WO2008085085A1 - Procédé de décontamination d'eau contenant des ions de métaux lourds - Google Patents

Procédé de décontamination d'eau contenant des ions de métaux lourds Download PDF

Info

Publication number
WO2008085085A1
WO2008085085A1 PCT/RU2007/000713 RU2007000713W WO2008085085A1 WO 2008085085 A1 WO2008085085 A1 WO 2008085085A1 RU 2007000713 W RU2007000713 W RU 2007000713W WO 2008085085 A1 WO2008085085 A1 WO 2008085085A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanophase
sorbent
water
heavy metal
metal ions
Prior art date
Application number
PCT/RU2007/000713
Other languages
English (en)
French (fr)
Inventor
Vladimir Nikolaevich Lisetvskiy
Tatyana Aleksandrovna Lisetskaya
Lidija Nikolaevna Merkusheva
Original Assignee
Badulin, Nikolay Aleksandrovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Badulin, Nikolay Aleksandrovich filed Critical Badulin, Nikolay Aleksandrovich
Priority to EP07866953A priority Critical patent/EP2127740A4/de
Priority to EA200900789A priority patent/EA014285B1/ru
Publication of WO2008085085A1 publication Critical patent/WO2008085085A1/ru
Priority to US12/494,739 priority patent/US7884043B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3295Coatings made of particles, nanoparticles, fibers, nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • this sorbent has a significant drawback: the sorbent does not purify water from arsenic ions, which is present in almost all ground and surface waters and which is the strongest poison for living organisms.
  • a sample of 3 g of zeolite having a chemical composition is taken,%: SiO 2 - 64.79, H 2 O - 12.85, Al 2 O 3 - 12.75, CaO - 1.89, MgO - 1, 50, Fe 2 O 3 - 1.40, K 2 O - 1.26, Na 2 O - 0.44, CaF 2 - 0.03, TiO 2 - 0.02 and an average of 60% clinoptilolite.
  • a portion of the zeolite is mixed with 0.53 g (corresponds to 13%) of nanophase boehmite and 0.62 g (corresponds to 15%) of nanophase iron hydroxide.
  • the resulting mixture was triturated in an agate mortar for 5 minutes, and then dried for 6 hours. in an oven at a temperature of 19O 0 C.
  • the study of the x-ray phase composition of the sample of the obtained precipitate is carried out on an X-ray diffractometer using R-radiation of copper with a wavelength of 1.54178 A and a nickel beta filter.
  • the diffractometric characteristics of the sample showed that the sample is a nanophase boehmite as the crystalline phase (Table 1). Impurities of other crystalline phases were not found.
  • Nanophase iron hydroxide Fe (OH) 3 is obtained in the form of a freshly precipitated gel by the interaction of solutions of iron chloride and NH 4 OH. Electron microscopic studies of the sample showed that it consists of amorphous particles with a size of 50-200 nm. Table 1.
  • a sorbent consisting of crushed zeolite and nanophase material, including nanophase iron hydroxide corresponding to 15% nanophase iron hydroxide, and nanophase boehmite corresponding to 13% nanophase boehmite.
  • the obtained sorbent is examined using an electron microscope. An electron photograph shows that zeolite particles 1-8 ⁇ m in size are coated with needle-shaped nanophase boehmite particles and amorphous particles of nanophase iron hydroxide.
  • a sorbent consisting of crushed zeolite and nanophase material, including nanophase iron hydroxide corresponding to 12% nanophase iron hydroxide, and nanophase boehmite corresponding to 5% nanophase boehmite.
  • the concentration is estimated by the addition of a standard solution of AsO 3 3 " with a concentration of 2.5 mg / L (in an amount of 0.1 ml). The minimum detectable concentration is 0.001 mg / L. The percentage of sorption is calculated when taking the initial concentration of AsO 3 3 as 100%. " Data on the sorption ability of the inventive sorbent with different contents of nanophase boehmite and nanophase iron hydroxide are given in table 2.
  • the sorption agent containing nanophase boehmite and nanophase iron hydroxide has the best sorption characteristics with respect to AsOz 3 " ions in the following ratio of components,% of May: nanophase iron hydroxide - 12-18, nanophase boehmite - 5-13, zeolite - the rest.
  • the content in the sorbent of nanophase iron hydroxide of more than 18 and less than 12% and nanophase boehmite of more than 13 and less than 5% is observed deterioration of adsorption properties.
  • samples of the sorbent are tested for adsorption of ions of other heavy metals at concentrations 5 times higher than the MPC: Cd 2+ - 0.1 mg / L, Cu 2+ - 2.5 mg / L, Pb 2+ - 0.3 mg / L, AsO 4 " - 2.5 mg / L, CrO 4 " - 1.0 mg / L.
  • Cations are determined on a mercury film electrode with a silver substrate, chromate anions - on a working graphite electrode, arsenic (V) anions - on a zolotografitnogo electrode.

Description

СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДЫ ОТ ИОНОВ ТЯЖЕЛЫХ
МЕТАЛЛОВ
5 Область техники
Изобретение относится к сорбционным материалам для удаления ионов тяжелых металлов из грунтовых вод, поверхностных водных систем и может найти применение на предприятиях химической и металлургической промышленности, использующих травильные и ю гальванические технологии.
Предшествующий уровень техники
Известен сорбент (патент РФ JVb 2051112, МПК 6 C02F1/28, опубл. 27.12. 1995г.), который представляет собой слой цеолита,
15 обработанный раствором щавелевой кислоты с концентрацией 0,05-0,1 моль/л в присутствии минеральной кислоты до рН 1-2. При пропускании через слой такого сорбента сточных вод, содержащих ионы тяжелых металлов, достигается следующая степень очистки воды от ионов: Cr (III) и Cr (VI) до 100%, Cu (II) до 98,2%, Fe (II, III)
20 до 99,2% , Zn (II) до 98,1%.
Однако у этого сорбента есть существенный недостаток: сорбент не очищает воду от ионов мышьяка, который присутствует практически во всех грунтовых и поверхностных водах и который является сильнейшим ядом для живых организмов.
25 Очистить эти воды от ионов мышьяка, причем от ионов мышьяка с разной валентностью, позволяет использование наиболее близкого по технической сущности и достигаемому эффекту к предложенному другой известный сорбент (патент US N-? 6921732, МПК BOlJ 20/06, опубл. 26.07.2005г.). Он представляет собой цеолит, покрытый зо нанофазными оксидами железа и марганца, причем сорбент содержит 0,25-10% оксида железа с молярным соотношением
Mn/(Mn+Fe), равным 0,10. Сорбент получают путем добавления цеолита к железо-марганцевому раствору, приготовленному смешением раствора оксида железа с марганецсодержащим соединением. Эту смесь фильтруют, и из отфильтрованного продукта методом сушки получают сорбент в виде цеолита, покрытого нанофазными гидрооксидами железа и марганца.
Сорбент-прототип имеет следующие недостатки. Он позволяет удалять из воды только ионы мышьяка и не применяется для очистки воды от ионов других тяжелых металлов. При этом наибольшая концентрация загрязнения воды, при которой достигается высокая степень очистки, сравнительно мала: 1,57 мг/л (ррm). Кроме того, в процессе очистки от As(III), широко распространенного в природных условиях, высвобождаются ионы марганца Mn(II), которые также являются загрязнителями воды.
Раскрытие изобретения
Основной задачей, на решение которой направлено заявляемое изобретение является создание сорбента для очистки воды от ионов тяжелых металлов, обладающего повышенной эффективностью очистки за счет расширения списка улавливаемых тяжелых металлов при высокой концентрации загрязнения очищаемой воды.
Указанная задача достигается тем, что сорбент для очистки воды от ионов тяжелых металлов состоит из измельченного цеолита и нанофазного материала, который включает нанофазный гидроксид железа и нанофазный бемит при следующем соотношении компонентов, мае. % : нанофазный гидроксид железа 12 - 18 нанофазный бемит 5 - 13 измельченный цеолит остальное.
Предложенный сорбент для очистки воды от ионов тяжелых металлов, состоящий из измельченного цеолита и нанофазного материала, включающего нанофазный гидроксид железа и нанофазный бемит, при заявленном соотношении компонентов обладает повышенной эффективностью очистки воды за счет расширения списка тяжелых металлов, улавливаемых до высокой степени очистки при высокой концентрации загрязнения очищаемой воды. Заявленный сорбент улавливает не только анионы мышьяка (Ш), мышьяка (V) и хрома (VI), но и катионы кадмия, меди, свинца. Наибольшая концентрация загрязнения очищаемой воды составляет 5 мг/л, т.е. выше, чем у сорбента прототипа в 3,2 раза. Кроме того, при использовании предложенного сорбента не происходит высвобождение ионов марганца, который является дополнительным загрязнителем воды, а идет только процесс поглощения ионов мышьяка.
Краткое описание фигуры чертежа
На Фиг. представлена электронная фотография образца заявленного сорбента.
Примеры осуществления изобретения Пример 1.
Для получения заявленного сорбента берут навеску 3 г цеолита, имеющего химический состав, %: SiO2 - 64,79, H2O - 12,85, Al2O3 - 12,75, CaO - 1,89, MgO - 1,50, Fe2O3 - 1,40, K2O - 1,26, Na2O - 0,44, CaF2 - 0,03, TiO2 - 0,02 и в среднем содержащего 60% клиноптилолита. Навеску цеолита смешивают с 0,53 г (соответствует 13%) нанофазного бемита и 0,62 г (соответствует 15%) нанофазного гидроксида железа. Полученную смесь перетирают в агатовой ступке в течение 5 мин., а затем сушат в течение 6 час. в сушильном шкафу при температуре 19O0C.
Нанофазный бемит получают взаимодействием порошка алюминия с водой в слабощелочной среде. Дня этого берут навеску 0,238 г алюминиевого порошка, представляющего собой особо тонкоизмельченные частицы алюминия пластинчатой формы. Навеску алюминиевого порошка помещают в 125 мл дистиллированной воды и добавляют 2 мл концентрированного раствора NH4OH для создания щелочной среды. Полученную смесь подогревают до 500C и оставляют до полного окончания реакции алюминиевого порошка с водой. Затем полученный осадок фильтруют на воронке Бюхнера с помощью водоструйного насоса, промывают до нейтральной рН. Осадок сушат 2 часа в сушильном шкафу при 50-750C, а затем сушат при 1600C в течение 6 часов. Изучение рентгенофазового состава образца полученного осадка проводят на рентгеновском дифрактометре с использованием R-излучения меди с длиной волны 1,54178 А и никелевым бета-фильтром. Дифрактометрические характеристики образца показали, что в качестве кристаллической фазы образец представляет собой нанофазный бемит (табл.l). Примесей других кристаллических фаз не обнаружено.
Исследования полученного образца, проведенные на электронном микроскопе в просвечивающем режиме, показали, что образец нанофазного бемита состоит из игольчатых наночастиц ТОЛЩИНОЙ 2 - 5 HM И ДЛИНОЙ ДО 200 HM.
Нанофазный гидроксид железа Fe(OH)3 получают в виде свежеосажденного геля путем взаимодействия растворов хлорида железа и NH4OH. Электронно-микроскопические исследования образца показали, что он состоит из аморфных частиц размером 50-200 нм. Таблица 1.
Figure imgf000006_0001
Пример 2. Для получения заявленного сорбента навеску 3 г цеолита, имеющего химический состав, %: SiO2 - 64,79, H2O - 12,85, Al2O3 - 12,75, CaO - 1,89, MgO - 1,50, Fe2O3 - 1,40, K2O - 1,26, Na2O - 0,44, CaF2 - 0,03, TiO2 - 0,02 и в среднем содержащего 60% клиноптилолита, измельчают в течение 5 мин. в агатовой ступке, помещают в 125 мл дистиллированной воды. Затем добавляют 0,238 г алюминиевого порошка, представляющего собой особо тонкоизмельченные частицы алюминия пластинчатой формы, и 2 мл концентрированного раствора NH4OH для создания щелочной среды. Полученную смесь подогревают до 500C и оставляют до полного окончания реакции алюминиевого порошка с водой. В полученную смесь, подкисленную до pH=4 соляной кислотой, добавляют при перемешивании 53,04 мл раствора FeCl3-OH2O (концентрация 29,59 г/л), затем добавляют при перемешивании 5,1 мл концентрированного NH4OH. После охлаждения полученную смесь фильтруют на воронке Бюхнера с помощью водоструйного насоса, промывают до нейтральной рН. Осадок сорбента сушат в сушильном шкафу сначала 2 часа при 50- 75°C, а затем при 1900C сушат в течение 6 часов. Таким образом, получают сорбент, состоящий из измельченного цеолита и нанофазного материала, включающего в себя нанофазный гидроксид железа, соответствующий 15% нанофазного гидроксида железа, и нанофазный бемит, соответствующий 13% нанофазного бемита. Полученный сорбент исследуют на электронном микроскопе, На электронной фотографии видно, что частицы цеолита, размер которых 1-8 мкм покрыты частицами нанофазного бемита игольчатой формы и аморфными частицами нанофазного гидроксида железа.
Таким образом, полученный образец состоит из относительно крупных частиц цеолита, покрытых нанофазным материалом, и практически не содержит свободных наночастиц. Это обеспечивает меньшее забивание фильтрующих материалов и более низкую потерю напора воды при дальнейшем использовании сорбента.
Пример 3.
Для получения заявленного сорбента навеску 3 г цеолита, имеющего химический состав, %: SiO2 - 64,79, H2O - 12,85, Al2O3 - 12,75, CaO - 1,89, MgO - 1,50, Fe2O3 - 1,40, K2O - 1,26, Na2O - 0,44, CaF2 - 0,03, TiO2 - 0,02 и в среднем содержащего 60% клиноптилолита, измельчают в течение 5 мин. в агатовой ступке и помещают в 125 мл дистиллированной воды. Затем добавляют 0,081 г алюминиевого порошка, представляющего собой особо тонкоизмельченные частицы алюминия пластинчатой формы, и 2 мл концентрированного раствора NH4OH для создания щелочной среды. Полученную смесь подогревают до 500C и оставляют до полного окончания реакции алюминиевого порошка с водой. В полученную смесь, подкисленную до pH=4 соляной кислотой, добавляют при перемешивании
36,76 мл раствора FeCl3 OH2O (концентрация 29,59 г/л), затем добавляют при перемешивании 3,5 мл концентрированного NH4OH. После охлаждения полученную смесь фильтруют на воронке Бюхнера с помощью водоструйного насоса, промывают до нейтральной рН. Осадок сорбента сушат в сушильном шкафу сначала 2 часа при 50- 750C, а затем при 1900C сушат в течение 6 часов. Таким образом, получают сорбент, состоящий из измельченного цеолита и нанофазного материала, включающего в себя нанофазный гидроксид железа, соответствующий 12% нанофазного гидроксида железа, и нанофазный бемит, соответствующий 5% нанофазного бемита.
Испытания полученных образцов сорбента на адсорбционную способность по отношению к ионам тяжелых металлов проводят следующим образом. Исследование поглощения ионов As(III) проводят из модельного раствора с концентрацией 2,5 мг/л. Навеску 200 мг сорбента помещают в 20 мл модельного раствора (pH=6) и перемешивают на магнитной мешалке в течение 30 мин. Затем раствор отстаивают в течение 10-15 мин. и анализируют методом инверсионной вольтамперометрии на остаточное содержание ионов AsO3 3". Для этого аликвоту раствора (0,2 - 0,5 мл) помещают в ячейку с фоновым электролитом, проверенным на чистоту. В качестве рабочего электрода используют золотой пленочный электрод на графитовой подложке, фон - 0,3 M соляная кислота. Удаления кислорода не требуется, т.к. пик анодного окисления мышьяка наблюдается раньше потенциала восстановления кислорода. Накопление мышьяка на электроде в форме интерметаллида с золотом проводят в течение 60 секунд при E = -1,0 В. Вольтамперные кривые снимают в постояннотоковом режиме на анализаторе, совмещенном с компьютером. Анализатор имеет 3 электрохимических ячейки для параллельных опытов и ртутно-кварцевую лампу для УФ-облучения при необходимости. Одновременно проводят анализ трех аликвотных частей одного модельного раствора. Остаточная концентрация ионов есть среднее значение из 3-х параллельных опытов. Оценку концентрации проводят методом добавок стандартного раствора AsO3 3" с концентрацией 2,5 мг/л (в количестве 0,1 мл). Минимально определяемая концентрация составляет 0,001 мг/л. Процент сорбции вычислен при принятии за 100% исходной концентрации AsO3 3". Данные по сорбционной способности заявляемого сорбента с разным содержанием нанофазного бемита и нанофазного гидроксида железа приведены в тaбл.2.
Таблица 2.
Figure imgf000009_0001
Как видно из табл. 2, лучшими сорбционными характеристиками по отношению к ионам АsОз3" обладает сорбент, содержащий нанофазный бемит и нанофазный гидроксид железа при следующем соотношении компонентов, % мае: нанофазный гидроксид железа - 12 - 18, нанофазный бемит - 5 - 13, цеолит - остальное. При содержании в сорбенте нанофазного гидроксида железа более 18 и менее 12% и нанофазного бемита более 13 и менее 5% наблюдается ухудшение адсорбционных свойств.
Аналогичные результаты были получены при использовании цеолита, в среднем содержащего 60-70% клиноптилолита и 15-20% монтмориллонита.
Для образца N° 2 (таблица 2), содержащего 5% нанофазного бемита и 15% нанофазного гидроксида железа, аналогичным образом проводят испытания при более высокой концентрации ионов АsОз3" - 5 мг/л, в 10 раз превышающей предельно допустимую концентрацию
(ПДК). После проведения сорбции ионов AsO3 3" не обнаружено.
Аналогичным образом проводят испытания образцов сорбента на адсорбцию ионов других тяжелых металлов при концентрациях, 5- кратно превышающих ПДК: Cd2+ - 0,1 мг/л, Cu2+ - 2,5 мг/л, Pb2+ - 0,3 мг/л, AsO4 " - 2,5 мг/л, CrO4 " - 1,0 мг/л. Катионы определяют на ртутном пленочном электроде с серебряной подложкой, хромат- анионы - на рабочем графитовом электроде, анионы мышьяка (V) - на золотографитовом электроде. Данные, подтверждающие высокую сорбционную способность предложенного сорбента по отношению к ионам различных тяжелых металлов, приведены в табл.З. Таблица 3.
Figure imgf000011_0001
Промышленная применимость
Заявляемый сорбент для очистки воды от ионов тяжелых металлов показал повышенную эффективность очистки за счет расширения списка тяжелых металлов, улавливаемых до высокой степени очистки, при высокой концентрации загрязнения очищаемой воды. Заявляемый сорбент может быть использован для удаления ионов тяжелых металлов из грунтовых вод, поверхностных водных систем и может найти применение на предприятиях химической и металлургической промышленности, использующих травильные и гальванические технологии.

Claims

Формула изобретения
Сорбент для очистки воды от ионов тяжелых металлов, состоящий из измельченного цеолита и нанофазного материала, отличающийся тем, что нанофазный материал включает нанофазный гидроксид железа и нанофазный бемит, при следующем соотношении компонентов, мае.
%: нанофазный гидроксид железа 12 - 18 нанофазный бемит 5 - 13 измельченный цеолит остальное.
PCT/RU2007/000713 2007-01-09 2007-12-17 Procédé de décontamination d'eau contenant des ions de métaux lourds WO2008085085A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07866953A EP2127740A4 (de) 2007-01-09 2007-12-17 Sorptionsmittel zur entfernung von schwermetallionen aus wasser
EA200900789A EA014285B1 (ru) 2007-01-09 2007-12-17 Сорбент для очистки воды от ионов тяжелых металлов
US12/494,739 US7884043B2 (en) 2007-01-09 2009-06-30 Sorbent for removing heavy metal ions from water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2007101008 2007-01-09
RU2007101008/15A RU2328341C1 (ru) 2007-01-09 2007-01-09 Сорбент для очистки воды от ионов тяжелых металлов

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/494,739 Continuation US7884043B2 (en) 2007-01-09 2009-06-30 Sorbent for removing heavy metal ions from water

Publications (1)

Publication Number Publication Date
WO2008085085A1 true WO2008085085A1 (fr) 2008-07-17

Family

ID=39608874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000713 WO2008085085A1 (fr) 2007-01-09 2007-12-17 Procédé de décontamination d'eau contenant des ions de métaux lourds

Country Status (7)

Country Link
US (1) US7884043B2 (ru)
EP (1) EP2127740A4 (ru)
CN (1) CN101594933A (ru)
EA (1) EA014285B1 (ru)
RU (1) RU2328341C1 (ru)
UA (1) UA94148C2 (ru)
WO (1) WO2008085085A1 (ru)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011856A1 (en) * 2010-07-22 2012-01-26 Josab International Ab Composition for removal of arsenic
US9725645B2 (en) 2011-05-03 2017-08-08 Preferred Technology, Llc Proppant with composite coating
US9290690B2 (en) 2011-05-03 2016-03-22 Preferred Technology, Llc Coated and cured proppants
US8763700B2 (en) 2011-09-02 2014-07-01 Robert Ray McDaniel Dual function proppants
US8657924B2 (en) * 2011-08-10 2014-02-25 Praxair Technology, Inc. Process for separating gases and adsorbent compositions used therein
CN104136113A (zh) * 2011-10-24 2014-11-05 梅塔材料技术有限责任公司 从水中除去磷的多孔复合介质
JP6336396B2 (ja) 2011-11-24 2018-06-06 インディアン インスティテュート オブ テクノロジー 水精製のための多層有機−テンプレート−ベーマイト−ナノアーキテクチャ
US9562187B2 (en) 2012-01-23 2017-02-07 Preferred Technology, Llc Manufacture of polymer coated proppants
WO2013156870A2 (en) 2012-04-17 2013-10-24 Indian Institute Of Technology Detection of quantity of water flow using quantum clusters
CN102658082B (zh) * 2012-04-25 2013-10-02 武汉理工大学 一种用于吸附净化多金属离子工业废水的无机复合材料及其应用方法
RU2520473C2 (ru) * 2012-07-04 2014-06-27 Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН) Сорбент для очистки водных сред от мышьяка и способ его получения
NZ705919A (en) 2012-08-30 2018-05-25 Nclear Inc Compositions and methods for the removal of phosphates and other contaminants from aqueous solutions
US9767484B2 (en) 2012-09-11 2017-09-19 Google Inc. Defining relevant content area based on category density
US9440868B2 (en) 2012-10-18 2016-09-13 Nclear Inc. Compositions and methods for the removal of phosphates and other contaminants from aqueous solutions
US9518214B2 (en) 2013-03-15 2016-12-13 Preferred Technology, Llc Proppant with polyurea-type coating
US10100247B2 (en) 2013-05-17 2018-10-16 Preferred Technology, Llc Proppant with enhanced interparticle bonding
US10351455B2 (en) 2013-11-25 2019-07-16 University Of Idaho Biochar water treatment
RU2562495C2 (ru) * 2013-11-26 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный университет" Способ детоксикации сточных вод, загрязненных солями мышьяка
US9790422B2 (en) 2014-04-30 2017-10-17 Preferred Technology, Llc Proppant mixtures
US9862881B2 (en) 2015-05-13 2018-01-09 Preferred Technology, Llc Hydrophobic coating of particulates for enhanced well productivity
US10590337B2 (en) 2015-05-13 2020-03-17 Preferred Technology, Llc High performance proppants
RU2628396C2 (ru) * 2015-12-09 2017-08-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Сорбент для очистки водных сред от ионов мышьяка и способ его получения
RU2613519C1 (ru) * 2016-03-24 2017-03-16 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Способ получения сорбента мышьяка
CN106219696B (zh) * 2016-08-12 2018-07-13 伍德广聚(北京)环境科技有限公司 一种复合絮凝剂
US11208591B2 (en) 2016-11-16 2021-12-28 Preferred Technology, Llc Hydrophobic coating of particulates for enhanced well productivity
US10696896B2 (en) 2016-11-28 2020-06-30 Prefferred Technology, Llc Durable coatings and uses thereof
RU2676977C1 (ru) * 2018-03-06 2019-01-14 Алексей Викторович Чечевичкин Способ получения фильтрующего материала для очистки вод от марганца и гидросульфид-иона
CN110227420A (zh) * 2018-12-13 2019-09-13 湖北工业大学 一种勃姆石改性阳离子吸附剂的制备方法
RU2734712C1 (ru) * 2020-03-10 2020-10-22 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Полимерный сорбционный композиционный материал для очистки воды от ионов тяжелых металлов и способ его получения
RU2740685C1 (ru) * 2020-08-11 2021-01-19 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Способ сорбционного извлечения хрома (VI) из водных растворов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168357C2 (ru) * 1999-04-05 2001-06-10 Институт химии нефти СО РАН Способ получения адсорбента
RU2242276C1 (ru) * 2003-11-27 2004-12-20 Лисецкий Владимир Николаевич Сорбент и способ его получения
US6921732B2 (en) 2001-07-24 2005-07-26 Chk Group, Inc. Method of manufacturing a coated zeolite adsorbent
RU2275916C1 (ru) * 2004-10-11 2006-05-10 Меграбян Казарос Аршалуйсович Энтеросорбент для выведения тяжелых металлов

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1067627A (en) * 1976-08-20 1979-12-04 Gerald D. Lutwick Removal of arsenic from water
RU2051112C1 (ru) 1992-04-20 1995-12-27 Центральный научно-исследовательский институт геологии нерудных полезных ископаемых Способ очистки сточных вод от ионов тяжелых металлов и шестивалентного хрома
US20030089665A1 (en) * 2001-11-15 2003-05-15 Engelhard Corporation Arsenic removal media
HUP0200307A2 (hu) * 2002-01-29 2004-01-28 Rezes Zoltán Víztisztításra, előnyösen ivóvíz tisztítására alkalmas adszorbens
US20050029198A1 (en) * 2003-08-08 2005-02-10 Frederick Tepper Heavy metals absorbent and method of use
WO2005082524A1 (en) * 2003-12-16 2005-09-09 Calgon Carbon Corporation Method for removing contaminants from fluid streams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168357C2 (ru) * 1999-04-05 2001-06-10 Институт химии нефти СО РАН Способ получения адсорбента
US6921732B2 (en) 2001-07-24 2005-07-26 Chk Group, Inc. Method of manufacturing a coated zeolite adsorbent
RU2242276C1 (ru) * 2003-11-27 2004-12-20 Лисецкий Владимир Николаевич Сорбент и способ его получения
RU2275916C1 (ru) * 2004-10-11 2006-05-10 Меграбян Казарос Аршалуйсович Энтеросорбент для выведения тяжелых металлов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2127740A4

Also Published As

Publication number Publication date
EP2127740A4 (de) 2011-06-08
EP2127740A1 (de) 2009-12-02
US20090264280A1 (en) 2009-10-22
US7884043B2 (en) 2011-02-08
EA200900789A1 (ru) 2009-12-30
EA014285B1 (ru) 2010-10-29
RU2328341C1 (ru) 2008-07-10
CN101594933A (zh) 2009-12-02
UA94148C2 (ru) 2011-04-11

Similar Documents

Publication Publication Date Title
WO2008085085A1 (fr) Procédé de décontamination d'eau contenant des ions de métaux lourds
Shan et al. Remarkable phosphate removal and recovery from wastewater by magnetically recyclable La2O2CO3/γ-Fe2O3 nanocomposites
Wen et al. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI)
Parga et al. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico
JP4755159B2 (ja) 重金属類を含有する汚染水の処理剤および処理方法
CN108745289B (zh) Ldh和swcnt纳米复合材料的制备方法及应用
Shahriari et al. Effective parameters for the adsorption of chromium (III) onto iron oxide magnetic nanoparticle
WO2014209777A1 (en) Method for multi-part treatment of liquids containing contaminants using zero valent nanoparticles
Yan et al. Synchronous removal of Cr (VI) and phosphates by a novel crayfish shell biochar-Fe composite from aqueous solution: Reactivity and mechanism
Shan et al. Magnetite/hydrated cerium (III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation
Jerin et al. Investigation on the removal of toxic chromium ion from waste water using Fe2O3 nanoparticles
JP2014020916A (ja) 放射性Cs汚染水の処理方法
JP5046853B2 (ja) 重金属類を含有する汚染水の処理剤および処理方法
JP6208648B2 (ja) 汚染水または汚染土壌の処理剤および処理方法
Wang et al. Matrix effects on the performance and mechanism of Hg removal from groundwater by MoS 2 nanosheets
Solís–Rodríguez et al. Vanadium removal by electrocoagulation with anodes of zinc
US8133838B2 (en) Water purification material
JP4936559B2 (ja) ヒ素除去剤
JPH10309584A (ja) ゼオライト配合処理剤を用いた凝集分離回収方法
JP2007054818A (ja) セレン含有汚染水の処理方法および水処理剤
Mattigod et al. A thiol-functionalized nanoporous silica sorbent for removal of mercury from actual industrial waste
Narayanan et al. An assessment on the effect of titanium dioxide & iron oxide nano-particles in industrial waste water decontamination
ABBAS et al. Preparation and Optical Characterization of Magnetic Nanoparticles-Coated Active Carbon Composites and Its Application in Removal of Trihalomethane Compounds from Water.
Al Rabadi A., Awwad" Immobilization of heavy Pb (II) and Cd (II) ions from aqueous discharges”
McCloskey et al. Arsenic removal from mine and process waters by lime/phosphate precipitation: pilot scale demonstration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780049461.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07866953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1105/MUMNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200900789

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007866953

Country of ref document: EP