WO2008104109A1 - Dispositif de servomécanisme de la charge d'un moteur à combustion - Google Patents

Dispositif de servomécanisme de la charge d'un moteur à combustion Download PDF

Info

Publication number
WO2008104109A1
WO2008104109A1 PCT/CN2007/002792 CN2007002792W WO2008104109A1 WO 2008104109 A1 WO2008104109 A1 WO 2008104109A1 CN 2007002792 W CN2007002792 W CN 2007002792W WO 2008104109 A1 WO2008104109 A1 WO 2008104109A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
torque
engine
speed
servo
Prior art date
Application number
PCT/CN2007/002792
Other languages
English (en)
French (fr)
Inventor
Hong Lv
Original Assignee
Guilin Geely Stars Oil-Electric Hybrid Engine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2007100485708A external-priority patent/CN101257243B/zh
Priority claimed from CNU200720078746XU external-priority patent/CN201018382Y/zh
Application filed by Guilin Geely Stars Oil-Electric Hybrid Engine Co., Ltd. filed Critical Guilin Geely Stars Oil-Electric Hybrid Engine Co., Ltd.
Priority to JP2009551094A priority Critical patent/JP2010520415A/ja
Priority to US12/529,035 priority patent/US20100025130A1/en
Priority to GB0915069A priority patent/GB2460561A/en
Priority to DE112007003373T priority patent/DE112007003373T5/de
Priority to CN200780051944A priority patent/CN101631707A/zh
Publication of WO2008104109A1 publication Critical patent/WO2008104109A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/262Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a fuel engine servo loading device and an optimum efficiency operation control method thereof. More particularly, it relates to a servo load device and an optimal efficiency operation control method for such a fuel engine, which allows the engine to always operate at an optimum efficiency operating curve at different rotational speeds, so that the engine obtains the largest mechanical force when consuming the same amount of fuel. Energy, to save energy. Background technique
  • the thin dotted line is the equal power line (in kW, kilowatts)
  • the thin solid line is the equal energy consumption line BE (unit is g/kWh, per kilowatt hour)
  • the thick solid line is the best efficiency of the engine.
  • the running curve, the thick dashed line is the maximum torque limit of the engine.
  • step-variable transmission has 4-5 speed positions for easy speed adjustment, but the speed ratio cannot be adjusted continuously.
  • load torque is due to wind resistance, load, road conditions,
  • environment, wear, etc. change the torque applied to the engine shaft at different turns of the different gears is rarely consistent with the requirements of the optimum efficiency operating curve.
  • a continuously variable transmission mainly consists of a driving wheel set, a driven wheel set, a metal belt and a hydraulic pump, and realizes a continuous change of the gear ratio by changing the working radius of the driving wheel, the driven wheel jaw surface and the V-shaped belt, thereby realizing the engine. Better match of speed-torque.
  • the CVT also has obvious limitations: First, the mechanical structure is complicated and its manufacturing cost is high; in addition, the mechanical structure and the hydraulic system have large inertia and thus the adjustment speed is slow, especially when the engine throttle or external load torque changes dynamically, especially When the road conditions change frequently, the throttle changes frequently, and the frequency shifts frequently, the continuously variable transmission (CVT) cannot adjust the speed ratio quickly and accurately. The probability of the fuel engine operating at the optimum efficiency running curve is still low. In addition, the continuously variable transmission (CVT) transmission The efficiency is lower than the general gear transmission.
  • the fuel engine is equipped with a torque servo loading device, which can be based on the actual engine speed and the optimal efficiency pre-stored in the main control unit computer.
  • the torque data is obtained at the current speed, and the fuel engine is applied to the fuel engine through the servo motor.
  • the torque can make the fuel engine work on the pre-stored optimal efficiency running curve, which greatly improves the operating efficiency of the fuel engine and saves energy.
  • the device and the control method are not affected by external load conditions such as vehicle speed and resistance, and independently adjust the torque of the engine output shaft so that the fuel engine is operated at different speeds, and the load torque of the engine bearing is always in accordance with the optimal efficiency running curve.
  • the engine is matched with almost no hysteresis to achieve continuous and stable energy-saving operation of the engine.
  • a fuel engine servo loading apparatus comprising a permanent magnet motor having a first rotor and a second rotor, the first rotor of the motor being directly connected to an output shaft of the fuel engine, the motor The two rotors are directly connected to the drive shaft, and the first rotor and the second rotor transmit power through electromagnetic coupling, wherein: the fuel engine servo loading device further comprises a servo driver, and the torque servo driver controls the first according to the set condition.
  • an optimum efficiency operation control method for a fuel engine servo loading device wherein the fuel engine is mounted with the above-described fuel engine servo loading device matched with its maximum torque and maximum speed, characteristics thereof
  • the method comprises the steps of:
  • the main control unit obtains the optimal torque matching the speed according to the speed-torque matching data or the speed-torque matching relationship formula of the optimal efficiency running curve stored in the computer, and sets the torque.
  • the value is fed into the torque servo drive;
  • the servo driver obtains the magnitude of the current vector output to the winding of the first rotor or the second rotor according to the torque setting value sent by the main control unit;
  • the servo driver determines the instantaneous value of the current of each phase winding according to the direction and magnitude of the obtained current vector, and realizes the torque servo control by the closed-loop control of each phase current, and realizes the matching optimal torque value load according to the current engine speed. , allowing the engine to operate on the optimum efficiency operating curve while the second rotor is axially loaded with output torque;
  • the main control unit and the servo drive repeat steps 1 to 5, thereby dynamically acquiring the current engine speed cyclically, dynamically obtaining a new torque setting value according to the current new speed and the pre-stored optimal efficiency curve data, and the torque servo The drive applies a corresponding new torque value to the engine shaft, following the torque required to follow the engine's optimum efficiency operating curve.
  • a power output apparatus including a fuel engine and a permanent magnet motor having a first rotor and a second rotor, the first rotor of the motor being directly connected to an output shaft of the fuel engine, the motor The second rotor is directly connected to the drive shaft, and the first rotor and the second rotor transmit power by electromagnetic coupling, wherein: the motor is driven by the servo drive through the first rotor to the engine at the current speed and most The good efficiency runs the curve to match the torque load.
  • the fuel engine servo loading device of the invention and the optimal efficiency operation control method thereof are excellent The points are as follows: 1.
  • the motor-mounted torque servo drive mounted on the engine shaft replaces the mechanical gearbox and clutch, allowing the torque servo drive to adjust the torque applied by the motor to the engine shaft in a torque servo mode to ensure that the fuel engine works in real time.
  • On the best efficiency running curve the maximum mechanical energy is output when the fuel consumption is equal;
  • the fuel engine output shaft of this device has no direct mechanical connection with the external load, even if the external load torque changes frequently or the fuel engine speed changes frequently, the torque servo
  • the drive can still apply matching torque to the engine in real time continuously, quickly and accurately according to the requirements of the optimal efficiency running curve.
  • the torque of the output shaft of the fuel engine at different speeds is always consistent with the requirement of the optimal efficiency running curve, ie the engine Always work on the pre-stored optimal efficiency operating curve to maximize the mechanical energy output when the engine consumes the same amount of fuel; 3.
  • the torque servo drive uses torque servo control to adjust the electromagnetic torque between the second rotor and the first rotor. , that is, regulating fuel
  • the output shaft torque of the engine so the torque servo drive can continuously adjust the torque, and the torque servo drive adjusts the torque response speed to the second-order level.
  • the adjustment accuracy and response speed are far superior to the mechanical continuously variable transmission (CVT). ) and stepped gearbox, fuel saving effect is obvious; 4, the device and control method can be applied to various fuel engines, especially suitable for hybrid electric vehicles, to achieve energy saving and reduce exhaust emissions.
  • Figure 1 shows the optimal efficiency curve of a 1.8L displacement gasoline engine.
  • the ordinate is the engine output shaft torque (unit is N ' m, Newton meter), and the abscissa is the engine output shaft speed (in rpm, per minute).
  • the number of revolutions where the thin dotted line is the equal power line (in kW, kW), the thin solid line is the equal energy consumption line BE (unit is g/kWh, per kWh), and the thick solid line is the best efficiency of the engine.
  • Curve, thick dashed line is the engine maximum torque limit.
  • FIG. 2 is a schematic structural view of an embodiment of a servo load device of the present fuel engine, and is marked as: 1 fuel engine, 2 engine sense shaft, 3 speed/position sensor, 4 first rotor, 5 second rotor, 6 current collector Ring, 7 output shaft, 8 servo drive, 9 main control unit, 10 position sensor.
  • the structure of the servo loading device embodiment of the present fuel engine is as shown in FIG. 2.
  • the motor in this embodiment is a three-phase permanent magnet synchronous motor.
  • the fuel engine 1 is connected to a servo loading device including a permanent magnet synchronous motor, a servo drive, and a main control unit.
  • First rotor 4 of the motor and burning The output shaft 2 of the oil engine 1 is directly connected.
  • the first rotor 4 of the motor is embedded with a permanent magnet material, which is the second rotor 5 therein.
  • the second rotor 5 is a winding wound on a core, and the shaft of the second rotor 5 is an output shaft 7 of the apparatus.
  • a speed/position sensor 3 is mounted on the first rotor 4 of the motor, and the sensor 3 is connected to the main control unit 9 and the servo drive 8.
  • a position sensor 10 is mounted on the output shaft 7 of the device, and the position sensor 10 is connected to the torque servo driver 8.
  • the main control unit 9 is connected to the servo driver 8.
  • the servo driver 8 is connected to the winding of the second rotor 5 via a slip ring 6 mounted on the second rotor shaft.
  • the main body of the main control unit 9 may be a computer in which a matching speed-torque data or speed-torque matching relationship formula of the optimum efficiency operating curve of the fuel engine 1 is stored.
  • the servo motor of the fuel engine can also be a brushless DC motor, and the structure is the same as above.
  • the first rotor 4 of the apparatus may also be a winding wound on a core, and a slip ring 6 is mounted on the engine shaft 2, which is connected to the torque servo drive 8 via a slip ring 6.
  • the second rotor 5 is a rotor embedded with a permanent magnet material to provide a magnetic field to the first rotor 4. Other settings can be the same as above.
  • the optimum efficiency operating curve for each type of engine can be supplied by the manufacturer or can be obtained experimentally using special test equipment.
  • the optimal efficiency run curve data can be stored in the computer of the main control unit 9 in the form of a table or function.
  • Figure 1 shows the optimal efficiency operation curve for a 1.8L displacement gasoline engine.
  • the computer of the main control unit 9 of this embodiment can store the best matching data of speed and torque in a table manner, that is, the engine speed in FIG. 1 is perpendicularly spaced from the idle speed to the highest speed, from the intersection of the vertical line and the optimal efficiency curve.
  • the matching torque data corresponding to the rotational speed is obtained, and the rotational speed-torque best matching data list is stored in the main control unit 9 computer.
  • the computer of the main control unit 9 obtains its matching torque by interpolation calculation based on the rotational speed signal from the sensor 3. Obviously, the smaller the vertical velocity interval, the higher the accuracy of the curve depicted in the table.
  • 1 set of speed N-torque M data can be obtained at low speed 1000 rpm/minute to high speed 6000 rpm at 500 rpm. If you are at 100 rpm, you can get 51 sets of data. If the interval is 1 revolutions per minute, 5001 sets of data can be obtained.
  • the computer of the main control unit 9. The computer of the main control unit 9 calculates a corresponding optimum torque value from this function based on the rotational speed signal of the sensor 3.
  • the fuel engine is mounted with the above-described servo loading device that matches its maximum torque and maximum speed.
  • the optimal efficiency operation control method of the fuel engine servo loading device of the present invention is:
  • the first rotor 4 which is directly connected to its output shaft, rotates.
  • the speed/position sensor 3 monitors the current speed and position of the first rotor 4 in real time, and sends the speed signal to the main control unit 9 computer in real time, and the position signal is sent to the servo drive 8;
  • the position sensor 10 monitors the current position of the second rotor 5 in real time. And send the position signal to the servo driver 8;
  • the second step main control unit 9 obtains the optimal torque operation value matched with the current rotation speed according to the current engine speed signal transmitted by the speed sensor 3 and the optimal efficiency running curve pre-stored in the computer of the main control unit 9, and this is The expected value is used as the torque setting signal of the servo driver 8;
  • the third step is to dynamically control the direction of the current vector of the winding of the second rotor 5 of the motor according to the relative position signals between the first and second rotors obtained by the servo driver 8 according to the first rotor and the second rotor absolute position signals;
  • the fourth step servo driver 8 determines the magnitude of the current vector output to the winding of the second rotor 5 according to the torque set value command of the main control unit 9;
  • the servo driver 8 determines the instantaneous value of the current of the three-phase winding according to the direction and magnitude of the obtained current vector, and realizes the torque servo control by the three-phase current closed-loop control, thereby realizing the matching optimal torque according to the current engine speed.
  • the value load causes the engine to operate on the optimum efficiency operating curve, while the output axial load of the second rotor 5 outputs the same amount of torque. If the output shaft drives the load to rotate, mechanical energy is output.
  • the sixth step of the main control unit 9 and the servo driver 8 repeats the actions of the first step to the fifth step, thereby dynamically acquiring the current engine 1 rotational speed cyclically, and dynamically obtaining a new one based on the current new rotational speed and the pre-stored optimal efficiency curve data.
  • Torque setpoint, torque servo drive 8 applies a corresponding new torque value to engine shaft 2, allowing the engine to always run on its optimum efficiency curve.
  • the mechanical energy from the engine 1 is all directly delivered through the electromagnetic transfer between the first and second rotors.
  • the mechanical energy from the engine 1 is directly sent out through the electromagnetic transmission between the first and second rotors, and the servo driver 8 is also controlled by the motor using the applied electric energy. The mechanical energy is superimposed on the output shaft and sent out.
  • the optimal efficiency run curve data of Figure 1 has been stored in a group of 11 groups in the computer of the master unit 9.
  • Fuel engine 1 The current speed is 1500 rpm, and the expected value of the matching torque obtained by the main control unit 9 computer table is 118 Newton meters (N.m). Therefore, the torque vector of the second rotor 5 of the motor is controlled by the torque servo driver 8, and a torque of 118 Nm is applied to the output shaft 2 of the fuel engine 1. At this time, the shaft of the second rotor 5 also outputs a torque of 1 18 Newton meters to its load.
  • the main control unit 9 computer linearly interpolates to obtain the expected torque value to be applied is 128.8 Newtons, and A torque of 128.8 Newton meters was applied to the output shaft in the same manner.
  • the sensor 3 dynamically acquires the current rotational speed of the fuel engine, and the torque servo driver 8 dynamically controls the current vector of the winding of the second rotor 5 of the motor to cause the motor to dynamically apply a matching load torque to the fuel engine, thereby achieving the best operation of the fuel engine 1 at all times. The efficiency runs on the curve.
  • the main control unit 9 calculates the real-time speed signal transmitted by the speed sensor 3 through the function in real time. Chad has a huge twist that matches the current speed.
  • a 1.8 L displacement gasoline engine is equipped with the present servo loading device and operated using the present optimal efficiency operation control method. As shown in point A in Figure 1, when the engine is operating at an output power of 15 kW and remains unchanged, if the engine is operating at a non-economic operating point of 3,500 rpm, 40.9 Nm, its unit output machinery The fuel consumption of energy is 335 g / kWh (g / kWh).
  • the engine operating point is adjusted to the point B on the optimal efficiency running curve by the load control device and the current operation control method, that is, 1302 revolutions/min, 1 10 Nm, and the fuel consumption per unit output mechanical energy is reduced to 250 g. / kWh, reducing fuel consumption by 25.4%.
  • the fuel consumption reduction ratio varies depending on the working point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

燃油发动机伺服加载装置及其最佳效率运行控制方法 技术领域
本发明涉及一种燃油发动机伺服加载装置及其最佳效率运行控制 方法。 更具体地涉及这样的燃油发动机的伺服加载装置及最佳效率运 行控制方法, 其使发动机在不同的转速下始终工作在最佳效率运行曲 线上, 使得发动机消耗等量的燃油时获得最大的机械能量, 达到节省 能源的目的。 背景技术
试验表明, 燃油发动机输出某个机械功率可以存在若千个不同转 速和扭矩配合的工作点, 发动机输出相同的某个机械功率的多个工作 点中存在一个油耗最低点, 即为转速 -扭矩的最佳匹配工作点。 将不同 输出功率下的油耗最低点相连并作平滑处理获得的曲线就是该发动机 的最佳效率运行曲线。 在该曲线上燃油发动机效率最高, 消耗等量的 燃油获得的机械能最大。 图 1为某 1.8L排量汽油发动机最佳效率运行 曲线, 图中纵坐标为发动机输出轴扭矩 (单位为 N . m, 牛顿米) , 横坐标为发动机输出轴转速(单位为 rpm,每分钟转数) , 其中细虛线 为等功率线(单位为 kW,千瓦),细实线为等能耗线 BE(单位为 g/kWh, 每千瓦小时克) , 粗实线为发动机最佳效率运行曲线, 粗虚线为发动 机最大扭矩限制。
由此可见, 当燃油发动机工作在某转速下, 如果施加在其轴上的 扭矩与在当前转速下最佳效率运行曲线要求的扭矩相同, 发动机即工 作在当前转速的最佳效率点上。 发动机在不同的转速下, 保持施加在 轴上的扭矩总与最佳效率运行曲线要求的扭矩相同, 即发动机的转速- 扭矩与最佳效率运行曲线的要求相吻合, 发动机消耗等量的燃油将可 获得最大的机械能量, 达到最经济的运行状态。
目前的车辆中各种燃油发动机均配置有级变速器和无级变速器 ( CVT ) 等机械传动机构, 来调节匹配的转速和扭矩, 期望燃油发动 机的转速-扭矩匹配逼近最佳效率运行曲线。
最普遍应用的有级变速器有 4-5 个速度档位, 能进行简易的速度 调节, 但变速比无法连续调节。 当负载扭矩因为风阻、 载重、 路况、 环境、 磨损等情况变化时, 在不同档的不同转 ¾下施加于发动机轴上 的扭矩很少能与最佳效率运行曲线的要求相一致。
一种无级变速器主要由主动轮组、 从动轮组、 金属带和液压泵组 成, 并通过改变主动轮、 从动轮雉面与 V型传动带啮合的工作半径实 现变速比的连续变化, 从而实现发动机转速 -扭矩较好的匹配。 但无级 变速器也存在明显局限性: 首先是机械结构较复杂因而其制造成本 高; 再者机械结构和液压系统的惯量大因而调节速度慢, 当发动机油 门或外部负载扭矩动态变化时, 特别是路况频繁变化、 油门频繁改变、 频繁变速的时候, 无级变速器 (CVT ) 不能快速准确地调整变速比, 燃油发动机工作在最佳效率运行曲线的概率仍很低; 另外无级变速器 ( CVT )传动效率低于一般的齿轮变速器。 这些缺点都影响到 CVT 的推广应用。
燃油发动机配置扭矩伺服加载装置, 即可依据发动机的实际转速 和主控单元计算机内预存的最佳效率运行曲线, 按当前转速得到匹-配 的扭矩数据, 通过伺服装置的电机给燃油发动机施加相应的扭矩, 即 可以使燃油发动机工作在预存的最佳效率运行曲线上, 大大提高了燃 油发动机的运行效率, 节能明显。 发明内容
本发明的目的是设计一种燃油发动机伺服加载装置及其最佳效率 运行控制方法。 本装置及控制方法不受车速及阻力等外部负载状态的 影响, 独立调节发动机输出轴的扭矩, 使燃油发动机运行在不同的转 速时, 发动机轴承受的负载扭矩始终按最佳效率运行曲线的要求与转 速几乎无滞后地进行匹配, 实现发动机持续、 稳定地节能运行。
根据本发明的一个方面, 提供了一种燃油发动机伺服加载装置, 包括具有第一转子和第二转子的永磁电机, 该电机的第一转子与燃油 发动机的输出轴直接连接, 该电机的第二转子与驱动轴直接连接, 第 一转子和第二转子之间通过电磁耦合来传递动力, 其特征在于: 该燃 油发动机伺服加载装置还包括伺服驱动器, 该扭矩伺服驱动器根据设 定条件控制第一转子和第二转子之间的电磁扭矩, 从而控制燃油发动 机的扭矩负载和驱动轴的输出扭矩; 其中在第一转子轴上安装有速度 / 位置传感器, 在第二转子轴上安装有位置传感器, 用于实施扭矩伺服 控制; 以及在安装电枢绕组的转子轴上安装有连接绕组与伺服驱动器 的导电滑环。
根据本发明的另一个方面, 提供了一种燃油发动机伺服加载装置 的最佳效率运行控制方法, 其中该燃油发动机安装有与其最大扭矩与 最高转速相配的上述所述燃油发动机伺服加载装置, 其特征在于该方 法包括以下步骤:
1 ) 当发动机运行时, 通过速度 /位置传感器实时监测电机第一转 子转速;
2 ) 主控单元根据速度信号, 按计算机内部预存的最佳效率运行 曲线的转速 -扭矩匹配数据或转速 -扭矩匹配关系公式求得与该速度相 匹配的最佳扭矩, 并将该扭矩设定值送入扭矩伺服驱动器;
3 )伺服驱动器根据第一转子、 第二转子绝对位置信号求得的第 一、 第二转子之间相对位置信号, 按照电流与反电势同相位的原则求 得向第一转子或第二转子的绕组输出电流矢量的方向;
4 )伺服驱动器根据主控单元送来的扭矩设定值求得向第一转子 或第二转子的绕组输出电流矢量的大小;
5 )伺服驱动器根据求得的电流矢量的方向和大小确定各相绕组 的电流瞬时值的大小, 通过各相电流闭环控制使电机实现扭矩伺服控 制, 实现根据当前发动机转速的匹配最佳扭矩值负载, 使发动机工作 在最佳效率运行曲线上, 同时第二转子轴向负载输出扭矩; 和
6 )主控单元和伺服驱动器重复第 1 到第 5 步骤, 从而循环地动 态获取当前发动机转速, 依据当前新的转速与预存的最佳效率曲线数 据动态求取新的扭矩设定值, 扭矩伺服驱动器将相应的新扭矩值施加 到发动机轴上, 按照转速来跟随发动机最佳效率运行曲线要求的扭矩 运行。
根据本发明的又一方面, 提供了一种动力输出装置, 包括燃油发 动机和具有第一转子及第二转子的永磁电机, 该电机的第一转子与燃 油发动机的输出轴直接连接, 该电机的第二转子与驱动轴直接连接, 第一转子和第二转子之间通过电磁耦合来传递动力, 其特征在于: 电 机在伺服驱动器的驱动下通过第一转子向发动机施加在当前转速下与 最佳效率运行曲线匹配的扭矩负载。
本发明燃油发动机伺服加载装置及其最佳效率运行控制方法的优 点为: 1、 安装在发动机轴上的电机外加扭矩伺服驱动器代替了机械 式变速箱和离合器, 让扭矩伺服驱动器以扭矩伺服方式调节电机施加 在发动机轴上的扭矩, 保证燃油发动机实时工作在最佳效率运行曲线 上, 实现消耗等量的燃油时输出最大的机械能; 2、 本装置燃油发动 机输出轴与外负载无直接的机械连接, 即使外负载扭矩频繁变化或者 燃油发动机转速频繁变化, 扭矩伺服驱动器仍能连续、 迅速、 准确地 按照最佳效率运行曲线的要求对发动机实时地施加匹配扭矩, 燃油发 动机在不同转速下其输出轴的扭矩总与最佳效率运行曲线的要求相吻 合, 即发动机总是工作在预存的最佳效率运行曲线上, 使发动机消耗 等量的燃油时输出的机械能最大; 3、 扭矩伺服驱动器采取扭矩伺服 的控制方式调节第二转子和第一转子之间的电磁扭矩, 即调节燃油发 动机的输出轴扭矩, 因此扭矩伺服驱动器可以连续调节扭矩, 并且扭 矩伺服驱动器调节扭矩的响应速度达亳秒级, 其调节的精度与响应的 速度远远优于机械式的无级变速箱(CVT)及有级变速箱, 节油效果明 显; 4、 本装置和控制方法可应用于各种燃油发动机, 特别适用于油 电混合动力电动车, 达到节能和降低废气排放的目的。 附图说明
图 1为某 1.8L排量汽油发动机最佳效率运行曲线, 图中纵坐标为发 动机输出轴扭矩 (单位为 N ' m, 牛顿米) , 横坐标为发动机输出轴 转速(单位为 rpm,每分钟转数), 其中细虚线为等功率线(单位为 kW, 千瓦) , 细实线为等能耗线 BE (单位为 g/kWh, 每千瓦小时克) , 粗 实线为发动机最佳效率运行曲线, 粗虚线为发动机最大扭矩限制。
图 2为本燃油发动机的伺服加载装置实施例的结构示意图, 图中 标记为: 1 燃油发动机, 2 发动机愉出轴, 3 速度 /位置传感器, 4 第 一转子, 5 第二转子, 6 集电环, 7 输出轴, 8 伺服驱动器, 9 主控 单元, 10 位置传感器。 具体实施方式
本燃油发动机的伺服加载装置实施例的结构如图 2所示, 本实施 例所述电机为三相永磁同步电机。 燃油发动机 1连接包括永磁同步电 机、 伺服驱动器及主控单元的伺服加载装置。 电机的第一转子 4与燃 油发动机 1的输出轴 2直连。 电机的第一转子 4内嵌永磁材料, 其内为 第二转子 5。 第二转子 5为绕制在铁芯上的绕组, 第二转子 5的轴为本 装置的输出轴 7。 电机的第一转子 4上安装有速度 /位置传感器 3, 该传 感器 3与主控单元 9及伺服驱动器 8连接。 本装置的输出轴 7上安装有位 置传感器 10, 该位置传感器 10与扭矩伺服驱动器 8连接。 主控单元 9与 伺服驱动器 8连接。 伺服驱动器 8通过第二转子轴上安装的集电环 6与 第二转子 5的绕组连接。 主控单元 9主体可为计算机, 其内存储该燃油 发动机 1的最佳效率运行曲线的相匹配的转速-扭矩数据或转速-扭矩匹 配关系公式。 本燃油发动机的伺服加载装置也可采用无刷直流电机, 结构与上述相同。
本装置的第一转子 4也可为绕制在铁芯上的绕组, 集电环 6安装在 发动机轴 2上, 该绕组通过集电环 6与扭矩伺服驱动器 8相连。 第二转 子 5则为嵌永磁材料的转子, 为第一转子 4提供磁场。 其它设置可以与 上述相同。
每种型号发动机的最佳效率运行曲线可由生产厂家提供, 也可以 用专用测试设备通过试验获得。 最佳效率运行曲线数据可以用表格或 函数表达方式存入主控单元 9的计算机。
图 1所示为某 1.8L排量汽油发动机最佳效率运行曲线。 本实施例主 控单元 9的计算机可用表格方式存储速度与扭矩最佳匹配数据, 即将 图 1中发动机转速从怠速到最高转速按等间隔作垂线, 从垂线与最佳 效率曲线的交点上获得与转速对应的匹配扭矩数据, 将转速-扭矩最佳 匹配数据列表存储在主控单元 9计算机中。 当发动机转速介于两节点 之间时, 主控单元 9的计算机根据来自传感器 3的转速信号通过插值方 式计算获得其匹配扭矩。 显然转速垂线间隔越小, 表格所描绘曲线的 精度越高。 如图 1所示, 以 500转数 /分钟 (rpm ) 为间隔, 从低速 1000 转数 /分钟到高速 6000转数 /分钟可以获取 1 1组转速 N-扭矩 M数据。 若 以 100 转数 /分钟为间隔, 可以获取 51组数据。 若以 1 转数 /分钟为间 隔, 可以获取 5001组数据。
主控单元 9的计算机也可采用函数方式存储转速和扭矩数据, 根 据最佳效率运行曲线通过计算、 拟合等数学处理即可荻得分段函数 M=F ( N ) , 将此函数存入主控单元 9的计算机。 主控单元 9的计算机 根据传感器 3的转速信号由此函数计算相应的最佳扭矩值。 根据本发明, 燃油发动机安装与其最大扭矩与最高转速相配的上 述的伺服加载装置。 本发明的燃油发动机伺服加载装置的最佳效率运 行控制方法为:
第一步 当燃油发动机 1运行时, 与其输出轴直连的第一转子 4随 之转动。 速度 /位置传感器 3实时监测第一转子 4的当前速度和位置, 并 将速度信号实时送至主控单元 9计算机、 位置信号送至伺服驱动器 8; 位置传感器 10实时监测第二转子 5的当前位置, 并将位置信号送至伺 服驱动器 8 ;
第二步 主控单元 9根据速度传感器 3传送的当前发动机转速信 号, 以及预先存储于主控单元 9计算机中的最佳效率运行曲线, 求取 与当前转速匹配的最佳扭矩期望值, 并将此期望值作为伺服驱动器 8 的扭矩设定信号;
第三步 伺服驱动器 8根据第一转子、 第二转子绝对位置信号求得 的第一、 第二转子之间相对位置信号以动态控制电机第二转子 5绕组 的电流矢量的方向;
第四步 伺服驱动器 8根据主控单元 9的扭矩设定值指令求得向第 二转子 5的绕组输出的电流矢量的大小; 和
第五步 伺服驱动器 8根据求得的电流矢量的方向和大小确定三相 绕组的电流瞬时值的大小, 通过三相电流闭环控制使电机实现扭矩伺 服控制, 实现根据当前发动机转速的匹配最佳扭矩值负载, 使发动机 工作在最佳效率运行曲线上, 同时第二转子 5的输出轴向负载输出同 样大小的扭矩, 如果该输出轴驱动负载发生了转动, 则输出了机械能。
第六步 主控单元 9和伺服驱动器 8重复第一步到第五步的动作, 从而循环地动态获取当前发动机 1转速, 依据当前新的转速与预存的 最佳效率曲线数据动态求取新的扭矩设定值, 扭矩伺服驱动器 8将相 应的新扭矩值施加到发动机轴 2上, 使发动机始终在其最佳效率曲线 上运行。
当发动机 1转速高于第二转子 5输出轴 Ί转速时, 来自发动机 1 的机械能量一部分通过第一、 第二转子间的电磁传递直接送出, 另一 部分经电机伺服系统转变为电能送出。
当发动机 1转速等于第二转子 5输出轴 Ί转速时, 来自发动机 1 的机械能量全部通过第一、 第二转子间的电磁传递直接送出。 当发动机 1转速低于第二转子 5输出轴 7转速时, 来自发动机 1 的机械能量全部通过第一、 第二转子间的电磁传递直接送出, 并且伺 服驱动器 8还利用外加的电能经控制电机变成机械能叠加在输出轴上 送出。
例如, 图 1的最佳效率运行曲线数据已分 11组列表储存于主控单 元 9的计算机内。 燃油发动机 1当前转速是 1500转数 /分钟, 主控单元 9 计算机查表获得匹配扭矩的期望值是 118牛顿米(N.m ) 。 因此通过扭 矩伺服驱动器 8控制电机第二转子 5绕组的电流矢量, 给燃油发动机 1 的输出轴 2施加 118牛顿米的扭矩。 此时第二转子 5的轴也对其所接负 载输出 1 18牛顿米的扭矩。 如果当前转速是 1800转数 /分钟, 介于预存 表格节点数据 1500 转数 /分钟和 2000 转数 /分钟之间, 主控单元 9计算 机按线性插值获得应施加的扭矩期望值是 128.8牛顿未, 并按同样方法 给输出轴施加 128.8牛顿米的扭矩。 如此, 传感器 3动态获取燃油发动 机当前转速, 扭矩伺服驱动器 8动态控制电机第二转子 5绕组的电流矢 量使电机动态对燃油发动机施加匹配的负载扭矩, 从而实现燃油发动 机 1始终工作在预知的最佳效率运行曲线上。
当主控单元 9的计算机内存储根据最佳效率运行曲线计算、 拟合 处理获得的发动机转速与扭矩的分段函数, 主控单元 9计算机根据速 度传感器 3的传送的实时转速信号通过函数实时计算荻得与当前转速 匹配的扭巨。 - 根据本发明的一个示例, 1.8L排量汽油发动机安装有本伺服加载 装置, 并采用本最佳效率运行控制方法运行。 如图 1中 A点所示, 在发 动机工作于输出功率 15 kW的工况并保持不变的情况下, 如果发动机 工作在非经济工作点 3500转数 /分钟, 40.9牛顿米, 其单位输出机械能量 的油耗为 335克 /千瓦小时 (g/kWh ) 。 但通过本加载控制装置和本运 行控制方法将发动机工作点调整到最佳效率运行曲线上的 B点, 即 1302 转数 /分钟, 1 10牛顿米, 其单位输出机械能量的油耗降低为 250克 /千瓦 小时,减少油耗 25.4%。 视工作点不同油耗减少比率不等。

Claims

权 利 要 求
1. 一种燃油发动机伺服加载装置, 包括具有第一转子和第二转 子的永磁电机, 该电机的第一转子与燃油发动机的输出轴直接连接, 该电机的第二转子与驱动轴直接连接, 第一转子和第二转子之间通过 电磁耦合来传递动力, 其特征在于:
该燃油发动机伺服加载装置还包括伺服驱动器, 该扭矩伺服驱动 器根据设定条件控制第一转子和第二转子之间的电磁扭矩, 从而控制 燃油发动机的扭矩负载和驱动轴的输出扭矩;
其中在第一转子轴上安装有速度 /位置传感器, 在第二转子轴上安 装有位置传感器, 用于实施扭矩伺服控制; 以及
在安装电枢绕组的转子轴上安装有连接绕组与伺服驱动器的导电 滑环。
2. 根据权利要求 1 所述的燃油发动机伺服加载装置, 还包括主 控单元, 其内存有发动机最佳效率运行曲线的转速 -扭矩关系数据表格 或函数关系公式, 用于通过伺服驱动器控制发动机按照所存储的转速- 扭矩关系运行。
3. —种燃油发动机伺服加载装置的最佳效率运行控制方法, 其 中该燃油发动机安装有与其最大扭矩与最高转速相配的根据权利要求 1 或 2 所述的燃油发动机伺服加载装置, 其特征在于该方法包括以下 步驟:
1 ) 当发动机运行时, 通过速度 /位置传感器实时监测电机第一转 子转速;
2 ) 主控单元根据速度信号, 按计算机内部预存的最佳效率运行 曲线的转速 -扭矩匹配数据或转速 -扭矩匹配关系公式求得与该速度相 匹配的最佳扭矩, 并将该扭矩设定值送入扭矩伺服驱动器;
3 )伺服驱动器根据第一转子、 第二转子绝对位置信号求得的第 一、 第二转子之间相对位置信号, 按照电流与反电势同相位的原则求 得向第一转子或第二转子的绕组输出电流矢量的方向;
4 )伺服驱动器根据主控单元送来的扭矩设定值求得向第一转子 或第二转子的绕组输出电流矢量的大小;
5 )伺服驱动器根据求得的电流矢量的方向和大小确定各相绕组 的电流瞬时值的大小, 通过各相电流闭环控制使电机实现扭^伺服控 制, 实现根据当前发动机转速的匹配最佳扭矩值负载, 使发动机工作 在最佳效率运行曲线上, 同时第二转子轴向负载输出扭矩;' 和
6 )主控单元和伺服驱动器重复第 1 到第 5 步骤, 从而循环地动 态获取当前发动机转速, 依据当前新的转速与预存的最佳效率曲线数 据动态求取新的扭矩设定值, 扭矩伺服驱动器将相应的新扭矩值施加 到发动机轴上, 按照转速来跟随发动机最佳效率运行曲线要求的扭矩 运行。
4. 一种动力输出装置, 包括燃油发动机和具有第一转子及第二 转子的永磁电机, 该电机的第一转子与燃油发动机的输出轴直接连 接, 该电机的第二转子与驱动轴直接连接, 第一转子和第二转子之间 通过电磁耦合来传递动力, 其特征在于:
电机在伺服驱动器的驱动下通过第一转子向发动机施加在当前转 速下与最佳效率运行曲线匹配的扭矩负载。
5. 根据权利要求 4 所述的动力输出装置, 其中伺服驱动器控制 电机输出扭矩的大小是由主控单元根据发动机当前转速和内存的发动 机最佳效率运行曲线确定的。
6. 根据权利要求 5 所述的动力输出装置, 其中主控单元根据燃 油发动机的当前运行参数从其中存储的燃油发动机最佳效率运行曲线 的转速 -扭矩关系表格查出或函数关系公式计算出。
7. 根据权利要求 4 所述的动力输出装置, 当电机通过第一转子 向发动机施加匹配的负载扭矩时, 其第二转子输出轴向外负载输出同 样大小的扭矩, 该扭矩方向与发动机转动方向相同。
8. 根据权利要求 4 所述的动力输出装置, 当发动机转速高于第 二转子输出轴转速时, 来自发动机的机械能量一部分通过第一、 第二 转子间的电磁传递直接送出, 另一部分经电机伺服系统转换为电能送 出。
9. 根据权利要求 4 所述的动力输出装置, 当发动机转速等于第 二转子输出轴转速时, 来自发动机的机械能量全部通过第一、 第二转 子间的电滋传递直接送出。
10. 根据权利要求 4 所述的动力输出装置, 当发动机转速低于第 二转子输出轴转速时, 来自发动机的机械能量全部通过第一、 第二转 子间的电磁传递直接送出, 并且伺服驱动器还通过控制电机将外加的 电能转换成机械能叠加在输出轴上送出。
PCT/CN2007/002792 2007-03-01 2007-09-21 Dispositif de servomécanisme de la charge d'un moteur à combustion WO2008104109A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009551094A JP2010520415A (ja) 2007-03-01 2007-09-21 燃料エンジンのサーボ負荷装置およびその最適効率制御方法
US12/529,035 US20100025130A1 (en) 2007-03-01 2007-09-21 Fuel engine servo loading device and optimal efficiency operating control method thereof
GB0915069A GB2460561A (en) 2007-03-01 2007-09-21 Fuel engine load servo device
DE112007003373T DE112007003373T5 (de) 2007-03-01 2007-09-21 Verbrennungsmotor-Laststelleinrichtung und Betriebssteuerungsverfahren für diese mit optimaler Effizienz
CN200780051944A CN101631707A (zh) 2007-03-01 2007-09-21 燃油发动机伺服加载装置及其最佳效率运行控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2007100485708A CN101257243B (zh) 2007-03-01 2007-03-01 燃油发动机伺服加载装置及其最佳效率运行控制方法
CN200710048570.8 2007-03-01
CN200720078746.X 2007-03-06
CNU200720078746XU CN201018382Y (zh) 2007-03-06 2007-03-06 燃油发动机动态寻优运行伺服加载装置

Publications (1)

Publication Number Publication Date
WO2008104109A1 true WO2008104109A1 (fr) 2008-09-04

Family

ID=39720846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002792 WO2008104109A1 (fr) 2007-03-01 2007-09-21 Dispositif de servomécanisme de la charge d'un moteur à combustion

Country Status (7)

Country Link
US (1) US20100025130A1 (zh)
JP (1) JP2010520415A (zh)
KR (1) KR20100020933A (zh)
DE (1) DE112007003373T5 (zh)
GB (1) GB2460561A (zh)
RU (1) RU2009133393A (zh)
WO (1) WO2008104109A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932630B (zh) * 2019-12-25 2021-12-17 华中科技大学 集成绕组双机械端口电机的内外转子解耦控制方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845584B2 (ja) * 2011-01-31 2016-01-20 いすゞ自動車株式会社 非接触動力伝達遮断装置
DE102011013520A1 (de) * 2011-03-10 2012-09-13 Benteler Automobiltechnik Gmbh Magnetkupplung für Druckwellenladeranordnung sowie Verfahren zum Betreiben einer derartigen Druckwellenladeranordnung
US20140129618A1 (en) * 2012-11-08 2014-05-08 General Instrument Corporation Method of streaming multimedia data over a network
US20140152006A1 (en) * 2012-12-05 2014-06-05 Deif A/S Managing Efficiency of an Engine-Driven Electric Generator
US10397641B2 (en) * 2015-03-05 2019-08-27 Comcast Cable Communications, Llc Methods and systems for content management
CN107944775A (zh) * 2018-01-03 2018-04-20 太原科技大学 一种电动清扫车吸扫装置能耗评估系统及评估方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163509A (ja) * 1995-12-08 1997-06-20 Aqueous Res:Kk 車両用駆動装置
JPH1084604A (ja) * 1996-09-06 1998-03-31 Toyota Motor Corp 内燃機関の制御装置および動力出力装置
CN1219152A (zh) * 1996-07-02 1999-06-09 丰田自动车株式会社 动力输出设备及控制该设备的方法
JP2000240484A (ja) * 1999-02-18 2000-09-05 Mitsubishi Motors Corp ハイブリッド電気自動車
JP2001138775A (ja) * 1999-11-12 2001-05-22 Nissan Motor Co Ltd 車両用駆動力制御装置
CN1519463A (zh) * 2003-01-30 2004-08-11 西门子公司 用于控制内燃机的方法和装置
US20040251065A1 (en) * 2003-05-09 2004-12-16 Nissan Motor Co., Ltd. Drive control device for hybrid vehicle
CN101050729A (zh) * 2007-04-23 2007-10-10 桂林吉星电子等平衡动力有限公司 与燃油发动机配套的能量分配式伺服系统及其调节方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118186A (en) * 1994-09-14 2000-09-12 Coleman Powermate, Inc. Throttle control for small engines and other applications
US6054844A (en) * 1998-04-21 2000-04-25 The Regents Of The University Of California Control method and apparatus for internal combustion engine electric hybrid vehicles
US6018694A (en) * 1996-07-30 2000-01-25 Denso Corporation Controller for hybrid vehicle
JP4069556B2 (ja) * 1999-10-07 2008-04-02 トヨタ自動車株式会社 動力出力装置の制御方法
US7166052B2 (en) * 2003-08-11 2007-01-23 Fallbrook Technologies Inc. Continuously variable planetary gear set

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163509A (ja) * 1995-12-08 1997-06-20 Aqueous Res:Kk 車両用駆動装置
CN1219152A (zh) * 1996-07-02 1999-06-09 丰田自动车株式会社 动力输出设备及控制该设备的方法
JPH1084604A (ja) * 1996-09-06 1998-03-31 Toyota Motor Corp 内燃機関の制御装置および動力出力装置
JP2000240484A (ja) * 1999-02-18 2000-09-05 Mitsubishi Motors Corp ハイブリッド電気自動車
JP2001138775A (ja) * 1999-11-12 2001-05-22 Nissan Motor Co Ltd 車両用駆動力制御装置
CN1519463A (zh) * 2003-01-30 2004-08-11 西门子公司 用于控制内燃机的方法和装置
US20040251065A1 (en) * 2003-05-09 2004-12-16 Nissan Motor Co., Ltd. Drive control device for hybrid vehicle
CN101050729A (zh) * 2007-04-23 2007-10-10 桂林吉星电子等平衡动力有限公司 与燃油发动机配套的能量分配式伺服系统及其调节方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932630B (zh) * 2019-12-25 2021-12-17 华中科技大学 集成绕组双机械端口电机的内外转子解耦控制方法及系统

Also Published As

Publication number Publication date
GB0915069D0 (en) 2009-09-30
RU2009133393A (ru) 2011-03-20
GB2460561A (en) 2009-12-09
DE112007003373T5 (de) 2010-01-14
KR20100020933A (ko) 2010-02-23
JP2010520415A (ja) 2010-06-10
US20100025130A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
CN101257243B (zh) 燃油发动机伺服加载装置及其最佳效率运行控制方法
WO2008104109A1 (fr) Dispositif de servomécanisme de la charge d'un moteur à combustion
CN101522497B (zh) 用于运行具有变矩器的混合驱动装置的方法
CN100386956C (zh) 电磁偶合无级变速传动系统
US7951033B2 (en) Power unit
CN101353043B (zh) 混合动力输出装置中的离合器接合控制方法及控制系统
CN101262162B (zh) 燃油发动机伺服加载装置及其动态寻优运行控制方法
CN2845305Y (zh) 电磁耦合无级变速器
US10122309B2 (en) Generator comprising a variable speed magnetic gear
CN1696541A (zh) 用于电动变速器扭矩控制的诊断方法
WO2008104107A1 (fr) Dispositif de servomécanisme de charge du moteur et procédé de commande dynamique optimisée de ce dernier
CN102826013B (zh) 静液压动力传动系统的控制方法、装置及系统
CN103633813A (zh) 分体式电磁耦合离合器及以其作动力的电控液压转向系统
WO2009036597A1 (fr) Dispositif électromagnétique de transmission continûment variable et son procédé de commande
CN101050729B (zh) 与燃油发动机配套的能量分配式伺服系统及其调节方法
CN201054538Y (zh) 燃油发动机最佳效率运行伺服加载装置
WO2009036606A1 (fr) Procédé de fonctionnement économique de moteur thermique possédant un système de servocommande
CN201018382Y (zh) 燃油发动机动态寻优运行伺服加载装置
CN2844992Y (zh) 基于旋转磁场的转子轴系扭振主动控制驱动装置
CN109878312A (zh) 一种一体式同轴电驱动装置
JP5164060B2 (ja) ハイブリッド車両用動力発生機関の制御装置
CN110048545B (zh) 一种带电机的变速箱
CN102221075A (zh) 一种液力变速器及其使用方法
CN1100997A (zh) 车用无级变速器的调控方法及其电子调控系统
JP2017001492A (ja) 動力制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780051944.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816408

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 0915069

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070921

WWE Wipo information: entry into national phase

Ref document number: 12529035

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097018111

Country of ref document: KR

Ref document number: MX/A/2009/009357

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2009551094

Country of ref document: JP

Ref document number: 1120070033738

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2009133393

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: PI20093585

Country of ref document: MY

RET De translation (de og part 6b)

Ref document number: 112007003373

Country of ref document: DE

Date of ref document: 20100114

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07816408

Country of ref document: EP

Kind code of ref document: A1