WO2008087020A1 - Strahlantrieb - Google Patents

Strahlantrieb Download PDF

Info

Publication number
WO2008087020A1
WO2008087020A1 PCT/EP2008/000303 EP2008000303W WO2008087020A1 WO 2008087020 A1 WO2008087020 A1 WO 2008087020A1 EP 2008000303 W EP2008000303 W EP 2008000303W WO 2008087020 A1 WO2008087020 A1 WO 2008087020A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
bearing
housing
ring
jet propulsion
Prior art date
Application number
PCT/EP2008/000303
Other languages
English (en)
French (fr)
Inventor
Dirk Büchler
Original Assignee
Air Fertigung-Technologie Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Fertigung-Technologie Gmbh & Co. Kg filed Critical Air Fertigung-Technologie Gmbh & Co. Kg
Priority to EP08707069A priority Critical patent/EP2109565B1/de
Priority to DE502008002069T priority patent/DE502008002069D1/de
Priority to AT08707069T priority patent/ATE492466T1/de
Publication of WO2008087020A1 publication Critical patent/WO2008087020A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/16Propellers having a shrouding ring attached to blades
    • B63H2001/165Hubless propellers, e.g. peripherally driven shrouds with blades projecting from the shrouds' inside surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H2023/005Transmitting power from propulsion power plant to propulsive elements using a drive acting on the periphery of a rotating propulsive element, e.g. on a dented circumferential ring on a propeller, or a propeller acting as rotor of an electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/22Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing
    • B63H23/24Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing electric

