WO2008087172A1 - Verfahren zur herstellung strukturierter, elektrisch leitfähiger oberflächen - Google Patents

Verfahren zur herstellung strukturierter, elektrisch leitfähiger oberflächen Download PDF

Info

Publication number
WO2008087172A1
WO2008087172A1 PCT/EP2008/050479 EP2008050479W WO2008087172A1 WO 2008087172 A1 WO2008087172 A1 WO 2008087172A1 EP 2008050479 W EP2008050479 W EP 2008050479W WO 2008087172 A1 WO2008087172 A1 WO 2008087172A1
Authority
WO
WIPO (PCT)
Prior art keywords
base layer
laser
particles
dispersion
substrate
Prior art date
Application number
PCT/EP2008/050479
Other languages
English (en)
French (fr)
Inventor
Rene Lochtman
Jürgen Kaczun
Norbert Wagner
Jürgen PFISTER
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to CA002675033A priority Critical patent/CA2675033A1/en
Priority to US12/523,672 priority patent/US20100009094A1/en
Priority to BRPI0806629-9A priority patent/BRPI0806629A2/pt
Priority to CNA2008800026165A priority patent/CN101584258A/zh
Priority to KR1020097017245A priority patent/KR20090103949A/ko
Priority to EP08701541A priority patent/EP2127507A1/de
Priority to JP2009545921A priority patent/JP2010517256A/ja
Publication of WO2008087172A1 publication Critical patent/WO2008087172A1/de
Priority to IL199769A priority patent/IL199769A0/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/027Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by irradiation, e.g. by photons, alpha or beta particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0112Absorbing light, e.g. dielectric layer with carbon filler for laser processing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0347Overplating, e.g. for reinforcing conductors or bumps; Plating over filled vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light

Definitions

  • the invention relates to a method for producing structured, electrically conductive surfaces on a substrate.
  • the method according to the invention is suitable, for example, for producing conductor tracks on printed circuit boards, RFID antennas, transponder antennas or other antenna structures, chip card modules, flat cables, seat heaters, foil conductors, printed conductors in solar cells or in LCD or plasma picture screens, or galvanically coated products in any desired form , Also, the method is useful for making decorative or functional surfaces on products that can be used, for example, to shield from electromagnetic radiation, to conduct heat, or to package. Finally, thin metal foils or one or two-sided metal-clad polymer carriers can also be produced by the process.
  • a method for producing images on printed circuit boards is known, for example, from DE-A 40 10 244.
  • a conductive ink is first applied to the generally electrically non-conductive printed circuit board.
  • the conductor pattern is machined out of the conductive ink.
  • the pattern is metallized.
  • the conductive ink is a two-component paint containing metal particles.
  • suitable metal particles for example, iron or nickel powder may be mentioned.
  • a method for producing printed conductors in which first a printed circuit board is coated with a conductive ink and subsequently the printed conductors are modeled from the ink with a laser, is also known, for example, from US-A 2003/0075532.
  • the ink contains a paste loaded with conductive particles.
  • conductive particles are, for example, metal particles or non-metallic particles, such as carbon particles called.
  • a thickness of about 75 to 100 microns is called.
  • EP-A 0 415 336 also relates to a method for producing printed conductors in which a conductive paste is first applied to a non-conductor and subsequently the printed conductors are modeled using a laser. Again, a large layer thickness is necessary to produce a conductor track.
  • an activation layer with a sufficient electrical potential is first of all produced Conductivity applied. From this, the desired trace course is structured using a laser. For example, thin metal films may be applied to the activation layer.
  • the conductivity of the activation layer is achieved, for example, by using polymerized or copolymerized pyrrole, furan, thiophene or other derivatives.
  • metal sulfide or metal polysulfide layers as well as palladium or copper catalysts.
  • the disadvantage of many organic activation layers is the low adhesion to many carriers and the low thermal stability in the application, for example, soldering to printed circuit boards.
  • the object of the invention is to provide a simple, cost-effective and productive alternative method by which electrically conductive, structured surfaces can be produced on a support, these surfaces being homogeneous and continuously electrically conductive.
  • the object is achieved by a method for producing structured, electrically conductive surfaces on a substrate, which comprises the following steps:
  • An advantage of the method according to the invention is that in addition to two-dimensional and three-dimensional electronic circuit substrate, for example 3D molded interconnect devices or the interior of device housings with tracks can be provided with an extremely fine structure.
  • all surfaces can be processed one after another by either bringing the object to be coated into the correct position or by controlling the laser beam accordingly.
  • a substrate to which the electrically conductive, structured surface is applied for example, rigid or flexible substrates are suitable.
  • the substrate is not electrically conductive.
  • Suitable substrates are, for example, reinforced or unreinforced polymers, as are commonly used for printed circuit boards.
  • Suitable polymers are epoxy resins, or modified epoxy resins, for example bifunctional or polyfunctional bisphenol A or bisphenol F resins, epoxy novolac resins, brominated epoxy resins, aramid-reinforced or glass-fiber reinforced or paper-reinforced epoxy resins (for example FR4), glass fiber reinforced plastics, liquid cristal polymers (LCP), polyphenylene sulfides (PPS), polyoxymethylenes (POM), polyaryletherketones (PAEK), polyetheretherketones (PEEK), polyamides (PA), polycarbonates (PC), polybutylene terephthalates (PBT), polyethylene terephthalates (PET), polyimides (PI) , Polyimide resins, cyanate esters, bismaleimide
  • suitable substrates composites, foam-like polymers, polystyrene ®, styrodur ®, polyurethanes (PU), ceramic surfaces, textiles, paperboard, cardboard, paper, polymer coated paper, wood, mineral materials, silicon, glass, plant tissue and animal tissue.
  • a base layer is applied, which contains electroless and / or galvanically coatable particles.
  • the base layer is patterned by ablation in accordance with a predetermined structure with a laser.
  • Suitable lasers are commercially available. All lasers, such as pulsed or continuous gas, solid-state, diode or excimer lasers can be used, provided that the base layer sufficiently absorbs the laser radiation and the laser power is sufficient, the ablation threshold at which the material of the base layer at least partially decomposes or at least partially evaporated, to exceed.
  • pulsed or continuous IR lasers for example CO 2 lasers, Nd-Y AG lasers, Yb: YAG lasers, fiber or diode lasers.
  • a suitable laser generally has a power consumption of at least 30 W.
  • lasers with wavelengths in the visible or UV frequency range.
  • Such lasers are, for example, Ar lasers, HeNe lasers, frequency-multiplied solid-state IR lasers or excimer lasers, such as ArF lasers, KrF lasers, XeCI lasers or XeF lasers.
  • the focal diameter of the laser beam is between 1 ⁇ m and 100 ⁇ m, preferably between 5 ⁇ m and 50 ⁇ m.
  • the wavelength of the laser light is preferably in the range of 150 to 10,600 nm, particularly preferably in the range of 600 to 10,600 nm.
  • the regions of the base layer to be removed are removed from the base layer by means of a focused laser. It is also possible to produce the structure of the base layer using a mask arranged in the beam path of the laser or by means of an imaging method.
  • a dispersion which is currentless and / or galvanically coatable Contains particles in a matrix material, applied to the substrate to form the base layer.
  • the electrolessly and / or electrolytically coatable particles may be particles of any desired geometry made of any electrically conductive material, of mixtures of different electrically conductive materials or of mixtures of electrically conductive and non-conductive materials.
  • Suitable electrically conductive materials are, for example, carbon black, for example in the form of carbon black, graphite, graphenes or carbon nanotubes, electrically conductive metal complexes, conductive organic compounds or conductive polymers or metals, preferably zinc, nickel, copper, tin, cobalt, manganese , Iron, magnesium, lead, chromium, bismuth, silver, gold, aluminum, titanium, palladium, platinum, tantalum and alloys thereof, or metal mixtures containing at least one of these metals.
  • suitable alloys are CuZn, CuSn, CuNi, SnPb, SnBi, SnCo, NiPb, SnFe, ZnNi, ZnCo and ZnMn.
  • Particularly preferred are aluminum, iron, copper, silver, nickel, zinc, tin, carbon and mixtures thereof.
  • the electrolessly and / or electrolytically coatable particles preferably have an average particle diameter of from 0.001 to 100 ⁇ m, preferably from 0.005 to 50 ⁇ m, and particularly preferably from 0.01 to 10 ⁇ m.
  • the average particle diameter can be determined by means of laser diffraction measurement, for example on a Microtrac X100 device.
  • the distribution of the particle diameter depends on their production method. Typically, the diameter distribution has only one maximum, but several maxima are also possible.
  • electrolessly and / or electrolytically coatable particles are used which have a strong reflection in the range of the laser wavelength used, they are preferably provided with a coating ("coating").
  • Suitable coatings can be inorganic or organic.” Inorganic Coatings are, for example, SiC> 2 , phosphates or phosphides The material for the coating is chosen such that it only weakly reflects the laser light used.
  • the electrolessly and / or electrolytically coatable particles may also be coated with a metal or metal oxide.
  • the metal that makes up the particles may be partially oxidized, for example, in the case of iron, an iron oxide layer is applied to the iron particles by oxidizing the iron at the surface of the carbonyl iron powder is thus obtained.
  • an iron oxide layer is applied to the iron particles by oxidizing the iron at the surface of the carbonyl iron powder is thus obtained.
  • balls that are made of iron inside and have an oxide layer on the outer surface Due to the weak reflection of the surface of the particles contained in the base layer, the majority of the laser energy enters the base layer. Only the fraction reflected by the particles is lost for the removal of the base layer. As a result, the desired structure can be formed from the base layer with little expenditure of energy.
  • the metals are selected from the group consisting of aluminum, iron, copper, silver, nickel, tin and zinc.
  • the electrolessly and / or electrolytically coatable particles may also contain a first metal and a second metal, wherein the second metal is in the form of an alloy (with the first metal or one or more other metals), or the electroless and / or electrodepositable Particles containing two different alloys.
  • the shape of the electrolessly and / or electrolytically coatable particles has an influence on the properties of the dispersion after a coating.
  • the shape of the electrolessly and / or electrolytically coatable particles may be, for example, acicular, cylindrical, plate-shaped or spherical. These particle shapes represent idealized shapes, wherein the actual shape, for example due to production, may vary more or less strongly therefrom.
  • drop-shaped particles in the context of the present invention are a real deviation of the idealized spherical shape.
  • Electroless and / or electroplated particles having various particle shapes are commercially available.
  • the individual mixing partners can also have different particle shapes and / or particle sizes. It is also possible to use mixtures of only one type of electrolessly and / or electrolytically coatable particles having different particle sizes and / or particle shapes. In the case of different particle shapes and / or particle sizes, the metals aluminum, iron, copper, silver, nickel and zinc, and carbon are also preferred. When mixtures of particle shapes are used, mixtures of spherical particles with platelet particles are preferred. In one embodiment, for example, spherical carbonyl iron powder particles with platelet-shaped iron and / or copper particles and / or carbon nanotubes are used.
  • the electrolessly and / or electrolytically coatable particles in the form of their powders can be added to the dispersion.
  • Such powders for example metal powders
  • Such powders are common commercial products and can easily be produced by known methods, for example by electrolytic deposition or chemical relocation from solutions of metal salts or by reduction of an oxidic powder, for example by means of hydrogen, by spraying or atomizing a molten metal. especially in cooling media, such as gases or water. Preference is given to the gas and water atomization and the reduction of metal oxides.
  • Metal powders of the preferred grain size can also be made by grinding coarser metal powders. For example, a ball mill is suitable for this purpose.
  • the carbonyl iron powder process is preferred for producing carbonyl iron powder.
  • This is done by thermal decomposition of iron pentacarbonyl. This is described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, vol. A14, page 599 described.
  • the decomposition of the iron pentacarbonyl can be carried out, for example, at elevated temperatures and elevated pressures in a heatable decomposer comprising a tube made of a heat-resistant material, such as quartz glass or V2A steel in a preferably vertical position, which is heated by a heating device, for example consisting of heating baths, heating wire or from a heating medium flowed through by a heating jacket, is surrounded.
  • a heating device for example consisting of heating baths, heating wire or from a heating medium flowed through by a heating jacket, is surrounded.
  • Carbonyl nickel powder can also be produced by a similar method.
  • Platelet-shaped electrolessly and / or electrolytically coatable particles can be controlled by optimized conditions in the manufacturing process or subsequently obtained by mechanical treatment, for example by treatment in a stirred ball mill.
  • the proportion of electrolessly and / or electrolytically coatable particles in the range of 20 to 98 wt .-%.
  • a preferred range of the proportion of electrolessly and / or electrolytically coatable particles is from 30 to 95% by weight, based on the total weight of the dried base layer.
  • suitable matrix materials include binders having a pigment-affine anchoring group, natural and synthetic polymers and their derivatives, natural resins and synthetic resins and their derivatives, natural rubber, synthetic rubber, proteins, cellulose derivatives, drying and non-drying oils and the like. These can, but do not have to be, chemically or physically curing, for example air-hardening, radiation-curing or temperature-curing.
  • the matrix material is a polymer or polymer mixture.
  • Preferred polymers as the matrix material are ABS (acrylonitrile-butadiene-styrene); ASA (acrylonitrile-styrene-acrylate); acrylated acrylates; alkyd resins; Alkylvinylacetate; Alkylene vinyl acetate copolymers, especially methylene vinyl acetate, ethylene vinyl acetate, butylene vinyl acetate; Alkylenvinylchlorid copolymers; amino resins; Aldehyde and ketone resins; Cellulose and cellulose derivatives, in particular hydroxyalkylcellulose, cellulose esters, such as acetates, propionates, butyrates, carboxyalkylcelluloses, cellulose nitrate; epoxy acrylates; epoxy resins; modified epoxy resins, for example bifunctional or polyfunctional bisphenol A or bisphenol F resins, epoxy novolac resins, brominated epoxy resins, cycloalipha
  • Particularly preferred polymers as matrix material are acrylates, acrylate resins, cellulose derivatives, methacrylates, methacrylate resins, melamine and amino resins, polyalkylenes, polyimides, epoxy resins, modified epoxy resins, for example bifunctional or polyfunctional bisphenol A or bisphenol F resins, epoxy novolaks.
  • Resins brominated epoxy resins, cycloaliphatic epoxy resins; aliphatic epoxy resins, glycidyl ethers, vinyl ethers, and phenolic resins, polyurethanes, polyesters, polyvinyl acetals, polyvinyl acetates, polystyrenes, polystyrene copolymers, polystyrene acrylates, styrene-butadiene block copolymers, alkylene vinyl acetates and vinyl chloride copolymers, polyamides and their copolymers.
  • the matrix material for the dispersion is preferably thermally or radiation-curing resins, for example modified epoxy resins, such as bifunctional or polyfunctional bisphenol A or bisphenol F resins, epoxy novolac resins, brominated epoxy resins, cycloaliphatic epoxy resins; aliphatic epoxy resins, glycidyl ethers, cyanate esters, vinyl ethers, phenolic resins, polyimides, melamine resins and amino resins, polyurethanes, polyesters and cellulose derivatives.
  • modified epoxy resins such as bifunctional or polyfunctional bisphenol A or bisphenol F resins, epoxy novolac resins, brominated epoxy resins, cycloaliphatic epoxy resins; aliphatic epoxy resins, glycidyl ethers, cyanate esters, vinyl ethers, phenolic resins, polyimides, melamine resins and amino resins, polyurethanes, polyesters and cellulose derivatives.
  • the proportion of the organic binder component is from 0.01 to 60% by weight.
  • the proportion is 0.1 to 45 wt .-%, more preferably 0.5 to 35 wt .-%.
  • the dispersion may furthermore be admixed with a solvent or a solvent mixture in order to adjust the viscosity of the dispersion which is suitable for the respective application method.
  • Suitable solvents are, for example, aliphatic and aromatic hydrocarbons (for example n-octane, cyclohexane, toluene, xylene), alcohols (for example methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, amyl alcohol ), polyhydric alcohols such as
  • Glycerol ethylene glycol, propylene glycol, neopentyl glycol, alkyl esters (for example methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, isopropyl acetate,
  • Methyl butanol alkoxy alcohols (for example methoxypropanol, methoxybutanol, ethoxypropanol), alkylbenzenes (for example ethylbenzene, isopropylbenzene), butylglycol, butyl diglycol, alkylglycol acetates (for example butylglycol acetate, butyldiglycol acetate, propylene glycol methyl ether acetate), diacetone alcohol, diglycol dialkyl ethers, diglycol monoalkyl ethers, Dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ethers, diglycol alkyl ether acetates, dipropylene glycol alkyl ether acetates, dioxane, dipropylene glycol and ethers, diethylene glycol and ethers, DBE (dibasic esters), ethers (for example die
  • Example butyrolactone ketones (for example acetone, 2-butanone, cyclohexanone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK)), methyl diglycol, methylene chloride, methylene glycol, methyl glycol acetate, methylphenol (ortho-, meta-, para-cresol ), Pyrrolidones (for example N-methyl-2-pyrrolidone), propylene glycol, propylene carbonate, carbon tetrachloride, toluene, trimethylolpropane (TMP), aromatic hydrocarbons and mixtures, aliphatic hydrocarbons and mixtures, alcoholic monoterpenes (such as terpineol), water and mixtures of two or more of these solvents.
  • ketones for example acetone, 2-butanone, cyclohexanone, methyl ethyl ketone (MEK), methyl isobutyl
  • Preferred solvents are alcohols (for example ethanol, 1-propanol, 2-propanol, butanol), alkoxyalcohols (for example methoxypropanol, ethoxypropanol, butylglycol, butyl diglycol), butyrolactone, diglycol dialkyl ethers, diglycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ethers, esters (for example ethyl acetate, butyl acetate, butyl glycol acetate, butyl diglycol acetate, diglycol alkyl ether acetates, dipropylene glycol alkyl acetates, DBE, propylene glycol methyl ether acetate), ethers (for example tetrahydrofuran), polyhydric alcohols such as glycerol, ethylene glycol, propylene glycol, neopentyl
  • liquid matrix materials for example liquid epoxy resins, acrylate esters
  • the respective viscosity can alternatively also be adjusted via the temperature during application or via a combination of solvent and temperature
  • the dispersion may further contain a dispersant component. This consists of one or more dispersants.
  • dispersants known to the person skilled in the art for use in dispersions and described in the prior art are suitable.
  • Preferred dispersants are surfactants or surfactant mixtures, for example anionic, cationic, amphoteric or nonionic surfactants.
  • Cationic and anionic surfactants are described, for example, in “Encyclopedia of Polymer Science and Technology”, J. Wiley & Sons (1966), Vol. 5, pp. 816-818, and in “Emulsion Polymerization and Emulsion Polymers", editors P. Lovell and M. El-Asser, published by Wiley & Sons (1997), pages 224-226.
  • the dispersant may be used in the range of 0.01 to 50% by weight based on the total weight of the dispersion.
  • the proportion is preferably 0.1 to 20% by weight, more preferably 0.2 to 10% by weight.
  • the dispersion of the invention may contain a filler component.
  • This may consist of one or more fillers.
  • the filler component of the metallizable composition may contain fibrous, layered or particulate fillers or mixtures thereof. These are preferably commercially available products, for example mineral fillers.
  • fillers or reinforcing materials such as glass powder, mineral fibers, whiskers, aluminum hydroxide, metal oxides such as alumina or iron oxide, mica, quartz, calcium carbonate, barium sulfate, titanium dioxide or wollastonite can be used.
  • thixotropic agents for example silicic acid, silicates, such as aerosils or bentonites, or organic thixotropic agents and thickeners, such as polyacrylic acid, polyurethanes, hydrogenated castor oil, dyes, fatty acids, fatty acid amides, plasticizers, wetting agents, defoamers , Lubricants, drying agents, crosslinkers, photoinitiators, complexing agents, waxes, pigments, conductive polymer particles, can be used.
  • thixotropic agents for example silicic acid, silicates, such as aerosils or bentonites
  • organic thixotropic agents and thickeners such as polyacrylic acid, polyurethanes, hydrogenated castor oil, dyes, fatty acids, fatty acid amides, plasticizers, wetting agents, defoamers , Lubricants, drying agents, crosslinkers, photoinitiators, complexing agents, waxes, pigments, conductive polymer particles.
  • the proportion of Medstoffkomponente- and / or additives, based on the total weight of the dry base layer is preferably 0.01 to 50 wt .-%. Further preferred are 0.1 to 30 wt .-%, particularly preferably 0.3 to 20 wt .-%.
  • processing aids and stabilizers such as UV stabilizers, lubricants, corrosion inhibitors and flame retardants can be present in the dispersion.
  • their proportion based on the total weight of the dispersion, 0.01 to 5 wt .-%.
  • the proportion is 0.05 to 3 wt .-%.
  • absorbers can be added to the dispersion. Depending on the laser beam source used, it may be necessary to select different absorbents or mixtures of absorbents which effectively absorb the laser radiation.
  • the absorbent is either added to the dispersion, or it is applied between the substrate and the dispersion, an additional separate absorption layer containing the absorbent. In the latter case, the energy is absorbed locally in the absorption layer and transferred to the dispersion by heat conduction.
  • Suitable absorbents for laser radiation have a high absorption in the range of the laser wavelength.
  • absorbents are suitable which have a high absorption in the near infrared and in the longer wavelength Vis range of the electromagnetic spectrum.
  • Such absorbents are particularly useful for absorbing the radiation from high performance solid state lasers, such as Nd-YAG lasers having a wavelength of 1064 nm, and IR diode lasers typically having wavelengths in the range of 700 to 1600 nm.
  • suitable absorbents for the laser radiation are highly absorbing dyes in the infrared spectral range, for example phthalocyanines, naphthalocyanines, cyanines, quinones, metal complex dyes, such as dithiolenes or photochromic dyes.
  • suitable absorbents are inorganic pigments, in particular intensively colored, inorganic pigments, such as chromium oxides, iron oxides, iron oxide hydrates or carbon in the form of, for example, carbon black, graphite, graphenes or carbon nanotubes.
  • Particularly suitable as absorbers for laser radiation are finely divided carbon species and finely divided lanthanum hexaboride (LaB 6 ).
  • absorbent in general, from 0.005 to 20% by weight of absorbent, based on the weight of the electrolessly and / or electrolytically coatable particles, is used in the dispersion. Preference is given to using from 0.01 to 15% by weight of absorbent and particularly preferably from 0.1 to 10% by weight of absorbent, in each case based on the weight of the electrolessly and / or electrically coatable particles, in the dispersion.
  • the amount of absorbent added is chosen by the skilled person depending on the particular desired properties of the base layer. In this context, the skilled person will further take into account that the added absorbents not only influence the speed and efficiency of ablation of the base layer by laser, but also other properties of the base layer, such as its carrier adhesion, curing or metal adhesion.
  • the absorption layer In the case of a separate absorption layer this contains in the best case, the absorbent and the same matrix material, as well as the overlying base layer to ensure a good layer adhesion.
  • the absorption layer In order to effect an effective conversion of light energy into heat energy and to achieve rapid heat conduction into the base layer, the absorption layer should be applied as thinly as possible and the absorption medium should be present in the highest possible concentration, without the layer properties, such as adhesion to the support and the base layer, and to negatively influence the curing. Suitable concentrations of the absorbent in the absorption layer are at least 1 to 95 wt .-%, particularly preferably 50 to 85 wt .-%.
  • the energy required for ablation can be applied either on the side coated with the dispersion or on the side of the substrate opposite the dispersion.
  • the removal is removed by means of a suction or by blowing away the Abtrages. If necessary, a combination of the two process variants can also be used.
  • the coating of the substrate with the base layer can be carried out both on one side and on two sides.
  • the two sides can be structured in succession in the laser ablation step or simultaneously by at least two laser beam sources from both sides.
  • more than one laser beam source can be used. It is also possible to divide the laser beam of a laser source, whereby with only one laser source also the productivity can be increased.
  • the structuring can be achieved, for example, by either moving the substrate on an XY stage or by the laser beam moving, for example by the use of a movable mirror. Also, a combination of both methods is possible.
  • the application of the full-surface base layer takes place, for example, according to the coating method known to the person skilled in the art. Such coating methods include, for example, casting such as curtain coating, roll coating, brushing, knife coating, brushing, spraying, dipping, rolling, powdering, fluidized bed or the like.
  • the full-surface base layer is printed with the dispersion by any printing process on the support, wherein the later structures can be roughly pre-formed.
  • the printing method by which the base layer is printed is, for example, a roll or sheet printing method such as screen printing, direct or indirect gravure printing, flexographic printing, letterpress printing, pad printing, ink jet printing, laser sonic method® as in DE 100 51 850 described, offset printing or magnetographic printing.
  • a roll or sheet printing method such as screen printing, direct or indirect gravure printing, flexographic printing, letterpress printing, pad printing, ink jet printing, laser sonic method® as in DE 100 51 850 described, offset printing or magnetographic printing.
  • the layer thickness of the base layer produced by the printing or the coating method preferably varies between 0.01 and 50 ⁇ m, more preferably between 0.05 and 25 ⁇ m and particularly preferably between 0.1 and 20 ⁇ m.
  • the layers can be applied both over the entire surface as well as structured. The layers can be applied on one side or on both sides if necessary.
  • a structured application of the dispersion is then advantageous and preferred if, for example, predetermined structures are produced in large quantities and the size of the surface to be ablated is reduced by the structured application. This can be produced at a higher speed and more cost-effective, since less material of the base layer must be ablated.
  • the dispersion is stirred or recirculated in a receiver tank prior to application to the substrate.
  • a possible sedimentation of the particles contained in the dispersion is prevented.
  • more homogeneous base layers i. Base layers in which the electrically conductive particles are homogeneously distributed, obtained.
  • a homogeneous base layer leads in the electroless and / or galvanic coating step to significantly better, more homogeneous and more continuous structures.
  • the dispersion is heated in the reservoir. This makes it possible to achieve a more homogeneous base layer on the carrier, since a constant viscosity can be set by the tempering.
  • the temperature control is particularly necessary when the dispersion is heated, for example, by the stirring and / or pumping due to the energy input of the stirrer or the pump and thereby changes the viscosity thereof.
  • the substrate at its top and bottom with an electrically conductive structured surface. With the aid of plated-through holes, the structured, electrically conductive surfaces on the upper side and the underside of the substrate can be electrically connected to one another.
  • a wall of a bore in the substrate is provided with an electrically conductive surface.
  • the through-connection it is possible, for example, to form bores in the support, on the wall of which the dispersion containing the electrolessly and / or electrolytically coatable particles is applied during the printing of the base layer.
  • a sufficiently thin substrate for example, a thin PET film
  • the bore can be made, for example, by staking, punching or laser drilling.
  • the dispersion with which the base layer is applied to the substrate at least partially dries after application and / or at least partially cures.
  • the drying and / or curing is carried out as described above, for example by the action of heat, light (UVA / is) and / or radiation, for example infrared radiation, electron radiation, gamma radiation, X-radiation, microwaves.
  • a suitable activator must be added to trigger the curing reaction.
  • Curing can also be achieved by combining various methods, for example by combining UV radiation and heat. The combination of the curing processes can be carried out simultaneously or sequentially.
  • UV radiation can initially only harden the layer so that the formed structures no longer flow apart. Thereafter, the layer can be cured by the action of heat.
  • the action of heat can take place directly after UV curing and / or after electroless and / or galvanic metallization. After at least partial drying and / or hardening and exposure of the desired structure by means of ablation are in a preferred variant, the electroless and / or galvanically coatable particles at least partially exposed.
  • the exposure of the electroless and / or electrodepositable particles can be effected both mechanically, for example by brushing, grinding, milling, sand blasting or supercritical carbon dioxide irradiation, physically, for example by heating, laser, UV light, corona discharge or plasma discharge, or chemically.
  • a suitable chemical or chemical mixture is preferably used for the matrix material.
  • the matrix material can be at least partially dissolved and washed down by a solvent on the surface, or the chemical structure of the matrix material can be at least partially destroyed by means of suitable reagents, whereby the electrolessly and / or electrolytically coatable particles be exposed.
  • Reagents that swell the matrix material are also suitable for exposing the electrolessly and / or electrolytically coatable particles.
  • swelling arise cavities into which the metal ions to be deposited can penetrate from the electrolyte solution, whereby a larger number of electrolessly and / or galvanically coatable particles can be metallized.
  • the adhesion, the homogeneity and the continuity of the subsequent electroless and / or electrodeposited metal layer is significantly better than in the methods described in the prior art. Due to the higher number of electrolessly and / or electrolytically coatable particles, the process speed in the metallization is also significantly higher, whereby additional cost advantages can be achieved.
  • the electroless and / or electrodepositable particles are preferably exposed to an oxidizing agent.
  • the oxidizing agent breaks up bonds in the matrix material, which allows the binder to be peeled off and thereby expose the particles.
  • Suitable oxidizing agents are, for example, manganates, for example potassium permanganate, potassium manganate, sodium permanganate, sodium manganate, hydrogen peroxide, oxygen, oxygen in the presence of catalysts such as manganese, molybdenum, bismuth, tungsten and cobalt salts, ozone, vanadium pentoxide.
  • manganates for example potassium permanganate, potassium manganate, sodium permanganate, sodium manganate, hydrogen peroxide, oxygen, oxygen in the presence of catalysts such as manganese, molybdenum, bismuth, tungsten and cobalt salts, ozone, vanadium pentoxide.
  • manganates for example potassium permanganate, potassium manganate, sodium permanganate, sodium manganate, hydrogen peroxide, N-methyl morpholine N-oxide, percarbonates, for example sodium or potassium percarbonate, perborates, for example sodium or potassium perborate, persulfates, for example Sodium or potassium persulfate, sodium, potassium and ammonium peroxodis and monosulfates, sodium hypochlorite, urea-hydrogen peroxide adducts, salts of oxohalogenic acids, for example chlorates, bromates or iodates, salts of haloperacids, for example sodium periodate or sodium perchlorate, tetrabutylammonium peroxydisulfate, quinones , Iron (III) salt solutions, vanadium pentoxide, pyridinium dichromate, hydrochloric acid, bromine, chlorine, dichromates.
  • iron (III) salt solutions vanadium pentoxide,
  • potassium permanganate potassium manganate, sodium permanganate, sodium manganate, hydrogen peroxide and its adducts
  • perborates percarbonates, persulfates, peroxodisulfates, sodium hypochlorite and perchlorates.
  • acidic or alkaline chemical chemicals and / or chemical mixtures are, for example, concentrated or dilute acids, such as hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid. Also organic acids, such as formic acid or acetic acid, may be suitable depending on the matrix material.
  • Suitable alkaline chemicals and / or chemical mixtures are, for example, bases, such as sodium hydroxide solution, potassium hydroxide solution, ammonium hydroxide or carbonates, for example sodium carbonate or potassium carbonate.
  • bases such as sodium hydroxide solution, potassium hydroxide solution, ammonium hydroxide or carbonates, for example sodium carbonate or potassium carbonate.
  • the temperature may be increased during the process.
  • Solvents can also be used to expose the electrolessly and / or electrolytically coatable particles in the matrix material.
  • the solvent must be matched to the matrix material as the matrix material must dissolve in the solvent and swell through the solvent. If a solvent is used in which the matrix material dissolves, the base layer is only brought into contact with the solvent for a short time, so that the upper layer of the matrix material is dissolved and thereby becomes detached.
  • Preferred solvents are xylene, toluene, halogenated hydrocarbons, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), diethylene glycol monobutyl ether.
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • diethylene glycol monobutyl ether diethylene glycol monobutyl ether.
  • the temperature during the dissolution process can be increased.
  • Suitable mechanical methods include, for example, brushing, grinding, abrasive polishing, or jet blasting, blasting, or supercritical carbon dioxide blasting.
  • Abrasives for polishing it is possible to use all abrasives known to the person skilled in the art.
  • a suitable abrasive is, for example, pumice.
  • the water jet preferably contains small solid particles, for example pumice flour (Al 2 O 3 ) having an average particle size distribution of 40 to 120 ⁇ m, preferably 60 to 80 ⁇ m, or quartz flour (SiO 2 ) with a particle size> 3 ⁇ m.
  • pumice flour Al 2 O 3
  • quartz flour SiO 2
  • the electrolessly and / or electrolytically coatable particles contain a material which can easily oxidize, in a preferred variant of the method, before the formation of the metal layer on the base layer, the oxide layer is at least partially removed. The removal of the oxide layer can take place, for example, chemically and / or mechanically.
  • Suitable substances with which the base layer can be treated in order to chemically remove an oxide layer from the electrolessly and / or electrolytically coatable particles are, for example, acids, such as concentrated or dilute sulfuric acid or concentrated or dilute hydrochloric acid, citric acid, phosphoric acid, aminosulfonic acid , Formic acid or acetic acid.
  • acids such as concentrated or dilute sulfuric acid or concentrated or dilute hydrochloric acid, citric acid, phosphoric acid, aminosulfonic acid , Formic acid or acetic acid.
  • Suitable mechanical methods for removing the oxide layer from the electroless and / or electrodepositable particles are generally the same as the mechanical methods of exposing the particles.
  • the dispersion In order for the dispersion to adhere firmly to the substrate, in a preferred embodiment it is cleaned prior to the application of the base layer by a dry process, a wet-chemical process and / or a mechanical process.
  • the wet-chemical method and the mechanical method make it possible, in particular, to roughen the surface of the substrate so that the dispersion adheres better to it.
  • a wet-chemical method is particularly suitable rinsing the substrate with acidic or alkaline reagents or with suitable solvents. Also water in conjunction with ultrasound can be used.
  • Suitable acidic or alkaline reagents are, for example, hydrochloric acid, sulfuric acid or nitric acid, phosphoric acid or sodium hydroxide solution, potassium hydroxide solution or carbonates, such as potassium carbonate.
  • Suitable solvents are the same as may also be present in the dispersion for applying the base layer. Preferred solvents are alcohols, ketones and hydrocarbons, which are to be selected depending on the carrier material. The oxidants already mentioned during activation can also be used.
  • Mechanical methods of cleaning the substrate prior to applying the patterned or all-over base layer are generally the same as they can be used to expose the electrically conductive particles and remove the oxide layer of the particles.
  • dry cleaning processes are particularly suitable. These are, for example, the dedusting by means of and / or deionized air, corona discharge or low-pressure plasma and the particle removal by means of rollers and / or rollers, which are provided with an adhesive layer.
  • the substrate may be provided with an additional adhesive / adhesive layer according to methods known to the person skilled in the art before the transfer of the base layer if necessary.
  • the structure After application and at least partial curing and / or drying of the base layer, the structure is worked up by ablation. For this purpose, the parts of the base layer which are not part of the structure are removed.
  • the removal takes place according to the invention by means of a laser beam.
  • the matrix material of the base layer is at least partially decomposed and / or evaporated.
  • the electrolessly and / or electrolytically coatable particles contained in the matrix material are also released. The material removed from the base layer can be sucked off and / or blown off.
  • interconnects are to be produced by the method according to the invention, in one embodiment it is possible to additionally expose contacting lines, which are connected to the interconnect structure, by the laser ablation method in addition to the desired interconnect structure.
  • These contacting aids are processed just as well as the desired structure of the tracks.
  • the contacting lines exposed by laser ablation are likewise electrolessly and / or galvanically metallized, preferably after the exposure of the electrolessly and / or electrolytically coatable particles contained on the surface.
  • the contact lines serve, for example, that even short, insulated tracks can be easily contacted.
  • the Kunststoff musclessslinien are at least partially removed after electroless and / or galvanic metallization. The removal can also be done by laser ablation, for example.
  • an electrically conductive coating is applied to the patterned base layer.
  • the electrically conductive surface after the electrically conductive particles have been exposed, min. at least one metal layer formed on the structured base layer by electroless and / or electroplated coating.
  • the coating can be carried out by any method known to those skilled in the art. Also, any conventional metal coating can be applied by the method of coating. In this case, the composition of the electrolyte solution used for the coating depends on which metal the electrically conductive structures are to be coated on the substrate. In principle, all metals which are nobler or the same as the least noble metal of the dispersion can be used for electroless and / or electroplating.
  • Typical metals which are deposited by electroless and / or electroplating on electrically conductive surfaces are, for example, gold, nickel, palladium, platinum, silver, tin, copper or chromium.
  • the thicknesses of the one or more deposited layers are in the usual range known to the person skilled in the art.
  • Suitable electrolyte solutions which can be used for coating electrolessly and / or electrolytically coatable structures are those skilled in the art, for example, Werner Jillek, Gustl Keller, Manual of printed circuit board technology, Eugen G. Leuze Verlag, 2003, Volume 4, pages 332- 352, known.
  • the substrate is first fed to a bath with the electrolyte solution.
  • the carrier is then conveyed through the bath, the electrolessly and / or electrolytically coatable particles contained in the previously applied structured base layer being contacted with at least one cathode.
  • any conventional, known in the art, suitable cathode can be used.
  • metal ions are deposited from the electrolyte solution to form a metal layer on the base layer.
  • the contacting can also be done via the Kunststoffmaschines- help lines.
  • a thin layer of the base layer immediately forms by electroless deposition.
  • the base layer itself e.g. when using carbonyl iron powder as a currentless and / or galvanically coatable particles, is not sufficiently conductive, the necessary conductivity for the galvanic coating is achieved by this electroless deposited layer.
  • a suitable device in which the structured, electrically conductive base layer is galvanically coated generally comprises at least one bath, one anode and one cathode, wherein the bath comprises an electrolyte solution containing at least one metal salt. holds. From the electrolyte solution, metal ions are deposited on electrically conductive surfaces of the substrate or the base layer to form a metal layer. The at least one cathode is for this purpose brought into contact with the base layer of the substrate to be coated, while the substrate is conveyed through the bath.
  • electroplating processes for galvanic coating, all electroplating processes known to those skilled in the art are suitable. Such electroplating processes are, for example, those in which the cathode is formed by one or more rollers which contact the material to be coated.
  • the cathodes can also be designed in the form of segmented rollers, in which in each case at least the segment of the roller, which is in communication with the base layer to be coated, is connected cathodically.
  • segmented rolls In order to remove metal deposited on the roll, it is possible for segmented rolls to anodize the segments which do not contact the base layer to be coated, thereby depositing the metal deposited thereon into the electrolyte solution.
  • the Kunststoff muscles When using Griffin michifsllslinien the Kunststoff musclessslinien be contacted with the cathode for electroplating.
  • the Kunststoff musclessslinien serve to contact even short, insulated from each other interconnects in a simple manner.
  • the contacting aids are preferably removed again after the galvanic coating.
  • the removal of the Dies michellessllslinien can be done for example by laser ablation.
  • the same laser beam sources are used as well as for the generation of the structure of the base layer.
  • the device of the galvanic coating can furthermore be equipped with a device with which the substrate can be rotated.
  • the axis of rotation of the device with which the substrate can be rotated is perpendicular to the to be coated
  • Structures which are initially wide and short, as viewed in the direction of transport of the substrate, aligned so that they are narrow and long after being turned, seen in the direction of transport.
  • the layer thickness of the metal layer deposited on the electrolessly and / or electrolytically coatable structure by the method according to the invention is dependent on the contact time, which results from the passage speed of the substrate through the device and the number of cathodes positioned behind one another, and the current intensity with which the device is operated. For example, a higher contact time can be achieved be achieved that several devices are connected in at least one bath in a row.
  • two rollers may be arranged so that the substrate to be coated can be passed between them.
  • endless films which are initially unwound from a roll, passed through the device for electroplating and then wound up again, this can, for example, zig-zag or in shape a meander to several devices for electroplating, which can then be arranged, for example, one above the other or next to each other, are passed through the bath.
  • the galvanic coating device may be equipped with any additional device known to those skilled in the art as needed.
  • ancillary devices include, for example, pumps, filters, chemical feeders, unwinding devices, etc.
  • the device according to the invention can also be operated, for example, in the pulse method known from Werner Jillek, Gustl Keller, Handbuch der Porterplattentechnik, Eugen G. Leuze Verlag, 2003, Vol. 4, pages 192, 260, 349, 351, 352 and 359.
  • the substrate can be further processed according to all steps known to those skilled in the art. For example, existing electrolyte residues can be removed from the substrate by rinsing and / or the substrate can be dried.
  • the process according to the invention for the production of electrically conductive, structured surfaces on a support can be operated in a continuous, partially continuous or discontinuous manner. It is also possible that only individual steps of the process are carried out continuously while other steps are carried out discontinuously.
  • the substrate can be further processed according to all steps known to those skilled in the art. For example, existing electrolyte residues can be removed from the substrate by rinsing and / or the substrate can be dried.
  • the inventive method is suitable for example for the production of printed conductors on printed circuit boards.
  • printed circuit boards are, for example, those with multi-layer inner and outer layers, micro via chip on-board, flexible and rigid printed circuit boards, and are incorporated, for example, in products such as computers, telephones, televisions, automotive electrical components, keyboards , Radios, video, CD, CD-Rom and DVD players, game consoles, measuring and control devices, sensors, electrical kitchen appliances, electric toys, etc.
  • the method according to the invention is suitable for the production of RFI D antennas, transponder antennas or other antenna structures, chip card modules, flat cables, seat heaters, foil conductors, printed conductors in solar cells or in LCD or plasma picture screens, capacitors, film capacitors, resistors, convectors, electrical fuses or for the production of electroplated products in any desired form, for example single- or double-sided metal-coated polymer supports with defined layer thickness, 3D molded interconnect devices or also for the production of decorative or functional surfaces on products, for example for the coordination of electromagnetic radiation , used for heat conduction or as packaging. Furthermore, the production of contact points or contact pads or wiring on an integrated electronic component is possible.
  • antennas with contacts for organic electronic components as well as coatings on surfaces consisting of electrically non-conductive material for electromagnetic shielding, possible.
  • Use is also possible in the field of flow fields of bipolar plates for use in fuel cells.
  • the scope of application of the method according to the invention enables a cost-effective production of metallized, even non-conductive substrates, in particular for use as switches and sensors, gas barriers or decorative parts, in particular decorative parts for motor vehicles, plumbing, toys, household and office use and packaging as well as slides. Also in the field of security printing for bills, credit cards, identity papers, etc., the invention may find application. Textiles can be electrically and magnetically functionalized by means of the method according to the invention (antennas, transmitters, RFID and transponder antennas, sensors, heating elements, antistatic (also for plastics), shielding, etc.).
  • the method according to the invention can also be used for the metallization of holes, vias, blind holes, etc., for example in printed circuit boards, RFID antennas or transponder antennas, flat cables, foil conductors with the aim of a through-connection of the upper and lower sides. This also applies if other substrates are used.
  • the metallized articles produced according to the invention - insofar as they comprise magnetizable metals - are used in areas of metallizable functional parts, such as magnetic boards, magnetic games, magnetic surfaces, for example refrigerator cabinet doors.
  • they find application in areas where a good thermal conductivity is advantageous, for example in films for seat heaters, underfloor heating and insulation materials.
  • Preferred uses of the surfaces metallized according to the invention are those in which the products produced in this way are printed circuit boards, RFID antennas, transponder antennas, flat cables, seat heating, contactless chip card, 3D molded interconnect device, thin metal foil or polymer backing laminated on one or two sides, foil conductors , Ladder- be used in solar cells or in LCD or plasma screens, integrated circuits, resistive, capacitive or inductive elements, diodes, transistors, sensors, actuators, optical components, receiver / transmitter devices or as a decorative application, for example for packaging materials.

