WO2022267320A1 - 波分链路保护系统和方法 - Google Patents

波分链路保护系统和方法 Download PDF

Info

Publication number
WO2022267320A1
WO2022267320A1 PCT/CN2021/132017 CN2021132017W WO2022267320A1 WO 2022267320 A1 WO2022267320 A1 WO 2022267320A1 CN 2021132017 W CN2021132017 W CN 2021132017W WO 2022267320 A1 WO2022267320 A1 WO 2022267320A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
link
wavelength
optical signal
tunable
Prior art date
Application number
PCT/CN2021/132017
Other languages
English (en)
French (fr)
Inventor
程明
张德智
杜喆
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2022267320A1 publication Critical patent/WO2022267320A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0307Multiplexers; Demultiplexers

Definitions

  • the present disclosure relates to the field of optical communication, in particular to the field of Wavelength Division Multiplexing (WDM, Wavelength Division Multiplexing) technology.
  • WDM Wavelength Division Multiplexing
  • Wavelength division multiplexing is a technology that couples multiple optical signals of different wavelengths into the same optical fiber through a multiplexer for data transmission.
  • the application of this technology can save a lot of fiber resources.
  • the optical line is generally protected. For example, protection can be provided by automatically switching the working line to the protection line in the event of a fault.
  • optical line protection technologies include semi-active schemes and active schemes.
  • the active solution can use pairs of optical switches to switch lines.
  • the maintenance of the optical switch requires high cost. Because this solution needs to maintain the active optical switch equipment at both ends, the maintenance cost is very high.
  • the semi-active solution uses an optical splitter and an optical switch. The signal is divided into two lines through the optical splitter and switched through the optical switch.
  • Optical splitters are passive devices. However, optical splitters will introduce higher line insertion loss, resulting in low optical efficiency.
  • the active optical switch equipment at one end still needs to be maintained. Therefore, although the maintenance cost is lower than that of the active solution, it is still far from the ideal maintenance cost.
  • the present disclosure proposes a WDM link protection system and method based on a tunable optical module.
  • the automatic switching of the working link is realized by configuring the tunable optical module so that it monitors the optical signal passing through the line and adjusts the working wavelength of the service signal, thereby realizing the protection of the wavelength division link and eliminating the need for light splitting
  • the use of switches and optical switches solves the problems of large insertion loss and maintenance of active equipment in existing WDM link protection schemes.
  • a wavelength division link protection system includes: an optical fiber link, including a main link and a backup link; a first tunable optical module, located at one end of the optical fiber link and a second tunable optical module located at the other end of the optical fiber link, wherein the first tunable optical module is configured to: transmit an optical signal of a first wavelength and receive an optical signal of a third wavelength from the second tunable optical module optical signal, and when the received optical signal indicates that the active link is abnormal, it is switched to transmit an optical signal of a second wavelength, and wherein the second tunable optical module is configured to: transmit an optical signal of a third wavelength and receive The optical signal of the first wavelength from the first tunable optical module, and when the received optical signal indicates that the active link is abnormal, it is switched to transmit the optical signal of the fourth wavelength, wherein the optical signal of the first wavelength and the third The optical signal at the wavelength is directed to and transmitted through the active link, and the optical signal at the second wavelength and the optical
  • a wavelength division link protection method comprising: setting an optical fiber link, the optical fiber link including a main link and a backup link; at one end of the optical fiber link The first tunable optical module is set; the second tunable optical module is set at the other end of the optical fiber link; the first tunable optical module is configured so that it: emits an optical signal of the first wavelength and receives an optical signal from the second tunable optical module The optical signal of the third wavelength, and when the received optical signal indicates that the active link is abnormal, it is switched to transmit the optical signal of the second wavelength; and the second tunable optical module is configured so that it: transmits the optical signal of the third wavelength The optical signal receives the optical signal of the first wavelength from the first tunable optical module, and switches to transmit the optical signal of the fourth wavelength when the received optical signal indicates that the active link is abnormal, wherein the optical signal of the first wavelength The signal and the optical signal at the third wavelength are directed to and transmitted through the active link, and the optical signal at
  • FIG. 1 shows a schematic diagram of a WDM link protection system according to some embodiments of the present disclosure
  • FIG. 2 shows a schematic diagram of a WDM link protection system according to other embodiments of the present disclosure
  • FIG. 3 shows a schematic diagram of an optical signal transmission route in a wavelength division link protection system according to some embodiments of the present disclosure.
  • Fig. 4 shows a flowchart of a WDM link protection method according to some embodiments of the present disclosure.
  • the WDM link protection system and method based on tunable optical modules proposed in this disclosure uses tunable optical modules to replace fixed-wavelength optical modules used in the related art, and can automatically switch the working line when a fault occurs without an optical splitter and an optical switch. Switch to the protection line for protection.
  • the tunable optical module refers to an optical module whose wavelength can be changed during operation.
  • a wavelength division multiplexing optical communication system generally uses an optical module with a fixed wavelength. Once the optical module with fixed wavelength is installed and debugged and enters the stage of use, its wavelength cannot be changed.
  • a WDM link protection system according to some embodiments of the present disclosure will be described below with reference to FIG. 1 .
  • the WDM link protection system includes an optical fiber link for transmitting optical signals.
  • the optical fiber used in the wavelength division link can bidirectionally transmit multiple optical signals of different wavelengths.
  • the optical fiber link is composed of a main link 101 and a backup link 102 .
  • Each of the active link and the standby link can bidirectionally transmit a plurality of optical signals of different wavelengths.
  • the WDM link protection system further includes a first tunable optical module 103 and a second tunable optical module 104 .
  • the first tunable optical module 103 is located at one end of the optical fiber link
  • the second tunable optical module 104 is located at the other end of the optical fiber link.
  • the first tunable optical module 103 is configured to: transmit an optical signal ⁇ 11 of the first wavelength and receive an optical signal ⁇ 13 of a third wavelength from the second tunable optical module, and when the received optical signal ⁇ 13 indicates the active link When an abnormality occurs, switch to emitting the optical signal ⁇ 12 of the second wavelength.
  • the second tunable optical module 104 is configured to: transmit an optical signal ⁇ 13 of the third wavelength and receive an optical signal ⁇ 11 of the first wavelength from the first tunable optical module, and when the received optical signal ⁇ 11 indicates the active link When an abnormality occurs, switch to emitting the optical signal ⁇ 14 of the fourth wavelength.
  • the optical signal ⁇ 11 of the first wavelength and the optical signal ⁇ 13 of the third wavelength are directed to the active link and transmitted through the active link, and the optical signal ⁇ 12 of the second wavelength and the optical signal ⁇ 14 of the fourth wavelength are directed to the standby link link and transmit over the backup link.
  • the optical routes of the optical signals ⁇ 11 and ⁇ 12 are shown by thin solid lines, and the optical routes of the optical signals ⁇ 13 and ⁇ 14 are shown by dotted lines, and the arrows indicate the transmission directions of the optical signals.
  • first wavelength first wavelength
  • second wavelength second wavelength
  • third wavelength third wavelength
  • fourth wavelength fourth wavelength
  • the first tunable optical module 103 and the second tunable optical module 104 first use the active link to transmit signals, and respectively transmit the optical signal ⁇ 11 of the first wavelength and the optical signal ⁇ 13 of the third wavelength. Signals at both wavelengths are directed to the active link. After the first tunable optical module 103 and the second tunable optical module 104 receive the signal transmitted from the opposite end, they can determine whether the active link is abnormal based on the received signal. If the active link is abnormal, the The transmitted optical signal is switched to ⁇ 12 or ⁇ 14. The optical signals ⁇ 12 and ⁇ 14 are directed to the standby link, thus realizing the switching of the service signal link.
  • the tunable optical module itself has realized the functions of detecting faults and switching lines, there is no need to use optical switches and optical splitters. Compared with related technologies, the use of tunable optical modules to realize wavelength division link protection solves the problems of introducing large insertion loss and requiring maintenance of active equipment.
  • the tunable optical module can be realized by a fixed-wavelength optical module supporting a semiconductor cooler (TEC, Thermo Electric Cooler), and the transmission wavelength can be changed by adjusting the operating temperature of the transmitter through the TEC.
  • TEC semiconductor cooler
  • the tunable optical modules 103 and 104 may be configured to detect the optical power of the received optical signal, and judge whether the active link is abnormal based on the optical power.
  • Abnormalities of the active link can be broadly classified into two categories: interruption of the active link and poor signal quality of the active link.
  • the active link is interrupted, the optical signal cannot be transmitted from one end of the optical fiber link to the other end.
  • neither the first tunable optical module 103 nor the second tunable optical module 104 can receive The transmitted optical signals, therefore, their respective received optical powers are 0.
  • the optical power threshold in normal operation.
  • the threshold can be preset according to specific conditions.
  • the first tunable optical module 103 and the second tunable optical module 104 are further configured to: detect the optical power of the received optical signal, and switch to transmit when the detected optical power is lower than a threshold the wavelength of the optical signal.
  • the case that the optical power is lower than the threshold includes the case that the optical power is 0.
  • the optical modules at both ends of the optical fiber link perform fault detection and line switching respectively, which may have a time difference in practice.
  • This time difference leads to certain risks in bidirectional switching of lines. For example, in the case where one end performs wavelength switching before the other end, it may cause the other end to resume receiving optical signals, so that wavelength switching is not performed. In the embodiments described below, this problem will be solved.
  • the first tunable optical module 103 and the second tunable optical module 104 are further configured to: detect the optical power of the received optical signal, and switch the emitted light when the detected optical power is lower than a threshold The wavelength of the signal, and insert a specific optical signal into the switched optical signal. And the first tunable optical module 103 and the second tunable optical module 104 are further configured to: switch the wavelength of the transmitted optical signal based on receiving a specific optical signal.
  • the specific optical signal may be an optical signal with specific characteristics that can be identified by the tunable optical module.
  • the specific optical signal may be a specific code signal, ie a signal with a specific pulse form.
  • specific light signals can also be manually triggered, which is particularly advantageous during maintenance. For example, when the staff needs to overhaul the main link, they can manually trigger a specific optical signal to switch the line from the main link to the backup link. Even if the active link is in normal working state at this time, the service can be switched to the standby link.
  • Single-ended detection of fiber optic lines can also be achieved by using specific optical signals.
  • only one optical module in the first tunable optical module and the second tunable optical module detects whether the received optical signal indicates that the link is abnormal, and switches to the wavelength of the emitted optical signal, and switches Insert a specific optical signal into the subsequent optical signal. And another optical module switches lines based on receiving the specific optical signal. In this way, the function of switching service signal links can be realized at a low cost.
  • the WDM link protection system can also switch back to the active link again when there is an abnormality in the standby link, such as poor signal quality. At this point, the problem of the active link may have been resolved, and signal transmission can be performed normally. In this way, the function of freely switching between the active link and the standby link can be realized.
  • This embodiment is particularly advantageous for unstable signals. When the link signal is poor, it can automatically switch to another link, regardless of whether the current transmitting signal is the main link or the backup link.
  • the tunable optical module 1, the tunable optical module 1', the active link and the backup link are the same as those shown in Figure 1.
  • the WDM link protection system in Figure 2 also includes a multiplexer component and a splitter for guiding the optical signals of different wavelengths from the tunable optical module to the active link or the backup link.
  • wave components The wave multiplexing component and the wave splitting component are described in detail below.
  • the first demultiplexing component is located between the first tunable optical module 1 and the optical fiber link and is configured to guide the optical signal ⁇ 11 of the first wavelength to the active link, and guide the optical signal ⁇ 12 of the second wavelength to the standby link link.
  • the first demultiplexer component may be a demultiplexer, thus shown as "Demultiplexer 1" in FIG. 2 .
  • the first multiplexer component is located between the first tunable optical module 1 and the optical fiber link and is configured to guide the optical signal ⁇ 13 of the third wavelength from the active link and the optical signal ⁇ 14 of the fourth wavelength from the standby link to the first tunable optical module.
  • the first multiplexing component may be a multiplexer and is therefore shown as "Multiplexer 1" in FIG. 2 .
  • the second demultiplexing component is located between the second tunable optical module 1' and the fiber link and is configured to guide the optical signal ⁇ 13 of the third wavelength to the active link, and guide the optical signal ⁇ 14 of the fourth wavelength to Backup link.
  • the second demultiplexer component may be a demultiplexer, thus shown as "Demultiplexer 1'" in Fig. 2 .
  • the second multiplexer component is located between the second tunable optical module 1' and the optical fiber link and is configured to be an optical signal ⁇ 11 of the first wavelength from the active link and an optical signal ⁇ 12 of the second wavelength from the standby link Lead to the second tunable optical module 1'.
  • the second multiplexing component may be a multiplexer, thus shown as "Multiplexer 1'" in Fig. 2 .
  • the multiplexer and splitter components are passive components with low insertion loss. Therefore, using the multiplexing component and the multiplexing component to guide light of different wavelengths to the active link and the standby link basically does not introduce insertion loss or increase equipment maintenance costs.
  • Another one or more first tunable optical modules are provided, which are represented as tunable optical modules 2 to tunable optical modules N in FIG. 2 .
  • each group of tunable optical modules N and N' is similar to that of the first tunable optical module 103 and the second tunable optical module 104 in FIG. 1 .
  • a first multiplexer/demultiplexer component is also provided. Its one end is connected to all the first tunable optical modules 1-N, and the other end is connected to the main link, configured to multiplex the optical signals from all the first tunable optical modules to the main link, And the optical signal from the active link is demultiplexed to the corresponding first tunable optical module 1-N.
  • the first multiplexer/demultiplexer component may be formed by a multiplexer and a demultiplexer, denoted as multiplexer/demultiplexer 1 in FIG. 2 .
  • the first multiplexer/demultiplexer component may be formed by a multiplexer and a demultiplexer, denoted as multiplexer/demultiplexer 2 in FIG. 2 .
  • the third multiplexer/demultiplexer component one end of which is connected to all the second tunable optical modules 1'-N', and the other end is connected to the main link, is configured to transmit signals from all the second tunable optical modules 1'
  • the optical signal of -N' is multiplexed to the active link, and the optical signal from the active link is demultiplexed to the corresponding second tunable optical module.
  • the first multiplexer/demultiplexer component may be formed by a multiplexer and a demultiplexer, denoted as multiplexer/demultiplexer 1' in Fig. 2 .
  • the fourth multiplexer/demultiplexer component one end of which is connected to all the second tunable optical modules 1'-N', and the other end is connected to the backup link, is configured to connect signals from all the second tunable optical modules 1'-N'
  • the optical signal of N' is multiplexed to the backup link, and the optical signal from the backup link is demultiplexed to the corresponding second tunable optical module.
  • a fourth multiplexer/demultiplexer component may be formed by a multiplexer and a demultiplexer, denoted as multiplexer/demultiplexer 2' in Fig. 2 .
  • the wavelengths of the optical signals emitted by each of the first tunable optical modules and all the second tunable optical modules are different.
  • the dark gray solid line indicates the optical signal transmission route from the left end to the right end (hereinafter referred to as "forward direction”) in the figure when the active link is working normally.
  • the light gray solid line indicates the optical signal transmission route from the right end to the left end (hereinafter referred to as "reverse”) when the active link is working normally.
  • the dark gray dotted line indicates the forward optical signal transmission route when the active link is abnormal.
  • the light gray dotted line indicates the reverse optical signal transmission route when the active link is abnormal.
  • the ⁇ 11 optical signal sent by the tunable optical module 1 passes through the demultiplexer 1 and then enters the multiplexer/demultiplexer 1 and the main link, and then multiplexes The multiplexer/demultiplexer 1' and the multiplexer 1' reach the receiving port of the tunable optical module 1'.
  • the tunable optical module 1 detects that the received signal indicates an abnormality, which triggers it to adjust the emission wavelength to ⁇ 12, and the ⁇ 12 optical signal enters the multiplexer/demultiplexer after passing through the demultiplexer 1 In the multiplexer/demultiplexer 2' and the multiplexer 1', it reaches the receiving port of the tunable optical module 1', so as to realize the switching of the forward service signal.
  • the tunable optical module 1' detects that the received signal indicates an abnormality, which triggers it to adjust the emission wavelength to ⁇ 14, and the ⁇ 14 optical signal passes through the demultiplexer 1' and then enters the multiplexer/ In the demultiplexer 2' and the backup link, the multiplexer/demultiplexer 2 and the multiplexer 1 reach the receiving port of the tunable optical module 1, thereby realizing the switching of the reverse service signal.
  • Fig. 4 shows a flowchart of a WDM link protection method according to some embodiments of the present disclosure.
  • step 401 an optical fiber link is set, and the optical fiber link includes an active link and a standby link.
  • step 402 a first tunable optical module is set at one end of the optical fiber link. Then, the process proceeds to step 403, and a second tunable optical module is set at the other end of the optical fiber link.
  • the first tunable optical module is configured such that it: transmits an optical signal of the first wavelength and receives an optical signal of the third wavelength from the second tunable optical module, and when the received optical signal The signal indicates that when an abnormality occurs in the active link, the optical signal of the second wavelength is switched to be transmitted.
  • the second tunable optical module is configured such that it: transmits an optical signal of the third wavelength and receives an optical signal of the first wavelength from the first tunable optical module, and when the received optical signal indicates that the main When an abnormality occurs in the user link, it is switched to transmit the optical signal of the fourth wavelength.
  • optical signal of the first wavelength and the optical signal of the third wavelength are guided to the active link and transmitted through the active link, and the optical signal of the second wavelength and the optical signal of the fourth wavelength are guided to the standby link and transmitted Transmitted over an alternate link.
  • the first tunable optical module and the second tunable optical module are further configured to determine whether the active link is abnormal by detecting the optical power of the received optical signal.
  • the first tunable optical module and the second tunable optical module are further configured to: detect the optical power of the received optical signal, and switch the emitted optical signal when the detected optical power is lower than a threshold wavelength.
  • the first tunable optical module and the second tunable optical module are further configured to: detect the optical power of the received optical signal, and switch the emitted optical signal when the detected optical power is lower than a threshold and inserting a specific optical signal into the switched optical signal; and further configuring the first tunable optical module and the second tunable optical module to: switch the wavelength of the transmitted optical signal based on receiving the specific optical signal.
  • the wavelength division link protection method further includes: setting a first wavelength division component between the first tunable optical module and the optical fiber link, the first wavelength division component is configured to guide the optical signal of the first wavelength to the active link, and guide the optical signal of the second wavelength to the backup link; and a first multiplexer component is set between the first tunable optical module and the optical fiber link, and the first multiplexer component is configured for the future The optical signal of the third wavelength of the active link and the optical signal of the fourth wavelength of the backup link are guided to the first tunable optical module.
  • the wavelength division link protection method further includes: setting a second wavelength division component between the second tunable optical module and the optical fiber link, the second wavelength division component is configured to guide the optical signal of the third wavelength to the active link, and guide the optical signal of the fourth wavelength to the standby link; and a second multiplexer component is set between the second tunable optical module and the optical fiber link, and the second multiplexer component is configured for the future The optical signal of the first wavelength from the active link and the optical signal of the second wavelength from the backup link are guided to the second tunable optical module.
  • the wavelength division link protection method further includes: setting another one or more first tunable optical modules; setting another one or more corresponding to the other one or more first tunable optical modules A plurality of second tunable optical modules; a first multiplexer/demultiplexer component is set, and the first multiplexer/demultiplexer component is configured to multiplex the optical signals from all the first tunable optical modules to the main link, and Demultiplexing the optical signal from the active link to the corresponding first tunable optical module; setting a second multiplexer/demultiplexer component, the second multiplexer/demultiplexer component is configured to combine all the first tunable optical modules
  • the optical signal of the backup link is multiplexed to the standby link, and the optical signal from the standby link is demultiplexed to the corresponding first tunable optical module; the third multiplexing and demultiplexing component is set, and the third multiplexing and demultiplexing component is configured In order to multiplex the optical signals from all the second tunable optical modules

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本公开的一个方面涉及波分链路保护系统和方法。波分链路保护系统包括:主用链路和备用链路;第一可调谐光模块,位于光纤链路的一端;以及第二可调谐光模块,位于光纤链路的另一端,第一可调谐光模块被配置为:发射第一波长的光信号并接收来自第二可调谐光模块的第三波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第二波长的光信号,第二可调谐光模块被配置为:发射第三波长的光信号并接收来自第一可调谐光模块的第一波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第四波长的光信号,并且第一波长的光信号和第三波长的光信号被引导至主用链路,第二波长的光信号和第四波长的光信号被引导至备用链路。

Description

波分链路保护系统和方法
相关申请的交叉引用
本申请是以CN申请号为202110691333.3,申请日为2021年6月22日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及光通信领域,特别是涉及波分复用(WDM,Wavelength Division Multiplexing)技术的领域。
背景技术
波分复用是将多个不同波长的光信号通过复用器耦合进同一根光纤中,以此进行数据传输的技术。该技术的应用能够大量节约光纤资源。为了应对光纤线路中断的风险,一般会对光线路进行保护。例如,可以通过在发生故障时将工作线路自动切换到保护线路上来进行保护。
现有光线路保护技术包括半有源方案和有源方案。其中,有源方案可采用成对的光开关来进行线路的切换。然而,作为有源设备,光开关的维护需要较高的成本。由于该方案需要维护两端的有源光开关设备,维护成本非常高。半有源方案采用分光器和光开关,通过分光器将信号分至两个线路并通过光开关进行切换。分光器为无源设备。然而,分光器将引入较高的线路插损,导致光效率低下。此外,仍然需要维护一端的有源光开关设备,因此维护成本虽然相比于有源方案有所降低,但仍距理想维护成本有一定差距。
因此,需要一种维护成本低且光效率高的波分链路保护系统和方法。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
为了克服上述相关技术的弊端,本公开提出了一种基于可调谐光模块的波分链路保护系统和方法。在本公开的系统中,通过配置可调谐光模块以使其监测经过线路的光信号并调整业务信号的工作波长来实现工作链路的自动切换,进而实现波分链路的保护,消除了分光器和光开关的使用,解决了现有波分链路保护方案插损大和需要维护有源设备的问题。
根据本公开的一个方面,公开了一种波分链路保护系统,所述系统包括:光纤链路,包括主用链路和备用链路;第一可调谐光模块,位于光纤链路的一端;以及第二可调谐光模块,位于光纤链路的另一端,其中,第一可调谐光模块被配置为:发射第一波长的光信号并接收来自第二可调谐光模块的第三波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第二波长的光信号,并且其中,第二可调谐光模块被配置为:发射第三波长的光信号并接收来自第一可调谐光模块的第一波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第四波长的光信号,其中第一波长的光信号和第三波长的光信号被引导至主用链路并通过主用链路传输,并且第二波长的光信号和第四波长的光信号被引导至备用链路并通过备用链路传输。
根据本公开的另一个方面,公开了一种波分链路保护方法,所述方法包括:设置光纤链路,所述光纤链路包括主用链路和备用链路;在光纤链路的一端设置第一可调谐光模块;在光纤链路的另一端设置第二可调谐光模块;配置第一可调谐光模块以使其:发射第一波长的光信号并接收来自第二可调谐光模块的第三波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第二波长的光信号;并且配置第二可调谐光模块以使其:发射第三波长的光信号并接收来自第一可调谐光模块的第一波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第四波长的光信号,其中第一波长的光信号和第三波长的光信号被引导至主用链路并通过主用链路传输,并且第二波长的光信号和第四波长的光信号被引导至备用链路并通过备用链路传输。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更清楚地理解本公开,其中:
图1示出了根据本公开的一些实施例的波分链路保护系统的示意图;
图2示出了根据本公开的另一些实施例的波分链路保护系统的示意图;
图3示出了根据本公开的一些实施例的波分链路保护系统中的光信号传输路线的示意图;以及
图4示出了根据本公开的一些实施例的波分链路保护方法的流程图。
具体实施方式
参考附图进行以下详细描述,并且提供以下详细描述以帮助全面理解本公开的各种示例实施例。以下描述包括各种细节以帮助理解,但是这些细节仅被认为是示例,而不是为了限制本公开,本公开是由随附权利要求及其等同内容限定的。在以下描述中使用的词语和短语仅用于能够清楚一致地理解本公开。另外,为了清楚和简洁起见,可能省略了对公知的结构、功能和配置的描述。本领域普通技术人员将认识到,在不脱离本公开的精神和范围的情况下,可以对本文描述的示例进行各种改变和修改。
本公开提出的基于可调谐光模块的波分链路保护系统和方法使用可调谐光模块来代替相关技术中使用的固定波长光模块,无需分光器和光开关即可在发生故障时将工作线路自动切换到保护线路上来进行保护。其中,可调谐光模块是指波长在工作中可以改变的光模块。在相关技术中,波分复用光通信系统通常使用固定波长的光模块。固定波长的光模块一旦安装调试完毕进入使用阶段,其波长是不可改变的。下面参照图1来描述根据本公开的一些实施例的波分链路保护系统。
如图1所示,波分链路保护系统包括用于传输光信号的光纤链路。如本领域技术人员所知晓的,波分链路所采用的光纤可以双向传输多个不同波长的光信号。
光纤链路由主用链路101和备用链路102组成。主用链路和备用链路中的每一个都可以双向传输多个不同波长的光信号。
波分链路保护系统还包括第一可调谐光模块103和第二可调谐光模块104。第一可调谐光模块103位于光纤链路的一端,而第二可调谐光模块104位于光纤链路的另一端。
第一可调谐光模块103被配置为:发射第一波长的光信号λ11并接收来自第二可调谐光模块的第三波长的光信号λ13,并且当接收到的光信号λ13指示主用链路出现异常时切换为发射第二波长的光信号λ12。
第二可调谐光模块104被配置为:发射第三波长的光信号λ13并接收来自第一 可调谐光模块的第一波长的光信号λ11,并且当接收到的光信号λ11指示主用链路出现异常时切换为发射第四波长的光信号λ14。
第一波长的光信号λ11和第三波长的光信号λ13被引导至主用链路并通过主用链路传输,并且第二波长的光信号λ12和第四波长的光信号λ14被引导至备用链路并通过备用链路传输。
在图1中,光信号λ11和λ12的光路由细实线示出,而光信号λ13和λ14的光路由虚线示出,箭头表示光信号的传输方向。
其中,术语“第一波长”、“第二波长”、“第三波长”和“第四波长”的使用是为了区分不同的波长。
在上述实施例中,第一可调谐光模块103和第二可调谐光模块104首先使用主用链路进行信号的传输,分别发射第一波长的光信号λ11和第三波长的光信号λ13。这两个波长的信号都被引导至主用链路。第一可调谐光模块103和第二可调谐光模块104在接收到对端发射的信号后,可基于接收到的信号确定主用链路是否出现异常,如果主用链路出现异常,则将发射的光信号的切换成λ12或λ14。光信号λ12和λ14被引导至备用链路,因此实现了业务信号链路的切换。
由于可调谐光模块本身已经实现了检测故障和切换线路的功能,因此无需再使用光开关和分光器。与相关技术相比,采用可调谐光模块来实现波分链路保护解决了引入插损大和需要维护有源设备的问题。
本领域技术人员可以根据实际需要采用适当的方式来实现可调谐光模块。根据一些实施例,可调谐光模块可采用支持半导体制冷器(TEC,Thermo Electric Cooler)的固定波长光模块实现,通过TEC调整发射机工作温度来实现发送波长的变化。
根据一些实施例,可调谐光模块103和104可被配置为检测接收到的光信号的光功率,并基于光功率来判断主用链路是否出现异常。
主用链路出现异常的情况可以大致分为两类:主用链路中断和主用链路信号质量不良。在主用链路中断的情况下,光信号无法从光纤链路的一端传输至另一端,此时,第一可调谐光模块103和第二可调谐光模块104都无法接收到对端光模块发射的光信号,因此其各自接收到的光功率为0。在信号质量不良的情况下,虽然光功率不为0,但是仍然会低于正常工作时的光功率阈值。该阈值可以根据具体情况预先设置。
因此,根据一些实施例,第一可调谐光模块103和第二可调谐光模块104还被配置为:检测接收到的光信号的光功率,并且当检测到的光功率低于阈值时切换发射 的光信号的波长。
其中,光功率低于阈值的情况包括光功率为0的情况。
在上述实施例中,光纤链路两端的光模块分别进行故障检测和线路的切换,这在实际中可能存在时间差。这种时间差导致线路的双向切换存在一定风险。例如,在其中一端先于另一端进行波长切换的情况下,可能导致另一端恢复接收到光信号,从而不进行波长切换。在下面描述的实施例中,该问题将得到解决。
根据一些实施例,第一可调谐光模块103和第二可调谐光模块104还被配置为:检测接收到的光信号的光功率,并且当检测到的光功率低于阈值时切换发射的光信号的波长,并在切换后的光信号中插入特定光信号。并且第一可调谐光模块103和第二可调谐光模块104还被配置为:基于接收到特定光信号切换发射的光信号的波长。
特定光信号可以是具有能够被可调谐光模块识别的特定特征的光信号。例如,特定光信号可以是特定码型信号,即具有特定脉冲形式的信号。
通过在切换波长同时插入特定光信号,可以确保触发对端进行波长切换,从而减少上述问题的出现。
此外,特定光信号还可以人工触发,这在检修时特别有利。例如,当工作人员需要对主要链路进行检修时,可以人工触发特定光信号,将线路从主用链路切换至备用链路。即使主用链路此时处于正常工作状态,也可以将业务切换至备用链路。
通过使用特定光信号,还可以实现光纤线路的单端检测。在一些实施例中,第一可调谐光模块和第二可调谐光模块中仅一个光模块检测接收到的光信号是否指示链路出现异常,并切换为发射的光信号的波长,并在切换后的光信号中插入特定光信号。而另一个光模块基于接收到该特定光信号来切换线路。这样,可以较低成本实现切换业务信号链路的功能。
波分链路保护系统还可以在备用链路出现异常,例如信号质量不佳的情况下,再次切换回主用链路。此时,主用链路的问题可能已经解决,可以正常进行信号的传输。这样,可以实现在主用链路和备用链路之间自由切换的功能。该实施例对于信号不稳定的情况特别有利。当链路信号不佳时,可自动切换至另一链路,而不管当前正在传输信号的是主用链路还是备用链路。
下面,参照图2描述根据另一些实施例的波分链路保护系统。
在图2所示的波分链路保护系统中,可调谐光模块1、可调谐光模块1’、主用链路和备用链路与图1所示的相同。为了简明起见,此处不再对这些组件进行详细描 述。与图1的不同之处在于,图2的波分链路保护系统还包括用于将来自可调谐光模块的不同波长的光信号引导至主用链路或备用链路的合波组件和分波组件。下面对其中的合波组件和分波组件进行详细描述。
第一分波组件位于第一可调谐光模块1和光纤链路之间并且被配置为将第一波长的光信号λ11引导至主用链路,并且将第二波长的光信号λ12引导至备用链路。根据一些实施例,第一分波组件可以为解复用器,因此在图2中被示为“解复用器1”。
第一合波组件位于第一可调谐光模块1和光纤链路之间并且被配置为将来自主用链路的第三波长的光信号λ13和来自备用链路的第四波长的光信号λ14引导至第一可调谐光模块。根据一些实施例,第一合波组件可以为复用器,因此在图2中被示为“复用器1”。
第二分波组件位于第二可调谐光模块1’和光纤链路之间并且被配置为将第三波长的光信号λ13引导至主用链路,并且将第四波长的光信号λ14引导至备用链路。根据一些实施例,第二分波组件可以为解复用器,因此在图2中被示为“解复用器1’”。
第二合波组件位于第二可调谐光模块1’和光纤链路之间并且被配置为将来自主用链路的第一波长的光信号λ11和来自备用链路的第二波长的光信号λ12引导至第二可调谐光模块1’。根据一些实施例,第二合波组件可以为复用器,因此在图2中被示为“复用器1’”。
合波组件和分波组件是无源部件并且插损小。因此,利用合波组件和分波组件来将不同波长的光引导至主用链路和备用链路基本不会引入插损或增加设备维护成本。
在实际应用中,较为常见的是一端同时发送多个波长的光信号的场景。在这种情况下,可在每一端分别设置多个可调谐模块和合分波组件。下面对另外的可调谐模块和合分波组件进行描述。
设置另外的一个或多个第一可调谐光模块,在图2中表示为可调谐光模块2至可调谐光模块N。设置与所述另外的一个或多个所述第一可调谐光模块对应的另外的一个或多个第二可调谐光模块,在图2中表示为可调谐光模块2’至可调谐光模块N’。
每组可调谐光模块N和N’的操作方式与图1中的第一可调谐光模块103和第二可调谐光模块104的操作方式类似。
此外,还设有第一合分波组件。其一端连接至所有的第一可调谐光模块1-N,而另一端连接至主用链路,被配置为将来自所有的第一可调谐光模块的光信号复用到主用链路,并且将来自主用链路的光信号解复用到对应的第一可调谐光模块1-N。第一 合分波组件可以由复用器和解复用器形成,在图2中表示为复用器/解复用器1。
还设有第二合分波组件,其一端连接至所有的第一可调谐光模块1-N,而另一端连接至备用链路,被配置为将来自所有的第一可调谐光模块的光信号复用到备用链路,并且将来自备用链路的光信号解复用到对应的第一可调谐光模块。第一合分波组件可以由复用器和解复用器形成,在图2中表示为复用器/解复用器2。
第三合分波组件,其一端连接至所有的第二可调谐光模块1’-N’,而另一端连接至主用链路,被配置为将来自所有的第二可调谐光模块1’-N’的光信号复用到主用链路,并且将来自主用链路的光信号解复用到对应的第二可调谐光模块。第一合分波组件可以由复用器和解复用器形成,在图2中表示为复用器/解复用器1’。
第四合分波组件,其一端连接至所有的第二可调谐光模块1’-N’,而另一端连接至备用链路,被配置为将来自所有的第二可调谐光模块1’-N’的光信号复用到备用链路,并且将来自备用链路的光信号解复用到对应的第二可调谐光模块。第四合分波组件可以由复用器和解复用器形成,在图2中表示为复用器/解复用器2’。
为了使得合分波组件能够区分不同可调谐光模块发射的光,所有的第一可调谐光模块和所有的第二可调谐光模块中的每一个发射的光信号的波长不同。
下面,参照图3描述根据本公开的一些实施例的波分链路保护系统中的光信号传输路线。
图3中示出了四条光信号传输线路。其中深灰色实线表示当主用链路正常工作时,从图中左侧端至右侧端(下文称为“正向”)的光信号传输路线。浅灰色实线表示当主用链路正常工作时,从右侧端至左侧端(下文称为“反向”)的光信号传输路线。深灰色虚线表示当主用链路出现异常时,正向的光信号传输路线。浅灰色虚线表示当主用链路出现异常时,反向的光信号传输路线。下面,分别介绍这四条路线:
当主用链路正常工作时的正向路线:可调谐光模块1发送的λ11光信号经过解复用器1后进入复用器/解复用器1和主用链路中,再经过复用器/解复用器1’和复用器1’到达可调谐光模块1’的接收端口。
当主用链路正常工作时的反向路线:可调谐光模块1’发送的λ13光信号经过解复用器1’后进入复用器/解复用器1’和主用链路中,再经过复用器/解复用器1和复用器1到达可调谐光模块1的接收端口。
当主用链路出现异常时的正向路线:可调谐光模块1检测到接收信号指示异常,从而触发其调整发射波长至λ12,λ12光信号经过解复用器1后进入复用器/解复用 器2和备用链路中,再经过复用器/解复用器2’和复用器1’到达可调谐光模块1’的接收端口,从而实现正向业务信号的倒换。
当主用链路出现异常时的反向路线:可调谐光模块1’检测到接收信号指示异常,从而触发其调整发射波长至λ14,λ14光信号经过解复用器1’后进入复用器/解复用器2’和备用链路中,再经过复用器/解复用器2和复用器1到达可调谐光模块1的接收端口,从而实现反向业务信号的倒换。
下面参照图4描述根据本公开的一些实施例的波分链路保护方法。
图4示出了根据本公开的一些实施例的波分链路保护方法的流程图。
首先在步骤401中,设置光纤链路,所述光纤链路包括主用链路和备用链路。
接着,在步骤402中,在光纤链路的一端设置第一可调谐光模块。然后,过程前进至步骤403,在光纤链路的另一端设置第二可调谐光模块。
接着,前进至步骤404,其中,配置第一可调谐光模块以使其:发射第一波长的光信号并接收来自第二可调谐光模块的第三波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第二波长的光信号。
之后,在步骤405,配置第二可调谐光模块以使其:发射第三波长的光信号并接收来自第一可调谐光模块的第一波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第四波长的光信号。
其中第一波长的光信号和第三波长的光信号被引导至主用链路并通过主用链路传输,并且第二波长的光信号和第四波长的光信号被引导至备用链路并通过备用链路传输。
根据一些实施例,进一步配置第一可调谐光模块和第二可调谐光模块以使其通过检测接收到的光信号的光功率来确定主用链路是否出现异常。
根据一些实施例,进一步配置第一可调谐光模块和第二可调谐光模块以使其:检测接收到的光信号的光功率,并且当检测到的光功率低于阈值时切换发射的光信号的波长。
根据一些实施例,进一步配置第一可调谐光模块和第二可调谐光模块以使其:检测接收到的光信号的光功率,并且当检测到的光功率低于阈值时切换发射的光信号的波长,并在切换后的光信号中插入特定光信号;以及进一步配置第一可调谐光模块和第二可调谐光模块以使其:基于接收到特定光信号切换发射的光信号的波长。
根据一些实施例,波分链路保护方法还包括:在第一可调谐光模块和光纤链路之 间设置第一分波组件,第一分波组件被配置为将第一波长的光信号引导至主用链路,并且将第二波长的光信号引导至备用链路;以及在第一可调谐光模块和光纤链路之间设置第一合波组件,第一合波组件被配置为将来自主用链路的第三波长的光信号和来自备用链路的第四波长的光信号引导至第一可调谐光模块。
根据一些实施例,波分链路保护方法还包括:在第二可调谐光模块和光纤链路之间设置第二分波组件,第二分波组件被配置为将第三波长的光信号引导至主用链路,并且将第四波长的光信号引导至备用链路;以及在第二可调谐光模块和光纤链路之间设置第二合波组件,第二合波组件被配置为将来自主用链路的第一波长的光信号和来自备用链路的第二波长的光信号引导至第二可调谐光模块。
根据一些实施例,波分链路保护方法还包括:设置另外的一个或多个第一可调谐光模块;设置与所述另外的一个或多个第一可调谐光模块对应的另外的一个或多个第二可调谐光模块;设置第一合分波组件,所述第一合分波组件被配置为将来自所有的第一可调谐光模块的光信号复用到主用链路,并且将来自主用链路的光信号解复用到对应的第一可调谐光模块;设置第二合分波组件,所述第二合分波组件被配置为将来自所有的第一可调谐光模块的光信号复用到备用链路,并且将来自备用链路的光信号解复用到对应的第一可调谐光模块;设置第三合分波组件,所述第三合分波组件被配置为将来自所有的第二可调谐光模块的光信号复用到主用链路,并且将来自主用链路的光信号解复用到对应的第二可调谐光模块;以及设置第四合分波组件,所述第四合分波组件被配置为将来自所有的第二可调谐光模块的光信号复用到备用链路,并且将来自备用链路的光信号解复用到对应的第二可调谐光模块,其中所有的第一可调谐光模块和所有的第二可调谐光模块中的每一个发射的光信号的波长不同。
提供本公开的主题作为用于执行本公开中描述的特征的装置、系统、方法和程序的示例。但是,除了上述特征之外,还可以预期其他特征或变型。可以预期的是,可以用可能代替任何上述实现的技术的任何新出现的技术来完成本公开的部件和功能的实现。
另外,以上描述提供了示例,而不限制权利要求中阐述的范围、适用性或配置。在不脱离本公开的精神和范围的情况下,可以对所讨论的元件的功能和布置进行改变。各种实施例可以适当地省略、替代或添加各种过程或部件。例如,关于某些实施例描述的特征可以在其他实施例中被结合。
类似地,虽然在附图中以特定次序描绘了操作,但是这不应该被理解为要求以所 示的特定次序或者以顺序次序执行这样的操作,或者要求执行所有图示的操作以实现所希望的结果。在某些情况下,多任务处理和并行处理可以是有利的。

Claims (16)

  1. 一种波分链路保护系统,所述系统包括:
    光纤链路,包括主用链路和备用链路;
    第一可调谐光模块,位于光纤链路的一端;以及
    第二可调谐光模块,位于光纤链路的另一端,
    其中,第一可调谐光模块被配置为:发射第一波长的光信号并接收来自第二可调谐光模块的第三波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第二波长的光信号,
    其中,第二可调谐光模块被配置为:发射第三波长的光信号并接收来自第一可调谐光模块的第一波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第四波长的光信号,并且
    其中,第一波长的光信号和第三波长的光信号被引导至主用链路并通过主用链路传输,并且第二波长的光信号和第四波长的光信号被引导至备用链路并通过备用链路传输。
  2. 根据权利要求1所述的系统,其中,第一可调谐光模块和第二可调谐光模块还被配置为通过检测接收到的光信号的光功率来确定主用链路是否出现异常。
  3. 根据权利要求1所述的系统,其中,第一可调谐光模块和第二可调谐光模块还被配置为:检测接收到的光信号的光功率,并且当检测到的光功率低于阈值时切换发射的光信号的波长。
  4. 根据权利要求1所述的系统,其中,
    第一可调谐光模块和第二可调谐光模块还被配置为:检测接收到的光信号的光功率,并且当检测到的光功率低于阈值时切换发射的光信号的波长,并在切换后的光信号中插入特定光信号;以及
    第一可调谐光模块和第二可调谐光模块还被配置为:基于接收到特定光信号切换发射的光信号的波长。
  5. 根据权利要求1所述的系统,还包括:
    第一分波组件,位于第一可调谐光模块和光纤链路之间并且被配置为将第一波长的光信号引导至主用链路,并且将第二波长的光信号引导至备用链路;以及
    第一合波组件,位于第一可调谐光模块和光纤链路之间并且被配置为将来自主用链路的第三波长的光信号和来自备用链路的第四波长的光信号引导至第一可调谐光模块。
  6. 根据权利要求1所述的系统,还包括:
    第二分波组件,位于第二可调谐光模块和光纤链路之间并且被配置为将第三波长的光信号引导至主用链路,并且将第四波长的光信号引导至备用链路;以及
    第二合波组件,位于第二可调谐光模块和光纤链路之间并且被配置为将来自主用链路的第一波长的光信号和来自备用链路的第二波长的光信号引导至第二可调谐光模块。
  7. 根据权利要求1所述的系统,还包括:
    另外的一个或多个第一可调谐光模块;
    与所述另外的一个或多个所述第一可调谐光模块对应的另外的一个或多个第二可调谐光模块;
    第一合分波组件,被配置为将来自所有的第一可调谐光模块的光信号复用到主用链路,并且将来自主用链路的光信号解复用到对应的第一可调谐光模块;
    第二合分波组件,被配置为将来自所有的第一可调谐光模块的光信号复用到备用链路,并且将来自备用链路的光信号解复用到对应的第一可调谐光模块;
    第三合分波组件,被配置为将来自所有的第二可调谐光模块的光信号复用到主用链路,并且将来自主用链路的光信号解复用到对应的第二可调谐光模块;以及
    第四合分波组件,被配置为将来自所有的第二可调谐光模块的光信号复用到备用链路,并且将来自备用链路的光信号解复用到对应的第二可调谐光模块,
    其中所有的第一可调谐光模块和所有的第二可调谐光模块中的每一个发射的光信号的波长不同。
  8. 根据权利要求5-7中任一项所述的系统,其中,
    第一分波组件和第二分波组件为解复用器;
    第一合波组件和第二合波组件为复用器;以及
    第一合分波组件、第二合分波组件、第三合分波组件和第四合分波组件为复用器和解复用器的组合。
  9. 一种波分链路保护方法,所述方法包括:
    设置光纤链路,所述光纤链路包括主用链路和备用链路;
    在光纤链路的一端设置第一可调谐光模块;
    在光纤链路的另一端设置第二可调谐光模块;
    配置第一可调谐光模块以使其:发射第一波长的光信号并接收来自第二可调谐光模块的第三波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第二波长的光信号;并且
    配置第二可调谐光模块以使其:发射第三波长的光信号并接收来自第一可调谐光模块的第一波长的光信号,并且当接收到的光信号指示主用链路出现异常时切换为发射第四波长的光信号,
    其中,第一波长的光信号和第三波长的光信号被引导至主用链路并通过主用链路传输,并且第二波长的光信号和第四波长的光信号被引导至备用链路并通过备用链路传输。
  10. 根据权利要求9所述的方法,其中,进一步配置第一可调谐光模块和第二可调谐光模块以使其通过检测接收到的光信号的光功率来确定主用链路是否出现异常。
  11. 根据权利要求9所述的方法,其中,
    进一步配置第一可调谐光模块和第二可调谐光模块以使其:检测接收到的光信号的光功率,并且当检测到的光功率低于阈值时切换发射的光信号的波长。
  12. 根据权利要求9所述的方法,其中,
    进一步配置第一可调谐光模块和第二可调谐光模块以使其:检测接收到的光信号的光功率,并且当检测到的光功率低于阈值时切换发射的光信号的波长,并在切换后 的光信号中插入特定光信号;以及
    进一步配置第一可调谐光模块和第二可调谐光模块以使其:基于接收到特定光信号切换发射的光信号的波长。
  13. 根据权利要求9所述的方法,还包括:
    在第一可调谐光模块和光纤链路之间设置第一分波组件,第一分波组件被配置为将第一波长的光信号引导至主用链路,并且将第二波长的光信号引导至备用链路;以及
    在第一可调谐光模块和光纤链路之间设置第一合波组件,第一合波组件被配置为将来自主用链路的第三波长的光信号和来自备用链路的第四波长的光信号引导至第一可调谐光模块。
  14. 根据权利要求9所述的方法,还包括:
    在第二可调谐光模块和光纤链路之间设置第二分波组件,第二分波组件被配置为将第三波长的光信号引导至主用链路,并且将第四波长的光信号引导至备用链路;以及
    在第二可调谐光模块和光纤链路之间设置第二合波组件,第二合波组件被配置为将来自主用链路的第一波长的光信号和来自备用链路的第二波长的光信号引导至第二可调谐光模块。
  15. 根据权利要求9所述的方法,还包括:
    设置另外的一个或多个第一可调谐光模块;
    设置与所述另外的一个或多个所述第一可调谐光模块对应的另外的一个或多个第二可调谐光模块;
    设置第一合分波组件,所述第一合分波组件被配置为将来自所有的第一可调谐光模块的光信号复用到主用链路,并且将来自主用链路的光信号解复用到对应的第一可调谐光模块;
    设置第二合分波组件,所述第二合分波组件被配置为将来自所有的第一可调谐光模块的光信号复用到备用链路,并且将来自备用链路的光信号解复用到对应的第一可调谐光模块;
    设置第三合分波组件,所述第三合分波组件被配置为将来自所有的第二可调谐光模块的光信号复用到主用链路,并且将来自主用链路的光信号解复用到对应的第二可调谐光模块;以及
    设置第四合分波组件,所述第四合分波组件被配置为将来自所有的第二可调谐光模块的光信号复用到备用链路,并且将来自备用链路的光信号解复用到对应的第二可调谐光模块,
    其中所有的第一可调谐光模块和所有的第二可调谐光模块中的每一个发射的光信号的波长不同。
  16. 根据权利要求13-15中任一项所述的方法,其中,
    第一分波组件和第二分波组件为解复用器;
    第一合波组件和第二合波组件为复用器;以及
    第一合分波组件、第二合分波组件、第三合分波组件和第四合分波组件为复用器和解复用器的组合。
PCT/CN2021/132017 2021-06-22 2021-11-22 波分链路保护系统和方法 WO2022267320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110691333.3A CN115514442A (zh) 2021-06-22 2021-06-22 波分链路保护系统和方法
CN202110691333.3 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022267320A1 true WO2022267320A1 (zh) 2022-12-29

Family

ID=84499255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132017 WO2022267320A1 (zh) 2021-06-22 2021-11-22 波分链路保护系统和方法

Country Status (2)

Country Link
CN (1) CN115514442A (zh)
WO (1) WO2022267320A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006116895A1 (en) * 2005-04-29 2006-11-09 Zte Corporation Passive optical network system based on wavelength protection and protecting backup method thereof
EP1879307A1 (en) * 2006-07-11 2008-01-16 Alcatel Lucent Method and apparatus for protecting a network link
CN102684811A (zh) * 2011-03-16 2012-09-19 三菱电机株式会社 光网络系统以及wdm装置
US20140023371A1 (en) * 2012-07-23 2014-01-23 Nec Corporation Optical transmission system, receiving-end device, and optical transmission method
US20160112118A1 (en) * 2014-10-15 2016-04-21 Infinera Corporation Optical link protection using common modulation of multiple combined wavelengths
CN110036583A (zh) * 2016-12-20 2019-07-19 骁阳网络有限公司 光学通信系统中的子载波分集

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006116895A1 (en) * 2005-04-29 2006-11-09 Zte Corporation Passive optical network system based on wavelength protection and protecting backup method thereof
EP1879307A1 (en) * 2006-07-11 2008-01-16 Alcatel Lucent Method and apparatus for protecting a network link
CN102684811A (zh) * 2011-03-16 2012-09-19 三菱电机株式会社 光网络系统以及wdm装置
US20140023371A1 (en) * 2012-07-23 2014-01-23 Nec Corporation Optical transmission system, receiving-end device, and optical transmission method
US20160112118A1 (en) * 2014-10-15 2016-04-21 Infinera Corporation Optical link protection using common modulation of multiple combined wavelengths
CN110036583A (zh) * 2016-12-20 2019-07-19 骁阳网络有限公司 光学通信系统中的子载波分集

Also Published As

Publication number Publication date
CN115514442A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US8396366B2 (en) Optical safety implementation in protection switching modules
US8428456B2 (en) Passive optical network protection method, switchover control device, and passive optical network protection system
US8615169B2 (en) PON system and redundancy method
US8280244B2 (en) Optical ring network system
US20090196598A1 (en) Optical source link transmission device and method
US9008501B2 (en) Network and method for providing redundancy in an optical distribution network
US20060250681A1 (en) Inter-network optical fiber sharing system
JPH10322287A (ja) N−wdmシステムにおける出力ポート切替装置
US6516110B2 (en) Optical cross-connector
US8606099B2 (en) Method and system for protecting integrated optoelectronic devices
CN103493413A (zh) 具有oadm功能的分歧设备和波分复用光网络系统及其方法
JP5261164B2 (ja) 光伝送システム
JP2008160583A (ja) 冗長化光アクセス装置
US20080063405A1 (en) System and method for providing failure protection in optical networks
US7885541B2 (en) Method and apparatus for optical performance monitoring
WO2022267320A1 (zh) 波分链路保护系统和方法
JP2009225338A (ja) ポイントtoマルチポイント光通信システム
CN101938319B (zh) 一种无源光网络环网系统及信号传输方法
KR100707244B1 (ko) 파장 분할 다중화 수동형 광 가입자 망의 보호 복구 장치및 그 방법
US8548321B2 (en) Optical transmission apparatus
JP5365721B2 (ja) 局回線終端装置
TWI450506B (zh) 被動式光纖網路架構與保護方法及光開關結構
JP2019029708A (ja) 局側装置
JP2008199450A (ja) 光アクセスシステム
KR101245845B1 (ko) 광선로 감시 및 절체 기능을 가지는 광통신 단말장비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946799

Country of ref document: EP

Kind code of ref document: A1