WO2008083575A1 - Dispositif et procédé de transmission sur une liaison de source optique - Google Patents

Dispositif et procédé de transmission sur une liaison de source optique Download PDF

Info

Publication number
WO2008083575A1
WO2008083575A1 PCT/CN2007/071272 CN2007071272W WO2008083575A1 WO 2008083575 A1 WO2008083575 A1 WO 2008083575A1 CN 2007071272 W CN2007071272 W CN 2007071272W WO 2008083575 A1 WO2008083575 A1 WO 2008083575A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
module
source link
link
optical signal
Prior art date
Application number
PCT/CN2007/071272
Other languages
English (en)
French (fr)
Inventor
Yong Duan
Zhihui Tao
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP07846098A priority Critical patent/EP2117138A4/en
Publication of WO2008083575A1 publication Critical patent/WO2008083575A1/zh
Priority to US12/421,751 priority patent/US20090196598A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)

Definitions

  • the present invention relates to the field of communication transmission, and in particular, to a light source link transmission apparatus and method. Background technique
  • DWDM Dense Wavelength-Division Multiplexing
  • An optoelectronic integrated circuit is a module or device formed by integrating a plurality of optical and electrical devices on a common semiconductor substrate, and adding a separate package and corresponding peripheral control circuits. At present, the process of photovoltaic integrated circuits is nearing maturity.
  • FIG. 1 A schematic diagram of the internal structure of the transmitting end of the optoelectronic integrated device in the prior art is shown in FIG. 1.
  • the transmitting end uses a plurality of fixed light source links, the thick solid line indicates the optical signal propagation path, and the thin solid line indicates the electrical signal propagation path.
  • the whole system is composed of N light source links and wavelength combination modules, wherein N links are sequentially connected by N fixed wavelength light sources and N modulators respectively, and data Dl, D2, D3 Dn outputted from the data channel module. Controlling the modulator to adjust the optical signal output by the light source module,
  • the wavelength can vary with a small range of temperatures (around 1 nm).
  • the N-channel optical signals are combined by the wavelength combining module and sent to the receiving end of the optoelectronic integrated device.
  • each light source link acts as an active link for actual service transmission, thus, when the photoelectric integrated device Any one of the light source links in each light source link fails, for example, the light source does not emit light or the modulator fails, which may cause the entire photoelectric integrated device to fail to work normally, thereby reducing the reliability of the photoelectric integrated device.
  • the prior art In order to enable the optoelectronic integrated device to be reactivated, the prior art must be solved by a replacement method.
  • the invention provides a light source link transmission device and method, thereby providing an effective protection measure for the transmission of the photoelectric signal on the light source chain, and improving the reliability of the photoelectric integrated device.
  • the invention provides a light source link transmission device, which comprises an originating module and a receiving module, wherein the originating module integrates an active light source link, a backup light source link, a primary data channel and an alternate data channel, and the main The data channel and the standby data channel are respectively used for the service data, and the primary receiving link and the standby receiving link are integrated in the receiving module, and the primary receiving link and the standby receiving link are respectively used for receiving and detecting. And detecting, by the active light source link and the service light signal output by the standby light source link, when the service optical signal is faulty, sending channel switching information to the sending end module;
  • the originating module performs switching between the primary light source link and the standby light source link and switching between the primary data channel and the standby data channel according to the received channel switching information.
  • the invention also provides a method for transmitting a light source link, comprising:
  • Switching between the primary light source link and the alternate light source link and switching between the primary data channel and the alternate data channel are performed according to the received channel switching information.
  • the fault of any one of the active light source links can be detected, and the wavelength can be appropriately adjusted.
  • the alternate source link and its corresponding alternate data channel complete the service transmission process of the faulty primary light source link and its corresponding data channel, thereby ensuring that not only the fault of the originating device is caused when the primary light source link fails.
  • the fault can also solve the fault caused by the network fault (such as the broken path of the working path), so that the photoelectric integrated transmission link can still work normally, thereby providing effective protection for the photoelectric integrated transmission link and improving the photoelectric integrated transmission chain.
  • FIG. 1 is a schematic structural view of the inside of the origin of the photoelectric integrated device in the prior art
  • FIG. 2 is a system block diagram of a transmitting link originating end module provided by the present invention
  • FIG. 3 is a schematic structural diagram of a receiving end module provided by the present invention.
  • FIG. 4 is a schematic structural diagram of a receiving link of a terminating module provided by the present invention.
  • FIG. 5 is a schematic structural diagram of an originating module provided by the present invention.
  • FIG. 6 is a block diagram showing specific components of a light source link of an originating module provided by the present invention. detailed description
  • the system block diagram of the transmitting link originating end module provided by the present invention as shown in FIG. 2, the complete optoelectronic integrated transmission link originating end receiving system comprises a transmitting end module, an optical fiber transmission system and a receiving end module.
  • the originating module includes a primary light source link, an alternate light source link, a primary data channel, and an alternate data channel.
  • the optical signals on the primary source link, the alternate source link, the primary data channel, and the alternate data channel set link and the alternate source link cause the primary source link and the alternate source link to output a service optical signal.
  • the primary data channel is used to transmit service data during normal operation and service data when the standby data channel is working normally.
  • the primary light source link is used to transmit the service optical signal during normal operation; the standby light source link is used to transmit the service optical signal when the primary light source link is working normally when the primary light source link fails.
  • the terminating module includes an active receiving link and an alternate receiving link.
  • the primary receiving link and the standby receiving link are integrated in the receiving module, and the primary receiving link and the standby receiving link are respectively used for receiving and detecting the service optical signal output by the primary light source link and the standby light source link, and detecting When the service optical signal fails, channel switching information is sent to the originating module.
  • the primary receiving link is used to receive the service optical signal during normal operation, and the standby receiving link is used to receive the service optical signal in the fault state.
  • the fiber optic transmission system includes a primary working path and an alternate working path. The primary working path is used to connect the primary source link and the alternate receiving link, and the alternate working path is used to connect the alternate source link and the alternate receiving link.
  • the originating module is configured to convert the multi-channel data signal into an optical signal and finally combine it into a service optical signal for transmission
  • the optical fiber transmission system is configured to implement transmission of the service optical signal
  • the receiving end is configured to implement the service.
  • the optical signal is received, and the service optical signal is decomposed into multiple data signals.
  • the originating module of the present invention is composed of N + M light source links and an output of each light source link - a corresponding N + M wavelength combination module, wherein the N light sources
  • the link is a main light source link, and is connected to N main working paths in the optical fiber transmission system through a wavelength combination module, and the N main working paths are used for transmitting the optical integrated transmission link.
  • the service light signal wherein the M light source links are alternate light source links, and the M spare light source links are connected to the M standby working paths in the optical fiber transmission system through the wavelength combination module, and the M spare working paths are used for
  • a service optical signal that transmits a photoelectric integrated transmission link originating end system in the event of a failure.
  • the primary and backup source links on the originating module and the primary and backup receive links on the terminating module are all integrated on the same semiconductor substrate through an integrated process. This integration approach is now nearing maturity.
  • the block diagram of the component structure of the receiving end provided by the present invention includes a wavelength de-combining module and a primary and backup receiving link and an electrical data processing unit.
  • the wavelength de-synthesis module can be implemented by an arrayed waveguide grating (AWG, Array Waveguide Grating) or by a star-shaped multiplexer of ⁇ 1, and the wavelength de-combining module utilizes the physical characteristics of the waveguide to receive one or more lights.
  • the combined signal is demultiplexed into a plurality of optical signals, and the physical characteristic is that the delay of transmission of light at different wavelengths by the different wavelengths is different. Only one channel is used during normal operation, and the other is used as a redundant backup.
  • the wavelength decombining module in the receiving end of the present invention has ⁇ + ⁇ ports corresponding to the main receiving link and the splice standby receiving link respectively, and the primary and backup links respectively ungroup the wavelengths.
  • the signal output by the module is transmitted to the electrical data processing unit.
  • the electrical data processing unit is for cross processing an electrical signal from a receiving link.
  • the schematic structural diagram of the receiving link of the terminating module provided by the present invention is as shown in FIG. 4, and is composed of a light receiving module, a signal recovery module, an electrical data processing unit and a detecting module.
  • the optical receiving module is configured to receive and forward a service optical signal transmitted by the working path to the signal recovery module.
  • the light receiving module may be a PIN tube (semiconductor photodetector) or an APD tube. After the service light signal passes through the light receiving module, it is converted into an electrical signal, and after passing through the signal recovery module, it enters the electrical data processing unit.
  • the signal recovery module is configured to regenerate the received service optical signal according to service requirements, such as re-amplification, retiming, reshaping, and the like.
  • the detecting module is configured to detect performance of a service signal transmitted by the working path, and send channel switching information to the originating module.
  • the detection module includes a bias voltage control circuit module, a link monitoring module, and a receive link control module.
  • the bias voltage control circuit module is configured to monitor optical power of the optical signal received by the light receiving module, and monitor a bias voltage generated by the light receiving module.
  • the link monitoring module is configured to monitor an adjustment parameter and a bit error rate of the electrical signal in the signal recovery module.
  • the receiving link control module is configured to send link fault information to the source light source link control module according to the received input information of the bias voltage control circuit module and the link monitoring module.
  • the electrical data processing unit is configured to cross-process the electrical signals output by the signal recovery module, and the cross processing includes various operations such as deframing header, error correction, format recognition, storage or copying.
  • the schematic diagram of the structure of the originating module provided by the present invention is shown in FIG. 5, and the originating end is composed of a light source link of the N + M road and a corresponding wavelength combination module, wherein the N light source links are the main light source links, and the M light sources
  • the link is an alternate source link; Dl, D2, D3 in the primary data channel
  • the Dn data channels are respectively connected to the N primary light source links, and the D1, D2, and D3 Dm data channels in the standby data channel are respectively connected to the M alternate light source links.
  • the primary and backup light source links are used for converting and transmitting the data signals transmitted from the data channel into optical signals, and the wavelength combination module is configured to combine the optical signals sent by the primary and backup light source links, and output. Light combined signal.
  • the wavelength combining module works in the same way as the wavelength de-combining module in FIG. 3, and can also be implemented by an AWG or a ⁇ 1 star multiplexer.
  • the wavelength combining module uses the physical characteristics of the waveguide to multiplex waves of different wavelengths into one way or Multi-channel optical combined signal, the physical characteristics are beneficial
  • the specific component block diagram of the light source link of the originating module provided by the present invention, as shown in FIG. 6, includes a light source module, a modulator, a switch module, and a light source link control module.
  • the light source module is used to generate an optical signal, which may be a distributed feedback laser (DFB) or a distributed Bragg reflector (DBR).
  • an optical signal which may be a distributed feedback laser (DFB) or a distributed Bragg reflector (DBR).
  • DFB distributed feedback laser
  • DBR distributed Bragg reflector
  • the switch module is used to turn off or turn on the primary and backup light source links.
  • the switch module of the light source link provided by the present invention needs to reduce the crosstalk of the optical signal by turning off the optical signal in the following two cases.
  • the first case is: When the light source link is faulty, the optical signal remaining in the faulty light source link can be quickly turned off. Second, when the light source link is in the startup state, the optical signal output is unstable at this time, and the current signal needs to be turned off. The optical signal output of the light source link.
  • the light source link control module is configured to control an on state of the switch module, and adjust an optical signal parameter sent by the light source module, including controlling and adjusting power and temperature, and switching the primary and backup data channels.
  • the modulator is used to modulate the data signal transmitted from the data channel into an optical signal, which may be composed of one or more EA modulators (Electro-Absorption), or may be composed of one or more MZ modulators (Mach) Zehnder, Maher-Zehnder modulator). If the method of directly modulating the light source module is used, the modulator can be omitted. At this time, the data control port is at the light source, and the magnitude of the bias current of the light source is changed by the data, thereby realizing the purpose of modulating the data.
  • the light source link control module of the originating module of the present invention further includes a lookup unit.
  • a lookup unit is a control unit that stores a lookup table. First, a corresponding lookup table between the measured value of the optical signal parameter (optical power, wavelength, etc.) and the reference value is established in the commissioning phase during the commissioning phase, and the lookup table is stored in the lookup unit.
  • the lookup table for the measured optical power and optical power parameters is shown in the table below.
  • the method for transmitting a light source link is specifically:
  • the receiving end of the optoelectronic integrated light source link detects the fault information of the service signal, it sends the channel switching information to the originating end of the light source link.
  • the end of the optoelectronic integrated light source link detects an optical signal failure, the optoelectronic integrated light source link fails, and/or the optical signal fails in the working path of the optical transmission system (eg, fiber breakage, device damage, etc.) , and / or the receiving module of the optical integrated circuit fails, resulting in degradation or even loss of the signal received by the receiving end of the optical integrated circuit.
  • the detection here is realized by the optical power of the receiving end monitoring service signal, the adjustment parameter, the bit error rate and the bias voltage of the receiving end.
  • the control system of the receiving link learns that a failure has occurred based on the information, and thus The channel switching information is sent.
  • the channel switching information includes the number of the faulty link, the number of the standby link, and the like.
  • the receiving end informs the originating end of the channel switching information through signaling or APS protocol. This signaling or protocol can be passed through a specific protection channel or through a specific overhead byte.
  • the originating end of the light source link turns off the optical switch of the faulty light source link.
  • the reference value in the stored lookup table is searched, and the optical signal parameters sent by the light source module on the alternate light source link are controlled according to the reference value in the lookup table.
  • Optical signal parameters include wavelength and optical power. It is well known that the feedback detection process of optical signals requires photoelectric conversion and analysis and is therefore relatively slow. Since the above control process is all realized by the electrical signal, and the optical signal of the light source link is not detected, the light source link control module uses the search unit, which can greatly shorten the time for starting the standby link.
  • the present invention when a single or multiple devices fail, causing a failure of the entire fixed light source link, it is possible to detect the failure of any one of the primary light source links, and can use an alternately adjustable wavelength.
  • the light source link and its corresponding backup data channel complete the service transmission process of the faulty primary light source link and its corresponding data channel, thereby ensuring not only the fault caused by the fault of the originating device when the primary light source link fails. It can also solve the fault caused by network failure (such as the broken path of the working path), so that the photoelectric integrated transmission link can still Normal operation, which provides effective protection for the optoelectronic integrated transmission link and improves the reliability of the optoelectronic integrated transmission link.
  • an alternate light source link is formed on the same integrated board, and two working paths of the active and standby paths are also set correspondingly on the optical fiber transmission system, so that there are multiple protection modes.
  • it also has certain fault location capability. For example, when a fault occurs, the light source link is switched first. If the service is restored, the light source link is faulty, otherwise the optical fiber transmission system is faulty. At the same time, it can flexibly solve the faults caused by network problems and originating, improve the reliability of system operation, and reduce the high cost caused by the overall replacement of integrated optical components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