Definitions

  • the invention relates to a jet propulsion, in particular for watercraft.
  • Such jet drives a plurality of rotor blades are arranged on the inner circumference of the rotor, which extend up to the region of the axis of rotation of the rotor and leave there a space. The free ends of the rotor blades thus do not touch, and there is no hub provided. Furthermore, such a jet drive comprises a housing in which the rotor is rotatably mounted. The rotor is associated with an electric motor with rotor ring and stator ring. Rotor ring and stator are arranged coaxially with the rotor, and the rotor ring is rotatably connected to the rotor.
  • jet drives have numerous advantages over conventional jet drives. They are of relatively simple construction, therefore inexpensive to manufacture, and also have a relatively low efficiency. Nevertheless, such jet drives can be improved, in particular as far as the efficiency is concerned.
  • the invention has for its object to design a jet drive of the type mentioned in such a way that the efficiency compared to previously known jet drives of this type is improved.
  • a jet drive of the known type is carried out in a tandem arrangement.
  • two rotors are used and two electric motors, which are each arranged axially adjacent to each other as a unit. It can be provided a single housing that encloses the two units in the axial direction.
  • the tandem arrangement results in a higher energy yield during operation. The efficiency is thus greater than in a single jet drive with only a single unit of rotor and electric motor.
  • the tandem design according to the invention is more flexible in operation. So you do not have to operate both units at the same time. Rather, one or the other unit can be switched off or then switched on.
  • a load shift from a front to a rear rotor can be made with increasing speed.
  • the increase in pressure experienced by the rear propeller minimizes the risk of cavitation.
  • FIG. 1 shows a jet drive in an axially perpendicular view.
  • FIG. 2 shows the subject matter of FIG. 1 in an axial section, in accordance with the section line A - A in FIG. 1.
  • FIG. 3 again shows an axial section through a jet drive with two
  • Figure 4 shows a perspective, enlarged view of a section of the storage area.
  • FIG. 1 shows the blades 1 of the rotor of the first of the two units. In this case, there are seven leaves. But it could also be more or less. As you can see, the free ends of the leaves point to the center of the jet unit, leaving a space between the free ends.
  • Each unit comprises the following components: a rotor 3 or 4, on which the blades 1 and 2 are fixed, a rotor ring 5 and 6 and a stator 7 and 8, respectively, which is embedded in a housing 9 and 10 respectively.
  • a rotor 3 or 4 on which the blades 1 and 2 are fixed
  • a rotor ring 5 and 6 and a stator 7 and 8, respectively, which is embedded in a housing 9 and 10 respectively.
  • a spacer flange 11 is provided between the two units.
  • a bearing flange 12 or 13 is provided at the outer ends of the two housings.
  • the axial distance between the two rotors should be as small as possible. It is therefore desirable to dimension the said spacer flange 11 in the axial direction as small as possible. It could for example consist of a very thin sheet, which is only a few millimeters thick, for example 1 to 3 mm, or less than 1 mm, for example 0.5 to 1, 0 mm.
  • the axial distance should generally be less than 10 percent of the axial rotor size.
  • the two electric motors are designed so that they rotate in opposite directions. This is structurally well feasible in the design of the jet propulsion system chosen here, because this unit is hullless.
  • FIG. 3 shows details of a further embodiment of the jet drive according to the invention somewhat more precisely.
  • the rotor blades are omitted for greater clarity. It can be seen again the two rotors 3 and 4, with these rotatably connected rotor rings 5 and 6 and the stator 7 and 8, respectively. The whole is enclosed by a housing 9 and 10 respectively.
  • the bearings play an important role.
  • the jet engine is completely flooded.
  • the bearings are made of seawater-proof carbide.
  • the structure of the bearings can be seen from Figure 4. See there the bearing segments 14, 15 which are embedded in the housing 9 and 10 respectively.
  • the bearing segments 14, 15 are dovetail-shaped in cross-section, and the housing has corresponding recesses. -5
  • the bearing segments 14, 15 can be arranged at a certain mutual distance d. If this is the case, the grooves between the bearing segments are constantly flushed through, which means additional cooling of the bearing of the electric motor.
  • Two or more units can be connected axially in series. 5 Thus, three or four or even more units can be considered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Surgical Instruments (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Die Erfindung betrifft einen Strahlantrieb umfassend zwei oder mehrere axial hintereinander angeordnete Einheiten; jede Einheit weist die folgenden Bauteile beziehungsweise Merkmale auf: einen nabenlosen Rotor, an dessen Innenumfang Rotorblätter fixiert sind; ein Gehäuse, in dem der Rotor drehbar gelagert ist; jeder Rotor ist von einem Elektromotor mit Läuferring und Statorring umschlossen; der Läuferring ist mit dem Rotor drehfest verbunden; die beiden Elektromotoren sind für einander entgegengesetzte Drehrichtungen ausgelegt; die Lagerung zwischen Rotor und Gehäuse weist seewasserfestes Carbid auf.

Description

Strahlantrieb
Die Erfindung betrifft einen Strahlantrieb, insbesondere für Wasserfahrzeuge. Auf WO 2005/049420 wird verwiesen.
Bei solchen Strahlantrieben sind am Innenumfang des Rotors mehrere Rotorblätter angeordnet, die sich bis zum Bereich der Drehachse des Rotors hin erstrecken und dort einen Raum freilassen. Die freien Enden der Rotorblätter berühren sich somit nicht, und es ist auch keine Nabe vorgesehen. Ferner umfasst ein solcher Strahlantrieb ein Gehäuse, in dem der Rotor drehbar gelagert ist. Dem Rotor ist ein Elektromotor mit Läuferring und Statorring zugeordnet. Läuferring und Statorring sind koaxial zu dem Rotor angeordnet, und der Läuferring ist mit dem Rotor drehfest verbunden.
Solche Strahlantriebe haben gegenüber konventionellen Strahlantrieben zahlreiche Vorteile. Sie sind von verhältnismäßig einfachem Aufbau, daher kostengünstig in der Herstellung, und haben außerdem einen relativ günstigen Wirkungsgrad. Gleichwohl sind derartige Strahlantriebe verbesserungsfähig, insbesondere was den Wirkungsgrad anbetrifft.
Der Erfindung liegt die Aufgabe zugrunde, einen Strahlantrieb der genannten Bauart derart zu gestalten, dass der Wirkungsgrad gegenüber bisher bekannten Strahlantrieben dieser Bauart verbessert wird.
Diese Aufgabe wird durch die Merkmale von Anspruch 1 gelöst.
Demgemäß wird ein Strahlantrieb der bekannten Bauart in einer Tandemanordnung ausgeführt. Dabei werden zwei Rotoren verwendet sowie zwei Elektromotoren, die jeweils als eine Einheit axial nebeneinander angeordnet sind. Es kann ein einziges Gehäuse vorgesehen werden, dass die beiden Einheiten in axialer Richtung umschließt. Durch die Tandemanordnung ergibt sich während des Betriebes eine höhere Energieausbeute. Der Wirkungsgrad ist somit größer, als bei einem Einzel- Strahlantrieb mit nur einer einzigen Einheit aus Rotor und Elektromotor. Außerdem ist die erfindungsgemäße Tandem-Bauart flexibler im Betrieb. So müssen nicht beide Einheiten gleichzeitig betrieben werden. Vielmehr kann die eine oder die andere Einheit abgeschaltet beziehungsweise sodann zugeschaltet werden.
Gemäß einem weiteren Gedanken wird eine besondere Regelung vorgesehen.
Hiermit lassen sich die Drehzahlen der Rotoren einzelner Einheiten unabhängig voneinander regeln. Es können damit für beliebige Fahrzustände die Drehzahlen der Rotoren einzelner Einheiten derart gewählt werden, dass für das
Gesamtsystem Drehmomentenfreiheit gewährleistet ist. Damit lässt sich für beliebige Fahrzustände der Wirkungsgrad optimieren. Es lässt sich für das gesamte System ein Wirkungsgrad-Maximum erzielen.
Dies ist insbesondere vorteilhaft für ein Schiff, dessen Betriebsbedingungen stark verändert werden.
Bei schnell fahrenden Wasserfahrzeugen ist auch die folgende Regelung möglich: Es lässt sich eine Lastverschiebung von einem vorderen auf einen hinteren Rotor mit zunehmender Geschwindigkeit vornehmen. Durch den Druckzuwachs, den der hintere Propeller damit erfährt, lässt sich die Kavitationsgefahr minimieren.
Auch ist es möglich, das hintere Axiallager eines in Fahrtrichtung gesehen vorderen Rotors gegen das vordere Axiallager eines in Fahrtrichtung hinteren
Rotors laufen zu lassen. Hierdurch lässt sich eine höhere Relativgeschwindigkeit im Lager erzielen. Lagergröße und baulicher Aufwand lassen sich damit reduzieren.
Die Erfindung ist anhand der Zeichnung näher erläutert. Darin ist im einzelnen folgendes dargestellt: Figur 1 zeigt einen Strahlantrieb in einer achssenkrechten Ansicht.
Figur 2 zeigt den Gegenstand von Figur 1 in einem Axialschnitt, und zwar gemäß der Schnittlinie A - A in Figur 1.
Figur 3 zeigt wiederum einen Axialschnitt durch einen Strahlantrieb mit zwei
Einheiten im Ausschnitt.
Figur 4 zeigt in einer perspektivischen, vergrößerten Darstellung einen Ausschnitt aus dem Lagerbereich.
Figur 1 zeigt die Blätter 1 des Rotors der ersten der beiden Einheiten. Im vorliegenden Falle handelt es sich um sieben Blätter. Es könnten aber auch mehr oder weniger sein. Wie man sieht, weisen die freien Enden der Blätter auf das Zentrum der Strahleinheit, so dass zwischen den freien Enden ein Freiraum verbleibt.
Aus Figur 2 erkennt man, dass es sich um zwei Einheiten handelt. Hieraus sind auch einige der Blätter der beiden Strahleinheiten zu erkennen, nämlich wiederum Blätter 1 der ersten Einheit und Blätter 2 der zweiten Einheit.
Jede Einheit weist die folgenden Bauteile auf: einen Rotor 3 beziehungsweise 4, an dem die Blätter 1 beziehungsweise 2 fixiert sind, einen Läuferring 5 beziehungsweise 6 sowie einen Statorring 7 beziehungsweise 8, der jeweils in ein Gehäuse 9 beziehungsweise 10 eingelassen ist. Außerdem erkennt man den Fuß 1.1 beziehungsweise 2.1 des einzelnen Blattes.
Alle diese Bauteile, somit Fuß des Blattes, Rotor 3 beziehungsweise 4, Läuferring 5 beziehungsweise 6 und Statorring 7 beziehungsweise 8 sind koaxial zueinander angeordnet. Der Läuferring ist mit dem Rotor drehfest verbunden. Zwischen dem Läuferring und dem Statorring herrscht ein Luftspalt von minimaler Weite. Die beiden Gehäuse 9, 10 könnten auch aus einem einzigen Teil bestehen.
Zwischen den beiden Einheiten ist ein Abstandsflansch 11 vorgesehen. An den äußeren Enden der beiden Gehäuse ist wiederum ein Lagerflansch 12 beziehungsweise 13 vorgesehen.
Der axiale Abstand zwischen den beiden Rotoren sollte so klein wie möglich sein. Es ist daher wünschenswert, den genannten Abstandsflansch 11 in axialer Richtung möglichst klein zu bemessen. Er könnte beispielsweise aus einem ganz dünnen Blech bestehen, das nur wenige Millimeter stark ist, beispielsweise 1 bis 3 mm, oder kleiner als 1 mm, beispielsweise 0,5 bis 1 ,0 mm.
Der axiale Abstand sollte ganz allgemein kleiner als 10 Prozent des axialen Rotormaßes sein.
Die beiden Elektromotoren sind derart ausgelegt, dass sie in gegenläufigem Drehsinn umlaufen. Dies ist bei der hier gewählten Bauweise des Strahlantriebes konstruktiv gut verwirklichbar, weil diese Baueinheit nämlich nabenlos ist.
Die erfindungsgemäße Tandem-Bauart hat große Vorteil bezüglich des
Wirkungsgrades. Dieser ist wesentlich höher, als bei einem entsprechend bemessenen Einzel-Strahlantrieb.
Figur 3 zeigt Einzelheiten einer weiteren Ausführungsform des erfindungsgemäßen Strahlantriebes etwas genauer. Dabei sind die Rotorblätter der größeren Klarheit wegen weggelassen. Man erkennt wiederum die beiden Rotoren 3 beziehungsweise 4, die mit diesen drehfest verbundenen Läuferringe 5 beziehungsweise 6 sowie die Statorringe 7 beziehungsweise 8. Das Ganze ist von einem Gehäuse 9 beziehungsweise 10 umschlossen.
Eine wichtige Rolle spielen die Lager. Der Strahlantrieb ist völlig geflutet. Die Lager bestehen aus seewasserfestem Carbid. Den Aufbau der Lager erkennt man aus Figur 4. Siehe dort die Lagersegmente 14, 15 die in das Gehäuse 9 beziehungsweise 10 eingelassen sind. Die Lagersegmente 14, 15 sind im Querschnitt schwalbenschwanzförmig, und das Gehäuse hat entsprechende Aussparungen. -5
Je nachdem, ob eine Durchspülung am Gehäuselager vorgesehen ist oder nicht, können die Lagersegmente 14, 15 in einem gewissen gegenseitigen Abstand d angeordnet werden. 0 Ist dies der Fall, so werden die Nuten zwischen den Lagersegmenten ständig durchspült, was eine zusätzliche Kühlung der Lagerung des Elektromotores bedeutet.
Es können zwei oder mehrere Einheiten axial hintereinander geschaltet werden. 5 Es kommen somit auch drei oder vier oder noch mehr Einheiten in Betracht.
Bezugszeichen liste
1 Rotorblatt
1.1 Fuß des Rotorblattes
2 Rotorblatt
2.1 Fuß des Rotorblattes
3 Rotor
4 Rotor
5 Läuferring
6 Läuferring
7 Statorring
8 Statorring
9 Gehäuse
10 Gehäuse
11 Abstandsflansch
12 Lagerflansch
13 Lagerflansch
14 Lagersegmente
15 Lagersegmente

Claims

Patentansprüche
1. Strahlantrieb
1.1 umfassend zwei oder mehrere axial hintereinander angeordnete Einheiten; 5 1.2 jede Einheit weist die folgenden Bauteile beziehungsweise Merkmale auf: einen nabenlosen Rotor (3, 4), an dessen Innenumfang Rotorblätter
(1 , 2) fixiert sind; ein Gehäuse (9, 10), in dem der Rotor (3, 4) drehbar gelagert ist; jeder Rotor (3, 4) ist von einem Elektromotor mit Läuferring (5, 6) und 0 Statorring (7, 8) umschlossen; der Läuferring (5, 6) ist mit dem Rotor (3, 4) drehfest verbunden;
1.3 die beiden Elektromotoren sind für einander entgegengesetzte Drehrichtungen ausgelegt;
1.4 die Lagerung zwischen Rotor (3, 4) und Gehäuse (9, 10) weist 15 seewasserfestes Carbid auf.
2. Strahlantrieb nach Anspruch 1 , dadurch gekennzeichnet, dass die Lagerung zwischen Rotor (3, 4) und Gehäuse (9, 10) Siliciumcarbid oder Aluminiumcarbid aufweist. 0
3. Strahlantrieb nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Lagerung zwischen Rotor (3,
4) und Gehäuse (9, 10) ausschließlich aus Carbid besteht. 5 4. Strahlantrieb nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Lagerung aus Gleitlagern gebildet ist.
5. Strahlantrieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Drehzahlen der Rotoren (3, 4) der Einheiten unabhängig 0 voneinander regelbar sind.
6. Strahlantrieb nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das hintere Axiallager eines in Fahrtrichtung gesehen vorderen Propellers gegen das vordere Lager eines in Fahrtrichtung gesehen hinteren Propellers läuft.
PCT/EP2008/000303 2007-01-17 2008-01-16 Strahlantrieb WO2008087020A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08707069A EP2109565B1 (de) 2007-01-17 2008-01-16 Strahlantrieb
DE502008002069T DE502008002069D1 (de) 2007-01-17 2008-01-16 Strahlantrieb
AT08707069T ATE492466T1 (de) 2007-01-17 2008-01-16 Strahlantrieb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007002519A DE102007002519A1 (de) 2007-01-17 2007-01-17 Strahlantireb
DE102007002519.1 2007-01-17

Publications (1)

Publication Number Publication Date
WO2008087020A1 true WO2008087020A1 (de) 2008-07-24

Family

ID=39322667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/000303 WO2008087020A1 (de) 2007-01-17 2008-01-16 Strahlantrieb

Country Status (4)

Country Link
EP (2) EP2109565B1 (de)
AT (1) ATE492466T1 (de)
DE (2) DE102007002519A1 (de)
WO (1) WO2008087020A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2279113A2 (de) * 2008-05-27 2011-02-02 Siemens Aktiengesellschaft Strömungsmaschine mit zumindest zwei rotoren

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021548A1 (de) 2009-05-15 2010-11-25 Voith Patent Gmbh Strahlantrieb mit wenigstens einer Antriebseinheit
DE102010049493B4 (de) 2010-10-27 2020-12-10 Voith Patent Gmbh Kippsegmentlager
CN102336261B (zh) * 2011-09-07 2013-09-18 王仁夫 无轴螺旋桨推进器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185545A (en) * 1990-08-23 1993-02-09 Westinghouse Electric Corp. Dual propeller shock resistant submersible propulsor unit
US20010029133A1 (en) * 2000-02-15 2001-10-11 Breems Martinus Van Electric propulsion systems
WO2005049420A1 (de) 2003-11-14 2005-06-02 Air Fertigung-Technologie Gmbh & Co. Kg Strahlantrieb

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3300380A1 (de) * 1983-01-07 1984-07-12 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Unterwasserpropellerantrieb
FR2788032B1 (fr) * 1998-12-30 2002-03-22 Jeumont Ind Dispositif de propulsion d'un batiment naval
USD543928S1 (en) * 2003-01-23 2007-06-05 Ufoz, Llc Hovercraft with stacked rotor thruster and winglets
US20050251007A1 (en) 2004-04-22 2005-11-10 Ansel Gary M Device for use during medical procedures
NL1029389C2 (nl) * 2005-06-30 2007-01-04 Marifin Beheer B V Asloze schroef.
DE202006008866U1 (de) * 2006-06-06 2006-11-16 Rubinraut, Alexander Schiffsantrieb mit Rudergondel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185545A (en) * 1990-08-23 1993-02-09 Westinghouse Electric Corp. Dual propeller shock resistant submersible propulsor unit
US20010029133A1 (en) * 2000-02-15 2001-10-11 Breems Martinus Van Electric propulsion systems
WO2005049420A1 (de) 2003-11-14 2005-06-02 Air Fertigung-Technologie Gmbh & Co. Kg Strahlantrieb

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2279113A2 (de) * 2008-05-27 2011-02-02 Siemens Aktiengesellschaft Strömungsmaschine mit zumindest zwei rotoren
EP2279113B1 (de) * 2008-05-27 2017-09-06 Siemens Aktiengesellschaft Strömungsmaschine mit zumindest zwei rotoren

Also Published As

Publication number Publication date
EP2109565B1 (de) 2010-12-22
DE502008002069D1 (de) 2011-02-03
EP2109565A1 (de) 2009-10-21
DE102007002519A1 (de) 2008-07-31
EP2292510A1 (de) 2011-03-09
ATE492466T1 (de) 2011-01-15

Similar Documents

Publication Publication Date Title
EP2279111B1 (de) Unterseeboot mit einem propulsionsantrieb mit einem elektroringmotor
EP2279113B1 (de) Strömungsmaschine mit zumindest zwei rotoren
EP2605958B1 (de) Verstellpropeller oder -repeller
EP1440240B1 (de) Generator für ein wasserkraftwerk
EP1796959B1 (de) Pod-schiffsantrieb mit hydrodynamischem getriebe
DE3423168A1 (de) Rotorvorrichtung
DE102011054849B3 (de) Heckrotoranordnung
EP1382855A2 (de) Strömungsarbeitsmaschine mit integriertem Fluidzirkulationssystem
DE1428220A1 (de) Axialkompressor oder -luefter und damit ausgestattetes Gasturbinenstrahltriebwerk
DE202015106564U1 (de) Elektrischer Antrieb, insbesondere für ein sich in einem Fluid bewegendes Fahrzeug
EP2109565B1 (de) Strahlantrieb
EP2734303B1 (de) Antriebsanordnung für eine vertikal-rollenmühle
DE69200164T2 (de) Verbesserung an einer hohlstrahlantriebsvorrichtung.
WO2010145730A1 (de) Laufzeug für eine fluidenergiemaschine sowie elektrisch angetriebener turbolader
DE10158870A1 (de) Redundante elektrische Antriebsvorrichtung, insbesondere zum Antrieb eines Ruders an einem Schiff
EP2217487B1 (de) Schiffsantrieb mit einem pumpjet
EP2323904B1 (de) Schiffsantrieb für ein wasserfahrzeug
EP1759987B1 (de) Elektrischer Bootsantrieb
DE102015213514A1 (de) Statorring, Generator, sowie Windenergieanlage mit selbigem
DE19647948A1 (de) Gondelpropeller (Contrapod)
DE102022202672A1 (de) Fluidmaschine und Unterwasserfahrzeug
DE202005005694U1 (de) Windenergieanlage
DE4440791A1 (de) Unterwasser-Strahlantrieb
EP4026765A1 (de) Schiffsantrieb und damit ausgerüstetes schiff
DE2857227A1 (de) Fluessigkeitsringpumpe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08707069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008707069

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE