson Company), about 5 phr of calcium carbonate (1 phr corresponding to 1 part of additive per 100 parts of PVC resin), about 2 phr of titanium oxide, and about 0.5 pcr of a blowing agent, such as azodicarbonamide.
  • a blowing agent such as azodicarbonamide.
  • the copolymers are introduced at 7.5 pcr.
  • the mixture is homogenized in a rapid mixer type
  • dry mixture (corresponding to the English terminology "dry blend") is extruded with a laboratory Haake-Polylab extruder equipped with a single-screw and a rod ring diameter of 4 mm.
  • the rotation of the screw is 34 revolutions / min.
  • the set temperatures are 170 ° C., 200 ° C. and 205 ° C., from the rear of the extruder barrel to the die.
  • the set temperature of the die is 190 ° C.
  • the two formulations have an equivalent flow rate of the order of 2 kg / h.
  • the sample according to Example 2 leads to an expanded extrudate of regular surface and density 0.58. This shows the homogeneity of the copolymer chains, thanks to the addition of styrene in a specific range.
  • the sample according to Comparative Example 2 leads to an expanded extrudate of density 0.58 and having a surface having numerous asperities (shark skin appearance), which attests to the inhomogeneity of the copolymer chains.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

L'invention a trait à une composition thermoplastique comprenant : au moins une matrice thermoplastique, et au moins un copolymère obtenu par copolymérisation de méthacrylate d'alkyle en C1-C4, d'un comonomère acrylate d'alkyle en C1-C8, et d'un monomère styrénique. L'invention concerne également des articles moulés à base de ladite composition thermoplastique.

Description

COMPOSITION THERMOPLASTIQUE COMPRENANT UNE MATRICE THERMOPLASTIQUE ET UN TERPOLYMERE METHACRYLATE D ' ALKYLE - ACRYLATE D ' ALKYLE - MONOMERE STYRENIQUE
[0001] L'invention a trait à une composition thermoplastique comprenant une matrice thermoplastique et un agent de mise en œuvre spécifique présentant notamment d'excellentes propriétés mécaniques, en particulier une isotropie de ses propriétés.
[0002] L'invention a trait également à un procédé de préparation d'un article à partir de ladite composition et à un article obtenu à partir de cette composition.
[0003] Les agents de mise en œuvre (désignés également par la terminologie anglaise « processing aids ») sont des agents destinés à conférer à une matrice thermoplastique dans laquelle ils sont incorporés, des propriétés améliorées de tenue mécanique de la composition à l'état fondu (notamment en terme d'allongement à la rupture, d'élasticité, de résistance à la rupture). [0004] Généralement, les agents de mise en œuvre sont des copolymères obtenus par copolymérisation de méthacrylate de méthyle avec un ou plusieurs monomères acrylates et/ou méthacrylates, lesdits copolymères présentant un poids moléculaire pouvant être égal à plusieurs millions. Les monomères acrylates sont généralement des monomères acrylates d'alkyle en d-Cs, tandis que les monomères méthacrylates sont généralement des méthacrylates d'alkyle en Ci-Cs.
[0005] Toutefois, ces agents de mise en œuvre se composent de chaînes de copolymère présentant une composition inhomogène. En particulier, pour les agents de mise en œuvre obtenus par copolymérisation en discontinu (ou batch) de méthacrylate de méthyle et d'acrylate de n-butyle, le méthacrylate de méthyle et l'acrylate de n-butyle ont des rapports de réactivité très différents, ce qui a pour effet une incorporation plus rapide du méthacrylate de méthyle par rapport à l'acrylate de n-butyle. [0006] Ceci se concrétise par des chaînes de copolymères peu riches en acrylate de n-butyle en début de copolymérisation et plus riches en acrylate de n-butyle en fin de copolymérisation. Le mélange de chaînes de copolymères obtenu en fin de copolymérisation présente ainsi une grande inhomogénéité.
[0007] Une fois incorporés dans une matrice thermoplastique, ces copolymères confèrent à la composition résultante un caractère hétérogène et induit une anisotropie dans les propriétés de cette composition. Ce caractère hétérogène se manifeste notamment par un aspect irrégulier en surface, par exemple, après extrusion.
[0008] En outre, les mousses de PVC, et en particulier les mousses dites rigides, sont aujourd'hui souvent non satisfaisantes en termes d'aspect de surface, de densité, et de propriétés mécaniques.
[0009] Les Inventeurs se sont fixé comme objectif de proposer une composition thermoplastique comprenant une matrice thermoplastique et un copolymère ayant une fonction d'agent de mise en œuvre, laquelle composition présente un aspect homogène, même lorsque la polymérisation est mise en œuvre en mode discontinu, et par voie de conséquence des propriétés mécaniques uniformes.
[0010] Les inventeurs ont ainsi découvert de façon surprenante qu'en incorporant un monomère particulier dans une gamme spécifique dans le copolymère jouant un rôle d'agent de mise en œuvre, il était possible de surmonter les inconvénients de l'art antérieur.
[0011] Ainsi l'invention a trait, selon un premier objet, à une composition thermoplastique comprenant :
* au moins une matrice thermoplastique, et
* au moins un copolymère obtenu par copolymérisation de méthacrylate d'alkyle en CrC4, d'un comonomère acrylate d'alkyle en Ci-Cs et d'un monomère styrénique, le méthacrylate d'alkyle en C1-C4 étant présent en une teneur allant de 75% à 92% en masse par rapport à la masse totale des monomères, le comonomère acrylate d'alkyle en Ci-Cs étant présent en une teneur allant de 5 à 25% en masse par rapport à la masse totale des monomères et le monomère styrénique étant présent en une teneur allant de 3 à 20% en masse par rapport à la masse totale des monomères. [0012] Avantageusement, le copolymère est obtenu par copolymérisation en discontinu (en « batch ») d'un méthacrylate d'alkyle C1-C4, de préférence de méthacrylate de méthyle, d'un comonomère acrylate en Ci-Cs et d'un monomère styrénique.
[0013] Par masse totale des monomères, on entend la somme des masses introduites de méthacrylate d'alkyle en C1-C4, de comonomère acrylate d'alkyle en Ci-Cs et de monomère styrénique. [0014] L'introduction du monomère styrénique dans la gamme précitée, générant ainsi un changement de rapport de réactivité des trois monomères, contribue à faciliter l'introduction dans les chaînes du copolymère du monomère acrylate.
[0015] Ainsi, l'introduction d'un monomère styrénique dans la gamme spécifiée ci-dessus confère au copolymère résultant une homogénéité de composition des chaînes, qui n'existait pas pour des copolymères ne présentant pas de monomère styrénique.
[0016] Par homogénéité de composition des chaînes, on entend des chaînes comportant toutes sensiblement les mêmes ratios de comonomères acrylate/méthacrylate/styrénique. Cette homogénéité de composition des chaînes peut être déterminée par toute méthode connue en soi, et par exemple par « Liquid Adsorption Chromatography » (LAC). [0017] L'homogénéité des chaînes permet, après incorporation dans la résine thermoplastique, l'obtention d'une composition thermoplastique à propriétés rhéologiques améliorées, et ainsi des propriétés mécaniques améliorées, que ce soit en termes d'allongement à la rupture, d'élasticité, de résistance à la rupture. [0018] Qui plus est, l'introduction du monomère styrénique ne dégrade pas les propriétés mécaniques de la composition ainsi que la compatibilité du copolymère avec la matrice thermoplastique. Il importe que le monomère styrénique ne soit pas présent à plus de 20%, afin d'éviter la perte de compatibilité avec la matrice.
[0019] Selon la présente invention, le copolymère résulte de la copolymérisation d'un méthacrylate d'alkyle en CrC4, d'un comonomère acrylate d'alkyle en Ci-Cs et d'un monomère styrénique, ledit méthacrylate d'alkyle en CrC4 et ledit monomère styrénique étant présents en des teneurs spécifiques.
[0020] Avantageusement, le méthacrylate d'alkyle en CrC4 est présent en une teneur allant de 75 à 92% en masse par rapport à la masse totale de monomères, et préférentiellement de 80 à 87%. De préférence, le méthacrylate d'alkyle en CrC4 est le méthacrylate de méthyle.
[0021] Le comonomère acrylate d'alkyle en d-Cs peut être choisi parmi l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate de 2-éthylhexyle, et préférentiellement l'acrylate de n-butyle. [0022] Le comonomère acrylate d'alkyle en d-Cs est avantageusement présent en une teneur allant de 5% à 25% en masse par rapport à la masse totale des monomères, et préférentiellement de 10% à 20% en masse. [0023] Selon l'invention, le monomère styrénique peut être choisi parmi le styrène, l'éthylstyrène, l'α-méthylstyrène. [0024] Le monomère styrénique est généralement présent en une teneur allant de 3 à 20% en masse par rapport à la masse totale des monomères, avantageusement de 4 à 12%.
[0025] Un copolymère particulier pouvant entrer avantageusement dans les compositions de l'invention est un copolymère obtenu par polymérisation de méthacrylate de méthyle, d'acrylate de n-butyle et de styrène. [0026] Selon un mode de réalisation tout particulièrement préféré, le copolymère défini ci-dessus possède un ratio méthacrylate de méthyle/acrylate de n-butyle/styrène compris entre 80-90/7-20/3-10. [0027] Les copolymères présentent avantageusement, selon l'invention, une masse moléculaire moyenne en masse Mw allant de 2 millions à 10 millions, de préférence de 4 à 8 millions.
[0028] Selon l'invention, le copolymère représente avantageusement de 0,3% à 20% en masse par rapport à la masse totale de la composition, de préférence, de 4 à 15%, et plus préférentiellement de 5 à 12%. [0029] Les copolymères introduits dans les compositions de l'invention peuvent être préparés par polymérisation en émulsion du méthacrylate d'alkyle en CrC4, du comonomère acrylate d'alkyle en Ci-Cs et du monomère styrénique, en présence d'un amorceur de polymérisation, d'un émulsifiant et éventuellement d'un agent de transfert de chaîne. [0030] Le milieu de polymérisation employé est généralement de l'eau. [0031] Comme émulsifiants, on peut citer les tensioactifs anioniques tels qu'un sel d'acide gras, un sel alkylsulfate, un sel alkylbenzènesulfate, un sel alkylphosphate ou un sel sulfosuccinate diester ou des tensioactifs non- ioniques, tels qu'un polyoxyéthylène alkyl éther ou un ester d'acide gras polyoxyéthylène.
[0032] Comme amorceurs de polymérisation, on peut citer un/des sel(s) persulfate(s) tels que le persulfate de sodium, le persulfate de potassium, le persulfate d'ammonium, un peroxyde organique tel que l'hydroperoxyde de te/t-butyle, l'hydroperoxyde de cumène, le peroxyde de benzoyle, le peroxyde de lauroyle ou un composé azo. [0033] Comme agents de transfert de chaîne, on peut citer le te/t-dodécylmercaptan, le te/t-décylmercaptan, le n-dodécylmercaptan, le n-décylmercaptan, le n-octylmercaptan.
[0034] Selon l'invention, la matrice thermoplastique peut être une matrice à base de polychlorure de vinyle, ABS (correspondant à un copolymère acrylonitrile-butadiène-styrène), ASA (correspondant à un comonomère acrylate-styrène-acrylonitrile), polycarbonate-polyester, polycarbonate-ABS, polycarbonate-ASA, ou mélange de deux ou plusieurs de ces polymères. De préférence, la matrice est à base de polychlorure de vinyle. [0035] Notamment, lorsque la matrice est à base de polychlorure de vinyle, la composition peut comprendre également des stabilisants thermiques tels que des composés organo-étains, des sels de plomb, des sels de métaux mixtes à base de calcium et de zinc, des lubrifiants, des charges minérales telles que le carbonate de calcium, des pigments, des retardateurs de flamme, des agents d'expansion, et autres additifs couramment utilisés et connus dans le domaine.
[0036] L'invention a trait également selon un second objet à un procédé de fabrication d'un article comprenant : - une étape de formation d'un mélange de la composition thermoplastique telle que définie ci-dessus, et - une étape de formation dudit article à partir de ladite composition. [0037] L'étape de formation peut être mise en œuvre par tout procédé connu de l'homme du métier, par exemple procédé de moulage, tel que le moulage par injection, ou par extrusion.
[0038] Selon un mode de réalisation tout particulièrement avantageux, l'article peut être un article expansé, de préférence encore un article expansé lorsque la matrice est en polychlorure de vinyle. [0039] Dans le cas de réalisation d'articles expansés, il faudra prévoir l'ajout d'au moins un agent d'expansion, tel que l'azodicarbonamide, le bicarbonate de sodium, et autres agents d'expansion connus de l'homme du métier. [0040] Enfin, l'invention a trait, selon un troisième objet, à un article formé à partir de ladite composition thermoplastique telle que définie ci-dessus. Par exemple, cet article peut revêtir la forme d'un profilé compact ou expansé, d'une plaque compacte ou expansée, d'un tube compact ou expansé. Lesdits articles sont de préférence en polychlorure de vinyle, et de préférence sous forme expansée.
[0041] Grâce à la composition thermoplastique de l'invention, lesdits articles présentent des surfaces régulières, notamment exemptes d'ondulations, et possèdent des structures cellulaires fermées et de taille régulière. [0042] L'invention va maintenant être décrite par rapport aux exemples suivants donnés à titre illustratif et non limitatif.
[0043] Dans ces exemples, l'homogénéité de composition entre les chaînes de copolymères est déterminée par la largeur du pic à mi-hauteur obtenu par chromatographie à adsorption en phase liquide (correspondant à la terminologie anglaise « Liquid Adsorption Chromatography » (LAC)), cette méthode consistant à classer suivant le volume d'élution les copolymères en fonction de leur polarité et non de leur masse moléculaire. [0044] Plus précisément, la méthode consiste à dissoudre le copolymère à analyser dans un solvant (par exemple le tétrahydrofurane ou THF), à injecter la solution résultante en début de colonne, puis à faire éluer les chaînes de copolymère avec un gradient de mélange de solvants. [0045] Ce mélange sera de l'hexane pur au début (l'hexane étant un non- solvant du copolymère) puis s'enrichira en THF jusqu'à devenir du THF pur. Cette technique est décrite notamment dans Macromolecules, 34(8), (2001 ), pages 2667-2672.
EXEMPLE 1
[0046] On charge dans un réacteur sous agitation 8500 g d'eau, 5,23 g de Na2Cθ3 et 78,20 g de laurylsulfate de sodium. On agite l'ensemble jusqu'à complète dissolution.
[0047] On effectue successivement trois purges vide-azote et on laisse le réacteur sous un léger vide. Puis on met en chauffe le réacteur. [0048] Parallèlement, on dégaze à l'azote pendant 30 minutes un mélange comprenant 3959 g de méthacrylate de méthyle, 625 g de styrène et 625 g d'acrylate de n-butyle.
[0049] Ensuite, on introduit le mélange rapidement dans le réacteur à l'aide d'une pompe. Quand la température du milieu réactionnel atteint 55°C, on introduit 7,8 g de persulfate de potassium dissous dans 148 g d'eau. On rince la ligne avec 50 g d'eau.
[0050] On attend la montée en température du milieu réactionnel pour atteindre le pic de l'exotherme. On laisse encore finir la polymérisation pendant 60 minutes après le pic de l'exotherme. On refroidit le réacteur jusqu'à 300C. Le polymère est ensuite récupéré en séchant le latex par atomisation.
EXEMPLE COMPARATIF 1
[0051] On charge dans un réacteur sous agitation 8600 g d'eau, 5,23 g de
Na2Cθ3 et 78,20 g de laurylsulfate de sodium et on agite l'ensemble jusqu'à complète dissolution.
[0052] On effectue successivement trois purges vide-azote et on laisse le réacteur sous un léger vide. Puis on met en chauffe le réacteur.
[0053] Parallèlement, on dégaze à l'azote pendant 30 minutes un mélange comprenant 4167 g de méthacrylate de méthyle et 1042 g d'acrylate de n-butyle.
[0054] Ensuite, on introduit le mélange rapidement dans le réacteur à l'aide d'une pompe. Quand la température du milieu réactionnel atteint 55°C, on introduit 7,81 g de persulfate de potassium dissous dans 98,08 g d'eau. On rince la ligne avec 50 g d'eau.
[0055] On attend la montée en température du milieu réactionnel pour atteindre le pic de l'exotherme. On laisse encore finir la polymérisation pendant 60 minutes après le pic de l'exotherme.
[0056] On refroidit le réacteur jusqu'à 300C et on soutire le latex.
EXEMPLE 2
[0057] On charge dans un réacteur sous agitation 8500 g d'eau, 5,23 g de Na2Cθ3 et 78,20 g de laurylsulfate de sodium et on agite l'ensemble jusqu'à complète dissolution.
[0058] On effectue successivement trois purges vide-azote et on laisse le réacteur sous un léger vide. Puis on met en chauffe le réacteur.
[0059] Parallèlement, on dégaze à l'azote pendant 30 minutes un mélange comprenant 4206 g de méthacrylate de méthyle, 260,4 g de styrène et 742 g d'acrylate de n-butyle. [0060] Ensuite, on introduit le mélange rapidement dans le réacteur à l'aide d'une pompe. Quand la température du milieu réactionnel atteint 55°C, on introduit 7,81 g de persulfate de potassium dissous dans 148,39 g d'eau. On rince la ligne avec 50 g d'eau. [0061] On attend la montée en température du milieu réactionnel pour atteindre le pic de l'exotherme. On laisse encore finir la polymérisation pendant 60 minutes. On refroidit le réacteur jusqu'à 300C et on soutire le latex.
EXEMPLE COMPARATIF 2
[0062] On charge dans un réacteur sous agitation 8600 g d'eau, 5,23 g de
Na2Cθ3 et 78,20 g de laurylsulfate de sodium et on agite l'ensemble jusqu'à complète dissolution.
[0063] On effectue successivement trois purges vide-azote et on laisse le réacteur sous un léger vide. Puis on met en chauffe le réacteur.
[0064] Parallèlement, on dégaze à l'azote pendant 30 minutes un mélange comprenant 4427 g de méthacrylate de méthyle et 781 g d'acrylate de n- butyle.
[0065] Ensuite, on introduit le mélange rapidement dans le réacteur à l'aide d'une pompe. Quand la température du milieu réactionnel atteint 55°C, on introduit 7,81 g de persulfate de potassium dissous dans 98,08 g d'eau. On rince la ligne avec 50 g d'eau.
[0066] On attend la montée en température du milieu réactionnel pour atteindre le pic de l'exotherme. On laisse encore finir la polymérisation pendant 60 minutes après le pic de l'exotherme. On refroidit le réacteur jusqu'à 300C et on soutire le latex.
EXEMPLE 3
[0067] On charge dans un réacteur sous agitation 8500 g d'eau, 5,23 g de Na2Cθ3 et 78,20 g de laurylsulfate de sodium et on agite l'ensemble jusqu'à complète dissolution. [0068] On effectue successivement trois purges vide-azote et on laisse le réacteur sous un léger vide. Puis on met en chauffe le réacteur. [0069] Parallèlement, on dégaze à l'azote pendant 30 minutes un mélange comprenant 4427,9 g de méthacrylate de méthyle, 260,5 g de styrène, 520,9 g d'acrylate de n-butyle et 0,18 g de n-octylmercaptan.
[0070] Ensuite, on introduit le mélange rapidement dans le réacteur à l'aide d'une pompe. Quand la température du milieu réactionnel atteint 55°C, on introduit 7,81 g de persulfate de potassium dissous dans 148,39 g d'eau. On rince la ligne avec 50 g d'eau. [0071] On attend la montée en température du milieu réactionnel pour atteindre le pic de l'exotherme. On laisse encore finir la polymérisation pendant 60 minutes après le pic de l'exotherme. On refroidit le réacteur jusqu'à 300C et on soutire le latex.
EXEMPLE COMPARATIF 3
[0072] On charge dans un réacteur sous agitation 8600 g d'eau, 5,23 g de
Na2Cθ3 et 78,20 g de laurylsulfate de sodium et on agite l'ensemble jusqu'à complète dissolution.
[0073] On effectue successivement trois purges vide-azote et on laisse le réacteur sous un léger vide. Puis on met en chauffe le réacteur.
[0074] Parallèlement, on dégaze à l'azote pendant 30 minutes un mélange comprenant 4688 g de méthacrylate de méthyle et 521 g d'acrylate de n-butyle et 0,18 g de n-octylmercaptan.
[0075] Ensuite, on introduit le mélange rapidement dans le réacteur à l'aide d'une pompe. Quand la température du milieu réactionnel atteint 55°C, on introduit 7,81 g de persulfate de potassium dissous dans 98,08 g d'eau. On rince la ligne avec 50 g d'eau.
[0076] On attend la montée en température du milieu réactionnel pour atteindre le pic de l'exotherme. On laisse encore finir la polymérisation pendant 60 minutes après le pic de l'exotherme. On refroidit le réacteur jusqu'à 300C et on soutire le latex. [0077] Le tableau 1 ci-dessous illustre les compositions et caractéristiques des exemples 1 à 3 et des exemples comparatifs 1 à 3 décrits ci-dessus.
-- Tableau 1 --
Figure imgf000012_0001
MMA=méthacrylate de méthyle (2) BA= acrylate de n-butyle
[0078] La diminution de la largeur à mi-hauteur du pic des copolymères des exemples 1 , 2 et 3 par rapport à ceux des exemples comparatifs indique donc une amélioration de l'homogénéité des compositions des chaînes de copolymères.
EXEMPLE 4 [0079] Cet exemple illustre la mise en œuvre des copolymères préparés à l'exemple 3 et à l'exemple comparatif 3, dans un résine polychlorure de vinyle (PVC).
Les copolymères sont introduits dans une formulation comprenant une résine PVC de Kwert 57, environ 5 pcr d'un « one pack » de type Naftosafe® 30175 (contenant des stabilisants thermiques à base de sels de calcium et zinc costabilisés et des lubrifiants, et disponible auprès de la Société Chemson), environ 5 pcr de carbonate de calcium (1 pcr correspondant à 1 part d'additif pour 100 parts de résine PVC), environ 2 pcr de l'oxyde de titane, et environ 0,5 pcr d'un agent gonflant, tel que l'azodicarbonamide. [0080] Les copolymères sont introduits à raison de 10 pcr. [0081] Le mélange est homogénéisé dans un mélangeur rapide de type Papenmeyer.
[0082] Le mélange sec (correspondant à la terminologie anglaise « dry blend ») est extrudé avec une extrudeuse Haake-Polylab de laboratoire équipée d'une mono+vis et d'une filière jonc de diamètre 4 mm.
[0083] La rotation de la vis est de 32 tours/min. Les températures de consigne sont de 1400C, 1700C et 185°C en allant de l'arrière du fourreau d'extrudeuse vers la filière. La température de consigne de la filière est de 1600C. [0084] Les deux formulations ont un débit équivalent de l'ordre de 2,1 kg/h. Dans ces conditions, l'échantillon selon l'exemple 3 conduit à un extrudat expansé de surface régulière et de densité 0,52. Ceci témoigne de l'homogénéité des chaînes de copolymère, et ce, grâce à l'adjonction de styrène dans une gamme spécifique. [0085] L'échantillon selon l'exemple comparatif 3 conduit à un jonc expansé très irrégulier, formant de nombreuses vagues en surface et de densité 0,56, ce qui atteste de l'inhomogénéité des chaînes de copolymères.
EXEMPLE 5 [0086] Cet exemple illustre la mise en œuvre des copolymères préparés à l'exemple 2 et à l'exemple comparatif 2, dans un résine polychlorure de vinyle (PVC).
[0087] Les copolymères sont introduits dans une formulation comprenant une résine PVC de Kwert 57, environ 5 pcr d'un « one pack » de type Naftosafe® 30175 (contenant des stabilisants thermiques à base de sels de calcium et zinc costabilisés et des lubrifiants, et disponible auprès de la Société Chemson), environ 5 pcr de carbonate de calcium (1 pcr correspondant à 1 part d'additif pour 100 parts de résine PVC), environ 2 pcr de l'oxyde de titane, et environ 0,5 pcr d'un agent gonflant, tel que l'azodicarbonamide.
[0088] Les copolymères sont introduits à raison de 7,5 pcr. [0089] Le mélange est homogénéisé dans un mélangeur rapide de type
Papenmeyer.
[0090] Le mélange sec (correspondant à la terminologie anglaise « dry blend ») est extrudé avec une extrudeuse Haake-Polylab de laboratoire équipée d'une mono-vis et d'une filière jonc de diamètre 4 mm.
[0091] La rotation de la vis est de 34 tours/min. Les températures de consigne sont de 1700C, 2000C et 205°C en allant de l'arrière du fourreau d'extrudeuse vers la filière. La température de consigne de la filière est de 1900C. Les deux formulations ont un débit équivalent de l'ordre de 2 kg/h. [0092] Dans ces conditions, l'échantillon selon l'exemple 2 conduit à un extrudat expansé de surface régulière et de densité 0,58. Ceci témoigne de l'homogénéité des chaînes de copolymère, et ce, grâce à l'adjonction de styrène dans une gamme spécifique. [0093] L'échantillon selon l'exemple comparatif 2 conduit à un extrudat expansé de densité 0,58 et présentant une surface présentant de nombreuses aspérités (aspect de peau de requin), ce qui atteste de l'inhomogénéité des chaînes de copolymères.

Claims

REVENDICATIONS
1. Composition thermoplastique comprenant :
* au moins une matrice thermoplastique, et
* au moins un copolymère obtenu par copolymérisation de méthacrylate d'alkyle en CrC4, d'un comonomère acrylate d'alkyle en CrCs, et d'un monomère styrénique, le méthacrylate d'alkyle en CrC4 étant présent en une teneur allant de 75% à 92% en masse par rapport à la masse totale des monomères, le comonomère acrylate d'alkyle en Ci-Cs étant présent en une teneur allant de 5 à 25% en masse par rapport à la masse totale des monomères et le monomère styrénique étant présent en une teneur allant de 3 à 20% en masse par rapport à la masse totale des monomères.
2. Composition thermoplastique selon la revendication 1 , dans laquelle la matrice thermoplastique est une matrice à base de polychlorure de vinyle, ABS, ASA, polycarbonate-polyester, polycarbonate-ABS, polycarbonate-ASA, ou mélange de deux ou plusieurs de ces polymères.
3. Composition thermoplastique selon la revendication 1 ou 2, dans laquelle la matrice thermoplastique est une matrice à base de polychlorure de vinyle.
4. Composition thermoplastique selon l'une quelconque des revendications précédentes, qui est sous forme expansée.
5. Composition thermoplastique selon l'une quelconque des revendications précédentes, dans laquelle le monomère méthacrylate d'alkyle en CrC4 est le méthacrylate de méthyle.
6. Composition thermoplastique selon l'une quelconque des revendications précédentes, dans laquelle le comonomère acrylate d'alkyle en d-Cs est choisi parmi l'acrylate d'éthyle, l'acrylate de n-butyle et l'acrylate de 2-éthylhexyle.
7. Composition thermoplastique selon l'une quelconque des revendications précédentes, dans laquelle le comonomère acrylate d'alkyle en d-Cs est l'acrylate de n-butyle.
8. Composition thermoplastique selon l'une quelconque des revendications précédentes, dans laquelle le comonomère acrylate d'alkyle en d-Cs est présent en un teneur allant de 10% à 20% en masse par rapport à la masse totale des monomères.
9. Composition thermoplastique selon l'une quelconque des revendications précédentes, dans laquelle le monomère styrénique est choisi parmi le styrène, l'éthylstyrène et l'α-méthylstyrène.
10. Composition thermoplastique selon l'une quelconque des revendications précédentes, dans laquelle le monomère styrénique est présent en une teneur allant de 4 à 12% en masse par rapport à la masse totale des monomères.
11. Composition thermoplastique selon l'une quelconque des revendications précédentes, dans laquelle le copolymère est un copolymère obtenu par polymérisation de méthacrylate de méthyle, d'acrylate de n-butyle et de styrène.
12. Composition thermoplastique selon la revendication 11 , dans laquelle le ratio méthacrylate de méthyle/acrylate de n-butyle/styrène est compris entre 80-90/7-20/3-10.
13. Composition thermoplastique selon l'une quelconque des revendications précédentes, dans laquelle le copolymère représente de 0,3% à 20%, de préférence, de 4% à 15%, et plus préférentiellement de 5% à 12% en masse par rapport à la masse totale de la composition.
14. Procédé de fabrication d'un article comprenant :
- une étape de formation d'un mélange de la composition thermoplastique selon l'une quelconque des revendications 1 à 13, et
- une étape de formation dudit article à partir de ladite composition.
15. Article formé à partir de ladite composition thermoplastique telle que définie selon l'une quelconque des revendications 1 à 13.
16. Article selon la revendication 15 ou obtenu selon le procédé de la revendication 14, qui est un profilé compact ou expansé, une plaque compacte ou expansée ou un tube compact ou expansé.
17. Article selon la revendication 16 qui est sous forme expansée.
PCT/FR2008/050219 2007-02-12 2008-02-12 Composition thermoplastique comprenant une matrice thermoplastique et un terpolymere methacrylate d'alkyle - acrylate d'alkyle - monomere styrenique WO2008104701A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/526,809 US8859678B2 (en) 2007-02-12 2008-02-12 Thermoplastic composition comprising a thermoplastic matrix and a terpolymer of alkyl methacrylate, alkyl acrylate and a styrene monomer
JP2009548728A JP5474568B2 (ja) 2007-02-12 2008-02-12 熱可塑性マトリックスと、アルキルメタクリレート、アルキルアクリレートおよびスチレンモノマーのターポリマーとから成る熱可塑性組成物
EP08762071.2A EP2118196B1 (fr) 2007-02-12 2008-02-12 Composition thermoplastique comprenant une matrice thermoplastique et un terpolymere methacrylate d'alkyle - acrylate d'alkyle - monomere styrenique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0753187A FR2912412B1 (fr) 2007-02-12 2007-02-12 Composition thermoplastique comprenant une matrice thermoplastique et un copolymere particulier.
FR0753187 2007-02-12

Publications (1)

Publication Number Publication Date
WO2008104701A1 true WO2008104701A1 (fr) 2008-09-04

Family

ID=38476882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050219 WO2008104701A1 (fr) 2007-02-12 2008-02-12 Composition thermoplastique comprenant une matrice thermoplastique et un terpolymere methacrylate d'alkyle - acrylate d'alkyle - monomere styrenique

Country Status (7)

Country Link
US (1) US8859678B2 (fr)
EP (1) EP2118196B1 (fr)
JP (1) JP5474568B2 (fr)
KR (1) KR20090118930A (fr)
CN (1) CN101627085A (fr)
FR (1) FR2912412B1 (fr)
WO (1) WO2008104701A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104629222A (zh) * 2015-03-05 2015-05-20 贵州国塑科技管业有限责任公司 高强度高模量高耐候共挤长玻纤增强pvc与asa管及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436059A (zh) * 2013-08-23 2013-12-11 江苏中威重工机械有限公司 一种树脂组合物
FR3019549B1 (fr) 2014-04-07 2020-10-02 Arkema France Composition de poudre de polymere a etapes multiples, son procede de preparation et son utilisation
FR3019550B1 (fr) 2014-04-07 2020-11-20 Arkema France Composition de poudre de polymere et son procede de preparation
MX2018011567A (es) * 2016-03-25 2019-05-27 Arkema France Formulacion acrilica mejorada de resistencia a la fundicion.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058229A2 (fr) * 1981-02-18 1982-08-25 Hüls Aktiengesellschaft Procédé pour la production de chlorure de polyvinyle et son application à la production de feuilles par calandre de vitesse
FR2518104A1 (fr) * 1981-12-11 1983-06-17 Ugine Kuhlmann Composition a base de resines thermoplastiques permettant d'obtenir des materiaux bi-orientes
JP2002167457A (ja) * 2000-08-30 2002-06-11 Nan Ya Plastic Corp 木繊維或いは木粉を添加した建築資材用発泡プラスチックの製造方法
EP1422264A1 (fr) * 2001-07-10 2004-05-26 Kaneka Corporation Agent ameliorant l'aptitude au traitement et composition de resine de chlorure de vinyle contenant cet agent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686025A (en) * 1996-01-05 1997-11-11 Witco Corporation Stabilizer and blowing agent useful for rigid foamed PVC
TW486502B (en) * 1998-08-28 2002-05-11 Kanegafuchi Chemical Ind Processing aid for vinyl chloride resin and vinyl chloride resin composition
JP2001089592A (ja) * 1999-09-22 2001-04-03 Kanegafuchi Chem Ind Co Ltd 発泡性塩化ビニル系樹脂組成物
JP2001089591A (ja) * 1999-09-22 2001-04-03 Kanegafuchi Chem Ind Co Ltd 発泡性塩化ビニル系樹脂組成物
CA2384024A1 (fr) * 1999-09-22 2001-03-29 Kaneka Corporation Compositions de resine expansible a base de chlorure de vinyle
DE10354379A1 (de) * 2003-11-20 2005-06-23 Röhm GmbH & Co. KG Formmasse, enthaltend ein Mattierungsmittel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058229A2 (fr) * 1981-02-18 1982-08-25 Hüls Aktiengesellschaft Procédé pour la production de chlorure de polyvinyle et son application à la production de feuilles par calandre de vitesse
FR2518104A1 (fr) * 1981-12-11 1983-06-17 Ugine Kuhlmann Composition a base de resines thermoplastiques permettant d'obtenir des materiaux bi-orientes
JP2002167457A (ja) * 2000-08-30 2002-06-11 Nan Ya Plastic Corp 木繊維或いは木粉を添加した建築資材用発泡プラスチックの製造方法
EP1422264A1 (fr) * 2001-07-10 2004-05-26 Kaneka Corporation Agent ameliorant l'aptitude au traitement et composition de resine de chlorure de vinyle contenant cet agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200280, Derwent World Patents Index; Class A32, AN 2002-735862 [80], XP002488169 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104629222A (zh) * 2015-03-05 2015-05-20 贵州国塑科技管业有限责任公司 高强度高模量高耐候共挤长玻纤增强pvc与asa管及其制备方法

Also Published As

Publication number Publication date
KR20090118930A (ko) 2009-11-18
US8859678B2 (en) 2014-10-14
US20100075088A1 (en) 2010-03-25
EP2118196A1 (fr) 2009-11-18
EP2118196B1 (fr) 2013-08-14
CN101627085A (zh) 2010-01-13
JP5474568B2 (ja) 2014-04-16
JP2010518218A (ja) 2010-05-27
FR2912412A1 (fr) 2008-08-15
FR2912412B1 (fr) 2012-09-28

Similar Documents

Publication Publication Date Title
US5219931A (en) Thermoplastically processable solvent-resistant polymer mixtures
EP2328948B1 (fr) Procédé de préparation des nouveaux modifiants chocs du type coeur ecorce pour matrices polymeres transparentes
TWI460227B (zh) 聚合物組合物
EP2118196B1 (fr) Composition thermoplastique comprenant une matrice thermoplastique et un terpolymere methacrylate d'alkyle - acrylate d'alkyle - monomere styrenique
JPH04233964A (ja) 高靱性の熱可塑性ポリオキシメチレン成形組成物及びその用途
US11718745B2 (en) Thermoplastic resin composition, method of preparing the same, and molded article including the same
CN111690093A (zh) 橡胶质聚合物、接枝共聚物和热塑性树脂组合物
EP3882285B1 (fr) Copolymère greffé acrylique, procédé pour sa préparation, et composition de résine thermoplastique contenant celui-ci
JPH09216985A (ja) メタクリレート樹脂ブレンド
FR3053348A1 (fr) Composition comprenant un polymere a phases multiples et deux polymeres (meth)acryliques differents, son procede de preparation et article la compenant
EP0044234B1 (fr) Procédé de préparation de copolymères de greffage par irradiation
US5212237A (en) Polymer mixtures
FR2943351A1 (fr) Agent de mise en oeuvre acrylique
BE1008959A4 (fr) Polymere du propylene, procede pour son obtention et utilisation.
JPS63132956A (ja) 耐衝撃性樹脂組成物
EP4194505B1 (fr) Composition de résine thermoplastique, son procédé de préparation, et produit moulé fabriqué à partir de cette dernière
FR2753711A1 (fr) Compositions a base de polymerisats abs ou de leurs alliages, et produits souples obtenus a partir de ces compositions
FR2557573A1 (fr) Compositions destinees a la modification de polymeres thermoplastiques obtenus par polymerisation en masse et leur procede de fabrication
EP0044233B1 (fr) Procédé de préparation de copolymères greffés à base de styrène et d'un polymère caoutchouteux
JPS61152714A (ja) 熱可塑性エラストマー樹脂の製造方法
BE1011929A3 (fr) Polymere du propylene, procede pour son obtention et utilisation.
LU82375A1 (fr) Compositions de resine styrenique resistant aux intemperies et procede pour les preparer
WO2002024767A1 (fr) Degradation peroxydique de polymers en presence de radicaux libres stables multifonctionnels
JPH10338722A (ja) スチレン系重合体の製造方法
WO2002085961A1 (fr) Materiau polymere methacrylique anticalcaire et articles faconnes correspondants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880007485.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08762071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008762071

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009548728

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097016756

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12526809

Country of ref document: US