一种光源链路传输装置和方法 本申请要求于 2006 年 12 月 27 日提交中国专利局、 申请号为 200610157764.7、发明名称为"一种光源链路传输装置和方法"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信传输领域, 特别涉及一种光源链路传输装置和方法。 背景技术
密集波分系统 (DWDM, Dense Wavelength-Division Multiplexing)技术 成为长途和地区主干传输网络的主导技术, 并且也逐渐融入到城域范围。 传统的 DWDM系统使用的是独立的器件封装, 围绕一个或多个光器件制作 板卡, 板卡之间通过光纤来连接。
随着技术的发展, 光器件的价格不断的下降, 到目前为止, 只有光器 件的封装成本仍然居高不下, 并且成为制约光器件成本的瓶颈。 一个典型 的例子就是一个激光器的内核只有几个美金, 但是它的封装成本却需要几 百美金。
在过去的几年, 人们一直致力于将多个光器件, 比如激光器、 调制器、 复用器 /解复用器 (MUX/DEMUX , Multiplexer / DeMultiplexer) 等集成在同 一个半导体基底上, 从而达到减少光器件各自分立封装成本的目的。 同时 由于减少了封装, 使得 DWDM系统发送、 接收、 监视等等子模块体积大大 减少。
光电集成电路就是将多个光、 电器件集成在一个共同的半导体基底上, 并加上独立封装以及相应的外围控制电路而形成的模块或者设备。 目前光 电集成电路的工艺已经接近成熟。
现有技术中光电集成装置发送端的内部的结构示意图如图 1所示, 发送 端使用多个固定光源链路, 粗实线表示光信号传播路径, 细实线表示电信 号传播路径。 整个系统由 N个光源链路和波长组合模块组成, 其中 N个链路 由 N个固定波长的光源分别与 N个调制器顺序连接而成, 从数据通道模块输 出的数据 Dl、 D2、 D3 Dn控制调制器来调节光源模块输出的光信号, 其波长可以随温度小范围 (lnm左右) 变化。 最后, N路光信号通过波长组 合模块组合后, 发送至光电集成装置接收端。
从上述描述可以看出, 现有技术对光电集成装置各光源链路并不存在 任何有效的保护措施, 每一条光源链路都会作为主用链路作用于实际业务 传输, 这样, 当光电集成装置各光源链路中的任意一条光源链路发生故障, 比如, 光源不发光或调制器故障等, 则会导致整个光电集成设备无法正常 工作, 降低了光电集成设备的可靠性。 为了使得光电集成设备能够重新工 作, 现有技术则必须釆用更换的方式来解决, 然而, 又由于在光电集成设 备中各个光源链路的组成器件集成在一个基底上, 并且统一封装, 无法单 独更换故障的光源链路, 因此, 只能更换整个光电集成电路, 从而大大增 加了维护和维修成本。 发明内容
本发明提供一种光源链路传输装置和方法, 从而对光电信号在光源链 路上的传输提供有效的保护措施, 提高光电集成设备的可靠性。
本发明提供的一种光源链路传输装置, 包括发端模块和收端模块, 所述发端模块中集成有主用光源链路、 备用光源链路、 主用数据通道 和备用数据通道, 所述主用数据通道和备用数据通道分别用于供业务数据 所述收端模块中集成有主用接收链路和备用接收链路, 所述主用接收 链路和备用接收链路分别用于接收并检测所述的主用光源链路和备用光源 链路输出的所述业务光信号, 检测到所述业务光信号故障时, 向所述发端 模块发送通道切换信息;
所述发端模块根据所接收到的所述通道切换信息进行主用光源链路与 备用光源链路之间的切换和主用数据通道与备用数据通道之间的切换。
本发明还提供一种光源链路传输方法, 包括:
光源链路的发端接收光源链路的收端在检测到业务信号的故障信息时 发送的通道切换信息;
根据所接收到的通道切换信息进行主用光源链路与备用光源链路之间 的切换和主用数据通道与备用数据通道之间的切换。 在本发明实施例提供的技术方案中, 当单个或多个器件出现故障从而 引起整条固定光源链路故障时, 能够检测到任意一条主用光源链路的故障, 并能够使用可适度调整波长的备用光源链路和其对应的备用数据通道来完 成该故障主用光源链路和其对应数据通道的业务传输过程, 因此, 能够保 证在主用光源链路故障时, 不仅解决发端器件故障引起的故障, 还可以解 决由于网络故障 (比如工作路径断纤) 引起的故障, 使光电集成传输链路 仍然能够正常工作, 从而对光电集成传输链路提供了有效的保护, 提高了 光电集成传输链路的可靠性。 附图说明
图 1为现有技术中光电集成装置发端的内部的结构示意图;
图 2为本发明提供的传输链路发端收端模块的系统框图;
图 3为本发明提供的收端模块的组成结构示意图;
图 4为本发明提供的收端模块的接收链路的组成结构示意图;
图 5为本发明提供的发端模块的结构示意图;
图 6为本发明提供的发端模块的光源链路的具体组成模块图。 具体实施方式
下面结合具体实施例来说明本发明的技术方案。
本发明提供的传输链路发端收端模块的系统框图, 如图 2所示, 完整的 光电集成传输链路发端收端系统包括发端模块、 光纤传输系统和收端模块 三个部分。
发端模块包括主用光源链路、 备用光源链路、 主用数据通道和备用数 据通道。 主用光源链路、 备用光源链路、 主用数据通道和备用数据通道集 链路和备用光源链路上的光信号, 使主用光源链路和备用光源链路输出业 务光信号。 主用数据通道用于传输正常工作时的业务数据, 备用数据通道 正常工作时的业务数据。 主用光源链路用于传输正常工作时的业务光信号; 备用光源链路用于当主用光源链路出现故障时, 传输主用光源链路正常工 作时的业务光信号。 收端模块包括主用接收链路和备用接收链路。 主用接收链路和备用接 收链路集成于收端模块, 主用接收链路和备用接收链路分别用于接收并检 测主用光源链路和备用光源链路输出的业务光信号, 检测到业务光信号故 障时, 向发端模块发送通道切换信息。 主用接收链路用于接收正常工作时 的业务光信号, 备用接收链路用于接收故障状态时的业务光信号。 光纤传 输系统包括主用工作路径和备用工作路径。 主用工作路径用于连接主用光 源链路和备用接收链路, 备用工作路径用于连接备用光源链路和备用接收 链路。
具体为, 发端模块用于将多路数据信号由电信号转换成光信号并且最 后组合成业务光信号进行发送, 光纤传输系统用于实现业务光信号的传输, 收端用于实现对所述业务光信号的接收, 并且解组合所述业务光信号为多 路数据信号。 如图 2所示的系统框图, 本发明的发端模块由 N + M条光源链 路和与每条光源链路的输出——对应的 N + M条的波长组合模块构成, 其中 的 N条光源链路为主用光源链路, 通过波长组合模块与光纤传输系统中的 N 条主用工作路径相连,该 N条主用工作路径用于传输光电集成传输链路发端 收端系统在正常工作时的业务光信号; 其中的 M条光源链路为备用光源链 路,该 M条备用光源链路通过波长组合模块与光纤传输系统中的 M条备用工 作路径相连,该 M条备用工作路径用于传输光电集成传输链路发端收端系统 在发生故障时的业务光信号。 发端模块上的主备用光源链路以及收端模块 上的主备用接收链路都是通过集成工艺集成在同一个半导体基底上,目前这 种集成方法已经接近成熟。
本发明提供的收端的组成结构模块图, 如图 3所示, 包括波长解组合模 块和主、 备用接收链路以及电数据处理单元。 波长解组合模块可以通过阵 列波导光栅 (AWG , Array Waveguide Grating)来实现, 也可以通过 Νχ 1的星 形复用器来实现, 波长解组合模块利用波导的物理特性将接收的一个或多 个光组合信号解复用成多路光信号, 所述的物理特性是利用不同波长的光 在波导传输的延时不同这个特性。 在正常工作时只使用 Ν个通道, 另外的 Μ 路作为冗余的备份。本发明收端中的波长解组合模块有 Ν+Μ个端口分别与 Ν 条主用接收链路和 Μ条备用接收链路相对应,主、备用链路分别将波长解组 合模块输出的信号传输給电数据处理单元。 所述电数据处理单元用于交叉 处理来自接收链路的电信号。
本发明提供的收端模块的接收链路的组成结构示意图如图 4所示, 由光 接收模块、 信号恢复模块、 电数据处理单元和检测模块组成。 光接收模块 用于接收并转发所述工作路径传输来的业务光信号给所述的信号恢复模 块。 光接收模块可以是 PIN管 (半导体光检测器), 也可以是 APD管。 业务光 信号经过光接收模块之后转变成为电信号, 经过信号恢复模块后进入电数 据处理单元。 信号恢复模块用于根据业务需求将接收到的业务光信号进行 再生处理, 比如重放大, 重定时, 重整形等。 所述检测模块用于检测所述 工作路径传输来的业务信号的性能, 以及用于向所述发端模块发送通道切 换信息。
检测模块包括偏置电压控制电路模块、 链路监测模块以及接收链路控 制模块。 偏置电压控制电路模块, 用于监测光接收模块所接收到的光信号 的光功率, 和监测光接收模块产生的偏置电压。 链路监测模块, 用于监测 信号恢复模块中电信号的调整参数及误码率。 接收链路控制模块, 用于根 据接收到的偏置电压控制电路模块和链路监测模块的输入信息, 发送链路 故障信息給发端的光源链路控制模块。
电数据处理单元, 用于交叉处理信号恢复模块输出的电信号, 所述的 交叉处理包括解帧头、 纠错、 格式识别、 存储或者复制等各种操作。
本发明提供的发端模块的结构示意图如图 5所示, 发端由 N + M路的光 源链路和与其对应的波长组合模块构成, 其中 N条光源链路为主用光源链 路, M条光源链路为备用光源链路; 主用数据通道中 Dl、 D2、 D3
Dn条数据通道分别与 N条主用光源链路相连, 备用数据通道中 Dl、 D2、 D3 Dm条数据通道分别与 M条备用光源链路相连。 其中主、 备用光 源链路用于将多路从数据通道中传来的数据信号转换成光信号并进行发 送, 波长组合模块用于将主、 备用光源链路发送出的光信号进行组合, 输 出光组合信号。 波长组合模块与图 3中的波长解组合模块工作原理相同, 也 可以通过 AWG或 Νχ 1的星形复用器来实现, 波长组合模块利用波导的物理 特性将不同波长的波复用成一路或多路光组合信号, 所述的物理特性是利 本发明提供的发端模块的光源链路的具体组成模块图, 如图 6所示, 它 包括光源模块、 调制器、 开关模块以及光源链路控制模块,
光源模块用于产生光信号, 可以是分布反馈激光器 (DFB , Distributed feed back)或者是分布布拉格反射激光器 (DBR, Distributed Bragg reflector)。
开关模块用于关断或打开所述的主备用光源链路。 本发明提供的光源 链路的开关模块有以下两种情况需要通过关断光信号来减少光信号的串 扰。 第一种情况是: 当光源链路故障时, 可以快速关断故障光源链路残留 的光信号, 二是当光源链路处于启动状态时, 此时的光信号输出不稳定, 需要关断此时光源链路的光信号输出。
光源链路控制模块用于控制所述开关模块的导通状态, 调节所述光源 模块所发的光信号参数, 包括对功率和温度进行控制和调节, 以及切换所 述的主备用数据通道。
调制器用于将从数据通道传来的数据信号调制成光信号, 可以由一个 或多个 EA调制器 (Electro-Absorption, 电吸收调制器)组成, 也可以由一个或 多个 MZ调制器 (Mach Zehnder, 马赫耳-曾德调制器)组成。 如果使用数据 直接调制光源模块的方法, 该调制器可以省略, 此时数据控制端口在光源 处, 通过数据来改变光源的偏置电流的大小, 从而实现调制数据的目的。
本发明的发端模块的光源链路控制模块进一步包括查找单元。 查找单 元就是存储有查找表的控制单元。 首先在备用光源链路在调测阶段建立光 信号参数 (光功率、 波长等)的实测值和参照值之间的——对应的查找表, 将 该查找表存储于查找单元中。 如下表所示的为实测光功率和光功率参数的 查找表。
Figure imgf000009_0001
本发明提供的一种光源链路传输方法具体为:
1、 光电集成光源链路的收端检测到业务信号的故障信息时, 向光源链 路的发端发送通道切换信息。 当光电集成光源链路的收端检测到光信号出现故障时, 光电集成光源 链路失效, 和 /或光信号在光传输系统中的工作路径上出现故障(比如断纤, 器件损坏等等), 和 /或光集成电路的接收模块失效, 导致光集成电路的收端 接收到的信号产生劣化, 甚至丟失。 这里的检测是由收端监测业务信号的 光功率、 调整参数、 误码率和所述收端的偏置电压来实现的。 当接收到的 光功率减小到设定的范围, 或信号恢复电路接收到的误码率增加并且超过 一定的门限值时, 接收链路的控制系统根据这些信息得知发生了故障, 于 是下发通道切换的信息, 这个通道切换信息包括故障链路的编号, 备用链 路的编号等等。 收端将通道切换信息通过信令或者 APS的协议告知发端。这 种信令或者协议的可以通过特定的保护通道进行传递, 也可以通过从特定 的开销字节来进行传递。
2、 所述光源链路的发端接收到所述的通道切换信息后, 关断故障光源 链路的光开关。
3、 调节备用光源链路上的光源模块, 使所述光源模块所发的光信号参 数与所述故障光源链路的光源模块正常工作时发出的光信号参数相同。
查找所存储的查找表中的参照值, 根据查找表中的参照值, 来控制调 节备用光源链路上的光源模块所发的光信号参数。 光信号参数包括波长、 光功率。 众所周知, 光信号的反馈检测过程需要光电转换和分析, 因此比 较緩慢。 由于上述控制过程全部通过电信号实现, 没有对光源链路的光信 号进行检测, 所以光源链路控制模块使用查找单元, 可以大大缩短启动备 用链路的时间。
4、 将故障光源链路的数据通道切换到所述备用光源链路的备用数据通 道, 并打开所述备用光源链路的光开关。
由此可见, 在本发明中, 当单个或多个器件出现故障从而引起整条固 定光源链路故障时, 能够检测到任意一条主用光源链路的故障, 并能够使 用可适度调整波长的备用光源链路和其对应的备用数据通道来完成该故障 主用光源链路和其对应数据通道的业务传输过程, 因此, 能够保证在主用 光源链路故障时, 不仅解决发端器件故障引起的故障, 还可以解决由于网 络故障 (比如工作路径断纤) 引起的故障, 使光电集成传输链路仍然能够 正常工作, 从而对光电集成传输链路提供了有效的保护, 提高了光电集成 传输链路的可靠性。 在制作光电集成光源链路的时, 在同一集成单板上制 作了备用光源链路, 同时也在光纤传输系统上相应地设置了主备两条工作 路径, 这样就存在多种的保护方式, 同时也具备一定的故障定位能力, 如, 当出现故障时, 先切换光源链路, 如果业务恢复, 则为光源链路故障, 否 则为光纤传输系统故障。 同时, 可以灵活的解决由于网络问题和发端引起 的故障, 提高系统运行的可靠性, 降低了由于集成光器件整体更换而导致 的高成本。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并 不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应该以权利要求书的保护范围为准。

Claims

权 利 要 求
1、 一种光源链路传输装置, 其特征在于, 包括发端模块和收端模块, 所述发端模块中集成有主用光源链路、 备用光源链路、 主用数据通道 和备用数据通道, 所述主用数据通道和备用数据通道分别用于供业务数据 所述收端模块中集成有主用接收链路和备用接收链路, 所述主用接收 链路和备用接收链路分别用于接收并检测所述的主用光源链路和备用光源 链路输出的所述业务光信号, 检测到所述业务光信号故障时, 向所述发端 模块发送通道切换信息;
所述发端模块根据所接收到的所述通道切换信息进行主用光源链路与 备用光源链路之间的切换和主用数据通道与备用数据通道之间的切换。
2、 如权利要求 1所述的光源链路传输装置, 其特征在于, 所述的主用 光源链路和备用光源链路分别包括光源模块、 调制器、 开关模块以及光源 链路控制模块,
所述光源模块, 用于产生光信号;
所述调制器, 用于根据所述主用数据通道和备用数据通道传来的所述 业务数据, 将所述光信号调制成所述的业务光信号;
所述开关模块, 用于关断或打开所述的主用光源链路和备用光源链路; 所述光源链路控制模块, 用于控制所述开关模块的导通状态, 调节所 述光源模块所发的所述光信号的参数, 以及切换所述主用数据通道和备用 数据通道。
3、 如权利要求 2所述的光源链路传输装置, 其特征在于, 所述光源链 路控制模块进一步包括:
查找单元, 所述查找单元用于查找与所述光信号参数的实测值对应的 参照值, 并根据所述参照值来控制调节所述备用光源链路上的光源模块所 发的光信号参数。
4、 如权利要求 2所述的光源链路传输装置, 其特征在于, 所述收端模 块中的主用接收链路和备用接收链路分别具体包括光接收模块、 信号恢复 模块、 电数据处理单元和检测模块, 所述光接收模块, 用于接收并转发所述业务光信号给所述的信号恢复 模块;
所述信号恢复模块, 用于将接收到的所述业务光信号进行再生处理, 输出电信号;
所述电数据处理单元, 用于交叉处理所述的电信号;
所述检测模块, 用于检测所述业务光信号的性能, 当检测到所述业务 光信号出现故障时, 向所述发端模块发送所述通道切换信息。
5、 如权利要求 4所述的光源链路传输装置, 其特征在于, 所述检测模 块具体包括偏置电压控制电路模块、 链路监测模块以及接收链路控制模块; 所述偏置电压控制电路模块, 用于监测所述光接收模块接收到的所述 业务光信号的光功率, 和监测所述光接收模块产生的偏置电压;
所述链路监测模块, 用于监测所述信号恢复模块中的所述业务光信号 的调整参数及误码率;
所述接收链路控制模块, 用于根据接收到的所述偏置电压控制电路模 块和所述链路监测模块的输入信息, 向所述发端模块发送所述通道切换信 息。
6、 一种光源链路传输方法, 其特征在于, 包括:
光源链路的发端接收光源链路的收端在检测到业务信号的故障信息时 发送的通道切换信息;
根据所接收到的通道切换信息进行主用光源链路与备用光源链路之间 的切换和主用数据通道与备用数据通道之间的切换。
7、 如权利要求 6所述的光源链路传输方法, 其特征在于, 所述进行主 用光源链路与备用光源链路之间的切换步骤, 包括:
根据所接收到的所述通道切换信息关断故障光源链路;
调节备用光源链路上的光源模块, 将所述备用光源模块接替所述故障 光源链路;
将所述故障光源链路的数据通道切换到备用光源链路对应的备用数据 通道。
8、 如权利要求 7所述的光源链路传输方法, 其特征在于, 经调节后的 所述备用光源模块发出的光信号参数与所述故障光源链路的光源模块正常 工作时的光信号参数相同。
9、 如权利要求 6所述的光源链路传输方法, 其特征在于, 所述在检测 到业务信号的故障信息时发送的通道切换信息, 具体包括:
当光源链路的收端检测到所述光功率减小到设定的范围或 /和所述误码 率达到预定的门限值时, 向所述光源链路的发端发送通道切换信息。
10、 如权利要求 6所述的光源链路传输方法, 其特征在于, 所述的故障 信息包括所述光源链路失效信息, 和 /或光传输系统中的工作路径的故障信 息。
11、 如权利要求 7所述的光源链路传输方法, 其特征在于, 所述调节备 用光源链路上的光源模块, 具体包括: 查找与所述光信号参数的实测值对 应的参照值, 并根据所述参照值来控制调节所述备用光源链路上的光源模 块所发的光信号参数。
12、 如权利要求 8所述的光源链路传输方法, 其特征在于, 所述的光信 号参数包括波长、 光功率。
PCT/CN2007/071272 2006-12-27 2007-12-19 Dispositif et procédé de transmission sur une liaison de source optique WO2008083575A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07846098A EP2117138A4 (en) 2006-12-27 2007-12-19 DEVICE AND METHOD FOR TRANSMITTING ON AN OPTICAL SOURCE LINK
US12/421,751 US20090196598A1 (en) 2006-12-27 2009-04-10 Optical source link transmission device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2006101577647A CN101212254A (zh) 2006-12-27 2006-12-27 一种光源链路传输装置和方法
CN200610157764.7 2006-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/421,751 Continuation US20090196598A1 (en) 2006-12-27 2009-04-10 Optical source link transmission device and method

Publications (1)

Publication Number Publication Date
WO2008083575A1 true WO2008083575A1 (fr) 2008-07-17

Family

ID=39608341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/071272 WO2008083575A1 (fr) 2006-12-27 2007-12-19 Dispositif et procédé de transmission sur une liaison de source optique

Country Status (4)

Country Link
US (1) US20090196598A1 (zh)
EP (1) EP2117138A4 (zh)
CN (1) CN101212254A (zh)
WO (1) WO2008083575A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630979B (zh) * 2008-07-16 2015-05-06 华为技术有限公司 一种延长器、数据传输方法及无源光网络系统
CN101951680A (zh) * 2009-07-10 2011-01-19 中兴通讯股份有限公司 链路保护方法及其装置
EP2517390B1 (en) 2009-12-22 2016-03-09 Xieon Networks S.à r.l. Method and device for data protection in an optical communication network
CN102487524B (zh) * 2010-12-01 2014-07-16 中兴通讯股份有限公司 一种微波信号发送链路的切换方法、系统及设备
WO2013018337A1 (ja) * 2011-07-29 2013-02-07 日本電気株式会社 ネットワークシステム、ネットワーク装置、およびネットワーク制御方法
US9143236B1 (en) * 2011-08-08 2015-09-22 Optical Zonu Corporation Fiber fault detection within data transceiver having micro OTDR (μOTDR) for fiber optic network
CN102369666B (zh) * 2011-08-30 2013-03-20 华为技术有限公司 一种双稳态光开关实现单稳态功能的装置
FR2994041B1 (fr) * 2012-07-24 2015-03-06 Cassidian Cybersecurity Systeme de multi-transmission unidirectionnelle
TWI502906B (zh) * 2012-11-01 2015-10-01 Univ Nat Taiwan Science Tech 主動式網路監控系統及其監控方法
JP2014183482A (ja) * 2013-03-19 2014-09-29 Fujitsu Ltd 送受信システム、送信装置、受信装置、及び送受信システムの制御方法
WO2015157961A1 (zh) * 2014-04-17 2015-10-22 华为技术有限公司 基于片的光互连系统及其保护方法
GB201503426D0 (en) * 2015-02-27 2015-04-15 Native Design Ltd Light and speaker driver device
JP6648437B2 (ja) * 2015-07-29 2020-02-14 富士通株式会社 送受信システム、送信装置、受信装置及び送受信システムの制御方法
CN106487679B (zh) * 2015-09-02 2019-11-08 北京国基科技股份有限公司 以太网交换机的主备切换系统和切换方法
CN108075967B (zh) * 2016-11-10 2021-04-09 成都华为技术有限公司 一种链路选取方法及装置
WO2019036892A1 (zh) * 2017-08-22 2019-02-28 深圳瀚飞科技开发有限公司 在线监控平台远程通讯检测系统及其检测方法
US10587339B1 (en) * 2018-11-27 2020-03-10 Ciena Corporation Systems and methods for achieving best effort home route capacity on protection paths during optical restoration
WO2021024346A1 (ja) * 2019-08-05 2021-02-11 日本電信電話株式会社 伝送装置及び伝送方法
CN113783605B (zh) * 2020-06-10 2023-03-03 华为技术有限公司 一种光源保护装置以及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731887A (en) 1995-12-22 1998-03-24 Mci Communications Corporation System and method for photonic facility and line protection switching
WO1999044317A2 (en) 1998-02-24 1999-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Protection of wdm-channels
US20040022535A1 (en) * 2002-08-01 2004-02-05 Steve Wang System and method for preventing signal loss in an optical communications network
CN1505283A (zh) * 2002-11-29 2004-06-16 上海叶鑫贸易有限公司 光纤通信网络保护系统
EP1450509A2 (en) 2003-02-18 2004-08-25 Tyco Telecommunications (US) Inc. Protection switching architecture and method of use
CN1665174A (zh) * 2004-03-03 2005-09-07 华为技术有限公司 光网络中提供节点保护的装置及其实现方法
EP1583259A2 (en) 2004-03-29 2005-10-05 Fujitsu Limited Light source apparatus, and method for switching redundancy of the light source
CN1936630A (zh) * 2006-10-27 2007-03-28 华为技术有限公司 一种对光电集成设备进行保护的方法和系统
CN1945991A (zh) * 2006-10-27 2007-04-11 华为技术有限公司 一种对光电集成设备进行保护的方法和光电集成设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898376B1 (en) * 1998-12-14 2005-05-24 Tellabs Operations, Inc. Optical ring protection apparatus and methods
US6509993B1 (en) * 1999-09-20 2003-01-21 At&T Corp. Optical transmission using dispersion-enhanced signals
US7099578B1 (en) * 1999-12-16 2006-08-29 Tellabs Operations Inc. 1:N protection in an optical terminal
US6775308B2 (en) * 2001-06-29 2004-08-10 Xanoptix, Inc. Multi-wavelength semiconductor laser arrays and applications thereof
CN1192521C (zh) * 2002-03-08 2005-03-09 华为技术有限公司 数字调节光接收模块及其调节方法
CN1222821C (zh) * 2002-07-01 2005-10-12 华为技术有限公司 基于波分复用层的光通道保护装置及方法
US7313330B2 (en) * 2002-08-13 2007-12-25 Samsung Electronics Co., Ltd. Redundant apparatus and method for gigabit ethernet passive optical network system and frame format thereof
KR100547709B1 (ko) * 2003-07-07 2006-01-31 삼성전자주식회사 자기 치유 파장분할다중방식 수동형 광 가입자망
JP3938135B2 (ja) * 2003-10-28 2007-06-27 日本電気株式会社 送受信器及び送受信システム
EP1810285A4 (en) * 2004-10-19 2010-01-06 Inc Sioptical OPTICAL DETECTOR CONFIGURATION AND USE AS ASSISTANCE IN MONOLITHIC INTEGRATED OPTICAL AND ELECTRONIC DEVICES

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731887A (en) 1995-12-22 1998-03-24 Mci Communications Corporation System and method for photonic facility and line protection switching
WO1999044317A2 (en) 1998-02-24 1999-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Protection of wdm-channels
US20040022535A1 (en) * 2002-08-01 2004-02-05 Steve Wang System and method for preventing signal loss in an optical communications network
CN1505283A (zh) * 2002-11-29 2004-06-16 上海叶鑫贸易有限公司 光纤通信网络保护系统
EP1450509A2 (en) 2003-02-18 2004-08-25 Tyco Telecommunications (US) Inc. Protection switching architecture and method of use
CN1665174A (zh) * 2004-03-03 2005-09-07 华为技术有限公司 光网络中提供节点保护的装置及其实现方法
EP1583259A2 (en) 2004-03-29 2005-10-05 Fujitsu Limited Light source apparatus, and method for switching redundancy of the light source
CN1936630A (zh) * 2006-10-27 2007-03-28 华为技术有限公司 一种对光电集成设备进行保护的方法和系统
CN1945991A (zh) * 2006-10-27 2007-04-11 华为技术有限公司 一种对光电集成设备进行保护的方法和光电集成设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2117138A4 *

Also Published As

Publication number Publication date
CN101212254A (zh) 2008-07-02
US20090196598A1 (en) 2009-08-06
EP2117138A1 (en) 2009-11-11
EP2117138A4 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
WO2008083575A1 (fr) Dispositif et procédé de transmission sur une liaison de source optique
US6650803B1 (en) Method and apparatus for optical to electrical to optical conversion in an optical cross-connect switch
EP2393237B1 (en) Passive optical network protection method, master-standby switch control device and system
US8280244B2 (en) Optical ring network system
US6597826B1 (en) Optical cross-connect switching system with bridging, test access and redundancy
EP1652328B1 (en) Use of polarization for differentiation of information
JP5490517B2 (ja) 光通信システム、光通信方法およびolt
KR101100775B1 (ko) 수동 광 네트워크에서의 결함들을 격리시키기 위한 안전 광 스플리터 및 방법
JPH10322287A (ja) N−wdmシステムにおける出力ポート切替装置
WO2008052471A1 (fr) Procédé pour protéger un dispositif photoélectrique intégré et dispositif photoélectrique intégré
EP2077627B1 (en) A method and system for protecting a photo-electricity integrating device
US7151893B2 (en) Data transmission system, transmission method of optical network monitor control signal, and node
US6516110B2 (en) Optical cross-connector
US7660529B2 (en) System and method for providing failure protection in optical networks
JP4973557B2 (ja) ポイントtoマルチポイント光通信システム
CA2389589A1 (en) 1+1 fault protection in a network of optical cross-connect switching systems
JP2009212668A (ja) 光伝送システム
WO2022267320A1 (zh) 波分链路保护系统和方法
KR20040101173A (ko) 파장 분할 다중화 수동형 광 가입자 망의 보호 복구 장치및 그 방법
KR20010058245A (ko) 파장분할다중 광전송시스템에서 광채널계층의 단방향절체장치
Bjornstad et al. Protecting guaranteed service traffic in an OpMiGua hybrid network
TWI450506B (zh) 被動式光纖網路架構與保護方法及光開關結構
WO2004077701A1 (ja) 光伝送における現用及び予備回線の切替方法及び装置
US20020154351A1 (en) Optical network architecture with reduced equipment
KR20080087375A (ko) 파장가변 레이저를 이용한 보호절체기능을 가진 파장분할다중화 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07846098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007846098

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE