CN108745289B - Ldh和swcnt纳米复合材料的制备方法及应用 - Google Patents

Ldh和swcnt纳米复合材料的制备方法及应用 Download PDF

Info

Publication number
CN108745289B
CN108745289B CN201810688751.5A CN201810688751A CN108745289B CN 108745289 B CN108745289 B CN 108745289B CN 201810688751 A CN201810688751 A CN 201810688751A CN 108745289 B CN108745289 B CN 108745289B
Authority
CN
China
Prior art keywords
swcnt
ldh
composite material
preparation
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810688751.5A
Other languages
English (en)
Other versions
CN108745289A (zh
Inventor
李玉江
张昭阳
吴涛
孙德军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201810688751.5A priority Critical patent/CN108745289B/zh
Publication of CN108745289A publication Critical patent/CN108745289A/zh
Application granted granted Critical
Publication of CN108745289B publication Critical patent/CN108745289B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种LDH和SWCNT纳米复合材料的制备方法及应用,制备方法包括:(1)将SWCNT超声分散在去离子水中,形成SWCNT悬浮液;将氢氧化钠和碳酸钠的混合碱溶液加入到SWCNT悬浮液中,再将氯化镁和氯化铝的混合盐溶液加入;调节pH,水浴加热,静置,获得LDH/SWCNT悬浮液;过滤,干燥,获得固体LDH/SWCNT复合材料;(2)将固体LDH/SWCNT复合材料研磨成粉末,煅烧,得到LDH和SWCNT纳米复合材料。将制备的LDH和SWCNT纳米复合材料按照0.5g/L‑4.5g/L的投加量应用于去除水中的苯酚和4‑氯苯酚。本发明工艺简单,操作方便,使得复合材料形成三维立体结构,在水中的分散性大大以及与污染物的接触面积大为增加,对污染物的吸附能力和吸附量都显著提高。

Description

LDH和SWCNT纳米复合材料的制备方法及应用
技术领域
本发明涉及一种用于去除水中苯酚和4-氯苯酚的层状双金属氢氧化物/单壁碳纳米管(LDH/SWCNT)复合材料的煅烧产物的制备方法,属于污水处理材料技术领域。
技术背景
随着化学和石化工业的迅速发展,每天都会产生大量的酚类污染物。含酚污水对环境造成了恶劣的影响。苯酚类物质,因其高毒性、致癌性和难降解性的特点使其被列为优先控制污染物。苯酚和4-氯酚是有害有机污染物中的两种,因为它们及其降解产物可能对人类的生命具有相当的毒性和致癌性,环保部规定苯酚类物质在地表水中的有毒参考值为:苯酚,4-氯苯酚分别对应的浓度指标不能超过1mg/L和0.55mg/L。因此如何快捷有效的处理含苯酚类污染物的方式是当今社会亟待解决的问题。
目前已应用多种物理,化学和生物技术,包括沉淀,浮选,膜过滤,凝结,吸附,氧化和好氧或厌氧处理以从工业废水中去除酚类化合物。在这些技术中,吸附由于效率高,设计简单,操作简单,维护成本低,因此被认为是一种合适的从废水中去除酚类化合物的方法。特别是,吸附不会导致有害副产物的形成。活性炭是工业废水处理中使用最广泛的吸附剂,因为它的微孔结构、大表面积和高吸附。但是,活性炭对苯酚类污染物的吸附能力较低,而且活性炭对废水的pH值范围有严格的要求。因此,这些问题的存在使得开发有效和强适应性吸附剂(包括纳米复合材料)的必要性增强。
发明内容
本发明的目的在于提供一种用于去除水中苯酚和4-氯苯酚的LDH和SWCNT(层状双金属氢氧化物/单壁碳纳米管)纳米复合材料的制备方法。将层状双金属氢氧化物和单壁碳纳米管利用静电相互作用稳固结合起来,然后进行煅烧,使得复合材料形成三维立体结构,解决了传统吸附剂在去除有机类污染物时在水中分散性较差,吸附效率低,适用条件窄的问题。同时提供该纳米复合材料在处理含有苯酚和4-氯苯酚废水的具体应用。
本发明LDH和SWCNT纳米复合材料的制备方法,包含以下步骤:
(1)制备LDH/SWCNT的复合材料:
①按照0.15g-0.25g:40mL:40mL:50mL的比例称取SWCNT、去离子水、混合碱溶液和混合盐溶液;所述混合碱溶液中NaOH和Na2CO3的浓度分别为0.4mol/L和0.1mol/L;所述混合盐溶液中Mg(NO3)2·6H2O和Al(NO3)3·9H2O的浓度分别为0.15mol/L和0.05mol/L;
②将SWCNT超声分散在去离子水中,形成SWCNT悬浮液;
③将混合碱溶液加入到SWCNT悬浮液中,再将混合金属盐溶液加入,以沉淀Mg2+离子和Al3+离子,形成混合金属氢氧化物溶液;
④通过滴加氢氧化钠溶液将混合金属氢氧化物溶液的pH调节为10.1~10.5,在室温下搅拌,将混合金属氢氧化物溶液转移至水浴中并在连续搅拌下加热至55~65℃,保持2小时,再将混合物在55~65℃静置保持2小时,获得LDH/SWCNT悬浮液;
⑤过滤悬浮液,真空抽滤成滤饼并用去离子水洗涤至中性;将滤饼在冷冻干燥机中干燥24小时;最终获得固体LDH/SWCNT复合材料;
所述步骤(1)中滴加的氢氧化钠溶液浓度为0.4mol/L。
所述步骤(1)中抽滤所用滤膜为0.22微米孔径的尼龙滤膜。
(2)制备LDH和SWCNT纳米复合材料:
将制备的固体LDH/SWCNT复合材料研磨成粉末,在450~500℃的管式炉中在氮气保护下煅烧4~4.5小时,得到LDH/SWCNT纳米复合材料。
上述方法制备的双金属氢氧化物和单壁碳纳米管纳米复合材料,应用于去除水中的苯酚和4-氯苯酚,具体过程是:
(1)分别调节含有苯酚和4-氯苯酚废水的pH至3-12;然后向废水中按照0.5g/L-4.5g/L的投加量加入LDH/SWCNT纳米复合材料;
(2)对废水进行振荡,然后使用滤膜进行过滤;
(3)收集LDH和SWCNT纳米复合材料,对处理后的废水进行苯酚和4-氯苯酚的测定(使用分光光度法),达标后排放,否则返回步骤(1)进行循环处理,直至达标。
所述步骤(2)中振荡的速度为200~250转/分钟,振荡时间为1~360分钟。
所述步骤(2)中的滤膜为0.45μm滤膜。
本发明利用原位共沉淀法制备了层状双金属氢氧化物和单壁碳纳米管复合材料,并进一步煅烧得到LDH/SWCNT纳米复合材料。由于该复合材料在在水中的分散性大大提高,使得复合材料的表面和污染物的接触面积大增加,另外由于碳纳米管的大比表面积和疏水性,使得复合材料对苯酚和4-氯苯酚的吸附能力和吸附量都显著提高,实现了对污染物的高效吸附,而且制作工艺简单,操作方便。
附图说明
图1分别是本发明中层状双金属氢氧化物(a)、单壁碳纳米管(b)、LDH/SWCNT纳米复合材料(c)以及LDH/SWCNT纳米复合材料(d)的扫描电镜图。(d)图中的箭头所指处为LDH/SWCNT纳米复合材料形成的三维孔状结构。
图2是随着pH的变化本发明制备的LDH/SWCNT纳米复合材料对苯酚和4-氯苯酚的去除效率的变化图。
图3是随着吸附时间的变化本发明制备的LDH/SWCNT纳米复合材料对苯酚和4-氯苯酚的去除效率的变化图。
图4是随着投加量的变化本发明制备的LDH/SWCNT纳米复合材料对苯酚和4-氯苯酚的去除效率的变化图。
图5是随着循环次数的变化本发明制备的LDH/SWCNT纳米复合材料对苯酚和4-氯苯酚的去除效率的变化图。
具体实施方式
首先按以下过程制备LDH/SWCNT纳米复合材料(LDH/SWCNT复合材料的煅烧产物)。
按Mg:Al摩尔比3:1的比例称取一定量的Mg(NO3)2·6H2O和Al(NO3)3·9H2O,加去离子水溶解,配置成Mg(NO3)2·6H2O和Al(NO3)3·9H2O浓度分别为0.15mol/L和0.05mol/L的混合盐溶液。称取一定量的NaOH和Na2CO3溶于去离子水中,配置成NaOH和Na2CO3浓度分别为0.4mol/L和0.1mol/L的混合碱溶液。称取一定量的NaOH溶于去离子水中,配置NaOH浓度为0.4mol/L的补充液。单壁碳纳米管(SWCNT)的扫描电镜图如图1中的(b)所示。
按照0.15g-0.25g:40mL:40mL:50mL的比例称取SWCNT(单壁碳纳米管)、去离子水、混合碱溶液和混合盐溶液。
将SWCNT加入去离子水,通过超声波清洗器或者细胞破碎器分散15~20分钟将其形成均匀的悬浮液。然后将混合碱溶液加入上述悬浮液中。将混合盐溶液用蠕动泵匀速缓慢滴加到悬浮液中,同时保持持续不断的搅拌,并且用NaOH补充液调节pH为10.1~10.5,直至混合盐溶液滴加完毕。继续搅拌1小时后,将混合物转移至水浴锅中并在55~65℃温度下连续搅拌2小时。随后,将混合物在55~65℃水浴锅中静置保持2小时,使得LDH粒子充分生长老化,便获得LDH/SWCNT悬浮液。之后,过滤得到的LDH/SWCNT悬浮液,用真空抽滤机抽滤成滤饼并用去离子水洗涤几次至中性,抽滤所用滤膜为0.22微米孔径的尼龙滤膜。将滤饼在冷冻干燥机中干燥20~24小时。最终获得固体LDH/SWCNT复合材料,从图1(c)给出的扫描电镜中可以看到LDH已经原位生长到SWCNT上,而且相对于图1(a)给出的纯LDH和图1(b)给出的纯SWCNT的分散性已经有了提高。
将制备好的固体LDH/SWCNT复合材料研磨至粉末状,在450~500℃的管式炉中在氮气保护下煅烧4~4.5小时,形成LDH/SWCNT纳米复合材料。从图1(d)给出的扫描电镜中可以看到,LDH/SWCNT的存在形式是三位立体结构的,且分散性有了大幅提高。
利用上述制备的LDH/SWCNT纳米复合材料作为吸附处理剂去除废水中的苯酚和4-氯苯酚。
实施例1
取含苯酚和4-氯苯酚浓度为50mg/L的废水1000mL,温度303K。向废水中按3.5g/L的投加量加入制备的处理剂,采用pH调节剂调节体系的pH分别为3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0。pH调节剂为浓度0.1mol/L的NaOH溶液和浓度0.1mol/L的HNO3溶液。反应时维持振荡速度为200~250转/分钟,振荡360分钟,然后使用0.45μm滤膜进行过滤,取处理后的液体进行水质分析,确定在pH=6.0时苯酚和4-氯苯酚的去除率分别可达91.7%和99.5%,且水质稳定,如图2所示。
实施例2
取含苯酚和4-氯苯酚浓度为50mg/L的废水1000mL,pH=6.0,温度303K。向废水中按3.5g/L的投加量加入制备的处理剂,反应时维持振荡速度为200~250转/分钟,振荡时间在1分钟至360分钟,然后使用0.45μm滤膜进行过滤,取处理后的液体进行水质分析,确定吸附苯酚和4-氯苯酚的速率较快,分别在60分钟和30分钟基本达到吸附平衡。本实施例的结果如图3所示。
实施例3
取含苯酚和4-氯苯酚的废水1000mL,pH为6.0,苯酚和4-氯苯酚的初始浓度为20mg/L,50mg/L,100mg/L,200mg/L,400mg/L,600mg/L,800mg/L。处理剂的投加量为3.5g/L,处理温度控制在303K。反应时振荡速度为200~250转/分钟,振荡时间为360分钟,振荡完成后使用0.45μm滤膜进行过滤,取处理后的液体进行水质分析。经数据分析,计算出对苯酚和4-氯苯酚出饱和吸附量分别为219.0mg/g and 255.6mg/g。
实施例4
取含苯酚和4-氯苯酚浓度为50mg/L的废水1000mL,pH=6.0,温度303K。向废水中按0.5g/L,1.0g/L,1.5g/L,2.0g/L,2.5g/L,3.0g/L,3.5g/L,4.0g/L,4.5g/L的投加量加入制备的处理剂,反应时维持振荡速度为200~250转/分钟,振荡时间为360分钟,然后使用0.45μm滤膜进行过滤,取处理后的液体进行水质分析,确定本吸附剂在投加量为3.5g/L时便达到吸附平衡终点。本实施例的结果如图4所示。
实施例5
取含苯酚和4-氯苯酚浓度为50mg/L的废水1000mL,pH=6.0,温度303K。向废水中按3.5g/L的投加量加入制备的处理剂,反应时维持振荡速度为200~250转/分钟,振荡时间为360分钟,然后使用0.45μm滤膜进行过滤,取处理后的液体进行水质分析,确定吸附苯酚和4-氯苯酚去除效率,然后回收已使用的吸附剂,将其在500℃的管式炉中在氮气保护下煅烧4小时以用于去除吸附的污染物及再次形成具有吸附效果的LDH/SWCNT复合材料。再次按照同样的条件重复进行吸附试验,总计10次,记录本实苯酚和4-氯苯酚去除效率。证明本复合材料具有很强的循环使用能力。本实施例的结果如图5所示。

Claims (5)

1.一种LDH和SWCNT纳米复合材料的制备方法,其特征是,包含以下步骤:
(1)制备LDH/SWCNT的复合材料:
①按照0.15g-0.25g:40mL:40mL:50mL的比例称取SWCNT、去离子水、混合碱溶液和混合盐溶液;所述混合碱溶液中NaOH 和Na2CO3的浓度分别为0.4mol/L和0.1mol/L;所述混合盐溶液中Mg(NO3)2·6H2O和Al(NO3)3·9H2O的浓度分别为0.15mol/L和0.05mol/L;
②将SWCNT超声分散在去离子水中,形成SWCNT悬浮液;
③将混合碱溶液加入到SWCNT悬浮液中,再将混合金属盐溶液加入,以沉淀Mg2 +离子和Al3+离子,形成混合金属氢氧化物溶液;
④通过滴加氢氧化钠溶液将混合金属氢氧化物溶液的pH调节为10.1~10.5,在室温下搅拌,将混合金属氢氧化物溶液转移至水浴中并在连续搅拌下加热至55~65℃,保持2小时,再将混合物在55~65℃静置保持2小时,获得LDH/SWCNT悬浮液;
⑤过滤悬浮液,真空抽滤成滤饼并用去离子水洗涤至中性;将滤饼在冷冻干燥机中干燥24小时;最终获得固体LDH/SWCNT复合材料;
(2)制备LDH/SWCNT纳米复合材料:
将制备的固体LDH和SWCNT复合材料研磨成粉末,在450~500℃的管式炉中在氮气保护下煅烧4~4.5小时,得到LDH/SWCNT纳米复合材料。
2.根据权利要求1所述的LDH和SWCNT纳米复合材料的制备方法,其特征是,所述步骤(1)中滴加的氢氧化钠溶液浓度为0.4mol/L。
3.根据权利要求1所述的LDH和SWCNT纳米复合材料的制备方法,其特征是,所述步骤(1)中抽滤所用滤膜为0.22微米孔径的尼龙滤膜。
4.根据权利要求1所述方法制备的LDH和SWCNT纳米复合材料的应用,应用于去除水中的苯酚和4-氯苯酚,具体过程是:
(1)调节含有苯酚和4-氯苯酚废水的pH至3-12;然后向废水中按照0.5g/L-4.5g/L的投加量加入LDH和SWCNT纳米复合材料;
(2)对废水进行振荡,然后使用滤膜进行过滤;
(3)收集LDH和SWCNT纳米复合材料,对处理后的废水进行苯酚和4-氯苯酚的测定,达标后排放,否则返回步骤(1)进行循环处理,直至达标。
5.根据权利要求4所述的LDH和SWCNT纳米复合材料的应用,其特征是,所述振荡速度为200~250 转/分钟,振荡时间为1-360分钟。
CN201810688751.5A 2018-06-28 2018-06-28 Ldh和swcnt纳米复合材料的制备方法及应用 Expired - Fee Related CN108745289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810688751.5A CN108745289B (zh) 2018-06-28 2018-06-28 Ldh和swcnt纳米复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810688751.5A CN108745289B (zh) 2018-06-28 2018-06-28 Ldh和swcnt纳米复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN108745289A CN108745289A (zh) 2018-11-06
CN108745289B true CN108745289B (zh) 2019-12-27

Family

ID=63974575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810688751.5A Expired - Fee Related CN108745289B (zh) 2018-06-28 2018-06-28 Ldh和swcnt纳米复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN108745289B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404507B (zh) * 2019-07-31 2022-06-14 辽宁大学 一种锌铝水滑石/碳纳米管复合吸附材料及其制备方法和在回收镓中的应用
CN110687103B (zh) * 2019-10-30 2022-06-10 中山大学 一种NiMn-LDH/CNT/GO三元复合材料的制备方法及乙酸发光检测方法
CN111001375B (zh) * 2019-12-29 2023-03-14 福建工程学院 一种层状双氢氧化物复合吸附材料的制备方法
CN112624249B (zh) * 2020-12-08 2022-05-27 扬州工业职业技术学院 一种用于污水处理的复合材料
CN113070030A (zh) * 2021-03-29 2021-07-06 西安科利思源环保科技有限公司 一种新型复合纳米材料的制备方法
CN115947339B (zh) * 2022-12-21 2024-06-07 中国科学院南京土壤研究所 层状双金属氢氧化物改性多壁碳纳米管及制备方法和应用、PFASs污染水体的处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718738A (zh) * 2009-11-06 2010-06-02 北京化工大学 NiAl-层状双金属氢氧化物/碳纳米管复合物电极及其制备方法和应用
CN101869837A (zh) * 2010-06-04 2010-10-27 北京化工大学 CoAl-金属氧化物/碳纳米管复合物及其制备方法和用做高氯酸铵催化剂
WO2013093519A3 (en) * 2011-12-22 2014-02-06 Bio Nano Consulting Carbon nanotube aerogels and xerogels for co2 capture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718738A (zh) * 2009-11-06 2010-06-02 北京化工大学 NiAl-层状双金属氢氧化物/碳纳米管复合物电极及其制备方法和应用
CN101869837A (zh) * 2010-06-04 2010-10-27 北京化工大学 CoAl-金属氧化物/碳纳米管复合物及其制备方法和用做高氯酸铵催化剂
WO2013093519A3 (en) * 2011-12-22 2014-02-06 Bio Nano Consulting Carbon nanotube aerogels and xerogels for co2 capture

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor";Shuangxia Yang等;《Chemical Engineering Journal》;20150415;第275卷;第315-321页 *
"Facile synthesis and novel electrocatalytic performance of nanostructured Ni–Al layered double hydroxide/carbon nanotube composites";Hui Wang等;《Journal of Materials Chemistry》;20100326;第20卷(第19期);第3944-3952页 *
"焙烧类水滑石吸附去除水中苯酚";毕研俊等;《山东大学学报(理学版)》;20070531;第42卷(第5期);第59-63页 *

Also Published As

Publication number Publication date
CN108745289A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108745289B (zh) Ldh和swcnt纳米复合材料的制备方法及应用
CN103769058B (zh) 碳化壳聚糖吸附剂的制备方法、产品及应用方法
WO2008085085A1 (fr) Procédé de décontamination d'eau contenant des ions de métaux lourds
CN101119934A (zh) 制备羟基氧化铁的方法和含有羟基氧化铁的吸附材料
CN104549146B (zh) 氧化铝修饰的多壁碳纳米管纳米复合材料及其制备方法和应用
WO2016192311A1 (zh) 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用
Egbosiuba Incorporation of zero-valent silver and polyvinyl acetate on the surface matrix of carbon nanotubes for the adsorption of mercury and chromium from industrial wastewater
US20220219135A1 (en) Composite materials and methods of making and use thereof
TW201838929A (zh) 水處理方法、水處理用鎂劑及水處理用鎂劑之製造方法
Guo et al. Removal of Cu (II) from aqueous solution by iron vanadate: equilibrium and kinetics studies
JP2008254944A (ja) 多孔質鉄酸化物およびその製造方法並びに被処理水の処理方法
Zhang et al. Photocatalytic degradation of glyphosate using Ce/N co-doped TiO2 with oyster shell powder as carrier under the simulated fluorescent lamp
CN106215851B (zh) 一种铜试剂修饰的纳米氧化铝的制备方法及其应用
US10675592B2 (en) Acid mine drainage treatment means
Sid-Sahtout et al. Characterization and performance of polymer composite membranes for the removal of humic substances from water
Sanaei et al. Towards engineering mitigation of leaching of Cd and Pb in co-contaminated soils using metal oxide-based aerogel composites and biochar
JP2010075826A (ja) 機能性粒子およびそれを用いた水処理方法
Altallhi et al. Adsorption of TNT from Wastewater Using Ni-Oxide and Cu-Oxide Nanoparticles
Zhang et al. Active carbon fibers grown with manganese dioxide nanowires for highly-efficient adsorption of organic pollutants from acidic and neutral aqueous solutions
Vinuth et al. Rapid adsorption of malachite green dye using eco-friendly Fe (III)-montmorillonite: Effective clay mineral for dye effluents containing wastewater
US20230415121A1 (en) Mixed metal oxide-hydroxide biopolymer composite beads and a process thereof
JP5250742B1 (ja) 放射性Cs汚染水の処理方法
Ouyang et al. Synthesis of NaAlSiO4 Hollow Microspheres as Absorbents for the Removal of Heavy Metal ions in Environmental Remediation
AU2020462039A1 (en) Membrane comprising biopolymers and carbon nanomaterials for removing heavy metals in polluted water
Guanghui et al. Removal of Cd (II) by nanometer AlO (OH) loaded on fiberglass with activated carbon fiber felt as carrier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191227