Abstract

Verfahren zur Herstellung strukturierter, elektrisch leitfähiger Oberflächen auf einem Substrat, welches folgende Schritte umfasst: a) Strukturieren einer Basisschicht auf dem Substrat, die stromlos und/oder galvanisch beschichtbare Partikel enthält, durch Abtragen der Basisschicht entsprechend einer vorgegebenen Struktur mit einem Laser, b) Aktivieren der Oberfläche der stromlos und/oder galvanisch beschichtbaren Partikel und c) Aufbringen einer elektrisch leitfähigen Beschichtung auf die strukturierte Basisschicht.

Description

Verfahren zur Herstellung strukturierter, elektrisch leitfähiger Oberflächen
Die Erfindung betrifft ein Verfahren zur Herstellung strukturierter, elektrisch leitfähiger O- berflächen auf einem Substrat.
Das erfindungsgemäße Verfahren eignet sich zum Beispiel, um Leiterbahnen auf Leiterplatten, RFID-Antennen, Transponderantennen oder andere Antennenstrukturen, Chipkarten-Module, Flachkabel, Sitzheizungen, Folienleiter, Leiterbahnen in Solarzellen oder in LCD- oder Plasmabildschirmen, oder galvanisch beschichtete Produkte in beliebiger Form herzustellen. Auch eignet sich das Verfahren zur Herstellung von dekorativen oder funktionalen Oberflächen auf Produkten, die zum Beispiel zur Abschirmung von elektromagnetischer Strahlung, zur Wärmeleitung oder als Verpackung verwendet werden können. Schließlich lassen sich durch das Verfahren auch dünne Metallfolien oder ein- oder zweiseitig metallkaschierte Polymerträger herstellen.
Ein Verfahren zum Herstellen von Bildern auf Leiterplatten ist zum Beispiel aus DE-A 40 10 244 bekannt. Hierzu wird zunächst ein Leitlack auf die im Allgemeinen elektrisch nicht leitfähige Leiterplatte aufgetragen. Mit Hilfe eines Lasers wird das Leiterbild aus dem Leitlack herausgearbeitet. Anschließend wird das Leiterbild metallisiert. Als Leitlack wird ein Zwei- komponenten-Lack verwendet, der Metallpartikel enthält. Als geeignete Metallpartikel werden zum Beispiel Eisen- oder Nickelpulver genannt.
Ein Verfahren zur Herstellung von Leiterbahnen, bei dem zunächst eine Leiterplatte mit einer leitfähigen Tinte beschichtet wird und anschließend aus der Tinte mit einem Laser die Leiterbahnen modelliert werden, ist zum Beispiel auch aus US-A 2003/0075532 bekannt. Die Tinte enthält eine Paste, die mit leitfähigen Partikeln beladen ist. Als leitfähige Partikel sind zum Beispiel Metallpartikel oder nicht-metallische Partikel, wie Kohlenstoff-Partikel genannt. Um eine leitfähige Beschichtung zu erzeugen, wird eine Dicke von ungefähr 75 bis 100 μm genannt.
Auch EP-A 0 415 336 hat ein Verfahren zur Herstellung von Leiterbahnen zum Gegenstand, bei dem zunächst eine Leitpaste auf einen Nichtleiter aufgetragen wird und anschließend die Leiterbahnen mit einem Laser modelliert werden. Auch hier ist eine große Schichtdicke notwendig, um eine Leiterbahn zu erzeugen.
Bei dem aus EP-A 1 191 127 bekannten Verfahren zur Herstellung von Leiterbahnen auf Leiterplatten wird zunächst eine Aktivierungsschicht mit einer ausreichenden elektrischen Leitfähigkeit aufgetragen. Aus dieser wird der erwünschte Leiterbahnverlauf mit Hilfe eines Lasers strukturiert. Auf die Aktivierungsschicht können zum Bespiel dünne Metallfilme aufgebracht werden. Die Leitfähigkeit der Aktivierungsschicht wird zum Beispiel durch Verwendung von polymerisiertem oder copolymierisiertem Pyrrol, Furan, Thiophen oder ande- ren Derivaten erzielt. Alternativ können auch Metallsulfid- oder Metallpolysulfidschichten sowie Palladium- oder Kupferkatalysatoren Anwendung finden. Der Nachteil von vielen organischen Aktivierungsschichten ist die geringe Haftung zu vielen Trägern und die geringe thermische Stabilität bei der Anwendung z.B. Löten an Leiterplatten.
Nachteil der aus dem Stand der Technik bekannten Verfahren ist einerseits, dass eine große Schichtdicke benötigt wird, um eine hinreichende Leitfähigkeit zu erzielen. Aufgrund der dicken Schichten ist ein hoher Energieverbrauch für das Abtragen mit Hilfe des Lasers erforderlich. Auch bei den Verfahren, bei denen die Leiterbahnen anschließend metallisiert werden, ist ein hoher Energieverbrauch des Lasers erforderlich, da ein Teil der Laserstrah- lung durch die Partikel, die in der Basisschicht enthalten sind, reflektiert wird.
Insbesondere bei Einsatz von sehr kleinen Partikeln, d. h. Partikeln im Mikro- bis Nanome- terbereich, ist es problematisch, dass die Partikel in einem Matrixmaterial eingebettet sind und deswegen nur zu einem geringen Teil frei an der Oberfläche liegen. Aus diesem Grund steht nur ein geringer Teil der Partikel für eine stromlose und/oder galvanische Metallisierung zur Verfügung. Die Ausbildung einer homogenen, durchgängigen Metallbeschichtung ist dadurch nur sehr schwer oder sogar überhaupt nicht realisierbar, wodurch die Prozesssicherheit nicht gegeben ist. Durch eine vorhandene Oxidschicht auf den elektrisch leitfähigen Partikeln wird dieser Effekt weiter verstärkt.
Aufgabe der Erfindung ist es, ein einfaches, kostengünstiges und produktives alternatives Verfahren bereitzustellen, durch welches elektrisch leitfähige, strukturierte Oberflächen auf einem Träger hergestellt werden können, wobei diese Oberflächen homogen und durchgehend elektrisch leitfähig sind.
Gelöst wird die Aufgabe durch ein Verfahren zur Herstellung strukturierter, elektrisch leitfähiger Oberflächen auf einem Substrat, welches folgende Schritte umfasst:
a) Strukturieren einer stromlos und/oder galvanisch beschichtbare Partikel enthaltenden Basisschicht auf dem Substrat durch Abtragen der Basisschicht entsprechend einer vorgegebenen Struktur mit einem Laser, b) Aktivieren der Oberfläche der stromlos und/oder galvanisch beschichtbaren Partikel und
c) Aufbringen einer elektrisch leitfähigen Beschichtung auf die strukturierte Basisschicht.
Ein Vorteil des erfindungsgemäßen Verfahrens ist, dass neben zweidimensionalen auch dreidimensionale elektronische Schaltungsträger, zum Beispiel 3D-Moulded Interconnect Devices oder auch das Innere von Gerätegehäusen mit Leiterbahnen mit einer äußerst feinen Struktur versehen werden können. Bei dreidimensionalen Gegenständen können zum Beispiel alle Flächen nacheinander bearbeitet werden, indem entweder der zu beschichtende Gegenstand jeweils in die richtige Position gebracht wird oder der Laserstrahl entsprechend gesteuert wird.
Als Substrat, auf das die elektrisch leitfähige, strukturierte Oberfläche aufgebracht wird, eignen sich zum Beispiel starre oder flexible Substrate.
Bevorzugt ist das Substrat nicht elektrisch leitend. Das bedeutet, dass der spezifische Widerstand mehr als 109 Ohm x cm beträgt. Geeignete Substrate sind zum Beispiel verstärkte oder unverstärkte Polymere, wie sie üblicherweise für Leiterplatten eingesetzt werden. Geeignete Polymere sind Epoxidharze, oder modifizierte Epoxidharze, zum Beispiel bifunktionelle oder polyfunktionelle Bisphenol A oder Bisphenol F-Harze, Epoxy-Novolak-Harze, bromierte Epoxidharze, aramidverstärkte oder glasfaserverstärkte oder papierverstärkte Epoxidharze (zum Beispiel FR4), glasfaserverstärkte Kunststoffe, Liquid Cristal-Polymere (LCP), Polyphenylensulfide (PPS), Polyoxymethylene (POM), Polyaryletherketone (PAEK), Polyetheretherketone (PEEK), Polyamide (PA), Polycarbonate (PC), Polybutylenterephtha- late (PBT), Polyethylenterephthalate (PET), Polyimide (PI), Polyimidharze, Cyanatester, Bismaleimid-Triazin-Harze, Nylon, Vinylesterharze, Polyester, Polyesterharze, Polyaniline, Phenolharze, Polypyrrole, Polyethylennaphthalat (PEN) , Polymethylmethacrylat, Polyethy- lendioxythiophene, phenolharzbeschichtetes Aramidpapier, Polytetrafluorethylen (PTFE), Melaminharze, Silikonharze, Fluorharze, Alliierter Polyphenylen-ether (APPE), Polyethe- rimide (PEI), Polyphenylenoxide (PPO), Polypropylene (PP), Polyethylene (PE), Polysulfo- ne (PSU), Polyethersulfone (PES), Polyarylamide (PAA), Polyvinylchloride (PVC), Polystyrole (PS), Acrylnitrilbutadienstyrole (ABS), Acrylnitrilstyrolacrylate (ASA), Styrolacrylnitrile (SAN) sowie Mischungen (Blends) zweier oder mehrerer der oben genannten Polymere, welche in verschiedensten Formen vorliegen können. Die Substrate können für den Fachmann bekannte Additive wie beispielsweise Flammschutzmittel aufweisen. - A -
Prinzipiell können auch alle nachfolgend unter dem Matrixmaterial aufgeführten Polymere eingesetzt werden. Geeignet sind auch andere ebenso in der Leiterplattenindustrie übliche Substrate.
Weiterhin sind geeignete Substrate Verbundwerkstoffe, schaumartige Polymere, Styropor®, Styrodur®, Polyurethane (PU), keramische Oberflächen, Textilien, Pappe, Karton, Papier, polymerbeschichtetes Papier, Holz, mineralische Materialien, Silizium, Glas, Pflanzengewebe sowie Tiergewebe.
Auf das Substrat ist eine Basisschicht aufgetragen, die stromlos und/oder galvanisch beschichtbare Partikel enthält. In einem ersten Schritt wird die Basisschicht durch Abtragen entsprechend einer vorgegebenen Struktur mit einem Laser strukturiert. Geeignete Laser sind kommerziell verfügbar. Es können alle Laser, wie gepulste oder kontinuierliche Gas-, Festkörper-, Dioden- oder Excimer-Laser eingesetzt werden, sofern die Basisschicht die Laserstrahlung ausreichend absorbiert und die Laserleistung ausreicht, die Ablati- onsschwelle, bei der das Material der Basisschicht zumindest teilweise zersetzt bzw. zumindest teilweise verdampft wird, zu überschreiten. Bevorzugt werden gepulste oder kontinuierliche IR-Laser, zum Beispiel CO2-Laser, Nd-Y AG-Laser, Yb:YAG-Laser, Faser- oder Dioden-Laser verwendet. Diese sind kostengünstig und mit hoher Leistung verfügbar. Ein geeigneter Laser hat im Allgemeinen eine Leistungsaufnahme von mindestens 30 W. Abhängig vom Absorptionsverhalten der Basisschicht können aber auch Laser mit Wellenlängen im sichtbaren oder UV-Frequenzbereich eingesetzt werden. Solche Laser sind zum Beispiel Ar-Laser, HeNe-Laser, frequenzvervielfachte IR-Festkörperlaser oder Excimer- Laser, wie ArF-Laser, KrF-Laser, XeCI-Laser oder XeF-Laser. In Abhängigkeit von der La- serstrahlquelle, der Laserleistung, der verwendeten Optik und der verwendeten Modulatoren liegt der Focusdurchmesser des Laserstrahls zwischen 1 μm und 100 μm, bevorzugt zwischen 5 μm und 50 μm. Die Wellenlänge des Laserlichts liegt vorzugsweise im Bereich von 150 bis 10600 nm, besonders bevorzugt im Bereich von 600 bis 10600 nm.
In einer bevorzugten Ausführungsform werden die zu entfernenden Bereiche der Basisschicht, zum Beispiel Isolationskanäle bei einer Leiterplatte, mittels eines fokussierten Lasers aus der Basisschicht abgetragen. Auch ist es möglich, die Struktur der Basisschicht unter Verwendung einer im Strahlengang des Lasers angeordneten Maske oder mittels eines Abbildungsverfahrens zu erzeugen.
In einer bevorzugten Ausführungsform der Erfindung wird vor dem Abtragen der Basisschicht durch den Laser eine Dispersion, die stromlos und/oder galvanisch beschichtbare Partikel in einem Matrixmaterial enthält, zur Bildung der Basisschicht auf das Substrat aufgetragen. Die stromlos und/oder galvanisch beschichtbaren Partikel können Partikel mit beliebiger Geometrie aus jedem beliebigen elektrisch leitfähigen Material, aus Mischungen verschiedener elektrisch leitfähiger Materialien oder auch aus Mischungen von elektrisch leitfähigen und nicht-leitfähigen Materialien sein. Geeignete elektrisch leitfähige Materialien sind zum Beispiel Ruß, beispielsweise in Form von Ruß, Graphit, Graphenen oder Kohlen- stoff-Nanoröhrchen, elektrisch leitfähige Metallkomplexe, leitfähige organische Verbindungen oder leitfähige Polymere oder Metalle, vorzugsweise Zink, Nickel, Kupfer, Zinn, Cobalt, Mangan, Eisen, Magnesium, Blei, Chrom, Wismut, Silber, Gold, Aluminium, Titan, Palladi- um, Platin, Tantal sowie Legierungen hiervon oder Metallgemische, die mindestens eines dieser Metalle enthalten. Geeignete Legierungen sind beispielsweise CuZn, CuSn, CuNi, SnPb, SnBi, SnCo, NiPb, SnFe, ZnNi, ZnCo und ZnMn. Insbesondere bevorzugt sind Aluminium, Eisen, Kupfer, Silber, Nickel, Zink, Zinn, Kohlenstoff sowie deren Mischungen.
Vorzugsweise besitzen die stromlos und/oder galvanisch beschichtbaren Partikel einen mittleren Teilchendurchmesser von 0,001 bis 100 μm, bevorzugt von 0,005 bis 50 μm, und insbesondere bevorzugt von 0,01 bis 10 μm. Der mittlere Teilchendurchmesser kann mittels Laserbeugungsmessung beispielsweise an einem Gerät Microtrac X100 ermittelt werden. Die Verteilung der Teilchendurchmesser hängt von deren Herstellverfahren ab. Typi- scherweise weist die Durchmesserverteilung nur ein Maximum auf, mehrere Maxima sind jedoch auch möglich.
Wenn stromlos und/oder galvanisch beschichtbare Partikel eingesetzt werden, die eine starke Reflektion im Bereich der eingesetzten Wellenlänge des Lasers aufweisen, sind die- se vorzugsweise mit einer Beschichtung („Coating") versehen. Geeignete Coatings können anorganischer oder organischer Natur sein. Anorganische Coatings sind zum Beispiel SiC>2, Phosphate oder Phosphide. Das Material für das Coating wird so ausgewählt, dass dieses das eingesetzte Laserlicht nur schwach reflektiert. Selbstverständlich können die stromlos und/oder galvanisch beschichtbaren Partikel auch mit einem Metall oder Metall- oxid beschichtet sein, welches das eingesetzte Laserlicht nur schwach reflektiert. Auch kann das Metall, aus welchem die Partikel bestehen, in teilweise oxidierter Form vorliegen. Im Falle des Eisens wird zum Beispiel auf die Eisenpartikel eine Eisenoxidschicht angebracht, indem das Eisen an der Oberfläche oxidiert wird. Im Falle des Carbonyleisenpul- vers erhält man somit beispielsweise Kugeln, die innen aus Eisen bestehen und auf der äußeren Oberfläche eine Oxidschicht aufweisen. Durch die schwache Reflektion der Oberfläche der in der Basisschicht enthaltenen Partikel gelangt der Großteil der Laserenergie in die Basisschicht. Nur der von den Partikeln reflektierte Anteil geht für das Abtragen der Basisschicht verloren. Hierdurch lässt sich mit geringem Energieaufwand die gewünschte Struktur aus der Basisschicht herausbilden.
Sollen zwei oder mehr unterschiedliche Metalle die stromlos und/oder galvanisch beschichtbaren Partikel bilden, so kann dies durch eine Mischung dieser Metalle erfolgen. Insbesondere bevorzugt ist es, wenn die Metalle ausgewählt sind aus der Gruppe, bestehend aus Aluminium, Eisen, Kupfer, Silber, Nickel, Zinn und Zink.
Die stromlos und/oder galvanisch beschichtbaren Partikel können jedoch auch ein erstes Metall und ein zweites Metall enthalten, wobei das zweite Metall in Form einer Legierung (mit dem ersten Metall oder einem oder mehreren anderen Metallen) vorliegt, oder die stromlos und/oder galvanisch beschichtbaren Partikel, enthaltend zwei unterschiedliche Legierungen.
Neben der Auswahl des Materials der stromlos und/oder galvanisch beschichtbaren Partikel hat die Form der stromlos und/oder galvanisch beschichtbaren Partikel einen Einfluss auf die Eigenschaften der Dispersion nach einer Beschichtung. Im Hinblick auf die Form sind zahlreiche, dem Fachmann bekannte Varianten möglich. Die Form der stromlos und/oder galvanisch beschichtbaren Partikel kann beispielsweise nadeiförmig, zylindrisch, plattenförmig oder kugelförmig sein. Diese Teilchenformen stellen idealisierte Formen dar, wobei die tatsächliche Form, beispielsweise herstellungsbedingt, mehr oder weniger stark hiervon abweichen kann. So sind beispielsweise tropfenförmige Teilchen im Rahmen der vorliegenden Erfindung eine reale Abweichung der idealisierten Kugelform.
Stromlos und/oder galvanisch beschichtbare Partikel mit verschiedenen Teilchenformen sind kommerziell erhältlich.
Wenn Mischungen von stromlos und/oder galvanisch beschichtbaren Partikeln verwendet werden, können die einzelnen Mischungspartner auch unterschiedliche Teilchenformen und/oder Teilchengrößen besitzen. Es können auch Mischungen von nur einer Sorte stromlos und/oder galvanisch beschichtbarer Partikel mit unterschiedlichen Teilchengrößen und/oder Teilchenformen eingesetzt werden. Im Falle unterschiedlicher Teilchenformen und/oder Teilchengrößen sind ebenfalls die Metalle Aluminium, Eisen, Kupfer, Silber, Nickel und Zink, sowie Kohlenstoff bevorzugt. Wenn Mischungen von Teilchenformen eingesetzt werden, sind Mischungen von kugelförmigen Partikeln mit plättchenförmigen Partikeln bevorzugt. In einer Ausführungsform werden zum Beispiel kugelförmige Carbonyleisenpulver-Partikel mit plättchenförmigen Eisen- und/oder Kupferpartikeln und/oder Kohlenstoffnanoröhrchen eingesetzt.
Wie bereits oben ausgeführt, können die stromlos und/oder galvanisch beschichtbaren Partikel in Form ihrer Pulver der Dispersion zugefügt werden. Derartige Pulver, zum Beispiel Metallpulver, sind gängige Handelswaren und können mittels bekannter Verfahren leicht hergestellt werden, etwa durch elektrolytische Abscheidung oder chemische Relukti- on aus Lösungen von Metallsalzen oder durch Reduktion eines oxidischen Pulvers, beispielsweise mittels Wasserstoff, durch Versprühen oder Verdüsen einer Metallschmelze, insbesondere in Kühlmedien, beispielsweise Gasen oder Wasser. Bevorzugt sind das Gas- und Wasserverdüsen sowie die Reduktion von Metalloxiden. Metallpulver der bevorzugten Korngröße können auch durch Vermahlung gröberer Metallpulver hergestellt werden. Hier- zu eignet sich zum Beispiel eine Kugelmühle.
Im Falle des Eisens ist neben dem Gas- und Wasserverdüsen der Carbonyleisen- Pulverprozess zur Herstellung von Carbonyleisen-Pulver bevorzugt. Dieser erfolgt durch thermische Zersetzung von Eisenpentacarbonyl. Dies wird beispielsweise in Ullmanns En- cyclopedia of Industrial Chemistry, 5th edition, vol. A14, Seite 599, beschrieben. Die Zersetzung des Eisenpentacarbonyls kann beispielsweise bei erhöhten Temperaturen und erhöhten Drücken in einem beheizbaren Zersetzer erfolgen, der ein Rohr aus einem hitzebeständigen Material, wie Quarzglas oder V2A-Stahl in vorzugsweise vertikaler Position umfasst, das von einer Heizeinrichtung, beispielsweise bestehend aus Heizbädern, Heiz- drahten oder aus einem von einem Heizmedium durchströmten Heizmantel, umgeben ist. Nach einem ähnlichen Verfahren ist auch Carbonylnickel-Pulver herstellbar.
Plättchenförmige stromlos und/oder galvanisch beschichtbare Partikel können durch optimierte Bedingungen im Herstellungsprozess kontrolliert werden oder im Nachhinein durch mechanische Behandlung, beispielsweise durch Behandlung in einer Rührwerkskugelmühle erhalten werden.
Bezogen auf das Gesamtgewicht der getrockneten Basisschicht liegt der Anteil an stromlos und/oder galvanisch beschichtbaren Partikeln im Bereich von 20 bis 98 Gew.-%. Ein be- vorzugter Bereich des Anteils der stromlos und/oder galvanisch beschichtbaren Partikel liegt bei 30 bis 95 Gew.-%, bezogen auf das Gesamtgewicht der getrockneten Basisschicht. AIs Matrixmaterial eignen sich zum Beispiel Bindemittel mit pigmentaffiner Ankergruppe, natürliche und synthetische Polymere und deren Derivate, Naturharze sowie synthetische Harze und deren Derivate, Naturkautschuk, synthetischer Kautschuk, Proteine, Cellulose- derivate, trocknende und nicht trocknende Öle und dergleichen. Diese können - müssen jedoch nicht - chemisch oder physikalisch härtend, beispielsweise luftaushärtend, strah- lungshärtend oder temperaturhärtend, sein.
Vorzugsweise handelt es sich bei dem Matrixmaterial um ein Polymer oder Polymergemisch. Bevorzugte Polymere als Matrixmaterial sind ABS (Acrylnitril-Butadien-Styrol); ASA (Acryl- nitril-Styrol-Acrylat); acrylierte Acrylate; Alkydharze; Alkylvinylacetate; Alkylenvinylacetat- Copolymere, insbesondere Methylenvinylacetat, Ethylenvinylacetat, Butylenvinylacetat; Alkylenvinylchlorid-Copolymere; Aminoharze; Aldehyd- und Ketonharze; Cellulose und CeI- lulosederivate, insbesondere Hydroxyalkylcellulose, Celluloseester, wie -Acetate, - Propionate, -Butyrate, Carboxyalkylcellulosen, Cellulosenitrat; Epoxyacrylate; Epoxidharze; modifizierte Epoxidharze, zum Beispiel bifunktionelle oder polyfunktionelle Bisphenol A oder Bisphenol F-Harze, Epoxy-Novolak-Harze, bromierte Epoxidharze, cycloaliphatische Epoxidharze; aliphatische Epoxidharze, Glycidether, Vinylether, Ethylenacrylsäurecopoly- mere; Kohlenwasserstoffharze; MABS (transparentes ABS mit Acrylat-Einheiten enthal- tend); Melaminharze, Maleinsäureanhydridcopolymerisate; Methacrylate; Naturkautschuk; synthetischer Kautschuk; Chlorkautschuk; Naturharze; Kollophoniumharze; Schellack; Phenolharze; Polyester; Polyesterharze, wie Phenylesterharze; Polysulfone; Polyethersul- fone; Polyamide; Polyimide; Polyaniline; Polypyrrole; Polybutylenterephthalat (PBT); PoIy- carbonat (zum Beispiel Makrolon® der Bayer AG); Polyesteracrylate; Polyetheracrylate; Polyethylen; Polyethylenthiophene; Polyethylennaphthalate; Polyethylenterephthalat (PET); Polyethylenterephthalat-Glykol (PETG); Polypropylen; Polymethylmethacrylat (PMMA); Polyphenylenoxid (PPO); Polystyrole (PS), Polytetrafluorethylen (PTFE); Polytetrahydrofu- ran; Polyether (zum Beispiel Polyethylenglykol, Polypropylenglykol), Polyvinylverbindun- gen, insbesondere Polyvinylchlorid (PVC), PVC-Copolymere, PVdC, Polyvinylacetat sowie deren Copolymere, gegebenenfalls teilhydrolysierter Polyvinylalkohol, Polyvinylacetale, Polyvinylacetate, Polyvinylpyrrolidon, Polyvinylether, Polyvinylacrylate und -methacrylate in Lösung und als Dispersion sowie deren Copolymere, Polyacrylsäureester und Polystyrol- copolymere; Polystyrol (schlagfest oder nicht schlagfest modifiziert); Polyurethane, unver- netzte beziehungsweise mit Isocyanaten vernetzt; Polyurethanacrylate; Styrol-Acryl- Copolymere; Styrol-Butadien-Blockcopolymere (zum Beispiel Styroflex® oder Styrolux® der BASF AG, K-Resin™ der CPC); Proteine, wie zum Beispiel Casein; SIS; Triazin-Harz, Bis- maleimid-Triazin-Harz (BT), Cyanatester-Harz (CE) , Allylierter Polyphenylen-äther (AP- PE). Weiterhin können Mischungen zweier oder mehrerer Polymere das Matrixmaterial bilden.
Besonders bevorzugte Polymere als Matrixmaterial sind Acrylate, Acrylatharze, Cellulose- derivate, Methacrylate, Methacrylatharze, Melamin und Aminoharze, Polyalkylene, Polyi- mide, Epoxidharze, modifizierte Epoxidharze, zum Beispiel bifunktionelle oder polyfunktionelle Bisphenol A oder Bisphenol F-Harze, Epoxy-Novolak-Harze, bromierte Epoxidharze, cycloaliphatische Epoxidharze; aliphatische Epoxidharze, Glycidether, Vinylether, und Phenolharze, Polyurethane, Polyester, Polyvinylacetale, Polyvinylacetate, Polystyrole, Po- lystyrol-copolymere, Polystyrolacrylate, Styrol-Butadien-Blockcopolymere, Alkylenvinylace- tate und Vinylchlorid-Copolymere, Polyamide sowie deren Copolymere.
Bei der Herstellung von Leiterplatten werden als Matrixmaterial für die Dispersion bevorzugt thermisch oder Strahlungshärtende Harze, zum Beispiel modifizierte Epoxidharze, wie bifunktionelle oder polyfunktionelle Bisphenol A oder Bisphenol F-Harze, Epoxy-Novolak- Harze, bromierte Epoxidharze, cycloaliphatische Epoxidharze; aliphatische Epoxidharze, Glycidether, Cyanatester, Vinylether, Phenolharze, Polyimide, Melaminharze und Aminoharze, Polyurethane, Polyester sowie Cellulosederivate eingesetzt.
Bezogen auf das Gesamtgewicht der trockenen Beschichtung beträgt der Anteil der organischen Bindemittelkomponente 0,01 bis 60 Gew.-%. Vorzugsweise liegt der Anteil bei 0,1 bis 45 Gew.-%, mehr bevorzugt bei 0,5 bis 35 Gew.-%.
Um die stromlos und/oder galvanisch beschichtbaren Partikel und die das Matrixmaterial enthaltende Dispersion auf das Substrat applizieren zu können, kann der Dispersion weiterhin ein Lösungsmittel oder ein Lösungsmittelgemisch zugegeben sein, um die für das jeweilige Applikationsverfahren geeignete Viskosität der Dispersion einzustellen.
Geeignete Lösemittel sind zum Beispiel aliphatische und aromatische Kohlenwasserstoffe (zum Beispiel n-Octan, Cyclohexan, Toluol, XyIoI), Alkohole (zum Beispiel Methanol, Etha- nol, 1-Propanol, 2-Propanol, 1-Butanol, 2-Butanol, Amylalkohol), mehrwertige Alkohole wie
Glycerin, Ethylenglykol, Propylenglykol, Neopentylglykol, Alkylester (zum Beispiel Methyl- acetat, Ethylacetat, Propylacetat, Butylacetat, Isobutylacetat, Isopropylacetat, 3-
Methylbutanol), Alkoxyalkohole (zum Beispiel Methoxypropanol, Methoxybutanol, Etho- xypropanol), Alkylbenzole (zum Beispiel Ethylbenzol, Isopropylbenzol), Butylglykol, Butyl- diglykol, Alkylglykolacetate (zum Beispiel Butylglykolacetat, Butyldiglykolacetat, Propy- lenglykolmethyletheracetat), Diacetonalkohol, Diglykoldialkylether, Diglykolmonoalkylether, Dipropylenglykoldialkylether, Dipropylenglykolmonoalkylether, Diglykolalkyletheracetate, Dipropylenglykolalkyletheracetate, Dioxan, Dipropylenglykol und -ether , Diethylenglykol und -ether, DBE (dibasic Ester), Ether (zum Beispiel Diethylether, Tetrahydrofuran), Ethy- lenchlorid, Ethylenglykol, Ethylenglykolacetat, Ethylenglykoldimethylester, Kresol, Lactone (zum Beispiel Butyrolacton), Ketone (zum Beispiel Aceton, 2-Butanon, Cyclohexanon, Me- thylethylketon (MEK), Methylisobutylketon (MIBK)), Methyldiglykol, Methylenchlorid, Methy- lenglykol, Methylglykolacetat, Methylphenol (ortho-, meta-, para-Kresol), Pyrrolidone (zum Beispiel N-Methyl-2-pyrrolidon), Propylenglykol, Propylencarbonat, Tetrachlorkohlenstoff, Toluol, Trimethylolpropan (TMP), aromatische Kohlenwasserstoffe und Gemische, aliphati- sehe Kohlenwasserstoffe und Gemische, alkoholische Monoterpene (wie zum Beispiel Terpineol), Wasser sowie Mischungen aus zwei oder mehreren dieser Lösemittel.
Bevorzugte Lösemittel sind Alkohole (zum Beispiel Ethanol, 1-Propanol, 2-Propanol, Buta- nol), Alkoxyalhohole (zum Beispiel Methoxypropanol, Ethoxypropanol, Butylglykol, Butyl- diglykol), Butyrolacton, Diglykoldialkylether, Diglykolmonoalkylether, Dipropylenglykoldial- kylether, Dipropylenglykolmonoalkylether, Ester (zum Beispiel Ethylacetat, Butylacetat, Butylglykolacetat, Butyldiglykolacetat, Diglykolalkyletheracetate, Dipropylenglykolalkylethe- racetate, DBE, Propylenglykolmethyletheracetat), Ether (zum Beispiel Tetrahydrofuran), mehrwertige Alkohole wie Glycerin, Ethylenglykol, Propylenglykol, Neopentylglykol, Ketone (zum Beispiel Aceton, Methylethylketon, Methylisobutylketon, Cyclohexanon), Kohlenwasserstoffe (zum Beispiel Cyclohexan, Ethylbenzol, Toluol, XyIoI), N-Methyl-2-pyrrolidon, Wasser sowie Mischungen davon.
Bei flüssigen Matrixmaterialien (z.B. flüssige Epoxidharze, Acrylatester) kann die jeweilige Viskosität alternativ auch über die Temperatur bei der Applikation eingestellt werden, oder über eine Kombination aus Lösungsmittel und Temperatur
Die Dispersion kann weiterhin eine Dispergiermittelkomponente enthalten. Diese besteht aus einem oder mehreren Dispergiermitteln.
Grundsätzlich sind alle dem Fachmann für die Anwendung in Dispersionen bekannten und im Stand der Technik beschriebenen Dispergiermittel geeignet. Bevorzugte Dispergiermittel sind Tenside oder Tensidgemische, beispielsweise anionische, kationische, amphotere oder nichtionische Tenside. Kationische und anionische Tenside sind beispielsweise in "Encyclopedia of Polymer Science and Technology", J. Wiley & Sons (1966), Band 5, Seiten 816 bis 818, und in "E- mulsion Polymerisation and Emulsion Polymers", Herausgeber P. Lovell und M. El-Asser, Verlag Wiley & Sons (1997), Seiten 224-226, beschrieben. Es ist aber auch die Verwen- düng von dem Fachmann bekannten Polymeren mit pigmentaffinen Ankergruppen als Dispergiermittel möglich.
Das Dispergiermittel kann bezogen auf das Gesamtgewicht der Dispersion im Bereich von 0,01 bis 50 Gew.-% eingesetzt werden. Vorzugsweise beträgt der Anteil 0,1 bis 20 Gew.- %, besonders bevorzugt 0,2 bis 10 Gew.-%.
Weiterhin kann die erfindungsgemäße Dispersion eine Füllstoffkomponente enthalten. Diese kann aus einem oder mehreren Füllstoffen bestehen. So kann die Füllstoffkomponente der metallisierbaren Masse faser-, schicht- oder teilchenförmige Füllstoffe oder deren Mischungen enthalten. Dabei handelt es sich vorzugsweise um kommerziell erhältliche Produkte, beispielsweise mineralische Füllstoffe.
Weiterhin können Füll- oder Verstärkungsstoffe, wie Glaspulver, Mineralfasern, Whisker, Aluminiumhydroxid, Metalloxide, wie Aluminiumoxid oder Eisenoxid, Glimmer, Quarzmehl, Calciumcarbonat, Bariumsulfat, Titandioxid oder Wollastonit eingesetzt werden.
Weiterhin sind weitere Additive, wie Thixotropiermittel, zum Beispiel Kieselsäure, Silikate, wie zum Beispiel Aerosile oder Bentonite, oder organische Thixotropiemittel und Verdicker, wie zum Beispiel Polyacrylsäure, Polyurethane, hydriertes Rizinusöl, Farbstoffe, Fettsäu- ren, Fettsäureamide, Weichmacher, Netzmittel, Entschäumer, Gleitmittel, Trockenstoffe, Vernetzer, Photoinitiatoren, Komplexbildner, Wachse, Pigmente, leitfähige Polymerpartikel, einsetzbar.
Der Anteil der Füllstoffkomponente- und/oder Additive, bezogen auf das Gesamtgewicht der trockenen Basisschicht beträgt vorzugsweise 0,01 bis 50 Gew.-%. Weiterhin bevorzugt sind 0,1 bis 30 Gew.-%, besonders bevorzugt sind 0,3 bis 20 Gew.-%.
Weiterhin können Verarbeitungshilfsmittel und Stabilisatoren, wie UV-Stabilisatoren, Schmiermittel, Korrosionsinhibitoren und Flammschutzmittel in der Dispersion vorliegen. Üblicherweise beträgt deren Anteil, bezogen auf das Gesamtgewicht der Dispersion, 0,01 bis 5 Gew.-%. Vorzugsweise liegt der Anteil bei 0,05 bis 3 Gew.-%. FaIIs die stromlos und/oder galvanisch beschichtbaren Partikel in der Dispersion auf dem Träger selbst die Energie der Energiequelle, zum Beispiel des Lasers, nicht ausreichend absorbieren, können der Dispersion Absorptionsmittel zugesetzt werden. Je nach verwendeter Laserstrahlquelle kann es notwendig sein, unterschiedliche Absorptionsmittel oder auch Gemische aus Absorptionsmitteln, welche die Laserstrahlung effektiv absorbieren, auszuwählen. Dabei wird das Absorptionsmittel entweder der Dispersion zugesetzt, oder es wird zwischen das Substrat und die Dispersion eine zusätzliche separate Absorptionsschicht aufgebracht, die das Absorptionsmittel enthält. Im letzteren Fall wird die Energie lokal in der Absorptionsschicht absorbiert und auf die Dispersion durch Wärmeleitung über- tragen.
Geeignete Absorptionsmittel für Laserstrahlung weisen eine hohe Absorption im Bereich der Laserwellenlänge auf. Insbesondere sind Absorptionsmittel geeignet, die eine hohe Absorption im nahen Infrarot- sowie im längerwelligen Vis-Bereich des elektromagneti- sehen Spektrums aufweisen. Derartige Absorptionsmittel eignen sich insbesondere zur Absorption der Strahlung von leistungsstarken Festkörperlasern, wie zum Beispiel Nd- YAG-Lasern, die eine Wellenlänge von 1064 nm aufweisen, sowie von IR-Diodenlasern, die typischerweise Wellenlängen im Bereich von 700 bis 1600 nm aufweisen. Beispiele für geeignete Absorptionsmittel für die Laserstrahlung sind im infraroten Spektralbereich stark absorbierende Farbstoffe, zum Beispiel Phtalocyanine, Naphthalocyanine, Cyanine, Chi- none, Metall-Komplex-Farbstoffe, wie Dithiolene oder photochrome Farbstoffe.
Weiterhin sind geeignete Absorptionsmittel anorganische Pigmente, insbesondere intensiv gefärbte, anorganische Pigmente, wie Chromoxide, Eisenoxide, Eisenoxidyhdrate oder Kohlenstoff in Form von beispielsweise Ruß, Graphit, Graphenen oder Kohlenstoff- Nanoröhrchen.
Besonders geeignet als Absorptionsmittel für Laserstrahlung sind feinteilige Kohlenstoffsorten und feinteiliges Lanthanhexaborid (LaB6).
Im Allgemeinen werden 0,005 bis 20 Gew.-% Absorptionsmittel, bezogen auf das Gewicht der stromlos und/oder galvanisch beschichtbaren Partikel, in der Dispersion eingesetzt. Bevorzugt werden 0,01 bis 15 Gew.-% Absorptionsmittel und besonders bevorzugt 0,1 bis 10 Gew.-% Absorptionsmittel, jeweils bezogen auf das Gewicht der stromlos und/oder gal- vanisch beschichtbaren Partikel, in der Dispersion eingesetzt. Die Menge des zugesetzten Absorptionsmittels wird vom Fachmann je nach den jeweils gewünschten Eigenschaften der Basisschicht gewählt. In diesem Zusammenhang wird der Fachmann weiterhin berücksichtigen, dass die zugesetzten Absorptionsmittel nicht nur Geschwindigkeit und Effizienz der Ablation der Basisschicht durch Laser beeinflussen, son- dem auch andere Eigenschaften der Basisschicht, wie beispielsweise deren Trägerhaftung, Aushärtung oder Metallhaftung.
Im Falle einer separaten Absorptionsschicht enthält diese im günstigsten Fall das Absorptionsmittel und das gleiche Matrixmaterial, wie auch die darüberliegende Basisschicht, um eine gute Schichthaftung zu gewährleisten. Um eine effektive Umwandlung von Licht- in Wärmeenergie zu bewirken und eine schnelle Wärmeleitung in die Basisschicht zu erreichen, sollte die Absorptionsschicht möglichst dünn aufgetragen werden und das Absorptionsmittel in möglichst hoher Konzentration vorliegen, ohne die Schichteigenschaften, wie Haftung zum Träger und der Basisschicht, und die Aushärtung negativ zu beeinflussen. Geeignete Konzentrationen des Absorptionsmittels in der Absorptionsschicht sind dabei mindestens 1 bis 95 Gew.-%, besonders bevorzugt sind 50 bis 85 Gew.-%.
Die Energie, die zur Ablation benötigt wird, kann je nach eingesetzter Laserstrahlquelle und/oder in Abhängigkeit des eingesetzten Substrates entweder auf der mit der Dispersion beschichteten Seite als auch von der der Dispersion gegenüberliegenden Seite des Substrates appliziert werde. Der Abtrag wird mit Hilfe einer Absaugung oder durch Wegblasen des Abtrages entfernt. Es kann bei Bedarf auch eine Kombination der beiden Verfahrensvarianten eingesetzt werden.
Die Beschichtung des Substrates mit der Basisschicht kann sowohl einseitig als auch zweiseitig durchgeführt werden. Die beiden Seiten können im Laserablationsschritt nacheinander bzw. mittels zumindest zweier Laserstrahlquellen auch von beiden Seiten gleichzeitig strukturiert werden.
Zur Erhöhung der Produktivität kann auch mehr als eine Laserstrahlquelle eingesetzt werden. Auch ist es möglich, den Laserstrahl einer Laserquelle zu teilen, wodurch mit nur einer Laserquelle ebenfalls die Produktivität erhöht werden kann.
Die Strukturierung kann zum Beispiel dadurch erreicht werden, dass entweder das Sub- strat auf einem XY-Tisch bewegt wird oder dadurch, dass der Laserstrahl sich bewegt, zum Beispiel durch den Einsatz eines beweglichen Spiegels. Auch ist eine Kombination beider Verfahren möglich. Das Auftragen der vollflächigen Basisschicht erfolgt zum Beispiel nach dem dem Fachmann bekannten Beschichtungsverfahren. Derartige Beschichtungsverfahren sind zum Beispiel Gießen, wie Vorhanggießen, Walzenbeschichten, Streichen, Rakeln, Pinseln, Sprühen, Tauchen, Walzen, Pudern, Wirbelschichtverfahren oder ähnliches. Alternativ wird die vollflächige Basisschicht mit der Dispersion durch ein beliebiges Druckverfahren auf den Träger aufgedruckt, wobei die späteren Strukturen grob vorgebildet werden können. Das Druckverfahren, mit dem die Basisschicht aufgedruckt wird, ist zum Beispiel ein Rollen- oder Bogendruckverfahren, wie zum Beispiel Siebdruck, direkter oder indirekter Tiefdruck, Flexodruck, Buchdruck, Tampondruck, Tintenstrahldruck, das Laser-Sonic- Verfahren® wie in DE 100 51 850 beschrieben, Offset-Druck oder magnetographische Druckverfahren. Es ist jedoch auch jedes weitere dem Fachmann bekannte Druckverfahren einsetzbar. Die durch das Aufdrucken oder das Beschichtungsverfahren erzeugte Schichtdicke der Basisschicht variiert vorzugsweise zwischen 0,01 und 50 μm, weiterhin bevorzugt zwischen 0,05 und 25 μm und insbesondere bevorzugt zwischen 0,1 und 20 μm. Die Schichten können sowohl vollflächig als auch strukturiert aufgebracht werden. Die Schichten können einseitig oder bei Bedarf auch beidseitig aufgebracht werden.
Ein strukturierter Auftrag der Dispersion ist dann vorteilhaft und bevorzugt, wenn zum Beispiel vorgegebene Strukturen in hohen Stückzahlen hergestellt werden und durch den strukturierten Auftrag die Größe der zu ablatierenden Fläche verringert wird. Hierdurch kann mit höherer Geschwindigkeit und zudem kostengünstiger produziert werden, da weniger Material der Basisschicht ablatiert werden muss.
Vorzugsweise wird die Dispersion in einem Vorlagebehälter vor dem Auftragen auf das Substrat gerührt oder umgepumpt. Durch das Rühren und/oder Umpumpen wird eine mögliche Sedimentation der in der Dispersion enthaltenden Partikel verhindert. Durch das Verhindern der Sedimentation werden homogenere Basisschichten, d.h. Basisschichten, in denen die elektrisch leitfähigen Partikel homogen verteilt sind, erhalten. Eine möglichst homogene Basisschicht führt im stromlosen und/oder galvanischen Beschichtungsschritt zu deutlichen besseren, homogeneren und durchgängigeren Strukturen.
Weiterhin ist es ebenfalls vorteilhaft, wenn die Dispersion im Vorlagebehälter temperiert wird. Hierdurch lässt sich eine homogenere Basisschicht auf dem Träger erzielen, da durch das Temperieren eine konstante Viskosität eingestellt werden kann. Die Temperierung ist insbesondere dann erforderlich, wenn sich die Dispersion zum Beispiel durch das Rühren und/oder das Umpumpen aufgrund des Energieeintrages des Rührers oder der Pumpe erwärmt und sich dadurch deren Viskosität ändert. Neben der einseitigen Beschichtung des Substrates ist es mit dem erfindungsgemäßen Verfahren auch möglich, das Substrat an seiner Ober- und Unterseite mit einer elektrisch leitfähigen strukturierten Oberfläche zu versehen. Mit Hilfe von Durchkontaktierungen lassen sich die strukturierten, elektrisch leitfähigen Oberflächen auf der Oberseite und der Unterseite des Substrates miteinander elektrisch verbinden. Für die Durchkontaktierung wird zum Beispiel eine Wandung einer Bohrung im Substrat mit einer elektrisch leitfähigen Oberfläche versehen. Um die Durchkontaktierung herzustellen, ist es zum Beispiel möglich, im Träger Bohrungen auszubilden, an deren Wandung beim Drucken der Basisschicht die Dispersion, die die stromlos und/oder galvanisch beschichtbaren Partikel enthält, auf- getragen wird. Bei einem ausreichend dünnen Substrat, zum Beispiel einer dünnen PET- FoNe, ist es nicht erforderlich, die Wandung der Bohrung mit der Dispersion zu beschichten, da sich bei der stromlosen und/oder galvanischen Beschichtung bei einer ausreichend langen Beschichtungszeit auch innerhalb der Bohrung eine Metallschicht ausbildet, indem die von der Ober- und Unterseite des Substrates in die Bohrung hineinwachsenden Metall- schichten zusammenwachsen, wodurch die elektrische Verbindung der elektrisch leitfähigen, strukturierten Oberflächen der Ober- und Unterseite des Trägers entsteht. Neben dem erfindungsgemäßen Verfahren können auch andere aus dem Stand der Technik bekannte Verfahren zur Metalllisierung von Bohrungen und/oder Sacklöchern eingesetzt werden.
Im Fall von dünnen Trägern kann die Bohrung zum Beispiel durch Stützen, Stanzen oder durch Laserbohrung hergestellt werden.
Um eine mechanisch stabile Basisschicht auf dem Substrat zu erhalten, ist es bevorzugt, dass die Dispersion, mit der die Basisschicht auf das Substrat aufgetragen wird, nach dem Auftragen zumindest teilweise trocknet und/oder zumindest teilweise aushärtet. In Abhängigkeit vom Matrixmaterial erfolgt das Trocknen und/oder Aushärten wie oben beschrieben zum Beispiel durch Einwirkung von Wärme, Licht (UVA/is) und/oder Strahlung, zum Beispiel Infrarotstrahlung, Elektronenstrahlung, Gammastrahlung, Röntgenstrahlung, Mikrowellen. Zum Auslösen der Härtungsreaktion muss ggf. ein geeigneter Aktivator zugesetzt werden. Auch kann die Aushärtung durch Kombination verschiedener Verfahren erreicht werden, zum Beispiel durch Kombination von UV-Strahlung und Wärme. Die Kombination der Härtungsverfahren kann gleichzeitig oder nacheinander ausgeführt werden. So kann zum Beispiel durch UV-Strahlung die Schicht zunächst nur angehärtet werden, so dass die gebildeten Strukturen nicht mehr auseinander fließen. Danach kann durch Wärmeeinwir- kung die Schicht ausgehärtet werden. Die Wärmeinwirkung kann dabei direkt nach der UV- Härtung und/oder nach der stromlosen und/oder galvanischen Metalllisierung erfolgen. Nach dem zumindest teilweisen Trocknen und/oder Aushärten und Freilegen der ge- wünschten Struktur mittels Ablation werden in einer bevorzugten Variante die stromlos und/oder galvanisch beschichtbaren Partikel zumindest teilweise freigelegt.
Durch das Freilegen der stromlos und/oder galvanisch beschichtbaren Partikel werden zu- sätzliche Keime für die Metallisierung erzeugt, wodurch eine homogenere und durchgängigere Metallschicht entsteht.
Das Freilegen der stromlosen und/oder galvanisch beschichtbaren Partikel kann sowohl mechanisch, zum Beispiel durch Abbürsten, Schleifen, Fräsen, Sandstrahlen oder Bestrah- len mit überkritischem Kohlendioxid, physikalisch, zum Beispiel durch Erwärmen, Laser, UV-Licht, Korona- oder Plasmaentladung, oder chemisch erfolgen. Im Falle eines chemischen Freilegens wird bevorzugt eine zum Matrixmaterial passende Chemikalie bzw. Chemikalienmischung eingesetzt. Im Fall eines chemischen Freilegens kann entweder das Matrixmaterial zum Beispiel durch ein Lösungsmittel an der Oberfläche zumindest zum Teil gelöst und heruntergespült werden bzw. kann mittels geeigneten Reagenzien die chemische Struktur des Matrixmaterials zumindest zum Teil zerstört werden, wodurch die stromlos und/oder galvanisch beschichtbaren Partikel freigelegt werden. Auch Reagenzien, die das Matrixmaterial aufquellen lassen, sind für das Freilegen der stromlos und/oder galvanisch beschichtbaren Partikel geeignet. Durch das Aufquellen entstehen Hohlräume, in die die abzuscheidenden Metallionen aus der Elektrolytlösung eindringen können, wodurch eine größere Anzahl an stromlos und/oder galvanisch beschichtbaren Partikeln metallisiert werden kann. Die Haftung, die Homogenität und die Durchgängigkeit der anschließenden stromlos und/oder galvanisch abgeschiedenen Metallschicht ist deutlich besser als bei den im Stand der Technik beschriebenen Verfahren. Durch die höhere Anzahl an stromlos und/oder galvanisch beschichtbaren Partikeln ist ebenfalls die Prozessgeschwindigkeit bei der Metallisierung wesentlich höher, wodurch zusätzliche Kostenvorteile erzielt werden können.
Wenn das Matrixmaterial zum Beispiel ein Epoxidharz, ein modifiziertes Epoxidharz, ein Epoxy-Novolak, ein Polyacrylsäureester, ABS, ein Stryol-Butadien-Copolymer oder ein Polyether ist, erfolgt das Freilegen der stromlos und/oder galvanisch beschichtbaren Partikel vorzugsweise mit einem Oxidationsmittel. Durch das Oxidationsmittel werden Bindungen des Matrixmaterials aufgebrochen, wodurch das Bindemittel abgelöst werden kann und dadurch die Partikel freigelegt werden. Geeignete Oxidationsmittel sind zum Beispiel Manganate, zum Beispiel Kaliumpermanganat, Kaliummanganat, Natriumpermanganat, Natriummanganat, Wasserstoffperoxid, Sauerstoff, Sauerstoff in Gegenwart von Katalysatoren wie Mangan-, Molybdän-, Wismut-, Wolfram- und Kobaltsalzen, Ozon, Vanadiumpen- toxid, Selendioxid, Ammoniumpolysulfid-Lösung, Schwefel in Gegenwart von Ammoniak oder Aminen, Braunstein, Kaliumferrat, Di-chromat/Schwefelsäure, Chromsäure in Schwefelsäure oder in Essigsäure oder in Acetanhydrid, Salpetersäure, lodwasserstoffsäure, Bromwasserstoffsäure, Pyridiniumdichromat, Chromsäure-Pyridin-Komplex, Chromsäu- reanhydrid, Chrom(VI)oxid, Periodsäure, Bleitetraacetat, Chinon, Methylchinon, Anthrachi- non, Brom, Chlor, Fluor, Eisen(lll)-Salzlösungen, Disulphatlösungen, Natriumpercarbonat, Salze der Oxohalogensäuren, wie zum Beispiel Chlorate oder Bromate oder lodate, Salze der Halogenpersäuren, zum Beispiel Natriumperiodat oder Natriumperchlorat, Natriumperborat, Dichromate, wie zum Beispiel Natriumdichromat, Salze der Perschwefelsäure wie Kaliumperoxodisulfat, Kaliumperoxomonosulfat, Pyridiniumchlorochromat, Salze der Hypo- halogensäuren, zum Beispiel Natriumhypochlorid, Dimethylsulfoxid in Gegenwart von e- lektrophilen Reagenzien, tert-Butylhydroperoxid, 3-Chlorperbenzoesäure, 2,2- Dimethylpropanal, Des-Martin-Periodinan, Oxalylchlorid, Harnstoff-Wasserstoff-Peroxid- Addukt, Harnstoffperoxid, 2-lodoxybenzoesäure, Kaliumperoxomonosulfat, m- Chlorperbenzoesäure, N-Methylmorpholin-N-Oxid, 2-Methylprop-2-yl-hydroperoxid, Peressigsäure, Pivaldehyd, Osmiumtetraoxid, Oxone, Ruthenium(lll)- und (IV)-Salze, Sauerstoff in Gegenwart von 2,2,6,6-Tetramethylpiperidinyl-N-Oxid, Triacetoxiperodinan, Trifluourpe- ressigsäure, Trimethylacetaldehyd, Ammoniumnitrat. Optional kann zur Verbesserung des Freilegungsprozesses die Temperatur während des Prozesses erhöht werden.
Bevorzugt sind Manganate, zum Beispiel Kaliumpermanganat, Kaliummanganat, Natrium- permanganat, Natriummanganat, Wasserstoffperoxid, N-Methyl-Morpholin-N-Oxid, Percar- bonate, zum Beispiel Natrium- oder Kaliumpercarbonat, Perborate, zum Beispiel Natriumoder Kaliumperborat, Persulfate, zum Beispiel Natrium- oder Kaliumpersulfat, Natrium-, Kalium- und Ammoniumperoxodi- und -monosulfate, Natriumhypochlorid, Harnstoff- Wasserstoffperoxid-Addukte, Salze der Oxohalogensäuren, zum Beispiel Chlorate, Bromate oder lodate, Salze der Halogenpersäuren, zum Beispiel Natriumperiodat oder Natriumperchlorat, Tetrabutylammoniumperoxidisulfat, Chinone, Eisen(lll)-Salzlösungen, Vanadi- umpentoxid, Pyridiniumdichromat, Chlorwasserstoffsäure, Brom, Chlor, Dichromate.
Besonders bevorzugt sind Kaliumpermanganat, Kaliummanganat, Natriumpermanganat, Natriummanganat, Wasserstoffperoxid und seine Addukte, Perborate, Percarbonate, Persulfate, Peroxodisulfate, Natriumhypochlorid und Perchlorate.
Zum Freilegen der stromlos und/oder galvanisch beschichtbaren Partikel in einem Matrixmaterial, welches zum Beispiel Esterstrukturen, wie Polyesterharze, Polyesteracrylate, Po- lyetheracrylate, Polyesterurethane, enthält, ist es bevorzugt, zum Beispiel saure oder alka- lische Chemikalien und/oder Chemikalienmischungen einzusetzen. Bevorzugte saure Chemikalien und/oder Chemikalienmischungen sind zum Beispiel konzentrierte oder verdünnte Säuren, wie Salzsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure. Auch organische Säuren, wie Ameisensäure oder Essigsäure, können je nach Matrixmaterial geeignet sein. Geeignete alkalische Chemikalien und/oder Chemikalienmischungen sind zum Beispiel Basen, wie Natronlauge, Kalilauge, Ammoniumhydroxid oder Carbonate, zum Beispiel Natriumcarbonat oder Kaliumcarbonat. Optional kann zur Verbesserung des Frei- legungsprozesses die Temperatur während des Prozesses erhöht werden.
Auch Lösungsmittel können zur Freilegung der stromlos und/oder galvanisch beschichtbaren Partikel im Matrixmaterial eingesetzt werden. Das Lösungsmittel muss auf das Matrixmaterial abgestimmt sein, da sich das Matrixmaterial im Lösungsmittel lösen und durch das Lösungsmittel anquellen muss. Wenn ein Lösungsmittel eingesetzt wird, in dem sich das Matrixmaterial löst, wird die Basisschicht nur kurze Zeit mit dem Lösungsmittel in Kontakt gebracht, damit die obere Schicht des Matrixmaterials angelöst wird und sich dabei ablöst. Bevorzugte Lösungsmittel sind XyIoI, Toluol, halogenierte Kohlenwasserstoffe, Aceton, Methylethylketon (MEK), Methylisobutylketon (MIBK), Diethylenglycolmonobutylether. Optional kann zur Verbesserung des Lösungsverhaltens die Temperatur während des Lösungsvorganges erhöht werden.
Weiterhin ist es auch möglich, die stromlos und/oder galvanisch beschichtbaren Partikel durch ein mechanisches Verfahren freizulegen. Geeignete mechanische Verfahren sind zum Beispiel Bürsten, Schleifen, Polieren mit einem Schleifmittel oder Druckstrahlen mit einem Wasserstrahl, Sandstrahlen oder Abstrahlen mit überkritischem Kohlendioxid. Durch ein solches mechanisches Verfahren wird jeweils die oberste Schicht der ausgehärteten aufgedruckten Basisschicht abgetragen. Hierdurch werden die im Matrixmaterial enthaltenen stromlos und/oder galvanisch beschichtbaren Partikel freigelegt.
Als Schleifmittel für das Polieren können alle dem Fachmann bekannten Schleifmittel ver- wendet werden. Ein geeignetes Schleifmittel ist zum Beispiel Bimsmehl.
Um durch das Druckstrahlen mit dem Wasserstrahl die oberste Schicht der ausgehärteten Dispersion abzutragen, enthält der Wasserstrahl vorzugsweise kleine Feststoffpartikel, zum Beispiel Bimsmehl (AI2O3) mit einer mittleren Korngrößenverteilung von 40 bis 120 μm, vorzugsweise von 60 bis 80 μm, oder Quarzmehl (SiO2) mit einer Korngröße > 3 μm. Wenn die stromlos und/oder galvanisch beschichtbaren Partikel ein Material enthalten, welches leicht oxidieren kann, wird in einer bevorzugten Verfahrensvariante vor dem Ausbilden der Metallschicht auf der Basisschicht die Oxidschicht zumindest teilweise entfernt. Das Entfernen der Oxidschicht kann dabei zum Beispiel chemisch und/oder mechanisch erfolgen. Geeignete Substanzen, mit denen die Basisschicht behandelt werden kann, um eine Oxidschicht von den stromlos und/oder galvanisch beschichtbaren Partikeln chemisch zu entfernen, sind zum Beispiel Säuren, wie konzentrierte oder verdünnte Schwefelsäure oder konzentrierte oder verdünnte Salzsäure, Zitronensäure, Phosphorsäure, Aminosulfon- säure, Ameisensäure oder Essigsäure.
Geeignete mechanische Verfahren zur Entfernung der Oxidschicht von den stromlos und/oder galvanisch beschichtbaren Partikeln sind im Allgemeinen die gleichen wie die mechanischen Verfahren zum Freilegen der Partikel.
Damit die Dispersion fest auf dem Substrat haftet, wird dieses in einer bevorzugten Ausführungsform vor dem Auftragen der Basisschicht durch ein trockenes Verfahren, ein nasschemisches Verfahren und/oder ein mechanisches Verfahren gereinigt. Durch das nasschemische Verfahren und das mechanische Verfahren ist es insbesondere auch möglich, die Oberfläche des Substrates anzurauen, damit die Dispersion besser auf diesem haftet. Als nasschemisches Verfahren eignet sich insbesondere das Spülen des Substrates mit sauren oder alkalischen Reagenzien oder mit geeigneten Lösungsmitteln. Auch Wasser in Verbindung mit Ultraschall kann eingesetzt werden. Geeignete saure oder alkalische Reagenzien sind zum Beispiel Salzsäure, Schwefelsäure oder Salpetersäure, Phosphorsäure bzw. Natronlauge, Kalilauge oder Carbonate, wie Kaliumcarbonat. Geeignete Lösungsmit- tel sind die gleichen, wie sie auch in der Dispersion zum Auftragen der Basisschicht enthalten sein können. Bevorzugte Lösungsmittel sind Alkohole, Ketone und Kohlenwasserstoffe, wobei diese in Abhängigkeit vom Trägermaterial auszuwählen sind. Auch die Oxidations- mittel, die schon bei der Aktivierung genannt wurden, können verwendet werden.
Mechanische Verfahren mit denen sich das Substrat vor dem Auftragen der strukturierten oder vollflächigen Basisschicht reinigen lässt, sind im Allgemeinen die gleichen wie sie auch zum Freilegen der elektrisch leitfähigen Partikel und zum Entfernen der Oxidschicht der Partikel eingesetzt werden können.
Zum Entfernen von Staub und anderen Partikeln, die die Haftung der Dispersion auf dem Substrat beeinflussen können, sowie zur Aufrauung der Oberfläche eignen sich insbesondere trockene Reinigungsverfahren. Diese sind zum Beispiel die Entstaubung mittels Bürs- ten und/oder deionisierte Luft, Corona-Entladung oder Niederdruck-Plasma sowie die Partikelentfernung mittels Rollen und/oder Walzen, die mit einer Klebeschicht versehen sind.
Durch Corona-Entladung und Niederdruck-Plasma wird die Oberflächenspannung des Substrates fühlbar erhöht, die Substratoberfläche von organischen Resten gereinigt und damit sowohl die Benetzung mit der Dispersion als auch die Haftung der Dispersion verbessert.
Zur Verbesserung der Haftung der aufgebrachten Basisschicht auf dem Substrat, kann bei Bedarf vor der Übertragung der Basisschicht das Substrat nach dem Fachmann bekannten Verfahren mit einer zusätzlichen Haft-/Kleberschicht versehen werden.
Nach dem Auftragen und zumindest teilweisen Aushärten und/oder Trocknen der Basisschicht wird die Struktur durch Ablation ausgearbeitet. Hierzu werden die Teile der Basis- schicht entfernt, die nicht Teil der Struktur sind. Das Entfernen erfolgt erfindungsgemäß mit Hilfe eines Laserstrahls. Durch den Energieeintrag mit dem Laserstrahl wird zumindest das Matrixmaterial der Basisschicht zumindest teilweise zersetzt und/oder verdampft. Dabei werden auch die im Matrixmaterial enthaltenen stromlos und/oder galvanisch beschichtbaren Partikel freigesetzt. Das aus der Basisschicht entfernte Material kann abgesaugt und/oder abgeblasen werden.
Wenn durch das erfindungsgemäße Verfahren Leiterbahnen hergestellt werden sollen, ist es in einer Ausführungsform möglich, neben der gewünschten Leiterbahnstruktur zusätzlich Kontaktierungslinien, die mit der Leiterbahnstruktur verbunden sind, durch das Lase- rablationsverfahren freizulegen. Diese Kontaktierungshilfslinien werden genauso weiter verarbeitet wie die gewünschte Struktur der Leiterbahnen. Hierzu werden die durch Lase- rablation freigelegten Kontaktierungslinien ebenfalls vorzugsweise nach dem Freilegen der an der Oberfläche enthaltenen stromlos und/oder galvanisch beschichtbaren Partikel stromlos und/oder galvanisch metallisiert. Die Kontaktierungslinien dienen zum Beispiel dazu, dass auch kurze, isoliert voneinander liegende Leiterbahnen einfach kontaktiert werden können. In einer bevorzugten Ausführungsform werden die Kontaktierungshilfslinien nach der stromlosen und/oder galvanischen Metallisierung zumindest teilweise wieder entfernt. Das Entfernen kann zum Beispiel ebenfalls durch Laserablation erfolgen.
Nach dem Strukturieren der Basisschicht durch Laserablation wird eine elektrisch leitfähige Beschichtung auf die strukturierte Basisschicht aufgetragen. Um die elektrisch leitfähige Oberfläche zu erzeugen, wird nach dem Freilegen der elektrisch leitfähigen Partikel min- destens eine Metallschicht auf der strukturierten Basisschicht durch stromlose und/oder galvanische Beschichtung ausgebildet. Die Beschichtung kann dabei mit jedem, dem Fachmann bekannten Verfahren erfolgen. Auch kann mit dem Verfahren zur Beschichtung jede übliche Metallbeschichtung aufgebracht werden. Dabei ist die Zusammensetzung der Elektrolytlösung, die zur Beschichtung verwendet wird, davon abhängig, mit welchem Metall die elektrisch leitfähigen Strukturen auf dem Substrat beschichtet werden sollen. Prinzipiell können alle Metalle, die edler oder gleichedel wie das unedelste Metall der Dispersion sind, für die stromlose und/oder galvanische Beschichtung eingesetzt werden. Übliche Metalle, die durch stromlose und/oder galvanische Beschichtung auf elektrisch leitenden O- berflächen abgeschieden werden, sind zum Beispiel Gold, Nickel, Palladium, Platin, Silber, Zinn, Kupfer oder Chrom. Die Dicken der einen oder mehreren abgeschiedenen Schichten liegen im üblichen, dem Fachmann bekannten Bereich.
Geeignete Elektrolytlösungen, die zur Beschichtung von stromlos und/oder galvanisch be- schichtbaren Strukturen eingesetzt werden können, sind dem Fachmann zum Beispiel aus Werner Jillek, Gustl Keller, Handbuch der Leiterplattentechnik, Eugen G. Leuze Verlag, 2003, Band 4, Seiten 332-352, bekannt.
Zur Beschichtung der elektrisch leitfähigen, strukturierten Oberfläche auf dem Substrat wird das Substrat zunächst einem Bad mit der Elektrolyt-Lösung zugeführt. Der Träger wird dann durch das Bad gefördert, wobei die in der zuvor aufgetragenen strukturierten Basisschicht enthaltenen stromlos und/oder galvanisch beschichtbaren Partikel mit mindestens einer Kathode kontaktiert werden. Hierbei ist jede übliche, dem Fachmann bekannte, geeignete Kathode einsetzbar. Solange die Kathode die strukturierte Basisschicht kontaktiert, werden Metallionen aus der Elektrolyt-Lösung unter Ausbildung einer Metallschicht auf der Basisschicht abgeschieden. Die Kontaktierung kann dabei auch über die Kontaktierungs- hilfslinien erfolgen. Üblicherweise bildet sich beim Eintauchen in die Elektrolytlösung sofort durch stromlose Abscheidung eine dünne Schicht der Basisschicht aus.
Wenn die Basisschicht selbst, wie z.B. bei der Verwendung von Carbonyleisenpulver als stromlos und/oder galvanisch beschichtbare Partikel, nicht ausreichend leitfähig ist, wird durch diese stromlos abgeschiedene Schicht die notwendige Leitfähigkeit für die galvanische Beschichtung erzielt.
Eine geeignete Vorrichtung, in der die strukturierte, elektrisch leitfähige Basisschicht galvanisch beschichtet wird, umfasst im Allgemeinen mindestens ein Bad, eine Anode und eine Kathode, wobei das Bad eine mindestens ein Metallsalz enthaltene Elektrolytlösung ent- hält. Aus der Elektrolyt-Lösung werden Metallionen an elektrisch leitenden Oberflächen des Substrates bzw. der Basisschicht unter Bildung einer Metallschicht abgeschieden. Die mindestens eine Kathode wird hierzu mit der zu beschichtenden Basisschicht des Substrates in Kontakt gebracht, während das Substrat durch das Bad gefördert wird.
Zur galvanischen Beschichtung sind hierbei alle dem Fachmann bekannten Galvanikverfahren geeignet. Derartige Galvanikverfahren sind zum Beispiel solche, bei denen die Kathode durch eine oder mehrere Walzen gebildet wird, die das zu beschichtende Material kontaktieren. Auch können die Kathoden in Form segmentierter Walzen ausgebildet sein, bei denen jeweils zumindest das Segment der Walze, das mit der zu beschichtenden Basisschicht in Verbindung steht, kathodisch geschaltet ist. Um auf der Walze abgeschiedenes Metall wieder zu entfernen, ist es bei segmentierten Walzen möglich, die Segmente, die nicht die zu beschichtende Basisschicht kontaktieren, anodisch zu schalten, wodurch das darauf abgeschiedene Metall in die Elektrolyt-Lösung abgeschieden wird.
Bei der Verwendung von Kontaktierungshilfslinien werden zur galvanischen Beschichtung die Kontaktierungshilfslinien mit der Kathode kontaktiert. Die Kontaktierungshilfslinien dienen dabei dazu, auch kurze, isoliert voneinander liegende Leiterbahnen auf einfache Weise zu kontaktieren. Bevorzugt werden die Kontaktierungshilfslinien nach der galvanischen Beschichtung wieder entfernt. Das Entfernen der Kontaktierungshilfslinien kann zum Beispiel auch durch Laserablation erfolgen. Hierzu werden zum Beispiel die gleichen Laserstrahlquellen eingesetzt wie auch zur Erzeugung der Struktur der Basisschicht.
Die Vorrichtung der galvanischen Beschichtung kann weiterhin mit einer Vorrichtung, mit der das Substrat gedreht werden kann, ausgestattet sein. Die Drehachse der Vorrichtung mit der das Substrat gedreht werden kann, ist dabei senkrecht zu der zu beschichtenden
Oberfläche des Substrates angeordnet. Durch das Drehen werden elektrisch leitfähige
Strukturen, die zunächst, in Transportrichtung des Substrates gesehen, breit und kurz sind, so ausgerichtet, dass diese nach dem Drehen, in Transportrichtung gesehen, schmal und lang sind.
Die Schichtdicke der auf der stromlos und/oder galvanisch beschichtbaren Struktur durch das erfindungsgemäße Verfahren abgeschiedenen Metallschicht ist abhängig von der Kontaktzeit, die sich aus Durchlaufgeschwindigkeit des Substrates durch die Vorrichtung und die Anzahl der hintereinander positionierten Kathoden ergibt, sowie der Stromstärke, mit der die Vorrichtung betrieben wird. Eine höhere Kontaktzeit kann zum Beispiel dadurch erreicht werden, dass mehrere Vorrichtungen in mindestens einem Bad hintereinander geschaltet werden.
Um ein gleichzeitiges Beschichten der Ober- und Unterseite zu ermöglichen, können zum Beispiel jeweils zwei Walzen so angeordnet sein, dass das zu beschichtende Substrat zwischen diesen hindurchgeführt werden kann.
Wenn flexibel Folien beschichtet werden sollen, deren Länge die Länge des Bades übersteigt, sog. Endlosfolien, die zunächst von einer Rolle abgewickelt, durch die Vorrichtung zur galvanischen Beschichtung geführt und danach wieder aufgewickelt werden, kann diese zum Beispiel Zick-Zack- oder in Form einer Mäander um mehrere Vorrichtungen zur galvanischen Beschichtung, die dann zum Beispiel auch übereinander oder nebeneinander angeordnet sein können, durch das Bad geleitet werden.
Die Vorrichtung zur galvanischen Beschichtung kann je nach Bedarf mit jeder dem Fachmann bekannten Zusatzvorrichtung ausgerüstet werden. Solche Zusatzvorrichtungen sind zum Beispiel Pumpen, Filter, Zufuhreinrichtungen für Chemikalien, Abrolleinrichtungen usw.
Zur Verkürzung der Wartungsintervalle können alle dem Fachmann bekannten Pflegemethoden der Elektrolytlösung eingesetzt werden. Solche Pflegemethoden sind zum Beispiel auch Systeme, bei denen sich die Elektrolytlösung selbst regeneriert.
Die erfindungsgemäße Vorrichtung kann zum Beispiel auch in dem aus Werner Jillek, Gustl Keller, Handbuch der Leiterplattentechnik, Eugen G. Leuze Verlag, 2003, Band 4, Seiten 192, 260, 349, 351 , 352 und 359 bekannten Pulsverfahren betrieben werden.
Nach der galvanischen Beschichtung kann das Substrat gemäß allen dem Fachmann bekannten Schritten weiterverarbeitet werden. So können zum Beispiel vorhandene Elektro- lytreste durch Spülen vom Substrat entfernt werden und/oder das Substrat kann getrocknet werden.
Das erfindungsgemäße Verfahren zur Herstellung von elektrisch leitfähigen, strukturierten Oberflächen auf einem Träger lässt sich in kontinuierlicher, teilkontinuierlicher oder diskon- tinuierlicher Fahrweise betreiben. Auch ist es möglich, dass nur einzelne Schritte des Verfahrens kontinuierlich durchgeführt werden, während andere Schritte diskontinuierlich durchgeführt werden. Nach der galvanischen Beschichtung kann das Substrat gemäß allen dem Fachmann bekannten Schritten weiterverarbeitet werden. So können zum Beispiel vorhandene Elektrolytreste durch Spülen vom Substrat entfernt werden und/oder das Substrat kann getrocknet werden.
Das erfindungsgemäße Verfahren eignet sich zum Beispiel zur Herstellung von Leiterbahnen auf Leiterplatten. Derartige Leiterplatten sind zum Beispiel solche mit Multi-Layer- Innen- und Außenlagen, Mikro-Via-Chip-On-Board, flexible und starre Leiterplatten, und werden zum Beispiel eingebaut in Produkte, wie Rechner, Telefone, Fernseher, elektrische Automobilbauteile, Tastaturen, Radios, Video-, CD-, CD-Rom- und DVD-Player, Spielkonsolen, Mess- und Regelgeräte, Sensoren, elektrische Küchengeräte, elektrisches Spielzeug usw.
Auch können mit dem erfindungsgemäßen Verfahren elektrisch leitfähige Strukturen auf flexiblen Schaltungsträgern hergestellt werden. Solche flexiblen Schaltungsträger sind zum Beispiel Kunststofffolien, aus den oben stehend für den Träger genannten Materialien, auf denen elektrisch leitfähige Strukturen angebracht sind. Weiterhin eignet sich das erfindungsgemäße Verfahren zur Herstellung von RFI D-Antennen, Transponderantennen oder anderen Antennenstrukturen, Chipkartenmodulen, Flachkabeln, Sitzheizungen, Folienlei- tern, Leiterbahnen in Solarzellen oder in LCD- bzw. Plasmabildschirmen, Kondensatoren, Folienkondensatoren, Widerständen, Konvektoren, elektrischen Sicherungen oder zur Herstellung von galvanisch beschichteten Produkten in beliebiger Form, zum Beispiel ein- oder zweiseitig metallkaschierte Polymerträger mit definierter Schichtdicke, 3D-Molded Inter- connect Devices oder auch zur Herstellung von dekorativen oder funktionalen Oberflächen auf Produkten, die zum Bespiel zur Abstimmung von elektromagnetischer Strahlung, zur Wärmeleitung oder als Verpackung verwendet werden. Weiterhin ist auch die Herstellung von Kontaktstellen bzw. Kontakt-Pads oder Verdrahtungen auf einem integrierten elektronischen Bauelement möglich.
Ebenso ist mit dem erfindungsgemäßen Verfahren die Herstellung von integrierten Schaltkreisen, resistiven, kapazitiven oder induktiven Elementen, Dioden, Transistoren, Sensoren, Aktuatoren, optischen Bauelementen und Empfänger-/Sendereinrichtungen möglich.
Weiterhin ist die Herstellung von Antennen mit Kontakten für organische Elektronikbauteile sowie von Beschichtungen auf Oberflächen, bestehend aus elektrisch nicht leitfähigem Material zur elektromagnetischen Abschirmung, möglich. Eine Verwendung ist weiterhin im Bereich der Flow-Fields von Bipolarplatten zur Anwendung in Brennstoffzellen möglich.
Weiterhin ist die Herstellung einer vollflächigen oder strukturierten elektrisch leitfähigen Schicht zur anschließenden Dekormetallisierung von Formteilen aus dem oben erwähnten elektrisch nicht leitfähigen Substrat möglich.
Die Anwendungsbreite des erfindungsgemäßen Verfahrens ermöglicht eine kostengünstige Herstellung von metallisierten, selbst nicht leitenden Substraten, insbesondere für die Ver- wendung als Schalter und Sensoren, Gasbarrieren oder Dekorteilen, insbesondere Dekorteilen für Kraftfahrzeug-, Sanitär-, Spielzeug-, Haushalt- und Bürobereich und Verpackungen sowie Folien. Auch im Bereich Sicherheitsdruck für Geldscheine, Kreditkarten, Ausweispapiere usw. kann die Erfindung Anwendung finden. Textilien können mit Hilfe des erfindungsgemäßen Verfahren elektrisch und magnetisch funktionalisiert werden (Anten- nen, Sender, RFID- und Transponderantennen, Sensoren, Heizelemente, Antistatik (auch für Kunststoffe), Abschirmungen usw.).
Weiterhin ist die Herstellung von dünnen Metallfolien oder ein- oder zweiseitig kaschierten Polymerträgern, metallisierten Kunststoffoberflächen, z.B. Zierstreifen oder Außenspiegeln möglich.
Das erfindungsgemäße Verfahren kann ebenfalls für die Metallisierung von Löchern, Vias, Sacklöchern usw. zum Beispiel bei Leiterplatten, RFID-Antennen oder Transponderantennen, Flachkabeln, Folienleitern mit dem Ziel einer Durchkontaktierung der Ober- und Un- terseite verwendet werden. Dies gilt auch, wenn andere Substrate verwendet werden.
Weiterhin finden die erfindungsgemäß hergestellten metallisierten Gegenstände - sofern sie magnetisierbare Metalle umfassen - Anwendung in Bereichen metallisierbarer Funktionsteile, wie Magnettafeln, Magnetspiele, magnetischen Flächen, bei zum Beispiel Kühl- Schranktüren. Außerdem finden sie Anwendung in Bereichen, in denen eine gute thermische Leitfähigkeit vorteilhaft ist, beispielsweise in Folien für Sitzheizungen, Fußbodenheizungen sowie Isolierungsmaterialien.
Bevorzugte Verwendungen der erfindungsgemäß metallisierten Oberflächen sind solche, bei denen die so hergestellten Produkte als Leiterplatte, RFID-Antenne, Transponderan- tenne, Flachkabel, Sitzheizung, kontaktlose Chipkarte, 3D-Molded Interconnect Device, dünne Metallfolie oder ein- oder zweiseitig kaschierte Polymerträger, Folienleiter, Leiter- bahnen in Solarzellen oder in LCD- bzw. Plasmabildschirmen, integrierten Schaltkreisen, resistiven, kapazitiven oder induktiven Elementen, Dioden, Transistoren, Sensoren, Aktua- toren, optischen Bauelementen, Empfänger-/Sendereinrichtungen oder als dekorative Anwendung zum Beispiel für Verpackungsmaterialien, dienen.

Claims

Patentansprüche
1. Verfahren zur Herstellung strukturierter, elektrisch leitfähiger Oberflächen auf einem Substrat, welches folgende Schritte umfasst:
a) Strukturieren einer stromlos und/oder galvanisch beschichtbare Partikel enthaltenden Basisschicht auf dem Substrat durch Abtragen der Basisschicht entsprechend einer vorgegebenen Struktur mit einem Laser,
b) Aktivieren der Oberfläche der stromlos und/oder galvanisch beschichtbaren
Partikel und
c) Aufbringen einer elektrisch leitfähigen Beschichtung auf die strukturierte Basisschicht.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass vor dem Abtragen der Basisschicht durch den Laser eine Dispersion, die die stromlos und/oder galvanisch beschichtbaren Partikel enthält, zur Bildung der Basisschicht auf das Substrat aufgetragen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Auftragen der Dispersion zur Bildung der Basisschicht durch ein Druck-, Gieß-, Walz-, Tauch- oder Sprühverfahren erfolgt.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Dispersion vor dem Auftragen in einem Vorlagebehälter gerührt und/oder umgepumpt und/oder temperiert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die auf das Substrat aufgetragene Dispersion zumindest teilweise getrocknet und/oder ausgehärtet wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das zumindest teilweise Trocknen oder Aushärten der Dispersion vor dem Abtragen mit dem Laser oder nach dem Abtragen mit dem Laser erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Laser ein Festkörperlaser, ein Faserlaser, ein Diodenlaser, ein Gaslaser oder ein Ex- cimer-Laser ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Wellenlänge des Laserlichtes im Bereich zwischen 150 und 10600 nm, bevorzugt im Bereich zwischen 600 und 10600 nm liegt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die stromlos und/oder galvanisch beschichtbaren Partikel mindestens ein Metallpulver,
Kohlenstoff oder eine Mischung daraus enthalten.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Metall des Metallpulvers ausgewählt ist aus Eisen, Nickel, Silber, Zinn, Zink oder Kupfer.
1 1. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass das Metallpulver ein Carbonyleisenpulver ist.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass die stromlos und/oder galvanisch beschichtbaren Partikel vor dem Aktivieren in Schritt b) mit einer Beschichtung versehen sind, die das Laserlicht nur schwach reflektiert oder aus einem Material bestehen, das das Laserlicht nur schwach reflektiert.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Dispersion ein Absorptionsmittel für Laserlicht enthält.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Absorptionsmittel Kohlenstoff oder Lanthanhexaborid ist.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die stromlos und/oder galvanisch beschichtbaren Partikel unterschiedliche Teilchengeometrien aufweisen.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die in der Dispersion enthaltenen stromlos und/oder galvanisch beschichtbaren Partikel vor der stromlosen und/oder galvanischen Beschichtung chemisch, physikalisch oder mechanisch freigelegt werden.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass zum Aktivieren der Oberfläche der stromlos und/oder galvanisch beschichtbaren Partikel eine gegebenenfalls vorhandene Beschichtung von den stromlos und/oder galvanisch beschichtbaren Partikeln entfernt wird.
18. Verfahren nach einem der Ansprüche 2 bis 17, dadurch gekennzeichnet, dass das Substrat vor dem Auftragen der Dispersion, die die stromlos und/oder galvanisch beschichtbaren Partikel enthält, durch ein trockenes Verfahren, ein nasschemisches Verfahren und/oder ein mechanisches Verfahren gereinigt wird.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass auf die Oberseite und die Unterseite des Trägers eine strukturierte elektrisch leitfähige Oberfläche aufgebracht wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die strukturierten elektrisch leitfähigen Oberflächen auf der Oberseite und der Unterseite des Trägers durch mindestens eine Durchkontaktierung miteinander verbunden werden.
21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die elektrisch leitfähige Beschichtung stromlos und/oder galvanisch auf die Basisschicht aufgebracht wird.
22. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass die Basisschicht für die galvanische Beschichtung mit Kontaktierungshilfslinien verbunden ist, die von min- destens einer Kathode kontaktiert werden.
23. Verfahren nach einem der Ansprüche 1 bis 22 zur Herstellung von Leiterbahnen auf Leiterplatten, RFID-Antennen, Transponderantennen oder anderen Antennenstrukturen, Chipkartenmodulen, Flachkabeln, Sitzheizungen, Folienleitern, Leiterbahnen in Solarzellen oder in LCD- bzw. Plasmabildschirmen, 3D-Moulded Interconnect Devices, integrierten Schaltkreisen, resistiven, kapazitiven oder induktiven Elementen, Dioden, Transistoren, Sensoren, Aktuatoren, optischen Bauelementen, Empfänger/Sendeeinrichtungen, dekorativen oder funktionalen Oberflächen auf Produkten, die zur Abschirmung von elektromagnetischer Strahlung, zur Wärmeleitung oder als Verpackung verwendet werden, dünnen Metallfolien oder ein- oder zweiseitig metallkaschierten Polymerträgern oder zur Herstellung von galvanisch beschichteten Produkten in beliebiger Form.
PCT/EP2008/050479 2007-01-19 2008-01-17 Verfahren zur herstellung strukturierter, elektrisch leitfähiger oberflächen WO2008087172A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA002675033A CA2675033A1 (en) 2007-01-19 2008-01-17 Method for producing structured electrically conductive surfaces
US12/523,672 US20100009094A1 (en) 2007-01-19 2008-01-17 Method for the producing structured electrically conductive surfaces
BRPI0806629-9A BRPI0806629A2 (pt) 2007-01-19 2008-01-17 método para a produção de superfìcies eletricamente condutivas estruturadas sobre um substrato
CNA2008800026165A CN101584258A (zh) 2007-01-19 2008-01-17 制备结构化导电表面的方法
KR1020097017245A KR20090103949A (ko) 2007-01-19 2008-01-17 구조화된 전기 전도성 표면을 제조하기 위한 방법
EP08701541A EP2127507A1 (de) 2007-01-19 2008-01-17 Verfahren zur herstellung strukturierter, elektrisch leitfähiger oberflächen
JP2009545921A JP2010517256A (ja) 2007-01-19 2008-01-17 構造化された導電性表面の製造方法
IL199769A IL199769A0 (en) 2007-01-19 2009-07-09 Method for the production of structured, electrically conductive surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07100832.0 2007-01-19
EP07100832 2007-01-19

Publications (1)

Publication Number Publication Date
WO2008087172A1 true WO2008087172A1 (de) 2008-07-24

Family

ID=39421002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050479 WO2008087172A1 (de) 2007-01-19 2008-01-17 Verfahren zur herstellung strukturierter, elektrisch leitfähiger oberflächen

Country Status (11)

Country Link
US (1) US20100009094A1 (de)
EP (1) EP2127507A1 (de)
JP (1) JP2010517256A (de)
KR (1) KR20090103949A (de)
CN (1) CN101584258A (de)
BR (1) BRPI0806629A2 (de)
CA (1) CA2675033A1 (de)
IL (1) IL199769A0 (de)
RU (1) RU2009131220A (de)
TW (1) TW200845845A (de)
WO (1) WO2008087172A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2171796A1 (de) * 2007-07-20 2010-04-07 Laird Technologies, Inc. Hybridantennenstruktur
US20100263109A1 (en) * 2007-12-06 2010-10-21 Basf Se Multilayer material, comprising at least two metalized layers on at least one textile, and method for the production thereof
US20110143107A1 (en) * 2009-12-14 2011-06-16 Basf Se Production of metallized surfaces, metallized surface and use thereof
JP2012525007A (ja) * 2009-04-21 2012-10-18 テトラサン インコーポレイテッド 太陽電池内の構造部を形成するための方法
DE102013101371A1 (de) * 2013-02-12 2014-08-14 Krones Ag Vorrichtung zum Sterilisieren von Behältnissen mit Magnetfeldabschirmung
EP2840165A1 (de) * 2013-08-19 2015-02-25 Total Marketing Services Verfahren zur Ablagerung von Metall auf einem Substrat, insbesondere für Metallisierung von Solarzellen und -modulen
EP3425322A1 (de) * 2017-07-05 2019-01-09 MBDA Deutschland GmbH Verfahren zur herstellung eines flugkörpersystembauteils, flugkörpersystembauteil und flugkörpersystemanordnung
DE112012000993B4 (de) 2011-02-25 2022-01-05 Taiwan Green Point Enterprises Co., Ltd. Unschädliches Verfahren zur Herstellung von durchgehenden leitenden Leiterbahnen auf den Oberflächen eines nicht-leitenden Substrats

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466252B (zh) * 2007-12-21 2011-11-30 清华大学 电磁屏蔽层及其制备方法
WO2009135780A1 (en) * 2008-05-08 2009-11-12 Basf Se Layered structures comprising silicon carbide layers, a process for their manufacture and their use
US8895651B2 (en) * 2010-02-16 2014-11-25 Basf Se Composition for printing a seed layer and process for producing conductor tracks
KR20120137481A (ko) * 2010-02-16 2012-12-21 바스프 에스이 시드 층을 인쇄하기 위한 조성물 및 전도체 트랙을 제조하기 위한 방법
RU2553774C2 (ru) 2010-02-17 2015-06-20 Басф Се Способ создания электропроводных скреплений между солнечными элементами
TWI456830B (zh) * 2010-07-26 2014-10-11 Wistron Neweb Corp 天線結構的製造方法
TWI514668B (zh) * 2010-08-20 2015-12-21 Wistron Neweb Corp 天線之製造方法
CN103035432A (zh) * 2011-10-10 2013-04-10 靖江市永盛光电科技有限公司 一种硅胶按键导电层的加工方法
CN102580905B (zh) * 2012-02-15 2013-11-20 德州华源生态科技有限公司 并条、粗纱胶辊导电涂层的处理方法
US20150103529A1 (en) * 2012-04-19 2015-04-16 GE Lighting Solutions, LLC Methods of forming reflective coatings and lighting systems provided therewith
RU2494492C1 (ru) 2012-06-07 2013-09-27 Общество с ограниченной ответственностью "Компания РМТ" Способ создания токопроводящих дорожек
US9413861B2 (en) * 2012-10-05 2016-08-09 Nokia Technologies Oy Metallization and anodization of plastic and conductive parts of the body of an apparatus
KR101436367B1 (ko) * 2013-04-05 2014-09-02 고려대학교 산학협력단 용매열 방법에 의한 셀룰로오즈 자석 및 그 제조 방법
ITTV20130128A1 (it) * 2013-08-03 2015-02-04 Tryonic Ltd ¿composto in cui tracciare piste elettriche¿
US20150125624A1 (en) * 2013-11-01 2015-05-07 Tyco Electronics Corporation Spray Application Process for Three Dimensional Articles
US9771481B2 (en) * 2014-01-03 2017-09-26 The Boeing Company Composition and method for inhibiting corrosion of an anodized material
KR101672474B1 (ko) 2014-08-13 2016-11-04 (주)옵토라인 레이저 직접 구조화용 코팅제 조성물, 열가소성 수지 조성물 및 이를 이용한 레이저 직접 구조화 방법
CN104333826B (zh) * 2014-10-20 2019-02-15 佳禾智能科技股份有限公司 一种新型蓝牙耳机装置及其制备方法
KR101765586B1 (ko) * 2015-08-25 2017-08-07 현대자동차 주식회사 그래핀 함유 유-무기 하이브리드 코팅막, 및 이의 제조 방법
TWI563886B (en) 2015-10-28 2016-12-21 Ind Tech Res Inst Insulating colloidal material and multilayer circuit structure
TWI584526B (zh) 2015-12-04 2017-05-21 財團法人工業技術研究院 積層式天線結構
TWI629337B (zh) * 2016-07-29 2018-07-11 余琬琴 高附著性導電銅膠體及其網版印刷應用方法
JP6393012B2 (ja) * 2016-09-29 2018-09-19 京セラ株式会社 抵抗体およびこれを備える回路基板ならびに電子装置
KR101991760B1 (ko) * 2016-11-23 2019-10-01 (주)드림텍 3차원 전자 회로 패턴 구현 방법 및 3차원 전자 회로 패턴 구현 시스템
CN109295440A (zh) * 2017-07-25 2019-02-01 Bgt材料有限公司 无电镀触媒和使用该触媒在基材表面形成铜金属层的方法
US20190069414A1 (en) * 2017-08-28 2019-02-28 Bgt Materials Limited Electroless plating catalyst and method of forming copper metal layer on substrate using the same
CN111031664A (zh) * 2018-10-10 2020-04-17 Bgt材料有限公司 柔性电路板及其制造方法
KR102165360B1 (ko) * 2019-01-08 2020-10-14 주식회사 아이엠기술 모바일 디바이스의 케이스 및 이의 코팅방법
CN109575673B (zh) * 2019-01-14 2020-11-17 四川大学 一种适用于3d打印的功能墨水及其制备方法
US11319613B2 (en) 2020-08-18 2022-05-03 Enviro Metals, LLC Metal refinement
CN114786342B (zh) * 2022-04-27 2024-02-27 四川大学 一种基于激光技术的柔性可弯折金属图案及其制备方法和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0180101A2 (de) * 1984-11-01 1986-05-07 International Business Machines Corporation Musterabsetzung durch Laserablation
US5082734A (en) * 1989-12-21 1992-01-21 Monsanto Company Catalytic, water-soluble polymeric films for metal coatings
EP0647729A1 (de) * 1993-10-11 1995-04-12 Koninklijke Philips Electronics N.V. Verfahren zur Herstellung eines metallischen Musters auf einem elektrisch isolierenden Substrat durch stromlose Plattierung
GB2287472A (en) * 1994-03-15 1995-09-20 Univ Singapore Selective metallisation of insulating substrates by printing surface with carbon-based ink catalyst and electroless and electrolytic plating
GB2381274A (en) * 2001-10-29 2003-04-30 Qinetiq Ltd High resolution patterning method
EP1367872A2 (de) * 2002-05-31 2003-12-03 Shipley Co. L.L.C. Laseraktiviertes dielektrisches Material und Methode zu dessen Anwendung in einem stromlosen Abscheidungsverfahren

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943048A (en) * 1973-02-26 1976-03-09 The International Nickel Company, Inc. Powder anode
GB0125350D0 (en) * 2001-10-22 2001-12-12 Sigtronics Ltd PCB formation by laser cleaning of conductive ink
TW200521171A (en) * 2003-12-26 2005-07-01 Toshiba Kk Resin particles and resin layer containing metal micro particles, its forming method and circuit base board
US20060003262A1 (en) * 2004-06-30 2006-01-05 Eastman Kodak Company Forming electrical conductors on a substrate
JP2006128228A (ja) * 2004-10-26 2006-05-18 Seiko Epson Corp 導電膜の形成方法、配線基板、電子デバイスおよび電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0180101A2 (de) * 1984-11-01 1986-05-07 International Business Machines Corporation Musterabsetzung durch Laserablation
US5082734A (en) * 1989-12-21 1992-01-21 Monsanto Company Catalytic, water-soluble polymeric films for metal coatings
EP0647729A1 (de) * 1993-10-11 1995-04-12 Koninklijke Philips Electronics N.V. Verfahren zur Herstellung eines metallischen Musters auf einem elektrisch isolierenden Substrat durch stromlose Plattierung
GB2287472A (en) * 1994-03-15 1995-09-20 Univ Singapore Selective metallisation of insulating substrates by printing surface with carbon-based ink catalyst and electroless and electrolytic plating
GB2381274A (en) * 2001-10-29 2003-04-30 Qinetiq Ltd High resolution patterning method
EP1367872A2 (de) * 2002-05-31 2003-12-03 Shipley Co. L.L.C. Laseraktiviertes dielektrisches Material und Methode zu dessen Anwendung in einem stromlosen Abscheidungsverfahren

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2171796A1 (de) * 2007-07-20 2010-04-07 Laird Technologies, Inc. Hybridantennenstruktur
EP2171796A4 (de) * 2007-07-20 2012-10-17 Laird Technologies Inc Hybridantennenstruktur
US20100263109A1 (en) * 2007-12-06 2010-10-21 Basf Se Multilayer material, comprising at least two metalized layers on at least one textile, and method for the production thereof
JP2012525007A (ja) * 2009-04-21 2012-10-18 テトラサン インコーポレイテッド 太陽電池内の構造部を形成するための方法
US20110143107A1 (en) * 2009-12-14 2011-06-16 Basf Se Production of metallized surfaces, metallized surface and use thereof
DE112012000993B4 (de) 2011-02-25 2022-01-05 Taiwan Green Point Enterprises Co., Ltd. Unschädliches Verfahren zur Herstellung von durchgehenden leitenden Leiterbahnen auf den Oberflächen eines nicht-leitenden Substrats
DE102013101371A1 (de) * 2013-02-12 2014-08-14 Krones Ag Vorrichtung zum Sterilisieren von Behältnissen mit Magnetfeldabschirmung
EP2840165A1 (de) * 2013-08-19 2015-02-25 Total Marketing Services Verfahren zur Ablagerung von Metall auf einem Substrat, insbesondere für Metallisierung von Solarzellen und -modulen
WO2015024775A1 (en) * 2013-08-19 2015-02-26 Total Marketing Services Method for depositing metal on a substrate, in particular for metallization of solar cells and modules
EP3425322A1 (de) * 2017-07-05 2019-01-09 MBDA Deutschland GmbH Verfahren zur herstellung eines flugkörpersystembauteils, flugkörpersystembauteil und flugkörpersystemanordnung

Also Published As

Publication number Publication date
BRPI0806629A2 (pt) 2011-09-13
CN101584258A (zh) 2009-11-18
CA2675033A1 (en) 2008-07-24
JP2010517256A (ja) 2010-05-20
US20100009094A1 (en) 2010-01-14
KR20090103949A (ko) 2009-10-01
TW200845845A (en) 2008-11-16
RU2009131220A (ru) 2011-02-27
IL199769A0 (en) 2010-04-15
EP2127507A1 (de) 2009-12-02

Similar Documents

Publication Publication Date Title
WO2008087172A1 (de) Verfahren zur herstellung strukturierter, elektrisch leitfähiger oberflächen
WO2008080893A1 (de) Verfahren zur herstellung von elektrisch leitfähigen oberflächen
WO2007144322A1 (de) Verfahren zur herstellung von elektrisch leitfähigen oberflächen auf einem träger
EP2050321A1 (de) Verfahren zur herstellung von strukturierten, elektrisch leitfähigen oberflächen
EP2163146A2 (de) Verfahren zur herstellung von polymerbeschichteten metallfolien sowie verwendung davon
WO2008142064A1 (de) Verfahren zur herstellung von metallbeschichteten basislaminaten
EP2099954A1 (de) Vorrichtung und verfahren zur galvanischen beschichtung
EP1926784B1 (de) Dispersion enthaltend zwei verschiedene metalle zum aufbringen einer metallschicht
WO2009112573A2 (de) Verfahren und dispersion zum aufbringen einer metallschicht auf einem substrat sowie metallisierbare thermoplastische formmasse
WO2008015167A1 (de) Dispersion zum aufbringen einer metallschicht
WO2008101884A2 (de) Verfahren zur kontaktierung elektrischer bauelemente
WO2008055867A1 (de) Verfahren zur herstellung von strukturierten, elektrisch leitfähigen oberflächen
DE102009045061A1 (de) Verfahren zur Herstellung von elektrisch leitfähigen, strukturierten oder vollflächigen Oberflächen auf einem Träger
CN115243463A (zh) 一种激光直写全加成制备单面电路板的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880002616.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08701541

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2675033

Country of ref document: CA

Ref document number: 12009501360

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 199769

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2009545921

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12523672

Country of ref document: US

Ref document number: 4250/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008701541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097017245

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009131220

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0806629

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090714