WO2008080451A2 - Unterwasserantenne - Google Patents

Unterwasserantenne Download PDF

Info

Publication number
WO2008080451A2
WO2008080451A2 PCT/EP2007/009977 EP2007009977W WO2008080451A2 WO 2008080451 A2 WO2008080451 A2 WO 2008080451A2 EP 2007009977 W EP2007009977 W EP 2007009977W WO 2008080451 A2 WO2008080451 A2 WO 2008080451A2
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
plate
underwater antenna
antenna according
reflector plate
Prior art date
Application number
PCT/EP2007/009977
Other languages
English (en)
French (fr)
Other versions
WO2008080451A4 (de
WO2008080451A3 (de
Inventor
Rainer Busch
Kai Wicker
Original Assignee
Atlas Elektronik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik Gmbh filed Critical Atlas Elektronik Gmbh
Priority to EP07819860A priority Critical patent/EP2104934B1/de
Priority to KR1020097012370A priority patent/KR101221737B1/ko
Publication of WO2008080451A2 publication Critical patent/WO2008080451A2/de
Publication of WO2008080451A3 publication Critical patent/WO2008080451A3/de
Publication of WO2008080451A4 publication Critical patent/WO2008080451A4/de

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • G10K11/006Transducer mounting in underwater equipment, e.g. sonobuoys
    • G10K11/008Arrays of transducers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/20Reflecting arrangements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors

Definitions

  • the invention relates to an underwater antenna according to the preamble of claim 1.
  • a series of electroacoustic transducers in the direction of sound incidence is arranged in front of a reflector which has two cuboid metal plates made of aluminum and an intermediate layer as foil.
  • the intermediate layer is glued to the two metal plates.
  • the intermediate layer has a layer structure, as it is known as a constrained lining and is described by way of example in DE 36 21 318 A1.
  • the intermediate layer serves for the effective damping of bending vibrations propagating in the antenna carrier, for example in the wall of a submarine.
  • the bending vibrations are radiated and received as noise from the electro-acoustic transducers of the transducer assembly, whereby the positioning accuracy of targets is significantly reduced.
  • Such bending oscillations in the antenna carrier are caused by vibrations of, for example, submarine-mounted drive units and devices.
  • the reflector is designed as a spring-mass system and has, in addition to the composite of metal plates and intermediate layer acting as a spring, soft sound plate, such as an elastic foam plate, preferably from Polyurethane foam, on, on the in
  • the designed as hydrophones electro-acoustic transducers are glued to spacers, which are in turn inserted into the front metal plate of the reflector positionally accurate.
  • spacers By means of a hard encapsulation made of polyurethane, a rod-shaped body, a so-called. Stave obtained, which is attached to the antenna carrier.
  • the underwater antenna has a multiplicity of staves arranged next to one another on the antenna carrier and, depending on the design of the antenna carrier (hollow cylinder or plate), is a so-called cylinder base or a so-called flank array.
  • the invention has for its object to suppress by design measures the formation of modes in the reflector of the underwater antenna.
  • the underwater antenna according to the invention has the advantage that due to the uneven shape of the reflector no sufficiently long path lengths with constant geometry for the mode formation are present in the longitudinal direction of the reflector and thus prevents the formation of modes in the working frequency range of the underwater antenna becomes.
  • the transfer function of the inventively designed reflector has a constant frequency over the frequency in the working frequency range. The characteristic of modes of transfer function with maxima and minima is shifted to a higher frequency range, which is above the operating frequency of the converter.
  • the remote from the transducers rear wall of the reflector plate is designed so that the distance of the rear wall of the transducer facing, planar front wall of the reflector plate linearly increases or decreases.
  • the reflector plate thereby has a wedge shape.
  • the reflector is designed as a spring-mass system and additionally has a sound-absorbing plate, which bears against the rear wall of the reflector plate facing away from the transducers.
  • the sound-proof plate is shaped so that their seen in sound incidence direction thickness or height varies over the length of the reflector, for example so that the sound-soft plate also has wedge shape .
  • FIG. 1 shows a longitudinal section of an underwater antenna with a series of transducers of a plurality of electro-acoustic transducers and a reflector associated row of the reflector
  • Fig. 2 is a longitudinal section of the reflector of
  • Fig. 3 is a detail of a longitudinal section of the
  • FIG. 4 is a detail of a similar representation, as in Fig. 1 of another embodiment of the underwater antenna,
  • Fig. 5 a detail of a perspective
  • the schematically sketched in longitudinal section in Figure 1 underwater antenna has a greater number of leaf depths juxtaposed, spaced transducer rows 11, each transducer row 11 of a plurality, in the embodiment six, lined up from one behind the other and preferably constant distance from each other arranged electro-acoustic transducers 12 exists.
  • a reflector 13 is arranged in the direction of sound incidence behind each row of transducers 11.
  • the sound incidence direction is symbolized by arrow 10 in FIG.
  • the transducer row 11 and the reflector 13 are each embedded in an acoustically transparent hard encapsulation 14 of a processable by casting, essentially tough elastic elastomer.
  • polyurethane is used as the elastomer.
  • the hard encapsulation 14 creates a rod-shaped body, which is also referred to as a so-called. Stave.
  • a plurality of such staves are arranged side by side on an antenna carrier 15 so that the transducer rows 11 are vertically aligned.
  • the antenna carrier 15 may be, for example, the side wall of a submarine or a GRP cylinder.
  • the electroacoustic transducers 12 are designed as hydrophones, which are small ball ceramics and are provided for producing an electrical connection with connecting lines, not shown here. As also not shown here, lead the leads to connecting cables of an electro-acoustic receiving device.
  • the reflector 13 has two reflector plates 16, 17 and a bending wave damping intermediate layer 18.
  • the first reflector plate 16 is arranged in the direction of sound incidence 10 immediately behind the transducers 12 and receives the transducers 12 on a flat front wall 161.
  • the transducers 12 are adhesively bonded to small spacers 19, which in turn are fixed in exact position on the front wall 161, for example by small depressions in the front wall 161.
  • the second reflector plate 17 is arranged behind the first reflector plate 16 in the sound incidence direction 10, so that the front wall 172 of the second reflector plate 17 of the rear wall 162 of the first wall facing away from the transducers 12 Reflector plate 16 is facing.
  • the intermediate layer 18 is sandwiched between the rear wall 162 of the first reflector plate 16 and the front wall 171 of the second reflector plate 17.
  • the two reflector plates 16, 17 are metal plates and preferably made of aluminum.
  • the intermediate layer 18 is preferably designed as a film and glued to the two reflector plates 16, 17, that is to say with the rear wall 162 of the first reflector plate 16 and the front wall 171 of the second reflector plate 17.
  • the intermediate layer 18 serves to reduce the noise reaching the electroacoustic transducers 12, which is radiated by the antenna carrier 15 as a result of bending waves propagating therein.
  • the bending waves are caused by vibrations in submarines or other vessels drive units and / or equipment.
  • An exemplary embodiment of the construction of the intermediate layer 18 is described in DE 36 21 318 A1.
  • the reflector plates 16, 17 on the along the Wandl ' row 11 seen length of the reflector 13 an irregular or non-uniform geometry.
  • the rear wall 162 of the first reflector plate 16 is configured such that the distance a of the rear wall 162 from the front wall 161 varies along the length of the reflector 13. In the embodiment of FIG. 1, the distance a increases or decreases over the length of the reflector 13, so that the first reflector plate 16 has a wedge shape.
  • the second reflector plate 17 has a complementary shape to the first reflector plate 16, ie the distance b between the front wall 171 and rear wall 172 of the second reflector plate 17 takes over the length of the reflector 13 in opposite directions to the distance a between the front and Rear wall 161, 162 of the first reflector plate 16 from or to, so that the two reflector plates 16, 17 supplement with the interposed intermediate layer 18 to a cuboid mass body 20.
  • the course of the rear wall 162 of the first reflector plate 16 can be designed differently, wherein the increase or decrease of the distance a over the length can be continuous or discontinuous.
  • the distance a of the rear wall 162 from the front wall 161 increases or decreases similarly to an e-function.
  • the distance b from the front and rear walls 171, 172 decreases from one another to the same degree.
  • An exponential course of the distance measure a is also possible.
  • the rear wall 162 of the first reflector plate 16 is designed so that the distance a between the front and rear walls 161, 162 in stages increases or decreases and corresponding to the distance b between the front and rear walls 171, 172 of second reflector plate 17 decreases in steps or increases.
  • the reflector 13 is formed as a spring-mass system and has, in addition to the formed from the two reflector plates 16, 17 with constrained intermediate layer 18 mass body 20 a soft-sound plate 21, which in the Hartumguss 14 is involved.
  • the sound-absorbing plate 21 is arranged in the direction of sound incidence 10 behind the second reflector plate 17 at the rear wall 172 thereof. It is realized by an elastic soft material plate, wherein preferably a sheet of polyurethane foam is used as a soft material plate. To the less significant training of fashions in the soundproof plate 21, the soundproof plate 21 may also have an irregular geometry. in the
  • Embodiment of FIG. 2 is the sound-soft plate 21 designed as a wedge, seen in the direction of sound incidence 10 thickness or height decreases over the reflector length.
  • the wedge shape may also be chosen so that the thickness of the wedge increases over the length of the reflector 13. Another change in thickness of the plate 21 over the length of the reflector 13 is also possible.
  • the schematically sketched in Fig. 4 underwater antenna is modified compared to the schematically sketched in Fig. 1 underwater antenna insofar as the second reflector plate 17 and the intermediate layer 18 are omitted and in turn executed as a mass-spring system reflector 13 only on its front wall 161, the transducer 12 supporting reflector plate 16 and the voltage applied to the rear wall 162 of the reflector plate 16, soft sound plate 21 in the form of a soft material plate z.
  • B. of PU foam comprises.
  • Transducer 12 and reflector 13 are in turn enclosed by the hard casing 14 made of polyurethane.
  • the rear wall 162 of the reflector plate 16 is in turn formed so that the distance a between the flat front wall 161 and the rear wall 162 constantly changes over the length of the reflector 13.
  • the rear wall 162 is provided with a row of teeth into which engages a complementary tooth row formed on the soft-sound plate 21.
  • the rear wall 162 may also be designed differently. It is only essential that the distance a over the length of the reflector 13 varies continuously or discontinuously, for example, as shown in Fig. 4 is increased and reduced in stages over relatively short distances.
  • Fig. 5 shows a detail of a schematic perspective view of the assembled from the plurality of transducer rows 11, planar underwater antenna, a so-called. Area array.
  • the transducer rows 11 are vertically aligned and arranged horizontally next to each other and spaced apart. Each transducer row 11 is associated with a reflector 13 designed as described above with reference to FIG.
  • each reflector 13 therefore has two reflector plates 16, 17 arranged one behind the other in the sound incidence direction 10, with intermediate layer 18 arranged therebetween.
  • the geometry of the reflector plates 16, 17 is in turn uneven, in the embodiment for this purpose again a wedge shape of the two reflector plates 16, 17 is selected so that the distance a of the rear wall 162 of the front wall 161 of the first reflector plates 16 steadily increases or decreases and the Distance b of the rear wall 172 of the front wall 171 of the second reflector plate 17 complementary decreases or increases.
  • the course of the rear wall 162 in adjacent reflectors 13 is designed in opposite directions. As shown in FIG. 4, in the foremost first reflector 13, the distance a of the rear wall 162 from the front wall 161 of the first reflector plate 16 decreases linearly from top to bottom in the vertical direction. In the adjacent reflector 13, which is shown pulled out for the purpose of illustration from the underwater antenna, the distance a of the rear wall 162 from the front wall 161 of the first reflector plate 16 in the vertical direction from top to bottom increases linearly.
  • the course of the rear wall 162 of the first reflector plate 16 is again as in FIG first reflector 13, ie the distance a of the rear wall 162 from the front wall 161 of the first reflector plate 16 decreases in the vertical direction from top to bottom again.
  • the distance b between the front and rear walls 171, 172 of the second reflector plate 17 changes. This also avoids larger path lengths with constant geometry in the horizontal direction and thus suppresses the formation of modes.
  • sound-soft plates 21 may be integrally connected to each other, so be realized by means of a one-piece, continuous soft material plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Bei einer Unterwasserantenne mit mindestens einer Wandlerreihe (11) aus einer Mehrzahl von hintereinander gereihten, voneinander beabstandeten, elektroakustischen Wandlern (12) und mit einem in Schalleinfallsrichtung (10) hinter der Wandlerreihe (11) angeordneten Reflektor (13), der mindestens eine schallharte Reflektorplatte (16) mit einer den Wandlern (12) zugekehrten, ebenen Vorderwand (161) und einer von den Wandlern (12) abgekehrten Rückwand (162) aufweist, ist zur Unterdrückung von sich im Reflektor (13) in Richtung der Längserstreckung des Reflektors (13) ausbreitenden Moden die Rückwand (162) von der Reflektorplatte (16) so gestaltet, dass der Abstand (a) der Rückwand (162) von der Vorderwand (161) über die längs der Wandlerreihe (11) gesehene Länge des Reflektors (13) variiert.

Description

A T L A S E L E K T R O N I K G m b H
Bremen
UNTERWASSERANTENNE
Die Erfindung betrifft eine Unterwasserantenne nach dem Oberbegriff des Anspruchs 1.
Bei einer bekannten Unterwasserantenne (EP 0 654 953 Bl) ist eine Reihe von elektroakustischen Wandlern in Schalleinfallsrichtung vor einem Reflektor angeordnet, der zwei quaderförmige Metallplatten aus Aluminium und eine Zwischenschicht als Folie aufweist. Die Zwischenschicht ist mit den beiden Metallplatten verklebt. Die Zwischenschicht hat einen Schichtaufbau, wie er als eingezwängter Belag bekannt und beispielhaft in der DE 36 21 318 Al beschrieben ist. Die Zwischenschicht dient der wirksamen Dämpfung von im Antennenträger, beispielsweise in der Wand eines U-Boots, sich ausbreitenden Biegeschwingungen. Die Biegeschwingungen werden abgestrahlt und als Störschall von den elektroakustischen Wandlern der Wandleranordnung empfangen, wodurch die Ortungsgenauigkeit von Zielen deutlich herabgesetzt wird. Solche Biegeschwingungen im Antennenträger werden durch Vibrationen von beispielsweise im U-Boot angeordneten Antriebsaggregaten und Geräten verursacht .
Der Reflektor ist als Feder-Masse-System ausgebildet und weist zusätzlich zu dem Verbund aus Metallplatten und Zwischenschicht eine als Feder wirkende, schallweiche Platte, z.B. eine elastische Weichschaumplatte, vorzugsweise aus Polyurethan-Schaum, auf, die auf der in
Schalleinfallsrichtung abgekehrten Rückseite des Verbundes angeordnet ist. Die als Hydrofone konzipierten elektroakustischen Wandler sind auf Distanzstücke aufgeklebt, die ihrerseits in die vordere Metallplatte des Reflektors positionsgenau eingesetzt sind. Mittels eines Hartumgusses aus Polyurethan wird ein stabförmiger Körper, ein sog. Stave, erhalten, der an dem Antennenträger befestigt ist. Die Unterwasserantenne weist eine Vielzahl von auf dem Antennenträger nebeneinander beabstandet angeordnete Staves auf und ist je nach Ausbildung des Antennenträgers (Hohlzylinder oder Platte) eine sog. Zylinderbasis oder ein sog. Flankarray.
Es hat sich gezeigt, dass sich - auch bei Vorsehen des eingezwängten Belags - innerhalb des Reflektors stehende Wellen, sog. Moden, in Reflektorlängsrichtung ausbilden, die zu einer nicht unerheblichen Verschlechterung des Nutz-/Stör- Verhältnisses (S/N-Verhältnisses) führen.
Der Erfindung liegt die Aufgabe zugrunde, durch konstruktive Maßnahmen die Ausbildung von Moden im Reflektor der Unterwasserantenne zu unterdrücken.
Die Aufgabe ist erfindungsgemäß durch die Merkmale im Anspruch 1 gelöst.
Die erfindungsgemäße Unterwasserantenne hat den Vorteil, dass durch die ungleichmäßige Formgebung des Reflektors keine für die Modenausbildung ausreichend große Weglängen mit konstanter Geometrie in Längsrichtung des Reflektors vorhanden sind und somit die Entstehung von Moden im Arbeitsfrequenzbereich der Unterwasserantenne verhindert wird. Die Übertragungsfunktion des erfindungsgemäß gestalteten Reflektors weist im Arbeitsfrequenzbereich einen über die Frequenz konstanten Verlauf auf. Der für Moden typische Verlauf der Übertragungsfunktion mit Maxima und Minima ist in einen höheren Frequenzbereich verschoben, der oberhalb der Arbeitsfrequenz der Wandler liegt.
Zweckmäßige Ausführungsformen der erfindungsgemäßen Unterwasserantenne mit vorteilhaften Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den weiteren Ansprüchen .
Gemäß einer vorteilhaften Ausführungsform der Erfindung ist die von den Wandlern abgekehrte Rückwand der Reflektorplatte so gestaltet, dass der Abstand der Rückwand von der den Wandlern zugekehrten, ebenen Vorderwand der Reflektorplatte linear zu- oder abnimmt. Die Reflektorplatte weist dadurch Keilform auf. Durch diese konstruktive Maßnahme wird in fertigungstechnisch einfacher Weise die gewünschte unregelmäßige Geometrie in Längsrichtung des Reflektors realisiert .
Gemäß einer vorteilhaften Ausführungsform der Erfindung ist der Reflektor als Feder-Masse-System ausgebildet und weist zusätzlich eine schallweiche Platte auf, die an der von den Wandlern abgekehrten Rückwand der Reflektorplatte anliegt. Um auch bei einer solchen Ausbildung des Reflektors sich in der schallweichen Platte ausbreitende Moden zu unterdrücken, ist die schallweiche Platte so geformt, dass ihre in Schalleinfallsrichtung gesehene Dicke oder Höhe über die Länge des Reflektors variiert, z.B. so, dass die schallweiche Platte ebenfalls Keilform aufweist. Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen nachfolgend näher beschrieben. Dabei zeigen in schematischer Darstellung:
Fig. 1 einen Längsschnitt einer Unterwasserantenne mit einer Wandlerreihe aus mehreren elektroakustischen Wandlern und einem der Wandlerreihe zugeordneten Reflektor,
Fig. 2 einen Längsschnitt des Reflektors der
Unterwasserantenne in Fig. 1 gemäß einem zweiten Ausführungsbeispiel,
Fig. 3 ausschnittweise einen Längsschnitt des
Reflektors der Unterwasserantenne in Fig. 1 gemäß einem dritten Ausführungsbeispiel,
Fig. 4 ausschnittweise eine gleiche Darstellung, wie in Fig. 1 eines weiteren Ausführungsbeispiels der Unterwasserantenne,
Fig. 5 ausschnittweise eine perspektivische
Darstellung der Unterwasserantenne gemäß Fig. 1 mit einer Vielzahl von nebeneinander angeordneten Wandlerreihen.
Die in Fig. 1 im Längsschnitt schematisch skizzierte Unterwasserantenne besitzt eine größere Anzahl von in Blatttiefe nebeneinander angeordneten, voneinander beabstandeten Wandlerreihen 11, wobei jede Wandlerreihe 11 aus einer Mehrzahl, im Ausführungsbeispiel sechs, von hintereinander gereihten und im vorzugsweisen konstanten Abstand voneinander angeordneten elektroakustischen Wandlern 12 besteht. In Schalleinfallsrichtung hinter jeder Wandlerreihe 11 ist ein Reflektor 13 angeordnet. Die Schalleinfallsrichtung ist durch Pfeil 10 in Fig. 1 symbolisiert. Die Wandlerreihe 11 und der Reflektor 13 sind jeweils in einem akustisch transparenten Hartumguss 14 aus einem im Gießverfahren verarbeitbaren, im wesentlichen zähelastischen Elastomer eingebettet. Als Elastomer wird z.B. Polyurethan verwendet. Durch den Hartumguss 14 entsteht ein stabförmiger Körper,' der auch als sog. Stave bezeichnet wird. Zur Bildung der Unterwasserantenne werden eine Mehrzahl von solchen Staves auf einem Antennenträger 15 nebeneinander so angeordnet, dass die Wandlerreihen 11 vertikal ausgerichtet sind. Der Antennenträger 15 kann beispielsweise die Bordwand eines U-Boots oder ein GFK-Zylinder sein. Die elektroakustischen Wandler 12 sind als Hydrofone ausgebildet, die kleine Kugelkeramiken sind und zur Herstellung einer elektrischen Verbindung mit hier nicht dargestellten Anschlussleitungen versehen sind. Wie hier ebenfalls nicht weiter dargestellt ist, führen die Anschlussleitungen zu Anschlusskabeln einer elektroakustischen Empfangseinrichtung.
Der Reflektor 13 weist zwei Reflektorplatten 16, 17 und eine biegewellendämpfende Zwischenschicht 18 auf. Die erste Reflektorplatte 16 ist in Schalleinfallsrichtung 10 unmittelbar hinter den Wandlern 12 angeordnet und nimmt auf einer ebenen Vorderwand 161 die Wandler 12 auf. Die Wandler 12 sind hierzu auf kleine Distanzstücke 19 aufgeklebt, die ihrerseits positionsgenau auf der Vorderwand 161, z.B. durch kleine Einsenkungen in der Vorderwand 161, festgelegt sind. Die zweite Reflektorplatte 17 ist in Schalleinfallsrichtung 10 hinter der ersten Reflektorplatte 16 angeordnet, so dass die Vorderwand 172 der zweiten Reflektorplatte 17 der von den Wandlern 12 abgekehrten Rückwand 162 der ersten Reflektorplatte 16 zugekehrt ist. Die Zwischenschicht 18 ist zwischen der Rückwand 162 der ersten Reflektorplatte 16 und der Vorderwand 171 der zweiten Reflektorplatte 17 eingezwängt. Die beiden Reflektorplatten 16, 17 sind Metallplatten und vorzugsweise aus Aluminium hergestellt. Die Zwischenschicht 18 ist bevorzugt als Folie ausgeführt und mit den beiden Reflektorplatten 16, 17, also mit der Rückwand 162 der ersten Reflektorplatte 16 und der Vorderwand 171 der zweiten Reflektorplatte 17, verklebt. Die Zwischenschicht 18 dient zur Reduzierung des an die elektroakustischen Wandler 12 gelangenden Störschalls, der von dem Antennenträger 15 infolge sich darin ausbreitenden Biegewellen abgestrahlt wird. Die Biegewellen haben ihre Ursache in Vibrationen von im U-Boot oder sonstigen Wasserfahrzeugen befindlichen Antriebsaggregaten und/oder Geräten. Ein Ausführungsbeispiel für den Aufbau der Zwischenschicht 18 ist in der DE 36 21 318 Al beschrieben.
Um die Ausbildung von stehenden Wellen, sog. Moden, im Reflektor 13 zu unterdrücken, weisen die Reflektorplatten 16, 17 über die längs der Wandl'erreihe 11 gesehene Länge des Reflektors 13 eine unregelmäßige oder ungleichmäßige Geometrie auf. Um dies zu erreichen, ist die Rückwand 162 der ersten Reflektorplatte 16 so gestaltet, dass der Abstand a der Rückwand 162 von der Vorderwand 161 über die Länge des Reflektors 13 variiert. Im Ausführungsbeispiel der Fig. 1 nimmt der Abstand a über die Länge des Reflektors 13 zu bzw. ab, so dass die erste Reflektorplatte 16 Keilform aufweist. Die zweite Reflektorplatte 17 weist eine zur ersten Reflektorplatte 16 komplementäre Gestalt auf, d.h. der Abstand b zwischen Vorderwand 171 und Rückwand 172 der zweiten Reflektorplatte 17 nimmt über die Länge des Reflektors 13 gegensinnig zum Abstand a zwischen Vorder- und Rückwand 161, 162 der ersten Reflektorplatte 16 ab bzw. zu, so dass sich die beiden Reflektorplatten 16, 17 mit der dazwischen eingezwängten Zwischenschicht 18 zu einem quaderförmigen Massekörper 20 ergänzen. Grundsätzlich kann der Verlauf der Rückwand 162 der ersten Reflektorplatte 16 verschieden gestaltet sein, wobei die Zu- bzw. Abnahme des Abstands a über die Länge kontinuierlich oder diskontinuierlich erfolgen kann. Im Ausführungsbeispiel der Fig. 2 nimmt der Abstand a der Rückwand 162 von der Vorderwand 161 ähnlich einer e-Funktion zu bzw. ab. Entsprechend nimmt bei der komplementären Gestaltung der zweiten Reflektorplatte 17 der Abstand b von Vorder- und Rückwand 171, 172 voneinander im gleichen Maße ab bzw. zu. Ein exponentieller Verlauf des Abstandsmaßes a ist ebenso möglich. Im Ausführungsbeispiel der Fig. 3 ist die Rückwand 162 der ersten Reflektorplatte 16 so gestaltet, dass der Abstand a zwischen Vorder- und Rückwand 161, 162 in Stufen zu- bzw. abnimmt und entsprechend der Abstand b zwischen Vorder- und Rückwand 171, 172 der zweiten Reflektorplatte 17 in Stufen ab- bzw. zunimmt.
In den in Fig. 1 bis 3 dargestellten Ausführungsbeispielen ist der Reflektor 13 als Feder-Masse-System ausgebildet und weist zusätzlich zu dem aus den beiden Reflektorplatten 16, 17 mit eingezwängter Zwischenschicht 18 gebildeten Massekörper 20 eine schallweiche Platte 21 auf, die mit in den Hartumguss 14 eingebunden ist. Die schallweiche Platte 21 ist in Schalleinfallsrichtung 10 hinter der zweiten Reflektorplatte 17 an deren Rückwand 172 anliegend angeordnet. Sie ist durch eine elastische Weichstoffplatte realisiert, wobei als Weichstoffplatte bevorzugt eine Platte aus Polyurethan-Schaum verwendet wird. Um die weniger bedeutsame Ausbildung von Moden in der schallweichen Platte 21 zu unterdrücken, kann die schallweiche Platte 21 ebenfalls eine unregelmäßige Geometrie aufweisen. Im
Ausführungsbeispiel der Fig. 2 ist die schallweiche Platte 21 als Keil ausgeführt, dessen in Schalleinfallsrichtung 10 gesehene Dicke oder Höhe über die Reflektorlänge abnimmt. Die Keilform kann auch so gewählt sein, dass die Dicke des Keils über die Länge des Reflektors 13 zunimmt. Eine andere Dickenänderung der Platte 21 über die Länge des Reflektors 13 ist ebenfalls möglich.
Die in Fig. 4 ausschnittweise schematisch skizzierte Unterwasserantenne ist gegenüber der in Fig. 1 schematisch skizzierten Unterwasserantenne insoweit modifiziert, als die zweite Reflektorplatte 17 und die Zwischenschicht 18 entfallen sind und der wiederum als Masse-Feder-System ausgeführte Reflektor 13 nur die auf ihrer Vorderwand 161 die Wandler 12 tragende Reflektorplatte 16 und die an die Rückwand 162 der Reflektorplatte 16 anliegende, schallweiche Platte 21 in Form einer Weichstoffplatte z. B. aus PU-Schaum, umfasst. Wandler 12 und Reflektor 13 sind wiederum von dem Hartumguss 14 aus Polyurethan umschlossen. Die Rückwand 162 der Reflektorplatte 16 ist wiederum so ausgebildet, dass der Abstand a zwischen der ebenen Vorderwand 161 und der Rückwand 162 sich über die Länge des Reflektors 13 ständig ändert. Beispielhaft ist hierzu die Rückwand 162 mit einer Zahnreihe versehen, in die eine an der schallweichen Platte 21 ausgebildete komplementäre Zahnreihe eingreift. Selbstverständlich kann die Rückwand 162 auch anders gestaltet sein. Wesentlich ist lediglich, dass der Abstand a über die Länge des Reflektors 13 kontinuierlich oder diskontinuierlich variiert, z.B. wie in Fig. 4 sich über relativ kurze Wegstrecken stufig vergrößert und verkleinert. Fig. 5 zeigt ausschnittweise eine schematisierte perspektivische Darstellung der aus der Mehrzahl von Wandlerreihen 11 zusammengestellten, flächigen Unterwasserantenne, eines sog. Flächenarrays . Die Wandlerreihen 11 sind vertikal ausgerichtet und horizontal nebeneinander und voneinander beabstandet angeordnet. Jeder Wandlerreihe 11 ist ein wie vorstehend zu Fig. 1 beschrieben ausgebildeter Reflektor 13 zugeordnet, wobei die Reflektoren 13 lückenlos aneinanderliegen. Jeder Reflektor 13 weist demzufolge zwei in Schalleinfallsrichtung 10 hintereinander angeordnete Reflektorplatten 16, 17 mit dazwischen angeordneter Zwischenschicht 18 auf. Die Geometrie der Reflektorplatten 16, 17 ist wiederum ungleichmäßig, wobei im Ausführungsbeispiel hierzu wiederum eine Keilform der beiden Reflektorplatten 16, 17 gewählt ist, so dass der Abstand a der Rückwand 162 von der Vorderwand 161 der ersten Reflektorplatten 16 stetig zu bzw. abnimmt und der Abstand b der Rückwand 172 von der Vorderwand 171 der zweiten Reflektorplatte 17 komplementär ab- bzw. zunimmt.
Um auch in Horizontalrichtung eine Ausbildung von stehenden Welle zu vermeiden, ist der Verlauf der Rückwand 162 in benachbarten Reflektoren 13 gegensinnig gestaltet. Wie Fig. 4 zeigt, nimmt in dem vordersten, ersten Reflektor 13 der Abstand a der Rückwand 162 von der Vorderwand 161 der ersten Reflektorplatte 16 in Vertikalrichtung von oben nach unten linear ab. Im benachbarten Reflektor 13, der zur Veranschaulichung aus der Unterwasserantenne herausgezogen dargestellt ist, nimmt der Abstand a der Rückwand 162 von der Vorderwand 161 der ersten Reflektorplatte 16 in Vertikalrichtung von oben nach unten linear zu. Im darauffolgenden dritten Reflektor 13 ist der Verlauf der Rückwand 162 der ersten Reflektorplatte 16 wieder wie im ersten Reflektor 13, d. h. der Abstand a der Rückwand 162 von der Vorderwand 161 der ersten Reflektorplatte 16 nimmt in Vertikalrichtung von oben nach unten wieder ab. Dies wiederholt sich bei den folgenden Reflektoren 13. Entsprechend verändert sich auch der Abstand b zwischen Vorder- und Rückwand 171, 172 der zweiten Reflektorplatte 17. Dadurch werden auch in Horizontalrichtung größere Weglängen mit konstanter Geometrie vermieden und somit die Ausbildung von Moden unterdrückt.
Bei der Ausbildung der Reflektoren 13 als Feder-Masse-System können die zu jedem Reflektor 13 zugehörigen schallweichen Platten 21 einstückig miteinander verbunden sein, also mittels einer einstückigen, durchgehenden Weichstoffplatte realisiert werden.

Claims

A T L A S E L E K T R O N I K G m b HBremenPATENTANSPRÜCHE
1. Unterwasserantenne mit mindestens einer Wandlerreihe
(11) aus einer Mehrzahl von hintereinander gereihten, voneinander beabstandeten, elektroakustischen Wandlern
(12) und mit einem in Schalleinfallsrichtung (10) hinter der Wandlerreihe (11) angeordneten Reflektor (13) , der mindestens eine schallharte Reflektorplatte (16) mit einer den Wandlern (12) zugekehrten Vorderwand (161) und einer von den Wandlern (12) abgekehrten Rückwand (162) aufweist, dadurch gekennzeichnet, dass die Reflektorplatte (16) so gestaltet ist, dass der Abstand (a) der Rückwand (162) von der Vorderwand (161) über die längs der Wandlerreihe (11) gesehene Länge des Reflektors (13) zumindest abschnittweise variiert.
2. Unterwasserantenne nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand (a) über die Länge des Reflektors (13) stetig zu- oder abnimmt.
3. Unterwasserantenne nach Anspruch 2, dadurch gekennzeichnet, dass der Abstand (a) über die Länge des Reflektors (13) linear zu- oder abnimmt.
4. Unterwasserantenne nach Anspruch 2, dadurch gekennzeichnet, dass der Abstand (a) über die Länge des Reflektors (13) expotentiell oder nach Art einer e- Funktion zu- oder abnimmt.
5. Unterwasserantenne nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand (a) über die Länge des Reflektors (13) diskontinuierlich zu- und/oder abnimmt.
6. Unterwasserantenne nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Reflektor (13) als Feder-Masse-System ausgebildet ist und eine an der Rückwand (162) der Reflektorplatte (16) anliegende schallweiche Platte (21) aufweist.
7. Unterwasserantenne nach Anspruch 6, dadurch gekennzeichnet, dass die Reflektorplatte (16) aus Metall, vorzugsweise aus Aluminium, und die schallweiche Platte (20) aus einem Weichschaumstoff, vorzugsweise Polyurethan-Schaum, bestehen.
8. Unterwasserantenne nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die schallweiche Platte (20) so geformt ist, dass ihre in Schalleinfallsrichtung (10) gesehene Dicke über die Länge des Reflektors (13) variiert .
9. Unterwasserantenne nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mehrere Wandlerreihen (11) mit zugeordneten Reflektoren (13) nebeneinander so angeordnet sind, dass die Wandlerreihen (11) voneinander beabstandet sind und die Reflektoren (13) lückenlos aneinanderliegen, und dass in benachbarten Reflektoren
(13) der Verlauf der Rückwand (162) der Reflektorplatte
(16) zueinander gegensinnig ist.
10. Unterwasserantenne nach Anspruch 9, dadurch gekennzeichnet, dass die schallweichen Platten (20) der Reflektoren (13) einstückig miteinander sind.
11. Unterwasserantenne nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Reflektor (13) eine in Schalleinfallsrichtung (10) hinter der ersten Reflektorplatte (16) angeordnete zweite Reflektorplatte
(17) und eine biegewellendämpfende Zwischenschicht (18) aufweist, die zwischen der Rückwand (162) der ersten Reflektorplatte (16) und der dieser zugekehrten Vorderwand (171) der zweiten Reflektorplatte (17) angeordnet ist.
12. Unterwasserantenne nach Anspruch 11, dadurch gekennzeichnet, dass die zweite Reflektorplatte (17) eine zur ersten Reflektorplatte (16) komplementäre Gestalt aufweist, so dass die beiden Reflektorplatten (16, 17) mit der dazwischen angeordneten Zwischenschicht
(18) einen quaderförmigen Massekörper (20) bilden.
PCT/EP2007/009977 2006-12-21 2007-11-19 Unterwasserantenne WO2008080451A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07819860A EP2104934B1 (de) 2006-12-21 2007-11-19 Unterwasserantenne
KR1020097012370A KR101221737B1 (ko) 2006-12-21 2007-11-19 수중 안테나

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006060795.3 2006-12-21
DE102006060795A DE102006060795B3 (de) 2006-12-21 2006-12-21 Unterwasserantenne

Publications (3)

Publication Number Publication Date
WO2008080451A2 true WO2008080451A2 (de) 2008-07-10
WO2008080451A3 WO2008080451A3 (de) 2008-11-20
WO2008080451A4 WO2008080451A4 (de) 2009-01-08

Family

ID=38664041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/009977 WO2008080451A2 (de) 2006-12-21 2007-11-19 Unterwasserantenne

Country Status (4)

Country Link
EP (1) EP2104934B1 (de)
KR (1) KR101221737B1 (de)
DE (1) DE102006060795B3 (de)
WO (1) WO2008080451A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053606A1 (de) 2008-10-20 2010-05-06 Monika Sarkar Gerät und Verfahren zum Suchen und Detektieren

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007053801B3 (de) * 2007-11-12 2008-12-11 Atlas Elektronik Gmbh Unterwasserantenne
DE102018222040A1 (de) * 2018-12-18 2020-06-18 Atlas Elektronik Gmbh Unterwasserantenne mit einer netzartigen Schicht auf einem Schallempfänger-Körper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415832A (en) * 1942-12-31 1947-02-18 Bell Telephone Labor Inc Radiation absorber
FR2691596A1 (fr) * 1992-05-22 1993-11-26 Thomson Csf Antenne acoustique sous-marine à capteur surfacique.
EP0654953A1 (de) * 1993-11-23 1995-05-24 STN ATLAS Elektronik GmbH Elektroakustische Wandleranordnung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3621318A1 (de) * 1986-06-26 1988-01-07 Krupp Gmbh Daempfungsschicht
DE102004038032A1 (de) 2004-08-05 2006-02-23 Atlas Elektronik Gmbh Elektroakustische Wandleranordnung für Unterwasserantennen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415832A (en) * 1942-12-31 1947-02-18 Bell Telephone Labor Inc Radiation absorber
FR2691596A1 (fr) * 1992-05-22 1993-11-26 Thomson Csf Antenne acoustique sous-marine à capteur surfacique.
EP0654953A1 (de) * 1993-11-23 1995-05-24 STN ATLAS Elektronik GmbH Elektroakustische Wandleranordnung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053606A1 (de) 2008-10-20 2010-05-06 Monika Sarkar Gerät und Verfahren zum Suchen und Detektieren
DE102009048502A1 (de) 2008-10-20 2010-07-15 Monika Sarkar Gerät und Verfahren zum Suchen und Detektieren

Also Published As

Publication number Publication date
WO2008080451A4 (de) 2009-01-08
KR101221737B1 (ko) 2013-01-11
EP2104934B1 (de) 2012-10-31
KR20090101179A (ko) 2009-09-24
WO2008080451A3 (de) 2008-11-20
DE102006060795B3 (de) 2007-12-13
EP2104934A2 (de) 2009-09-30

Similar Documents

Publication Publication Date Title
EP0654953B1 (de) Elektroakustische Wandleranordnung
EP2345025B1 (de) Unterwasserantenne
EP2200017B1 (de) Unterwasserantenne
DE3119272A1 (de) "bogenabtastungs-ultraschallwandler-anordnung"
EP2734860B1 (de) Montageverbund eines kraftfahrzeugs
DE102011005292A1 (de) Akustischer Wandler zum Erzeugen und/oder Empfangen von Schallwellen und Verfahren zum Herstellen eines bewegbaren Elementes für einen akustischen Wandler
EP2104934B1 (de) Unterwasserantenne
DE2606951A1 (de) Piezoelektrischer wandler
EP2210125B1 (de) Unterwasserantenne
DE102006060796B4 (de) Unterwasserantenne
DE3642747C2 (de)
WO1999065273A1 (de) Plattenlautsprecher
DE3834669C2 (de) Akustische Dämmungsvorrichtung für Seitenantennen bei Unterwasserfahrzeugen
EP1774509B1 (de) Elektroakustische wandleranordnung für unterwasserantennen
DE102008052355A1 (de) Unterwasserantenne
DE2615684A1 (de) Unterwasserschallempfaenger mit schallreflektor
DE112006001232B4 (de) Lautsprecherbox und Lautsprechervorrichtung
WO2010046300A1 (de) Vorrichtung zur befestigung einer unterwasserantenne
DE102009059902B3 (de) Reflektoreinrichtung zur Anbringung einer zu einer Unterwasserantenne zugehörigen Wandleranordnung an eine Bootswand
EP1033179B1 (de) Elektroakustische Wandleranordnung
EP2351145B1 (de) Unterwasserantenne
DE102022202249A1 (de) Wasserschallempfangsanordnung
DE1441496C (de)
DE3215992C2 (de)
DD301144A7 (de) Piezoelektrischer breitbandschallwandler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07819860

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007819860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097012370

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE