WO2008098889A1 - Geschlossenzellige schaumlage auf basis von polymilchsäure - Google Patents
Geschlossenzellige schaumlage auf basis von polymilchsäure Download PDFInfo
- Publication number
- WO2008098889A1 WO2008098889A1 PCT/EP2008/051592 EP2008051592W WO2008098889A1 WO 2008098889 A1 WO2008098889 A1 WO 2008098889A1 EP 2008051592 W EP2008051592 W EP 2008051592W WO 2008098889 A1 WO2008098889 A1 WO 2008098889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- components
- foam layer
- foam
- total weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/052—Closed cells, i.e. more than 50% of the pores are closed
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
Definitions
- the present invention relates to foam layers based on a biodegradable polyester blend comprising
- iii) from 0.5 to 3% by weight, based on the total weight of components i to ii, of a nucleating agent
- v) 0 to 50% by weight of inorganic or organic filler, wherein the foam layer is in a proportion of greater than 70% of closed cells and has a density of less than 35 g / l.
- the present invention relates to processes for the preparation of said foam layers and the use of the foam layers for the production of moldings, films and moldings, films containing said foam layers.
- JP 2004-067894 describes polyester blends based on polylactide and biodegradable aliphatic / aromatic polyesters. Although the authors mention that the polyester blends foam, no foam layers are produced. Also, nothing is done about the chemical and physical properties of the foams.
- JP 2005-179537 discloses high polylactide polyester blends and aliphatic / aromatic polyethyleneterephthalate based polyesters which are slow to biodegrade.
- the foams have a density of 40 to 200 g / l. Foam layers are not described.
- foam films based on biodegradable, aliphatic / aromatic polyesters and cellulose acetate are produced by means of direct direct gasification with carbon dioxide.
- the films have a high density of greater than 200 to 600 g / l.
- foam layers of low density in particular less than 40 g / l. It would also be desirable to provide high density (greater than 70%) closed cell foam sheets since these have better thermal insulating properties than open celled foams.
- foams of biodegradable polymers preferably of renewable raw materials, which can be produced without blowing agents such as hydrocarbon or fluorinated hydrocarbons.
- inert propellants such as nitrogen and, in particular, carbon dioxide, has the environmental advantage of allowing the foam layers thus produced to be used in the food sector.
- the present invention is therefore based on the object to provide foam layers of biodegradable materials that do not have the above-mentioned disadvantages.
- polyester mixtures comprising i) 30 to 10 wt .-%, based on the total weight of components i to ii, of at least one polyester based on aliphatic and aromatic dicarboxylic acids and aliphatic dihydroxy compound;
- ii) from 70 to 90% by weight, based on the total weight of components i to ii, of polylactide (PLA);
- iii 0.5 to 3% by weight, based on the total weight of components i to ii, of a nucleating agent
- additives such as lubricants and antiblocking agents, waxes, antistatic agents, antifoggants
- inorganic or organic fillers such as polymers of renewable raw materials, for example starch, cellulose, cereals, polyhydroxyalkanoates or polycaprolactone or aliphatic polyesters,
- blowing agents such as carbon dioxide or nitrogen
- foam layers with low density and high proportion of closed cells.
- blowing agents such as carbon dioxide or nitrogen
- the low densities are made possible on the one hand by the special composition of the polyester mixtures according to the invention and by the homogeneous mixing in a twin-screw extruder.
- Suitable partially aromatic polyesters include linear non-chain extended polyesters (WO 92/09654). Preferred are chain-extended and / or branched partially aromatic polyesters. The latter are known from the documents cited at the outset, WO 96/15173 to 15176, 21689 to 21692, 25446, 25448 or WO 98/12242, to which reference is expressly made. Mixtures of different partially aromatic polyesters are also possible. In particular, partially aromatic polyesters are products such as Ecoflex® (BASF Aktiengesellschaft), Eastar® Bio and Origo-Bi® (Novamont).
- the abovementioned partially aromatic polyesters and the polyester mixtures according to the invention are generally biodegradable.
- the characteristic "biodegradable" for a substance or a mixture of substances is fulfilled if this substance or the mixture of substances in at least one of the three methods defined in DIN V 54900-2 (pre-standard, September 1998) a percentage degree of biodegradation of at least 60%.
- Other methods of determining biodegradability are described, for example, in ASTM D 5338 and ASTM D 6400.
- the preferred partially aromatic polyesters are characterized by a molecular weight (Mn) in the range from 1000 to 100,000, in particular in the range from 9,000 to 75,000 g / mol, preferably in the range from 10,000 to 50,000 g / mol and a melting point in the range from 60 to 170, preferably in the range of 80 to 150 0 C.
- Mn molecular weight
- melt volume rate (MVR at 190 0 C and 2.16 kg according to ISO 1133 of 0.5 - preferably 2 - to 9 ml / 10 minutes
- Preferred component ii is, for example, NatureWorks® 4020 or 4042D (polylactide from NatureWorks).
- Component iii is to be understood as meaning a nucleating agent such as talc, chalk, carbon black, graphite, calcium or zinc stearate, poly-D-lactic acid, N, N'-ethylene-bis-12-hydroxystearamide, polyglycolic acid.
- talc and chalk are preferred.
- Particularly advantageous for a high cell count of the foam, the use of talc or chalk has proven with a particle size of less than 6 microns.
- the addition of nucleating agents has a positive effect on the production of the foam layers.
- the finely dispersed nucleating agent constitutes a surface for cell formation, whereby a homogeneous cell structure can be achieved and the foam density can be influenced.
- additives iv) are, for example, lubricants and antiblocking agents,
- auxiliaries are used in particular in a concentration of 0.1 to 10% by weight and preferably of 0.1 to 2% by weight, based on the total weight of components i) and ii).
- component iv) epoxide-group-containing or unsubstituted natural oils, fatty acid esters or fatty acid amides such as erucamide or Merginat® ESBO.
- Polymers of renewable raw materials such as, for example, starch, starch derivatives, cereals, cellulose derivatives, polycaprolactone and polyhydroxyalkanoates, and in particular starch, polyhydroxybutyrate (PHB), polyhydroxybutyratecovalerate (PHBV) .
- PHB polyhydroxybutyrate
- PHBV polyhydroxybutyratecovalerate
- Biocycle® polyhydroxybutyrate from Fa. PHB Ind.
- Enmat® polyhydroxybutyrate covalerate from Tianan
- inorganic fillers the already mentioned as nucleating agent talc, chalk, carbon black and graphite have been found. As a filler, however, they can be used in higher concentrations.
- the biodegradable polyester mixtures according to the invention comprise from 10 to 30% by weight, preferably from 15 to 25% by weight of component i and from 70 to 90% by weight, preferably from 75 to 85% by weight of component ii, where the weight percentages in each case based on the total weight of the components i to ii and together give 100 wt .-%.
- Component iii) is used in 0.5 to 3% by weight and preferably in 1 to 2% by weight, based on the total weight of components i) to ii).
- biodegradable polyester mixtures according to the invention from the individual components can be carried out by known processes (EP 792 309 and US Pat. No. 5,883,199).
- all components i, ii and iii can be mixed and reacted in a process step in mixing devices known to the person skilled in the art, for example kneaders or extruders at elevated temperatures, for example from 120 ° C. to 250 ° C.
- the reaction is preferably carried out in the presence of a radical initiator.
- the components are mixed in a twin-screw extruder at 160 to 220 ° C. At these temperatures will be a homogeneous blend obtained.
- PLA component ii
- blowing agent In the melt is added 1-25 wt .-%, preferably 1-15 wt .-% blowing agent.
- Physical blowing agents are used to ensure a low foam density.
- suitable blowing agents are linear alkanes having preferably 4-6 carbon atoms, nitrogen, carbon dioxide, ethanol, dimethyl ether, diethyl ether, methyl ethyl ether and combinations thereof. Particularly preferred are butane, pentane, nitrogen, and carbon dioxide, in particular carbon dioxide.
- the melt is then cooled in a second twin-screw extruder. Alternatively, the cooling may be performed in a rear segment of the single screw melt extruder. At the selected temperatures, it must be ensured that the pressure in the extruder is sufficiently high to prevent potential premature foaming in the extruder. If a hole nozzle is used to obtain foam strands, which have a smooth, shiny surface.
- annular nozzle geometry may be used to obtain tubular foam layers.
- the extruded tubular foam layers are cooled, for example with air, cut open with a knife and the resulting smooth foam layers rolled up on a roller. Care should be taken to unroll at a constant speed. The unwinding speed can influence the foam density. In addition, it must be ensured during the extrusion and winding that the foamed sheets have a homogeneous thickness distribution, since this is of crucial importance for the subsequent thermoforming process.
- the extruded foam layers can be heated to a thermoforming apparatus by brief and uniform heating, for example with an infrared heating source at 80-120 0 C, more preferably 90-100 0 C and vacuum, optionally with the additional use of compressed air in a tool thermoformed a defined shape of a foam shell and then cooled, for example, with air.
- a particular field of application of the biodegradable polyester blends with reduced oil and water absorption relates to the use for the production of foam layers, for the presentation of foamed packaging, such as thermoformed food packaging.
- the molecular weight M n of the partially aromatic polyesters was determined as follows:
- HFIP hexafluoroisopropanol
- the melting temperatures of the semiaromatic polyesters were determined by DSC measurements with a device Exstet DSC 6200R from Seiko:
- the homogeneity of the mixtures of components i, ii, and iii and of the mixtures prepared for the comparison was determined by pressing these mixtures at 190 ° C. in each case into films having a thickness of 30 .mu.m. The proportion of non-dispersed component ii present in these films was assessed by visual inspection.
- foam layers having a thickness of 2 to 3 mm were prepared by extrusion and use of an annular die. The density was determined by weighing the foam sample and determining the displacement volume in water.
- Cell wall thickness and morphology were determined by transmission electron microscopy and scanning electron microscopy.
- polyester i-1 To prepare polyester i-1, 87.3 kg of dimethyl terephthalate, 80.3 kg of adipic acid, 17 grams of 1, 4-butanediol and 0.2 kg of glycerol were mixed together with 0.028 kg of tetrabutyl orthotitanate (TBOT) Molar ratio between alcohol components and acid component 1, 30 was. The reaction mixture was heated to a temperature of 180 ° C. and reacted at this temperature for 6 hours. Subsequently, the temperature was raised to 240 0 C and distilling off the excess dihydroxy compound under vacuum over a period of 3h. 0.9 kg of hexamethylene diisocyanate were then in- ner endeavour 1 h slowly metered in at 240 0 C.
- TBOT tetrabutyl orthotitanate
- the resulting polyester i-1 had a melting temperature of 119 ° C. and a molecular weight (M n ) of 23,000 g / mol (corresponds to Ecoflex® FBX 701 1, manufactured by BASF Aktiengesellschaft).
- ii-1 aliphatic polyester, polylactide Natureworks® 4042D from NatureWorks.
- the foams of Examples 1 to 3 all show an extremely low density and a high content of closed cells.
- the foam layers according to the invention have an excellent resilience and a very good thermal insulation.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Die vorliegende Erfindung betrifft Schaumlagen auf Basis einer biologisch abbaubaren Polyestermischung, umfassend i) 30 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, mindestens eines Polyesters auf Basis von aliphatischen und aromatischen Dicarbonsäuren und aliphatischen Diolen, enthaltend: ii) 70 bis 90 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, Polylactid, und iii) 0,5 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, eines Nukleierungsmittels, iv) 0 bis 10 Gew.-% Additive; und v) 0 bis 50 Gew.-% anorganischer oder organischer Füllstoff. wobei die Schaumlage zu einem Anteil von grösser 70 % aus geschlossenen Zellen besteht und eine Dichte von kleiner 35 g/l aufweist. Weiterhin betrifft die vorliegende Erfindung Verfahren zur Herstellung der genannten Schaumlagen und die Verwendung der Schaumlagen zur Herstellung von Formteilen, Folien sowie Formteilen, Folien enthaltend die genannte Schaumlagen.
Description
Geschlossenzellige Schaumlage auf Basis von Polymilchsäure
Beschreibung
Die vorliegende Erfindung betrifft Schaumlagen auf Basis einer biologisch abbaubaren Polyestermischung, umfassend
i) 30 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, mindestens eines Polyesters auf Basis von aliphatischen und aro- matischen Dicarbonsäuren und aliphatischen Diolen, enthaltend:
a1 ) 40 bis 99 mol-% mindestens einer Bernstein-, Adipin-, oder Seba- zinsäure oder deren esterbildende Derivate oder Mischungen davon
a2) 1 bis 60 mol-% Terephthalsäure oder deren esterbildendem Derivat oder Mischungen davon und
b) 100 mol-% bezogen auf die Komponenten a1 ) und a2) 1 ,4- Butandiol oder 1 ,3-Propandiol oder Mischungen davon als Diol- komponente
c) 0 bis 1 mol-% einer Komponente ausgewählt aus
d ) mindestens einer Verbindung mit mindestens drei zur Esterbildung befähigten Gruppen,
c2) mindestens eines Isocyanates
oder Mischungen aus d ) und c2),
ii) 70 bis 90 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, Polylactid, und
iii) 0,5 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, eines Nukleierungsmittels,
iv) 0 bis 10 Gew.-% Additive; und
v) 0 bis 50 Gew.-% anorganischer oder organischer Füllstoff,
wobei die Schaumlage zu einem Anteil von größer 70 % aus geschlossenen Zellen besteht und eine Dichte von kleiner 35 g/l aufweist.
Weiterhin betrifft die vorliegende Erfindung Verfahren zur Herstellung der genannten Schaumlagen und die Verwendung der Schaumlagen zur Herstellung von Formteilen, Folien sowie Formteilen, Folien enthaltend die genannte Schaumlagen.
JP 2004-067894 beschreibt Polyestermischungen auf Basis von Polylactid und biologisch abbaubaren, aliphatisch/aromatischen Polyestern. Obgleich die Autoren erwäh- nen, dass sich die Polyestermischungen schäumen lassen, werden keine Schaumlagen hergestellt. Auch wird über die chemische und physikalische Eigenschaften der Schäume nichts ausgeführt.
JP 2005-179537 offenbart Polyestermischungen mit hohem Polylactid-Gehalt und aliphatisch/aromatischen Polyestern auf Basis von Polyethylenterephthalat, die sich nur langsam biologisch abbauen lassen. Die Schäume weisen eine Dichte von 40 bis 200 g/l auf. Schaumlagen werden nicht beschrieben.
In WO 99/065977 werden Schaumfolien basierend auf biologisch abbaubaren, alipha- tisch/aromatischen Polyestern und Celluloseacetat mittels Kohlendioxid- Direktbegasung hergestellt. Die Folien weisen eine hohe Dichte von größer 200 bis 600 g/l auf.
Die aus dem Stand der Technik bekannten Polyestermischungen sind nur bedingt zur Herstellung von Schaumlagen geeignet. Insbesondere ließen sich bisher keine
Schaumlagen geringer Dichte insbesondere kleiner 40 g/l herstellen. Auch wäre es wünschenswert Schaumlagen mit hohem Anteil (größer 70 %) an geschlossenen Zellen bereitzustellen, da diese ein besseres Wärmeisolierverhalten als offenzellige Schäume aufweisen. Schließlich ist es ein Ziel der vorliegenden Erfindung Schaumla- gen aus biologisch abbaubaren Polymeren - vorzugsweise aus nachwachsenden Rohstoffen zu entwickeln, die sich ohne Treibmittel wie Kohlenwasserstoff oder fluorierte Kohlenwasserstoffe herstellen lassen. Die Verwendung von inerten Treibmitten, wie Stickstoff und insbesondere Kohlendioxid hat neben ökologischen Aspekten den Vorteil, dass die so hergestellten Schaumlagen für den Nahrungsmittelsektor zugelassen sind.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, Schaumlagen aus biologisch abbaubaren Materialien zur Verfügung zu stellen, die die obengenanten Nachteile nicht aufweisen.
Überraschenderweise wurde nun gefunden, dass Polyestermischungen, umfassend
i) 30 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, mindestens eines Polyesters auf Basis von aliphatischen und aromatischen Di- carbonsäuren und aliphatischen Dihydroxyverbindung;
ii) 70 bis 90 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, Polylactid (PLA);
iii) 0,5 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, eines Nukleierungsmittels;
iv) 0 - 10 % Additive wie Gleit- und Antiblockmittel, Wachse, Antistatika, Antifog-
Mittel, Stabilisatoren oder Farbstoffe;
iii) 0 - 50 % anorganische oder organische Füllstoffe wie Polymere aus nachwach- senden Rohstoffen, z.B.: Stärke, Cellulose, Cerealien, Polyhydroxyalkanoate o- der Polycaprolacton oder aliphatische Polyester,
sich mit Treibmitteln wie Kohlendioxid oder Stickstoff zu Schaumlagen mit niedriger Dichte und hohem Anteil an geschlossenen Zellen verarbeiten lassen. Ermöglicht wer- den die geringen Dichten zum einen durch die spezielle Zusammensetzung der erfindungsgemäßen Polyestermischungen sowie der homogenen Vermischung in einem Doppelschneckenextruder.
Zu den geeigneten teilaromatischen Polyestern gehören lineare nicht kettenverlängerte Polyester (WO 92/09654). Bevorzugt werden kettenverlängerte und/oder verzweigte teilaromatische Polyester. Letztere sind aus den eingangs genannten Schriften, WO 96/15173 bis 15176, 21689 bis 21692, 25446, 25448 oder WO 98/12242, bekannt, auf die ausdrücklich Bezug genommen wird. Mischungen unterschiedlicher teilaromatischer Polyester kommen ebenso in Betracht. Insbesondere sind unter teilaromatischen Polyestern Produkte wie Ecoflex® (BASF Aktiengesellschaft), Eastar® Bio und Origo- Bi® (Novamont) zu verstehen.
Die genannten teilaromatischen Polyester und die erfindungsgemäßen Polyestermischungen sind in der Regel biologisch abbaubar.
Im Sinne der vorliegenden Erfindung ist das Merkmal "biologisch abbaubar" für einen Stoff oder ein Stoffgemisch dann erfüllt, wenn dieser Stoff oder das Stoffgemisch in mindestens einem der drei in DIN V 54900-2 (Vornorm, Stand September 1998) definierten Verfahren einen prozentualen Grad des biologischen Abbaus von mindestens 60% aufweist.
Andere Methoden zur Bestimmung der Bioabbaubarkeit werden beispielsweise in ASTM D 5338 und ASTM D 6400 beschrieben.
Die Herstellung der teilaromatischen Polyester ist an sich bekannt oder kann nach an sich bekannten Methoden erfolgen.
Die bevorzugten teilaromatischen Polyester sind charakterisiert durch ein Molekulargewicht (Mn) im Bereich von 1000 bis 100000, insbesondere im Bereich von 9000 bis 75000 g/mol, bevorzugt im Bereich von 10000 bis 50000 g/mol und einem Schmelz- punkt im Bereich von 60 bis 170, bevorzugt im Bereich von 80 bis 1500C.
Als Komponenten ii der biologisch abbaubaren Polyestermischungen ist Polylactid mit dem folgenden Eigenschaftsprofil bevorzugt:
• einer Schmelzvolumenrate (MVR bei 1900C und 2.16 kg nach ISO 1133 von 0.5 - vorzugsweise 2 - bis 9 ml/10 Minuten
• einem Schmelzpunkt unter 175°C;
• einem Glaspunkt (Tg) größer 55°C
• einem Wassergehalt von kleiner 1000 ppm
• einem Monomeren-Restgehalt (L-Lactid) von kleiner 0.3%. • einem Molekulargewicht von größer 80 000 Dalton.
Bevorzugte Komponente ii ist beispielsweise NatureWorks® 4020 oder 4042D (Polylactid der Fa. NatureWorks).
Als Komponente iii ist ein Nukleierungsmittel wie Talkum, Kreide, Ruß, Graphit, Calcium- oder Zinkstearat, Poly-D-Milchsäure, N,N'ethylen-bis-12-hydroxystearamid, PoIy- glykolsäure zu verstehen. Insbesondere sind Talkum und Kreide bevorzugt. Als besonders vorteilhaft für eine hohe Zellzahl des Schaums hat sich der Einsatz von Talkum oder Kreide mit einer Korngröße von kleiner 6 μm bewährt. Der Zusatz von Nukleie- rungsmitteln wirkt sich bei der Herstellung der Schaumlagen positiv aus. Das fein dispergierte Nukleierungsmittel stellt eine Oberfläche zur Zellbildung dar, wodurch eine homogene Zellstruktur erreicht und die Schaumdichte beeinflusst werden kann.
Unter den Additiven iv) sind beispielsweise • Gleit- und Antiblockmittel,
• Wachse,
• Antistatika,
• weitere Kompatibilizer wie Silane, Maleinsäureanhydrid, Fumarsäureanhydrid, Isocyanate, Disäurechloride, • Antifog-MitteL
• UV-Stabilisatoren oder
• Farbstoffe
zu verstehen.
Diese Hilfsstoffe werden insbesondere in einer Konzentration von 0.1 bis 10 Gew.-% und vorzugsweise von 0.1 bis 2 Gew.-% bezogen auf das Gesamtgewicht der Kompo- nenten i) und ii) eingesetzt.
Weiterhin werden als Komponente iv) bevorzugt Epoxidgruppen-haltige oder auch un- substituierte natürliche Öle, Fettsäureester oder Fettsäureamide wie Erucamid oder Merginat® ESBO eingesetzt.
Als organische Füllstoffe v) haben sich insbesondere Polymere von nachwachsenden Rohstoffen wie beispielsweise Stärke, Stärkederivate, Cerealien, Cellulosederivate, Polycaprolacton und Polyhydroxyalkanoate, und hier insbesondere Stärke, Polyhydro- xybutyrat (PHB), Polyhydroxybutyratcovaleriat (PHBV).Biocycle® (Polyhydroxybutyrat der Fa. PHB Ind.); Enmat® (Polyhydroxybutyratcovaleriat der Fa. Tianan) erwiesen.
Als anorganische Füllstoffe haben sich die bereits als Nukleierungsmittel erwähnten Talkum, Kreide, Ruß und Graphit erwiesen. Als Füllstoff können sie jedoch in höheren Konzentrationen zum Einsatz gelangen.
Die erfindungsgemäßen biologisch abbaubaren Polyestermischungen enthalten von 10 bis 30 Gew.-%, bevorzugt von 15 bis 25 Gew.-% Komponente i und von 70 bis 90 Gew.-%, bevorzugt von 75 bis 85 Gew.-% Komponente ii, wobei sich die Gewichtsprozente jeweils auf das Gesamtgewicht der Komponenten i bis ii beziehen und zusam- men 100 Gew.-% ergeben.
Komponente iii) wird in 0,5 bis 3 Gew.-% und bevorzugt in 1 bis 2 Gew.-% bezogen auf das Gesamtgewicht der Komponenten i) bis ii), eingesetzt.
Die Herstellung der erfindungsgemäßen biologisch abbaubaren Polyestermischungen aus den einzelnen Komponenten kann nach bekannten Verfahren erfolgen (EP 792 309 und US 5,883,199).
Beispielsweise können alle Komponenten i, ii und iii in einem Verfahrensschritt in dem Fachmann bekannten Mischvorrichtungen, beispielsweise Knetern oder Extrudern bei erhöhten Temperaturen, beispielsweise von 1200C bis 2500C, gemischt und zur Reaktion gebracht werden. Die Reaktion wird bevorzugt in Gegenwart eines Radikal Starters durchgeführt.
Zur Herstellung der Extrusionsschäume werden die Komponenten in einem Doppelschneckenextruder bei 160 bis 2200C vermischt. Bei diesen Temperaturen wird ein
homogener Blend erhalten. Vorzugsweise bildet PLA (Komponente ii) eine kontinuierliche oder kokontinuierliche Phase aus.
Raster- und Transmissionselektroskopieaufnahmen zeigen, dass bei Verwendung ei- nes Doppelschneckenextruders die diskontinuierliche Phase bestehend aus Komponente i Domänen mit einem Durchmesser kleiner 150 nm bildet. Hierdurch werden Zellwände mit Durchmessern kleiner 200 nm erreicht, in denen immer noch die diskontinuierliche Phase in der Matrix dispergiert sein kann. Hierdurch wird ein Aufreißen der Zellen während des Expansionsvorgangs vermieden. Dies wiederum führt zu hohen Anteilen an geschlossenen Zellen größer 70 %, insbesondere größer 80 % und besonders bevorzugt größer 90 %. Die niedrigen Zellwanddicken kleiner 200 nm führen außerdem zu Dichten kleiner 50 g/l und vorzugsweise kleiner 30 g/l.
In die Schmelze wird 1-25 Gew.-%, bevorzugt 1-15 Gew.-% Treibmittel eingetragen. Es werden physikalische Treibmittel eingesetzt um eine niedrige Schaumdichte zu gewährleisten. Beispiele geeigneter Treibmittel sind lineare Alkane mit bevorzugt 4-6 Kohlenstoffatomen, Stickstoff, Kohlendioxid, Ethanol, Dimethylether, Diethylether, Me- thylethylether sowie Kombinationen hiervon. Besonders bevorzugt sind Butan, Pentan, Stickstoff, und Kohlendioxid, insbesondere Kohlendioxid. Die Schmelze wird anschlie- ßend in einem zweiten Doppelschneckenextruder abgekühlt. Alternativ hierzu kann die Abkühlung in einem hinteren Segment des Einschneckenaufschmelzextruders durchgeführt werden. Bei den gewählten Temperaturen ist darauf zu achten, dass der Druck im Extruder ausreichend hoch ist um ein potenzielles frühzeitiges Aufschäumen im Extruder zu unterbinden. Wird eine Lochdüse verwendet erhält man Schaumstränge, die eine glatte, glänzende Oberfläche besitzen.
Alternativ hierzu kann eine ringförmige Düsengeometrie verwendet werden um schlauchförmige Schaumlagen zu erhalten. Die extrudierten schlauchförmigen Schaumlagen werden gekühlt, zum Beispiel mit Luft, mit einem Messer aufgeschnitten und die hierbei entstehenden glatten Schaumlagen auf einer Walze aufgerollt. Hierbei ist darauf zu achten, dass mit einer konstanten Geschwindigkeit abgerollt wird. Durch die Abwickelgeschwindigkeit kann die Schaumdichte beeinflusst werden. Außerdem ist bei der Extrusion und Aufwicklung darauf zu achten, dass die Schaumfolien eine homogenen Dickenverteilung aufweisen, da dies für den nachfolgenden Thermoformpro- zess von entscheidender Bedeutung ist.
Die extrudierten Schaumlagen können einer Thermoformapparatur durch kurzzeitiges und gleichmäßiges Erhitzen zum Beispiel mit einer Infrarot-Heizquelle auf 80-1200C, besonders bevorzugt 90-1000C erwärmt werden und per Vakuum, gegebenenfalls un- ter zusätzlicher Verwendung von Druckluft in einem Werkzeug zu einer definierten Form einer Schaumschale thermogeformt und anschließend zum Beispiel mit Luft abgekühlt werden.
Ein besonderes Anwendungsgebiet der biologisch abbaubaren Polyestermischungen mit verringerter Öl- und Wasseraufnahme betrifft die Verwendung zur Herstellung von Schaumlagen, zur Darstellung von geschäumten Verpackungen, wie thermogeformte Lebensmittelverpackungen.
Beispiele:
Anwendungstechnische Messungen:
Das Molekulargewicht Mn der teilaromatischen Polyester wurde wie folgt bestimmt:
15 mg der teilaromatischen Polyester wurden in 10 ml Hexafluoroisopropanol (HFIP) gelöst. Jeweils 125 μl dieser Lösung wurden mittels Gelpermeationschromatographie (GPC) analysiert. Die Messungen wurden bei Raumtemperatur durchgeführt. Für die Elution wurde HFIP + 0,05 Gew.-% Trifluoroessigsäure-Ka-Salz verwendet. Die Eluti- onsgeschwindigkeit betrug 0,5 ml/min. Dabei wurde folgende Säulenkombination verwendet (alle Säulen hergestellt von Fa. Showa Denko Ltd., Japan): Shodex® HFIP- 800P (Durchmesser 8 mm, Länge 5 cm), Shodex® HFIP-803 (Durchmesser 8 mm, Länge 30 cm), Shodex® HFIP-803 (Durchmesser 8 mm, Länge 30 cm). Die teilaromatischen Polyester wurden mittels eines Rl-Detektors (Differential-Refraktometrie) de- tektiert. Die Kalibrierung erfolgte mit eng verteilten Polymethylmethacrylat-Standards mit Molekulargewichten von Mn = 505 bis Mn = 2.740.000. Außerhalb dieses Intervalls liegende Elutionsbereiche wurden durch Extrapolation bestimmt.
Die Schmelztemperaturen der teilaromatischen Polyester wurden durch DSC Messungen mit einem Gerät Exstet DSC 6200R der Fa. Seiko bestimmt:
10 bis 15 mg der jeweiligen Proben wurden unter einer Stickstoffatmosphäre mit einer Aufheizrate von 20°C/min von -700C auf 2000C aufgeheizt. Als Schmelztemperaturen der Proben wurden die Peaktemperaturen des dabei beobachteten Schmelzpeaks angegeben. Als Referenz wurde jeweils ein leerer Probentiegel verwendet.
Die Homogenität der Mischungen der Komponenten i, ii, und iii sowie der zum Ver- gleich hergestellten Mischungen wurde bestimmt, indem diese Mischungen bei 190°C jeweils zu Folien mit einer Dicke von 30 μm gepresst wurden. Der Anteil nicht disper- giert vorliegender Komponente ii in diesen Folien wurde durch Augenscheinnahme beurteilt.
Aus den biologisch abbaubaren Polyestermischungen wurden durch Extrusion und Verwendung einer ringförmigen Düse jeweils Schaumlagen mit einer Dicke von 2 bis 3 mm hergestellt.
Die Dichte wurde bestimmt, in dem die Schaumprobe gewogen und das Verdrängungsvolumen in Wasser bestimmt wurde.
Zur Bestimmung des Anteils geschlossener Zellen wurde ein Querschnitt des Schaumstrangs bzw. der Schaumlage mittels Elektronenmikroskopie analysiert. In einem rechteckigen Ausschnitt wurde der Anteil derjenigen Zellen bestimmt, der eine geschlossene Zellwandstruktur enthält.
Die Zellwandstärke und die Morphologie wurden mittels Transmissionselektronenmikroskopie und Rasterelektronenmikroskopie bestimmt.
Einsatzstoffe:
Komponente i:
i-1 : Zur Herstellung des Polyesters i-1 wurden 87,3 kg Dimethylterephthalat, 80,3 kg Adipinsäure, 1 17 kg 1 ,4-Butandiol und 0,2 kg Glycerin zusammen mit 0,028 kg Tetrabutylorthotitanat (TBOT) gemischt, wobei das Molverhältnis zwischen Alko- holkomponenten und Säurekomponente 1 ,30 betrug. Das Reaktionsgemisch wurde auf eine Temperatur von 1800C erhitzt und bei dieser Temperatur 6h lang umgesetzt. Anschließend wurde die Temperatur auf 2400C erhöht und die überschüssige Dihydroxyverbindung unter Vakuum über einen Zeitraum von 3h abdestilliert. Anschließend wurden bei 2400C 0,9 kg Hexamethylendiisocyanat in- nerhalb 1 h langsam zudosiert.
Der so erhaltene Polyester i-1 wies eine Schmelztemperatur von 119°C und ein Molekulargewicht (Mn) von 23000 g/mol auf (entspricht Ecoflex® FBX 701 1 , hergestellt von BASF Aktiengesellschaft).
Komponente ii:
ii-1 : aliphatischer Polyester, Polylactid Natureworks® 4042D der Fa. NatureWorks.
Komponente iii:
Talkum, Kreide
Es wurde jeweils eine Lochdüse verwendet um Schaumstränge zu erhalten.
Beispiele 1 bis 4
Die Schäume aus den Beispielen 1 bis 3 zeigen allesamt eine äußerst niedrige Dichte und einen hohen Gehalt an geschlossenen Zellen. Damit weisen die erfindungsgemäßen Schaumlagen ein hervorragendes Rückstellverhalten und eine sehr gute Wärmedämmung auf.
Claims
1. Schaumlage auf Basis einer biologisch abbaubaren Polyestermischung, umfassend
i) 30 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, mindestens eines Polyesters auf Basis von aliphatischen und aromatischen Dicarbonsäuren und aliphatischen Diolen, enthaltend:
a1 ) 40 bis 99 mol-% mindestens einer Bernstein-, Adipin-, oder Seba- zinsäure oder deren esterbildende Derivate oder Mischungen davon
a2) 1 bis 60 mol-% Terephthalsäure oder deren esterbildendem Deri- vat oder Mischungen davon und
b) 100 mol-% bezogen auf die Komponenten a1 ) und a2) 1 ,4- Butandiol oder 1 ,3-Propandiol oder Mischungen davon als Diol- komponente
c) 0 bis 1 mol-% einer Komponente ausgewählt aus
d ) mindestens einer Verbindung mit mindestens drei zur Esterbildung befähigten Gruppen,
c2) mindestens eines Isocyanates
oder Mischungen aus d ) und c2),
ii) 70 bis 90 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, Polylactid, und
iii) 0,5 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, eines Nukleierungsmittels,
iv) 0 bis 10 Gew.-% Additive; und
v) 0 bis 50 Gew.-% anorganischer oder organischer Füllstoff.
wobei die Schaumlage zu einem Anteil von größer 70 % aus geschlossenen Zellen besteht und eine Dichte von kleiner 35 g/l aufweist.
2. Schaumlage nach Anspruch 1 , wobei die Zellwandstärke kleiner 250 nm ist.
3. Schaumlage nach den Ansprüchen 1 bis 2, wobei Komponente ii ein Polylactid mit einer Schmelzvolumenrate (MVR bei 1900C und 2.16 kg nach ISO 1 133) von
2 bis 9 ml/10 Minuten ist.
4. Schaumlage nach den Ansprüchen 1 bis 3, wobei das Nukleierungsmittel (Komponente iii) Talkum oder Kreide mit einem mittleren Teilchendurchmesser von kleiner 6 μm ist.
5. Schaumlage nach Anspruch 1 , wobei Komponente ii eine kontinuierliche oder kokontinuierliche Phase ausbildet.
6. Schaumlage nach den Ansprüchen 1 bis 5 mit einer Schichtdicke von 0,5 bis 100 cm.
7. Schaumlage nach den Ansprüchen 1 bis 6, die als Füllstoff v) 5 bis 50 Gewichts- % bezogen auf die Komponenten i) und ii) eines nachwachsenden Polymers ent- halten.
8. Verfahren zur Herstellung einer Schaumlage gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet dass
a) eine biologisch abbaubaren Polyestermischung, umfassend
i) 30 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, mindestens eines Polyesters auf Basis von aliphatischen und aromatischen Dicarbonsäuren und aliphatischen Dihydroxyver- bindung ,
ii) 70 bis 90 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, Polylactid,
iii) 0,5 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten i bis ii, eines Nukleierungsmittels,
iv) 0 bis 10 Gew.-% Additive; und
v) 0 bis 50 Gew.-% anorganischer oder organischer Füllstoff im Doppelschneckenextruder bei 160 bis 2200C gemischt wird;
b) 1 bis 25 Gew.-% eines physikalischen Treibmittels unter Druck eingegast wird und
c) abgekühlt und zur Schaumlage ausextrudiert und gegebenenfalls in einer Thermoformapparatur thermogeformt wird.
9. Verfahren nach Anspruch 8, wobei als Treibmittel Kohlendioxid eingesetzt wird.
10. Verwendung der Schaumlagen gemäß den Ansprüchen 1 bis 7 zur Wärme und Schalldämmung.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08716789A EP2121839A1 (de) | 2007-02-15 | 2008-02-11 | Geschlossenzellige schaumlage auf basis von polymilchsäure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07102497.0 | 2007-02-15 | ||
EP07102497 | 2007-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008098889A1 true WO2008098889A1 (de) | 2008-08-21 |
Family
ID=39493520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/051592 WO2008098889A1 (de) | 2007-02-15 | 2008-02-11 | Geschlossenzellige schaumlage auf basis von polymilchsäure |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2121839A1 (de) |
WO (1) | WO2008098889A1 (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010065053A1 (en) * | 2008-12-02 | 2010-06-10 | Metabolix, Inc. | Production of polyhydroxyalkanoate foam |
US8455560B2 (en) | 2007-02-15 | 2013-06-04 | Basf Se | Foam layer produced of a biodegradable polyester mixture |
EP2759569A1 (de) * | 2013-01-24 | 2014-07-30 | So.F.Ter. Tecnopolimeri Srl | Milchsäurebasierte Zusammensetzung, Verfahren zur Verarbeitung der milchsäurebasierten Zusammensetzung in einen Formartikel |
WO2015018428A1 (en) * | 2013-08-05 | 2015-02-12 | Novamont S.P.A. | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
US10030135B2 (en) | 2012-08-17 | 2018-07-24 | Cj Cheiljedang Corporation | Biobased rubber modifiers for polymer blends |
CN109251488A (zh) * | 2018-09-20 | 2019-01-22 | 中国科学院长春应用化学研究所 | 一种可生物降解的转光膜及其制备方法 |
US10253150B2 (en) * | 2010-01-14 | 2019-04-09 | Basf Se | Method for producing expandable granulates containing polylactic acid |
US10611903B2 (en) | 2014-03-27 | 2020-04-07 | Cj Cheiljedang Corporation | Highly filled polymer systems |
US10669417B2 (en) | 2013-05-30 | 2020-06-02 | Cj Cheiljedang Corporation | Recyclate blends |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004067894A (ja) * | 2002-08-07 | 2004-03-04 | Unitika Ltd | 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体 |
JP2005179537A (ja) * | 2003-12-19 | 2005-07-07 | Rai Wen-Jen | ポリラクチドの発泡方法及びその発泡体 |
-
2008
- 2008-02-11 EP EP08716789A patent/EP2121839A1/de not_active Withdrawn
- 2008-02-11 WO PCT/EP2008/051592 patent/WO2008098889A1/de active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004067894A (ja) * | 2002-08-07 | 2004-03-04 | Unitika Ltd | 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体 |
JP2005179537A (ja) * | 2003-12-19 | 2005-07-07 | Rai Wen-Jen | ポリラクチドの発泡方法及びその発泡体 |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Week 200433, Derwent World Patents Index; AN 2004-350782, XP002484518 * |
DATABASE WPI Week 200553, Derwent World Patents Index; AN 2005-515060, XP002484473 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8455560B2 (en) | 2007-02-15 | 2013-06-04 | Basf Se | Foam layer produced of a biodegradable polyester mixture |
WO2010065053A1 (en) * | 2008-12-02 | 2010-06-10 | Metabolix, Inc. | Production of polyhydroxyalkanoate foam |
US10253150B2 (en) * | 2010-01-14 | 2019-04-09 | Basf Se | Method for producing expandable granulates containing polylactic acid |
US10030135B2 (en) | 2012-08-17 | 2018-07-24 | Cj Cheiljedang Corporation | Biobased rubber modifiers for polymer blends |
EP2759569A1 (de) * | 2013-01-24 | 2014-07-30 | So.F.Ter. Tecnopolimeri Srl | Milchsäurebasierte Zusammensetzung, Verfahren zur Verarbeitung der milchsäurebasierten Zusammensetzung in einen Formartikel |
US10669417B2 (en) | 2013-05-30 | 2020-06-02 | Cj Cheiljedang Corporation | Recyclate blends |
WO2015018428A1 (en) * | 2013-08-05 | 2015-02-12 | Novamont S.P.A. | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
US9914833B2 (en) | 2013-08-05 | 2018-03-13 | Novamont S.P.A. | Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature |
CN105452375B (zh) * | 2013-08-05 | 2017-07-21 | 诺瓦蒙特股份公司 | 用于制造具有高热变形温度的制品的可生物降解聚合物组合物 |
CN105452375A (zh) * | 2013-08-05 | 2016-03-30 | 诺瓦蒙特股份公司 | 用于制造具有高热变形温度的制品的可生物降解聚合物组合物 |
US10611903B2 (en) | 2014-03-27 | 2020-04-07 | Cj Cheiljedang Corporation | Highly filled polymer systems |
CN109251488A (zh) * | 2018-09-20 | 2019-01-22 | 中国科学院长春应用化学研究所 | 一种可生物降解的转光膜及其制备方法 |
CN109251488B (zh) * | 2018-09-20 | 2021-02-05 | 中国科学院长春应用化学研究所 | 一种可生物降解的转光膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2121839A1 (de) | 2009-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2121838B1 (de) | Schaumlage auf basis einer biologisch abbaubaren polyestermischung | |
WO2008098889A1 (de) | Geschlossenzellige schaumlage auf basis von polymilchsäure | |
DE102005053068B4 (de) | Sebazinsäurehaltige Polyester und Polyestermischung, Verfahren zu deren Herstellung sowie ein Verzweigerbatch und die Verwendung der Polyestermischung | |
EP1838784B1 (de) | Biologisch abbaubare polyestermischung | |
EP2524004B1 (de) | Verfahren zur herstellung von expandierbaren polymilchsäurehaltigen granulaten | |
DE69417482T2 (de) | Erhöhter durchsatz beim schäumen und anderen schmelzverfahren von polyester | |
DE60129768T2 (de) | Polyester und aus der Schmelze hergestellte Artikel | |
EP1853648B1 (de) | Verfahren zur compoundierung von polykondensaten | |
DE60303390T2 (de) | Sulfonierte aliphatisch-aromatische copolyetherester | |
EP2350162A1 (de) | Aliphatische polyester | |
EP2550329B1 (de) | Verfahren zur folienherstellung | |
WO2015086463A1 (de) | Polymermischung für barrierefolie | |
DE69914939T2 (de) | Erhöhung der schmelzviskosität von polyester | |
WO2001012706A1 (de) | Biologisch abbaubare schaumstoffpartikel | |
WO2016087372A1 (de) | Biologisch abbaubare copolyester | |
WO2012168324A1 (de) | Biologisch abbaubare polyestermischung | |
Wang et al. | Study on the structure and properties of choline chloride toughened polylactide composites | |
EP3891208B1 (de) | Verfahren zur herstellung eines (co)polyesters | |
WO2013030300A1 (de) | Polypropylencarbonat-haltige schäume | |
EP2826817B1 (de) | Biologisch abbaubare polyestermischung | |
WO2014001119A1 (de) | Verfahren zur herstellung von expandierbaren polymilchsäurehaltigen granulaten | |
EP3990544A1 (de) | Mineralverstärkter co-polyester blend | |
DE10046398A1 (de) | Polyesterfolie | |
DE10108985A1 (de) | Polyesterfolie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08716789 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2008716789 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |