WO2008072748A1 - エマルジョン塗料の製造方法とこれより得られるエマルジョン塗料から形成される塗膜 - Google Patents

エマルジョン塗料の製造方法とこれより得られるエマルジョン塗料から形成される塗膜 Download PDF

Info

Publication number
WO2008072748A1
WO2008072748A1 PCT/JP2007/074175 JP2007074175W WO2008072748A1 WO 2008072748 A1 WO2008072748 A1 WO 2008072748A1 JP 2007074175 W JP2007074175 W JP 2007074175W WO 2008072748 A1 WO2008072748 A1 WO 2008072748A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
composite particles
emulsion
photocatalyst composite
photocatalyst
Prior art date
Application number
PCT/JP2007/074175
Other languages
English (en)
French (fr)
Inventor
Fumihiko Ohashi
Atsushi Shibahara
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Fujikura Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Fujikura Kasei Co., Ltd. filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to EP07850667.2A priority Critical patent/EP2105482B1/en
Publication of WO2008072748A1 publication Critical patent/WO2008072748A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a method for producing an emulsion paint containing photocatalyst composite particles, an emulsion paint obtained therefrom, and a coating film formed from the emulsion paint. More specifically, calcium phosphate is converted into phosphate ions and calcium.
  • a method for producing an emulsion paint in which a photocatalyst complex formed by coating a photocatalyst surface with a reprecipitated calcium phosphate reprecipitated from an acidic solution in which ions are dissolved and adhered to the surface of titanium oxide is incorporated into the paint as a photocatalyst component.
  • the present invention relates to an emulsion coating and its coating film.
  • the present invention significantly improves the productivity of photocatalyst composite particles obtained by coating calcium phosphate on the surface of titanium oxide, and also provides a new marmalion paint and a coating film thereof exhibiting high functionality in which the photocatalyst composite particles are blended in the paint. It is to provide. Background art
  • a photocatalyst is activated when exposed to light such as the sun or a fluorescent lamp, and has a function of decomposing harmful substances such as organic matter and bacteria.
  • paints containing titanium oxide which is a photocatalyst
  • the coating film formed from the paint can decompose dirt (organic matter) adhering to the surface with a photocatalyst, and the hydrophilic photocatalyst is exposed on the coating surface, so that the dirt is difficult to adhere. Demonstrate the characteristics. Therefore, the coating film containing the photocatalyst has a self-cleaning function that removes dirt by itself.
  • apatite is dispersed and deposited on the surface of titanium oxide that does not completely cover the surface of titanium oxide. That is, since the surface of titanium oxide is partially exposed, the photocatalytic function is hardly lost. In addition, since the surface of titanium oxide is covered with apatite, the apatite becomes the spacer and titanium oxide does not directly contact the resin component, so that decomposition of the resin component is suppressed, and organic paint Can be used.
  • the photocatalyst composite particles can adsorb substances without light, and the substances adsorbed at the time of quenching can be absorbed. When light is radiated, it can be accelerated by photocatalysis.
  • the simulated body fluid used for the production of the photocatalyst composite particles contained in the coating materials described in the prior arts such as Patent Documents 1 to 3 described above is an ionic species such as sodium ion, potassium ion, calcium ion, or chloride ion. Therefore, if the dispersion liquid in which the photocatalyst composite particles are dispersed is used as it is in the paint, the resin components may aggregate due to the influence of such coexisting ionic species, resulting in poor dispersion. In order to prevent agglomeration of the resin component, the dispersion must be decanted many times, resulting in an increase in the production process, resulting in poor productivity.
  • the above-mentioned method using a simulated body fluid has a very slow growth of apatite crystals, and it is difficult to put it to practical use because of its low productivity as a manufacturing technology for industrial products.
  • the resin components may aggregate and the homogeneity may decrease. For this reason, this type of paint is not satisfactory in terms of organic matter photodegradation function and weather resistance, and there is a strong demand for the development of new paints and paints that can solve these problems. It was.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-1631
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-80078
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-58050
  • the present invention was developed in view of the above circumstances, and can easily coat calcium phosphate on the surface of titanium oxide, increase the productivity of the photocatalyst composite particles, and provide the photocatalyst composite.
  • the present invention provides a method for producing an emulsion paint comprising photocatalyst composite particles and a resin component, wherein the photocatalyst composite particles have a pH of 4 in which titanium oxide is dispersed and phosphate ions and calcium ions are dissolved.
  • a method for producing an emulsion coating comprising a photocatalyst composite particle produced by adjusting pH of a dispersion solution of 0 or less to pH 5.0-11.0 and reprecipitating calcium phosphate on the surface of titanium oxide. The purpose is to provide
  • the present invention for solving the above-described problems comprises the following technical means.
  • a method for producing an emulsion coating comprising photocatalyst composite particles and a resin component, wherein an acidic dispersed aqueous solution in which titanium oxide is dispersed and phosphate ions and calcium ions are dissolved is used as the photocatalyst composite particles. Then, the pH of the aqueous dispersion is adjusted to the alkali side to produce photocatalyst composite particles adhered by reprecipitation of calcium phosphate on the surface of titanium oxide, and the obtained photocatalyst composite particles are blended in a paint as a photocatalyst component.
  • a method for producing an emulsion coating characterized by this.
  • An emulsion paint comprising photocatalyst composite particles and a resin component, wherein the photocatalyst composite particles are deposited by reprecipitation of calcium phosphate on the surface of titanium oxide from a solution containing phosphate ions and calcium ions.
  • An emulsion coating comprising a highly functional photocatalyst composite particle having a titanium oxide surface coated with reprecipitation calcium phosphate with high purity and uniformity, and blended in a paint as the photocatalyst composite particle force photocatalyst component .
  • the present invention relates to a method for producing an emulsion paint containing photocatalyst composite particles and a resin component, and an acidic dispersion aqueous solution in which titanium oxide is dispersed and phosphate ions and calcium ions are dissolved as photocatalyst composite particles. Then, the pH of the dispersed aqueous solution is adjusted to the alkali side to produce photocatalyst composite particles adhered by reprecipitation of calcium phosphate on the surface of titanium oxide, and the obtained photocatalyst composite particles are blended in the paint as a photocatalyst component. It is characterized by that.
  • the present invention is the above-mentioned emulsion paint, wherein the photocatalyst composite particles are deposited by reprecipitating calcium phosphate on the surface of titanium oxide from a solution containing phosphate and calcium ions.
  • a highly functional photocatalyst composite particle force in which the surface of titanium oxide is uniformly coated with reprecipitation calcium phosphate is obtained, and the photocatalyst composite particle is blended in the paint as a photocatalyst component.
  • the present invention is a coating film formed from the above-mentioned emulsion paint, wherein the thickness of the coating film is from! To 20 m.
  • an acidic dispersion aqueous solution in which titanium oxide is dispersed and phosphate ions and calcium ions are dissolved is adjusted to the alkali side from the pH of the dispersion aqueous solution.
  • a dispersion solution having a pH of 4.0 or less was prepared, and then the pH of the dispersion solution was adjusted to pH 5.0 to 11.0 to reprecipitate calcium phosphate on the surface of titanium oxide, thereby adhering the photocatalyst composite particles. Manufacturing.
  • the form of the photocatalyst composite particles obtained in the first step is not particularly limited, but calcium phosphate has an action of adsorbing proteins and various aqueous soil components, and adsorbing them.
  • titanium oxide has a photocatalytic action, and is excellent in photocatalytic function, a form in which a part of the surface of titanium oxide is coated with calcium phosphate is preferable.
  • the photocatalyst composite particles have a hydrophilic function so that dirt is easily washed away by rain.
  • any titanium oxide may be used as long as it exhibits a photocatalytic function.
  • titanium oxide having a particle diameter of about S 1 nm to several m is suitable.
  • porous titanium oxide since the surface area of the particles is increased, a larger photocatalytic performance can be obtained.
  • Pore diameter of the pores of the titanium oxide, particularly not limited force s, moisture and organic components from the viewpoint of efficiently adsorbing is preferably lnm ⁇ 0. 1 m.
  • the crystal form of titanium oxide is anatase, whereby higher photocatalytic performance can be obtained.
  • the form of titanium oxide is more preferably an acidic titania sol with good dispersibility, which is preferably a powder, slurry, neutral titania sol, or acidic titania sol.
  • acidic titania sol is not used as a photocatalyst because it aggregates when the pH exceeds 4, but in the present invention, as described later, titanium oxide is used under acidic conditions at pH 4 or lower, so it is acidic.
  • a titania sol can be preferably used.
  • acidic titania sol has the power of acidic titania sol with hydrochloric acid and acidic titania sol with nitric acid.
  • acidic titania sol with hydrochloric acid is preferred.
  • the calcium phosphate is not particularly limited, but for example, it is preferable to use one or more selected from the group consisting of apatite, tricalcium phosphate and octacalcium phosphate.
  • Apatite is apatite, and examples thereof include hydroxyapatite, fluorinated apatite, carbonate apatite, and silver apatite.
  • Calcium phosphate such as apatite is excellent in adsorption capacity for proteins such as bacteria and aqueous stains (sweat, stains, water-based inks, etc.).
  • titanium oxide has poor adsorption capacity compared to calcium phosphate. Therefore, by further forming a calcium phosphate coating on a part of the titanium oxide surface, proteins and various dirty components are more efficiently adsorbed by the calcium phosphate and decomposed by the photocatalytic redox action of titanium oxide. Touch with force S.
  • the coverage of calcium phosphate is preferably 1 to 99% (area%). If the coverage is less than 1%, the adsorption effect with calcium phosphate is not very good. On the other hand, if the coverage is more than 99%, the exposure rate of the surface of titanium oxide will be low. It is difficult to obtain the photocatalytic effect. A more preferable coverage is about 2 to 80%, and a more preferable coverage is about 5 to 70%.
  • the thickness of the calcium phosphate coating is not particularly limited, but is preferably about 11111 to 3111, more preferably about 11111 to 2111, from the viewpoint of the photocatalytic function and cost.
  • the form of the calcium phosphate coating is not particularly limited, and various forms are possible.
  • the calcium phosphate may be layered, fine flaky, or fine granular.
  • the photocatalyst composite particles of the present invention have a form in which a coating layer of calcium phosphate is formed on a part of the surface of titanium oxide, and a part of the surface of titanium oxide is in the form of fine pieces or fine particles. Any form of the calcium phosphate may be adhered and covered.
  • the finely granular calcium phosphate strength is most preferably dispersed uniformly on the surface of titanium oxide. In this case, the coverage may be 30% or less, for example, about 1 to 10%.
  • the acid used for adjusting the dispersion aqueous solution to pH 4 or lower is not particularly limited, but hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid and the like are preferably used.
  • Hydrochloric acid has good ionic component scattering from the solvent and immediate storage stability of emulsion coating Therefore, it is preferably used.
  • the concentration of hydrochloric acid is 1 ⁇ ; ION is preferred 2 ⁇ 6N is more preferred.
  • the pH of the aqueous dispersion is preferably adjusted to 1.5 to 3.0. By setting the pH within the above range, calcium phosphate can be sufficiently dissolved in the aqueous dispersion.
  • the acidic dispersion aqueous solution is adjusted to the alkali side from the pH of the dispersion aqueous solution to produce photocatalyst composite particles in which calcium phosphate is reprecipitated on the surface of titanium oxide and adhered.
  • Ammonia water is preferably used because the ion component is scattered from the solvent and the durability of the coating film is improved.
  • the concentration of aqueous ammonia is preferably 5 to 50%, more preferably 20 to 30%.
  • the pH of the aqueous dispersion adjusted to pH 4 or lower is preferably adjusted to 8.0 to 10.0.
  • an apatite photocatalyst in which a patite is supported on a titanium oxide surface using a simulated body fluid is known.
  • the conventional materials have variations in the particle size distribution and morphology, which makes it difficult to control the particle size distribution and morphology, and the activation of the decomposition activity function is high. There are limits there were.
  • the conventional materials have limitations in producing them as industrial products with slow crystal growth.
  • the material in which calcium phosphate is reprecipitated and supported using the reprecipitation method is extremely excellent in terms of productivity and quality, and can be mass-produced easily and in a short time.
  • the products obtained have achieved high-precision composition ratio control, particle size distribution, and morphology control of the product that could not be achieved with conventional materials.
  • the distribution is coherent, so that the degradation activity is also controlled and highly activated.
  • the photocatalyst composite particles having calcium phosphate supported on the surface of titanium oxide used in the present invention, calcium phosphate, is reprecipitated on the surface of titanium oxide by a reprecipitation method, and porous calcium phosphate is uniformly formed on the surface of titanium oxide. It has a supported particle structure, the particle size distribution of the particles measured by laser scattering method is controlled in a range of 80 to 600 nm, and the abundance of calcium phosphate in the material 0 to 50 wt%, and the volume-converted average particle diameter of the material is 50 nm to 20 OOOnm.
  • the photocatalyst composite particles can be easily produced without using a simulated body fluid containing many ions such as Na + and C + . Therefore, productivity is good.
  • productivity is good.
  • an emulsion coating it is possible to prevent aggregation of resin components described later.
  • the production process of the photocatalyst composite particles is not limited to the one embodiment described above.
  • an acid may be added to pure water in advance to adjust the pH to 4 or less, and then calcium chloride and phosphoric acid may be added.
  • titanium oxide may be previously dispersed in water. That is, various components (calcium chloride, phosphoric acid, titanium oxide) may be added at any timing as long as a dispersion aqueous solution in which titanium oxide is dispersed and calcium phosphate is dissolved can be prepared.
  • the emulsion catalyst is manufactured by mixing the photocatalyst composite particles obtained in the first step and a resin component described later.
  • the emulsion paint of the present invention can be obtained by mixing the dispersion of the photocatalyst composite particles as dry particles and the resin component.
  • the dispersibility of the photocatalyst composite particles is dramatically improved by mixing the resin component and water as a dispersion liquid that is not dry particles.
  • the resin component used in the second step will be described.
  • the resin component used in the present invention is not particularly limited as long as it contains a water-based organic paint.
  • Examples include synthetic resin emulsions such as acrylic resins, silicone resins, acrylic silicone resins, epoxy resins, vinyl acetate resins, polyurethane resins, polystyrene resins, and fluororesins. Of these, acrylic silicone resin emulsion is preferred.
  • the content of the silicone component in the acrylic silicone resin is preferably 1 to 60% by mass, more preferably 5 to 40% by mass.
  • the silicone component is small, the resin is easily decomposed by the photocatalyst composite particles described above.
  • the silicone component is too much, when the obtained emulsion paint is applied repeatedly, the newly formed paint film is difficult to adhere to the previously formed paint film, and it is easy to break.
  • the photocatalyst composite particles are preferably! To 20% by mass in the solid content ratio of the entire emulsion coating. More preferably 2 to 15% by mass, and still more preferably 3 to 10% by mass. If the amount is less than this range, the photocatalyst composite particles in the coating film are reduced, so that the photocatalytic effect is reduced.
  • the solid content of the emulsion coating is desirably 2 to 30% by mass. More desirably, the content is 2 to 20% by mass, and further desirably 3 to 10% by mass. By setting the solid content of the emulsion coating within the above range, it is desirable because the film thickness of the coating film to be formed becomes uniform.
  • a film-forming aid such as butyl senoresorb, butyl carbitol, triethylene glycol, texanol or the like may be used in the paint within the range not departing from the gist of the present invention. good.
  • anti-foaming agents such as butyl senoresorb, butyl carbitol, triethylene glycol, texanol or the like may be used in the paint within the range not departing from the gist of the present invention. good.
  • anti-foaming agents, thickeners, freezing stabilizers, Additives such as wetting agents, pigments, water-soluble resins, penetration aids, UV absorbers and antioxidants may be added.
  • Application of the emulsion coating obtained in this way to the object to be coated can be performed by a usual method and means such as brush, roller, air spray, airless spray and the like.
  • the film thickness is preferably 1-20 ⁇ 111, more preferably 1-10 ⁇ m, and even more preferably 2-8111.
  • the film thickness is within the above range, the formation of a mottled film is prevented, and a film having a uniform film thickness can be obtained.
  • the photocatalyst composite particles can be easily produced without increasing the ion concentration such as Na + or C ⁇ , so that the productivity is good, and Even when an emulsion coating is used, aggregation of the resin component is suppressed and the storage stability is excellent.
  • the coating film formed from the emulsion coating is very unlikely to be yellowed or deteriorated due to the adhesion of oil or moisture, so that excellent durability and aesthetic retention can be obtained.
  • the coating is stable because the resin component is prevented from coming into direct contact with titanium oxide.
  • the present invention provides the following effects.
  • the surface of titanium oxide can be coated with calcium phosphate in a simple process, so that the productivity of the photocatalyst composite particles is increased and the organic matter photodecomposing function of the coating or coating film containing the photocatalyst composite particles is achieved.
  • the force S is applied to provide a coating film formed from the emulsion coating obtained from the emulsion coating.
  • Calcium phosphate formed on the surface of titanium oxide by the reprecipitation method is uniformly deposited on the surface of the titanium oxide, and in this method, the reaction conditions can be arbitrarily controlled. When used, it becomes possible to form high-purity calcium phosphate that reliably prevents other components from becoming a problem.
  • Lucium and phosphoric acid were dissolved and adjusted to an aqueous solution of pH 1.5 with 5N hydrochloric acid.
  • 10 g of titanium oxide for photocatalyst (“Super Titania F4” manufactured by Showa Titanium Co., Ltd.) was dispersed to obtain a dispersed aqueous solution.
  • the dispersion aqueous solution was adjusted to ⁇ 9 ⁇ 0-10. 0 with 25% aqueous ammonia, stirred at 23 ° C for 6 hours to precipitate calcium phosphate on the surface of titanium oxide, and decantation was performed. The final pH was adjusted to 9.0 with 25% aqueous ammonia, and the photocatalyst composite particle dispersion 1 shown in Table 1 was prepared.
  • Photocatalyst composite particle dispersion 1 except that the amount of ion-exchanged water was changed and 29.4 g of acidic titania sol (Tika Corporation “TKS-201 (34%))” was used as titanium oxide for photocatalyst
  • TKS-201 acidic titania sol
  • a simulated body fluid was prepared so that M and CI— were 169 mM and HPO 2 was 3.59 mM. This pseudo
  • Dispersion 1 Dispersion 2 Dispersion 3 Dispersion 4 Ion-exchanged water (L) 1 0.98 1 1
  • the emulsion paints of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were produced with the formulations shown in Table 2.
  • Table 2 as the resin component, the trade name “Polydurex G-659” (manufactured by Asahi Kasei Chemicals Corporation, solid content 42%) was used.
  • an antifoaming agent (“BYK-028” manufactured by BYK Chemie Co., Ltd.) was 0.1%, and a film forming aid (“Texanol” manufactured by Eastman Chemical Co., Ltd.) was added.
  • Dispersion 1 66.0 ⁇ ⁇ ⁇
  • the specimen was irradiated for 3 hours or more using a black light BLB so that each coated surface received light with an irradiation intensity of lmW / cm 2 .
  • an acrylic resin ring (outer diameter: 45 mm, inner diameter: 40 mm, height: 30 mm) was fixed on the coated surface using a water-insoluble adhesive.
  • 30 mL of the adsorbent (12 ppm methylene blue aqueous solution) is poured into this ring, sealed with a glass lid (50 mm X 50 mcm X 0.5 mm), and allowed to stand for 12 hours or more in a place. The aqueous solution was fully adsorbed.
  • Absorbance is 0.5 or more and less than 0.7 after 72 hours
  • Absorbance of 0.7 or more and less than 1.0 after 72 hours
  • the blank refers to a mixture of pure water instead of the photocatalyst composite particle dispersion.
  • Example 2 For Example 2, 30 mL of the adsorbent (8 ppm methylene blue aqueous solution) was poured into the ring, sealed with a glass lid (50 mm X 50 mcm X 0.5 mm), and allowed to stand for more than 12 hours at a certain place. Then, the methylene blue aqueous solution is sufficiently adsorbed on the coating film, and then the adsorbed liquid is discharged. After lightly washing the inside of the ring with distilled water, 30 mL of 4 ppm methylene blue aqueous solution is poured, and the glass lid is used to cover again. Absorbance measurement as described above, except sealed The decomposition test was conducted in the same manner as the methylene blue decomposition test according to the above.
  • Absorbance is 0.1 or more and less than 0.3 after 48 hours
  • Absorbance is 0.3 or more and less than 0.5 after 48 hours
  • UV irradiation machine “I Super UV Tester W-151” (Iwasaki Electric Co., Ltd.) for the test specimen, black panel temperature is 63 ° C, humidity is 50% RH, each coated surface is lOOOmW / cm
  • the specimen was irradiated for 4 hours so as to receive light with an irradiation intensity of 2 . After that, the temperature inside the tank was set to about 30 ° C and the humidity was set to 98% RH or more, and kept for 4 hours to condense inside the tank.
  • Power to detect abnormal appearance such as cracks after 480 hours
  • Appearance is not abnormal after 480 hours and color difference is 1 or more and less than 3
  • the emulsion coatings obtained in the examples were able to exhibit excellent photocatalytic activity with a slow deterioration of brightness and color difference.
  • the emulsion coating using acidic titania sol with hydrochloric acid was excellent in the decomposition of methylene blue and had good photocatalytic activity.
  • the emulsion coatings obtained in Comparative Examples 1 and 2 were inferior in photocatalytic activity due to the early deterioration of gloss and color difference compared to the Examples.
  • the photocatalyst composite particle dispersion 6 was prepared in the same manner as the photocatalyst composite particle dispersion 5 except that the pH value shown in Table 7 was adjusted with 25% aqueous ammonia. Key
  • the storage stability test examined the change in viscosity (forward cup (seconds)) of emulsion paint held at 23 ° C for 2 months. In addition, each emulsion coating after 2 months was judged according to the following criteria. The results are shown in Table 8.
  • the weather resistance test was conducted in the same manner as in Test 1.
  • the gloss retention results are shown in Table 10 and FIG. 6, and the color difference results are shown in Table 11 and FIG.
  • Table 9 ⁇ As can be seen from LI and Fig. 57, the emulsion coating of the examples has good storage stability and excellent performance without decantation during production. The ability to exert photocatalytic activity.
  • the emulsion coating of Comparative Example 3 was faster in gloss and color difference and inferior in photocatalytic activity and storage stability as compared with the Examples. This is included in the Emulsion paint The final pH adjustment value of the resulting dispersion was less than 5, which is thought to be due to the force that calcium phosphate could not sufficiently precipitate on the surface of titanium oxide.
  • the emulsion paint of Comparative Example 4 was able to exhibit the same photocatalytic activity as that of the example, and the power storage stability was inferior to that of the example of the present invention. According to the method for producing an emulsion paint of the present invention, it is possible to improve the productivity of photocatalyst composite particles and to obtain an emulsion paint having excellent photocatalytic activity.
  • the present invention relates to a method for producing an emulsion paint, an emulsion paint obtained therefrom, and a coating film formed from the emulsion paint.
  • Providing an emulsion paint that can suppress degradation of paint components by blending photocatalyst composite particles, which are formed by reprecipitation from an acidic solution in which ions and calcium ions are dissolved, on the surface of titanium oxide. can do.
  • the surface of titanium oxide can be coated with calcium phosphate in a simple process, so that the productivity of the photocatalyst composite particles can be increased and the organic matter photodecomposition function of the paint or coating film containing the photocatalyst composite particles It is possible to provide a method for producing an emulsion coating capable of improving the weather resistance, an emulsion coating obtained therefrom, and a coating film formed from the emulsion coating.
  • a calcium phosphate-supported photocatalyst particle composite can be produced with high productivity by a simple method. Therefore, the present invention can produce an emulsion coating containing the photocatalyst particle composite with high productivity in a simple process. It is useful as a technology for producing new emulsion paints that can be used.
  • FIG. 1 Change in absorbance over time showing the results of a photocatalytic activity test (methylene blue decomposition test).
  • FIG. 3 is a graph showing the change in gloss retention over time showing the results of a photocatalytic activity test (weather resistance test).
  • FIG. 4 A graph showing the change over time in the color difference indicating the results of the photocatalytic activity test (weather resistance test). is there.
  • FIG. 7 is a graph showing the color change over time showing the results of the photocatalytic activity test (weather resistance test).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Catalysts (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

   本発明は、エマルジョン塗料の製造方法、該エマルジョン塗料及び該エマルジョン塗料から形成される塗膜を提供するものであり、本発明は、光触媒複合粒子と樹脂成分とを含むエマルジョン塗料を製造する方法であって、酸化チタンが分散し、かつ、リン酸イオン及びカルシウムイオンが溶解したpH4.0以下の分散水溶液を用いて、pH5.0~11.0にpH調整して、酸化チタンの表面にリン酸カルシウムを再析出させて付着させた光触媒複合粒子を作製し、得られた該光触媒複合粒子を光触媒成分として塗料に配合することからなるエマルジョン塗料の製造方法、該エマルジョン塗料及びその塗膜であり、それにより、光触媒複合粒子の生産性を高めると共に、該光触媒複合粒子を含む塗料や塗膜の有機物光分解機能や耐候性を向上させたエマルジョン塗料を提供できる。

Description

明 細 書
ェマルジヨン塗料の製造方法とこれより得られるェマルジヨン塗料から形 成される塗膜
技術分野
[0001] 本発明は、光触媒複合粒子を含むェマルジヨン塗料の製造方法、これより得られる ェマルジヨン塗料及び該ェマルジヨン塗料から形成される塗膜に関するものであり、 更に詳しくは、リン酸カルシウムをリン酸イオン及びカルシウムイオンが溶解した酸性 溶液から再析出させて酸化チタンの表面に付着させた再析出リン酸カルシウムで光 触媒表面を被覆してなる光触媒複合体を光触媒成分として塗料に配合したェマルジ ヨン塗料の製造方法、そのェマルジヨン塗料及びその塗膜に関するものである。本発 明は、リン酸カルシウムを酸化チタン表面に被覆してなる光触媒複合粒子の生産性 を著しく高めると共に、該光触媒複合粒子を塗料に配合した高機能性を発揮する新 規ェマルジヨン塗料及びその塗膜を提供するものである。 背景技術
[0002] 光触媒は、太陽や蛍光灯などの光が当たると活性化されて、有機物や細菌などの 有害物質を分解する作用を有する。この性質を活力もて、光触媒である酸化チタンを 含んだ塗料を、例えば、壁材などの基材に塗装して、光触媒機能を発揮させる試み カ されている。該塗料により形成される塗膜は、表面に付着した汚れ (有機物)を光 触媒で分解できる上に、親水性を有する光触媒が塗膜表面に露出しているので、汚 れが付着しにくいという特性を発揮する。従って、光触媒を含有する塗膜は、自ら汚 れを除去するセルフクリーニング機能を有している。
[0003] しかし、塗料成分として、樹脂成分を含む有機系塗料を用いた場合には、樹脂成 分が酸化チタンと接触するために、その光触媒作用により、樹脂が分解され、塗膜の 劣化が起こるという問題があった。そこで、最近では、アパタイトなどのリン酸カルシゥ ムを酸化チタンに被覆した光触媒複合粒子を含有した塗料が提案されて!/、る(例え ば、特許文献;!〜 3参照)。これらの塗料では、いずれも、塩化ナトリウム、塩化カルシ ゥム、リン酸二水素カリウム、リン酸水素ニナトリウムなどを溶解させた擬似体液に、酸 化チタンを分散させた分散液に、塩化カルシウムを添加して光触媒複合粒子を製造 している。
[0004] この種の光触媒複合粒子では、アパタイトは、酸化チタンの表面を完全に被覆して いるのではなぐ酸化チタン表面に分散して析出している。すなわち、酸化チタンの 表面が部分的に露出しているため、光触媒機能は、ほとんど失われることはない。ま た、酸化チタンの表面をアパタイトが被覆しているので、アパタイトがスぺーサ一となり 、酸化チタンは、直接樹脂成分とは接しないため、樹脂成分の分解が抑制され、有 機系塗料の使用が可能になる。また、アパタイトは、タンパク質やアルデヒド類などの 物質吸着能に優れているため、上記光触媒複合粒子は、光がなくても物質を吸着で きる上、これらの消光時に吸着しておいた物質を、光が照射された時に、光触媒作用 により分角早することカでさる。
[0005] しかしながら、上記特許文献 1〜3等の先行技術に記載の塗料に含まれる光触媒 複合粒子の製造に使用する擬似体液は、ナトリウムイオン、カリウムイオン、カルシゥ ムイオン、塩化物イオンなどのイオン種を大過剰に含むため、光触媒複合粒子が分 散した分散液をそのまま塗料に用いると、こうした共存イオン種の影響により樹脂成 分が凝集し、分散不良を生じることがあった。樹脂成分の凝集を防ぐためには、分散 液を何度もデカンテーシヨンしなければならず、生産工程が増えるので、生産性が悪 くなる。また、上記疑似体液を用いる手法では、アパタイト結晶の成長が非常に遅ぐ 工業的製品の製造技術としては生産性が低いために実用化が難しぐまた、この方 法で製造された光触媒複合粒子を含む塗料により形成された塗膜は、樹脂成分が 凝集し、均質性が低下することがある。そのため、この種の塗料は、有機物光分解機 能、耐候性共に満足できるものではなぐ当技術分野では、それらの問題を解消でき る新しレ、塗料や塗膜を開発することが強く要請されてレ、た。
[0006] 特許文献 1 :特開 2000— 1631号公報
特許文献 2:特開 2003— 80078号公報
特許文献 3:特開 2004— 58050号公報
発明の開示
発明が解決しょうとする課題 [0007] このような状況の中で、本発明者らは、上記従来技術に鑑みて、上述の従来材の 問題点を解決できる新し!/、塗料や塗膜を開発することを目標として鋭意研究を重ね た結果、酸化チタンが分散し、かつ、リン酸イオンとカルシウムイオンが溶解した pH4 . 0以下の分散水溶液を、 pH5. 0-11. 0に pH調整することによって、リン酸カルシ ゥムが酸化チタンの表面で均一に再析出することを見出し、本発明を完成するに至 つた。
[0008] 本発明は、上記事情に鑑みて開発されたもので、簡便に酸化チタンの表面にリン 酸カルシウムを被覆させることができ、光触媒複合粒子の生産性を高め、かつ、該光 触媒複合粒子を含む塗料や塗膜の有機物光分解機能や耐候性を向上させることが できるェマルジヨン塗料の製造方法と、これより得られるェマルジヨン塗料及び該エマ ルジョン塗料により形成される塗膜を提供することを目的とするものである。また、本 発明は、光触媒複合粒子と樹脂成分とを含むェマルジヨン塗料を製造する方法にお いて、前記光触媒複合粒子が、酸化チタンが分散し、かつ、リン酸イオン及びカルシ ゥムイオンが溶解した pH4. 0以下の分散水溶液を、 pH5. 0-11. 0に pH調整して 酸化チタンの表面にリン酸カルシウムを再析出させることで製造された光触媒複合粒 子からなることを特徴とするェマルジヨン塗料の製造方法を提供することを目的とする ものである。
課題を解決するための手段
[0009] 上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)光触媒複合粒子と樹脂成分とを含むェマルジヨン塗料を製造する方法であって 、光触媒複合粒子として、酸化チタンが分散し、かつ、リン酸イオン及びカルシウムィ オンが溶解した酸性の分散水溶液を、該分散水溶液の pHよりアルカリ側に調整して 、酸化チタンの表面にリン酸カルシウムを再析出させて付着させた光触媒複合粒子 を作製し、得られた該光触媒複合粒子を光触媒成分として塗料に配合することを特 徴とするェマルジヨン塗料の製造方法。
(2)前記酸性の分散水溶液を、アンモニア水を用いて pH調整する、前記(1)に記載 のェマルジヨン塗料の製造方法。
(3)前記酸化チタンとして、酸性チタニアゾルを用いる、前記(1)に記載のェマルジョ ン塗料の製造方法。
(4) pH4. 0以下の酸性の分散水溶液を、 ρΗ5· 0-11. 0に ρΗ調整する、前記(1) に記載のェマルジヨン塗料の製造方法。
(5)リン酸カルシウムと酸化チタンの質量比を 0· 1 : 99. 9〜50 : 50とする、前記(1) に記載のェマルジヨン塗料の製造方法。
(6)光触媒複合粒子と樹脂成分とを含むェマルジヨン塗料であって、該光触媒複合 粒子が、リン酸イオン及びカルシウムイオンを含む溶液から、酸化チタンの表面にリン 酸カルシウムを再析出させて付着させてなる、再析出リン酸カルシウムで酸化チタン 表面を高純度かつ均一に被覆した高機能性光触媒複合粒子からなり、該光触媒複 合粒子力 光触媒成分として塗料に配合されていることを特徴とするェマルジヨン塗 料。
(7)前記(6)に記載のェマルジヨン塗料力 形成される塗膜であって、該塗膜の膜厚 力 1〜20 mであることを特徴とする塗膜。
[0010] 次に、本発明について更に詳細に説明する。
本発明は、光触媒複合粒子と樹脂成分とを含むェマルジヨン塗料を製造する方法 であって、光触媒複合粒子として、酸化チタンが分散し、かつ、リン酸イオン及びカル シゥムイオンが溶解した酸性の分散水溶液を、該分散水溶液の pHよりアルカリ側に 調整して、酸化チタンの表面にリン酸カルシウムを再析出させて付着させた光触媒複 合粒子を作製し、得られた該光触媒複合粒子を光触媒成分として塗料に配合するこ とを特徴とするものである。
[0011] また、本発明は、上記ェマルジヨン塗料であって、該光触媒複合粒子が、リン酸ィォ ン及びカルシウムイオンを含む溶液から、酸化チタンの表面にリン酸カルシウムを再 析出させて付着させてなる、再析出リン酸カルシウムで酸化チタン表面を高純度かつ 均一に被覆した高機能性光触媒複合粒子力 なり、該光触媒複合粒子が光触媒成 分として塗料に配合されていることを特徴とするものである。更に、本発明は、上記ェ マルジヨン塗料から形成される塗膜であって、該塗膜の厚さが;!〜 20 mであること を特徴とするものである。
[0012] 本発明のェマルジヨン塗料の製造方法は、酸化チタンにリン酸カルシウムを付着さ せて光触媒複合粒子を製造する第一工程と、その後に、該光触媒複合粒子の分散 液と樹脂成分を混合させて、ェマルジヨン塗料を製造する第二工程から構成される。
[0013] 上記第一工程では、酸化チタンが分散し、かつ、リン酸イオン、カルシウムイオンが 溶解した酸性の分散水溶液を、該分散水溶液の pHよりアルカリ側に調整すること、 好適には、例えば、 pH4. 0以下の分散水溶液を調製し、その後、該分散水溶液を p H5. 0- 11. 0に pH調整することにより、酸化チタンの表面にリン酸カルシウムを再 析出させ、付着させた光触媒複合粒子を製造する。
[0014] 第一工程で得られる光触媒複合粒子の形態は、特に限定されるものではないが、リ ン酸カルシウムがタンパク質や各種の水性の汚れ成分を吸着する作用を有し、それ らの吸着能に優れること、酸化チタンが光触媒作用を有し、光触媒機能に優れること を考慮すると、酸化チタンの表面の一部がリン酸カルシウムで被覆されている形態が 好ましい。また、得られるェマルジヨン塗料を外壁などに塗布した場合、汚れが雨で 流されやすくするために、光触媒複合粒子は、親水機能を有することが望ましい。
[0015] 次に、第一工程で用いられる各種成分について説明する。酸化チタンとしては、光 触媒機能を発揮するものであれば適宜のもので良ぐ例えば、酸化チタンの粒子径 力 S lnm〜数 m程度のものを用いることが好適である。また、多孔質の酸化チタンを 用いること力 り好ましく、この場合には、粒子の表面積が大きくなるので、より大きな 光触媒性能が得られる。酸化チタンの細孔の孔径は、特に限定されるものではない 力 s、水分や有機成分を効率良く吸着するという観点から、 lnm〜0. 1 mであること が好ましい。
[0016] また、酸化チタンの結晶形はアナタースであることが好ましぐこれにより、より高い 光触媒性能が得られる。更に、酸化チタンの形態は、粉体、スラリー、中性チタニアゾ ノレ、酸性チタニアゾルなどが好ましぐ分散性が良好な酸性チタニアゾルがより好まし い。通常、酸性チタニアゾルは、 pH4を超えると凝集してしまうので、光触媒としては 用いられないが、本発明においては、後述するように、酸化チタンは、 pH4以下の酸 性条件下で用いるため、酸性チタニアゾルを好適に使用することができる。なお、酸 性チタユアゾルには、塩酸酸性チタユアゾルと硝酸酸性チタユアゾルがある力、本発 明にお!/、ては、塩酸酸性チタニアゾルが特に好ましレ、。 [0017] リン酸カルシウムとしては、特に限定されないが、例えば、アパタイト、リン酸三カル シゥム及びリン酸八カルシウムからなる群から選ばれる 1種以上を使用することが好ま しい。アパタイトとは、リン灰石であり、例えば、水酸アパタイト、フッ化アパタイト、炭酸 アパタイト、銀アパタイトなどが挙げられる。
[0018] アパタイトなどのリン酸カルシウムは、細菌などのタンパク質や、水性の汚れ(汗、手 垢、水性インキなど)の吸着能力に優れている。一方、酸化チタンは、このような吸着 能はリン酸カルシウムに比べると乏しい。従って、酸化チタン表面の一部に更にリン 酸カルシウム被覆を形成することによって、リン酸カルシウムでタンパク質や各種の汚 れ成分をより効率よく吸着し、これを酸化チタンの光触媒的酸化還元作用により分解 すること力 Sでさる。
[0019] このようなリン酸カルシウム及び酸化チタンの作用を考慮すると、リン酸カルシウム の被覆率は 1〜99% (面積%)が好ましい。被覆率が 1 %未満であると、リン酸カルシ ゥムでの吸着効果があまり得られず、一方、被覆率が 99%を超えると、酸化チタンの 表面の露出率が低くなるため、酸化チタンの光触媒効果が得られにくい。より好まし い被覆率は、 2〜80%程度であり、更に好ましい被覆率は 5〜70%程度である。
[0020] リン酸カルシウム被覆の厚さは、特に限定されるものではないが、光触媒機能とコス トの観点から 11 111〜3 111程度が好ましぐ 11 111〜2 111程度が更に好ましい。また、 リン酸カルシウム被覆の形態は、特に限定されるものではなぐ種々の形態が可能で ある。例えば、リン酸カルシウムが層状であっても良いし、微細片状や、微細粒状で あっても い。
[0021] すなわち、本発明の光触媒複合粒子は、酸化チタンの表面の一部にリン酸カルシ ゥムの被覆層が形成された形態、酸化チタンの表面の一部が微細片状又は微細粒 状のリン酸カルシウムが付着して覆われた形態のいずれの形態であっても良い。微 細粒状のリン酸カルシウム力 酸化チタン表面に均一に点在する形態が最も好ましく 、その場合には、上記被覆率は 30%以下、例えば 1〜; 10%程度でも良い。
[0022] 本発明において、分散水溶液を pH4以下に調整するために用いられる酸としては 、特に制限されないが、塩酸、硫酸、硝酸、酢酸、蟻酸などを用いることが好ましい。 塩酸は、イオン成分が溶媒から飛散しやすぐェマルジヨン塗料の貯蔵安定性も良好 となるため、好適に用いられる。塩酸の濃度は 1〜; IONが好ましぐ 2〜6Nがより好ま しい。また、分散水溶液の pHは 1. 5〜3. 0に調整することが好ましい。 pHを上記範 囲内とすることにより、分散水溶液中でリン酸カルシウムを十分に溶解させておくこと が可能となる。
[0023] 上記酸性の分散水溶液を、該分散水溶液の pHよりアルカリ側に調整して、酸化チ タンの表面にリン酸カルシウムを再析出させて付着させた光触媒複合粒子を作製す る。この場合、例えば、 pH4以下に調整した分散水溶液を、 pH5〜l lに pH調整す るために用いられるアルカリとしては、例えば、アンモニア水、水酸化ナトリウム、水酸 化カリウムを用いることが好ましい。アンモニア水は、イオン成分が溶媒から飛散しや すぐ塗膜の耐久性が良好となるので好適に用いられる。アンモニア水の濃度は 5〜 50%が好ましぐ 20〜30%がより好ましい。また、 pH4以下に調整した分散水溶液 の pHは 8. 0-10. 0に pH調整することが好ましい。 pHを上記範囲内とすることによ り、酸化チタンの表面でリン酸カルシウムを十分に析出させることが可能となる。
[0024] 次に、上述した成分を用いた光触媒複合粒子の製造工程の一実施の形態例につ いて説明する。共存イオン種を殆ど含有しない純水に、例えば、塩化カルシウムとリ ン酸を加える。水中では、塩化カルシウムとリン酸が反応して、リン酸カルシウムが得 られる力 該リン酸カルシウムは、水に不溶であるため、析出してしまう。しかし、リン 酸カルシウムは、酸性下では水に可溶となるため、希塩酸などの酸を加えて、水溶液 を pH4以下に調整することで、リン酸カルシウムが溶解した水溶液が得られる。該水 溶液に、酸化チタンを分散させ、分散水溶液を調製する。
[0025] 次いで、上記分散水溶液に、アンモニア水などのアルカリを加えて、 pH5〜l lに p H調整すると、分散水溶液中で溶解していたリン酸カルシウムが酸化チタンの表面で 析出するので、酸化チタン力 Sリン酸カルシウムで被覆された光触媒複合粒子が得ら れる。
[0026] 本発明の先行技術として、例えば、疑似体液を使用して酸化チタン表面にァパタイ トを担持させたアパタイト光触媒が知られている。しかし、材料の粒子径分布やモル フォロジー(形態)制御の観点から考えると、従来材では、粒子径分布や形態制御が 難しぐ粒子径分布や形態にばらつきがあり、分解活性機能の高活性化にも限界が あった。また、製法及び生産効率の観点から考えると、従来材では、結晶の成長が遅 ぐ工業製品として生産するには限界があった。
[0027] これに対して、本発明において、再析出法を用いてリン酸カルシウムを再析出、担 持させた材料は、生産性及び品質の点で極めて優れており、簡便かつ短時間で量 産可能であり、また、得られる製品は、従来材では達成し得な力 た生成物の高精度 の組成比制御、粒子径分布、及びモルフォロジ一(形態)の制御が達成されており、 特に、粒子分布にまとまりがあり、それにより、分解活性も同時に制御され、高活性化 されている。
[0028] 本発明で使用するリン酸カルシウムを酸化チタン表面に担持させた光触媒複合粒 子、リン酸カルシウムを、再析出法により酸化チタン表面に再析出させ、該酸化チタ ン表面に多孔質のリン酸カルシウムを均一に担持させた粒子構造を有し、レーザ散 乱法測定による該粒子の粒子径分布が 80から 600nmの範囲に制御されてまとまつ て存在していること、また、材料中のリン酸カルシウムの存在割合力 0. ;!〜 50wt% であり、更に、材料の体積換算平均粒子径が、 50nm〜; !OOOnmであることを特徴と するものである。
[0029] このように、本発明のェマルジヨン塗料の製造方法によれば、上記光触媒複合粒子 を、 Na+や C厂などの多くのイオンを含む擬似体液を用いなくとも、簡便に製造するこ とができるので、生産性が良好である。また、ェマルジヨン塗料とした際にも、後述す る樹脂成分の凝集を防ぐことが可能となる。
[0030] 本発明において、光触媒複合粒子の製造工程は、上記の一実施の形態例に限定 されるものではない。例えば、分散水溶液の調製の段階は、予め純水に酸を加えて 、 pH4以下に調整し、その後に、塩化カルシウムとリン酸を加えても良い。また、予め 酸化チタンを水中に分散させておいても良い。すなわち、酸化チタンが分散し、かつ 、リン酸カルシウムが溶解した分散水溶液が調製できれば、各種成分 (塩化カルシゥ ム、リン酸、酸化チタン)は、どのタイミングで加えても良い。
[0031] このようにして得られる光触媒複合粒子におけるリン酸カルシウムと酸化チタンの質 量匕(ま 0. 1 : 99. 9〜50 : 50力《好ましく、 1: 99〜25: 75カより好ましく、 2 : 98〜20: 80が更に好ましい。質量比を上記範囲内とすることにより、酸化チタンの光触媒機能 を損なうことなく酸化チタンの表面を被覆することができるので、ェマルジヨン塗料とし た際に、該塗料に含まれる樹脂成分の分解を防ぐことができる。
[0032] 次に、上記第二工程では、第一工程で得られた光触媒複合粒子と後述する樹脂成 分を混合して、ェマルジヨン塗料を製造する。本発明のェマルジヨン塗料は、光触媒 複合粒子を乾燥粒子としてではなぐその分散液と樹脂成分とを混合することによつ て得られる。本発明では、乾燥粒子ではなぐ分散液として、樹脂成分及び水を混合 することにより、光触媒複合粒子の分散性が飛躍的に向上する。
[0033] ここで、第二工程で用いられる樹脂成分について説明する。本発明で使用される樹 脂成分としては、水系の有機系塗料を含むものであれば、特に制限されない。例え ば、アクリル樹脂、シリコーン樹脂、アクリルシリコーン樹脂、エポキシ樹脂、酢酸ビニ ル樹脂、ポリウレタン樹脂、ポリスチレン樹脂、フッ素樹脂などの合成樹脂ェマルジョ ンが挙げられる。中でもアクリルシリコーン樹脂ェマルジヨンが好ましい。
[0034] なお、アクリルシリコーン樹脂中のシリコーン成分の含有量は 1〜60質量%が好ま しぐ 5〜40質量%がより好ましい。シリコーン成分が少ないと、樹脂が上述した光触 媒複合粒子により分解されやすくなる。一方、シリコーン成分が多すぎると、得られる ェマルジヨン塗料を重ね塗りした場合に、先に形成された塗膜上に塗料が付着しにく ぐ新たに形成された塗膜が割れやすくなる。
[0035] 光触媒複合粒子は、ェマルジヨン塗料全体の固形分比において、;!〜 20質量%で あること力 S好ましい。より好ましくは 2〜; 15質量%であり、更に好ましくは 3〜; 10質量% である。この範囲より少ないと塗膜中における光触媒複合粒子が少なくなることから、 光触媒効果が少なくなり、一方、この範囲よりも多いと塗膜の耐候性が低下する。
[0036] 更に、ェマルジヨン塗料の固形分は、 2〜30質量%であることが望ましい。より望ま しくは 2〜20質量%であり、更に望ましくは 3〜; 10質量%である。ェマルジヨン塗料の 固形分を上記範囲内とすることにより、形成する塗膜の膜厚が均一なものとなるので 望ましい。
[0037] なお、本発明の趣旨を逸脱しない範囲内で、塗料中には、必要に応じて、ブチル セノレソルフ、、、ブチルカルビトール、トリエチレングリコール、テキサノールなどの造膜助 剤を用いても良い。また、塗料には、必要に応じて、消泡剤、増粘剤、凍結安定剤、 湿潤剤、顔料、水溶性樹脂、浸透助剤、紫外線吸収剤、酸化防止剤などの添加剤を 配合しても良い。
[0038] このようにして得られるェマルジヨン塗料の塗装対象物への塗布は、例えば、刷毛、 ローラー、エアスプレー、エアレススプレーなどの通常の方法及び手段により行うこと 力 Sできる。また、塗装対象物の材質の伸縮に追従するよう、形成される塗膜の膜厚は 薄くすること力好ましい。塗膜の膜厚は 1〜20 ^ 111が好ましぐ 1から 10 ^ mがより好 ましぐ 2〜8 111が更に好ましい。膜厚が上記範囲内となることにより、まだらな塗膜 が形成されるのを防ぎ、膜厚の均一な塗膜が得られる。更に、膜厚を均一にするため に、ェマルジヨン塗料を複数回重ね塗りすることが好ましレ、。
[0039] 本発明のェマルジヨン塗料の製造方法によれば、光触媒複合粒子を Na+や C厂な どのイオン濃度を増やすことなく簡便に製造することができるので、生産性が良好で あり、かつ、ェマルジヨン塗料とした際も、樹脂成分の凝集も抑制され、貯蔵安定性に 優れている。また、該ェマルジヨン塗料により形成される塗膜は、油分や水分の付着 によっても、黄ばみを生じたり劣化したりすることが非常に少なくなり、優れた耐久性と 美観保持が得られる。更に、有機系塗料であっても、樹脂成分が酸化チタンと直接 接触するのを妨げるため、塗膜が安定である。
発明の効果
[0040] 本発明により、次のような効果が奏される。
(1)リン酸イオン及びカルシウムイオンが溶解した酸性溶液から再析出法で再析出さ せたリン酸カルシウムを酸化チタン表面に形成してなる光触媒複合粒子を塗料に配 合して、塗料成分の劣化を抑制可能にした、ェマルジヨン塗料を提供することができ
(2)本発明により、酸化チタンの表面にリン酸カルシウムを簡便な工程で被覆させる ことができ、光触媒複合粒子の生産性を高めると共に、該光触媒複合粒子を含む塗 料や塗膜の有機物光分解機能や耐候性を向上できる、ェマルジヨン塗料の製造方 法を提供すること力できる。
(3)上記ェマルジヨン塗料より得られる該ェマルジヨン塗料から形成される塗膜を提 供すること力 Sでさる。 (4)再析出法で酸化チタン表面に形成したリン酸カルシウムは、該酸化チタンの表面 で均一に析出し、また、本方法では、反応条件等を任意に制御することが可能であり 、疑似体液を利用した場合に問題となる他の成分の混入を確実に防止した、高純度 のリン酸カルシウムを形成することが可能となる。
(5)共存イオン種による影響のな!/、ェマルジヨン塗料を製造することができる。
(6)分散液のデカンテーシヨンを行わなくとも、貯蔵安定性が良好で、かつ、優れた 光触媒活性を発揮することができる。
発明を実施するための最良の形態
[0041] 次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例 によって何ら限定されるものではない。なお、用いた各試薬のうち、製造者の特記の ないものは、和光純薬試薬特級を用いている。 pHは、「卓上 pHメーター F— 21」(株 )堀場製作所製を用いて測定した。また、「%」は「質量%」を示す。
実施例
[0042] [試験 1:光触媒複合粒子の製造方法の違いによるェマルジヨン塗料の評価]
(光触媒複合粒子分散液 1の製造)
イオン交換水 1Lに、 Ca2+が 5. 97mM、 HPO 2_が 3. 59mMになるように塩化力
4
ルシゥムとリン酸を溶解させ、 5N塩酸にて pHl . 5の水溶液に調整した。該水溶液に 、光触媒用酸化チタン(昭和タイタニゥム (株)製「スーパータイタニア F4」 ) 10gを分 散させ、分散水溶液を得た。
[0043] 該分散水溶液を、 25%アンモニア水にて ρΗ9· 0-10. 0に調整して、 23°Cで 6時 間撹拌反応させ、酸化チタンの表面にリン酸カルシウムを析出させ、デカンテーショ ンを 3回行い、 25%アンモニア水で最終 pHを 9. 0に調整して、表 1に示す光触媒複 合粒子分散液 1を調製した。
[0044] (光触媒複合粒子分散液 2の製造)
イオン交換水の配合量を変化させ、光触媒用酸化チタンとして塩酸酸性チタニァゾ ル (ティカ(株)製「TKS— 201 (34%)」)29. 4gを用いた以外は、光触媒複合粒子 分散液 1と同様にして、表 1に示す光触媒複合粒子分散液 2を調製した。
[0045] (光触媒複合粒子分散液 3の製造:従来処方) 光触媒用酸化チタンの 10%分散水溶液と、 NaCl、 KC1、 CaCl 、 KH PO 、 Na H
2 2 4 2
POと、イオン交換水を用いて、 Na+力 60mM、 K+が 3· 64mM、 Ca2+が 5· 97m
4
M、 CI—が 169mM、 HPO 2 が 3. 59mMとなるように擬似体液を調製した。この擬
4
似体液(1Uに、光触媒用酸化チタン (昭和タイタユウム (株)製「スーパータイタニア
F4」)が 1 %になるように添加し、 37°Cで 6時間撹拌し、反応させた。デカンテーシヨン を 3回行い、 25%アンモニア水で最終 pHを 9. 0に調整して、表 1に示す光触媒複合 粒子分散液 3を調製した。
[0046] (光触媒複合粒子分散液 4の製造:コンポジット処方)
イオン交換水 1Lに、光触媒用酸化チタン(昭和タイタニゥム (株)製「スーパータイタ ユア F4」)10g、リン酸カルシウム(太平化学製「HAP200」)を 0· 06mMとなるように 添加し、分散液を調製した。デカンテーシヨンを 3回行い、 25%アンモニア水で最終 pHを 9. 0に調整して、表 1に示す光触媒複合粒子分散液 4を調製した。
[0047] [表 1]
成分 光触媒複合粒子
分散液 1 分散液 2 分散液 3 分散液 4 イオン交換水 (L) 1 0.98 1 1
ナトリウム
イオン ― ― 160 ― 力リウム ― ―
イオン 3.64 ― 配合イオン カルシウム
イオン 5.97 5.97 5.97 ― 濃度 (mM)
塩化物イオン ― ― 169 ― , リン酸イオン 3.59 3.59 3.59 ―
5 N一塩酸 簠 Mm. ― ― 酸化チタン (g) 10 29.4 1 10 10
H A P - 2 0 0 (mM) ― ― ― 0.60
25% NH3水 Mm. ilim ― 最終 PH調整値 9.0 9.31 9.0 9.0
※:塩酸酸性チタニアゾル (ティカ (株) 製 「T K S— 2 0 1 ( 3 4 %) J )
[0048] (ェマルジヨン塗料の製造)
上記調製した光触媒複合粒子分散液 1〜4を用いて、表 2に示す配合にて、実施 例 1、実施例 2、比較例 1、及び比較例 2のェマルジヨン塗料を製造した。表 2中、樹 脂成分は、商品名「ポリデュレックス G— 659」(旭化成ケミカルズ (株)製、固形分 42 %)を用いた。また、各実施例、比較例には、消泡剤(ビックケミー(株)製「BYK— 02 8」)を 0· 1 %、成膜助剤 (イーストマンケミカル (株)製「テキサノール」)を 4· 0%、増 粘剤(サンノプコ(株)製「SNシックナー 618」)を適量添加した。更に、 25%アンモニ ァ水にて最終 pHを 9. 0に調整して、ェマルジヨン塗料を得た。得られた各ェマルジョ ン塗料の粘度(フォードカップ No4)を表 2に示す。
[0049] [表 2] 成分 (質量部) 実施例 1 実施例 2 比較例 1 比較例 2 樹脂成分 33.0 33.0 33.0 33.0
分散液 1 66.0 ― ― ―
1
% 分散液 2 ― 66.0 ― ― 分
散 分散液 3 ― ― 66.0 ― 液
分散液 4 ― ― ― 66.0
B Y K— 0 2 8 0.1 0.1 0.1 0.1 テキサノール 4.0 4.0 4.0 4.0
S Nシックナー 6 1 8 Mm i 適更 Mm.
25% NH3
MM. mm 適星 m. (最終 pH値: 9.0)
粘度
18.3 21.1 18.2 18.1
(フォードカップ N o 4 ( s ))
[0050] [光触媒活性評価]
(吸光度測定によるメチレンブルー分解試験)
水系プライマーとして、商品名「水系セラミトーン (ベージュ色:日本塗料工業会塗 料用標準色見本帳 2003年 B版、 B15— 50B (5Y5R/1)近似色)」(藤倉化成 (株) 製)をアルミニウム製平板(5cm X 5cm)上に塗布し、乾燥後、実施例 1と比較例 1、 2 の各ェマルジヨン塗料をスプレー塗布し、試験体を作成した。
[0051] 前処理として、ブラックライト BLBを用いて、各塗面が lmW/cm2の照射強度で受 光するように、試験体に 3時間以上照射した。次に、アクリル樹脂製リング (外径: 45 mm、内径: 40mm、高さ: 30mm)を、非水溶性接着剤を用いて塗面上に固定した。 そして、このリング内に吸着液(12ppmメチレンブルー水溶液)を 30mL注ぎ入れ、 硝子製蓋(50mm X 50mcm X 0. 5mm)で密封し、喑所にて 12時間以上静置して 、塗膜にメチレンブルー水溶液を十分に吸着させた。
[0052] その後、吸着液を排出し、リング内を蒸留水で軽く洗浄した後に、 8ppmメチレンブ ルー水溶液を 30mL注ぎ入れ、上記硝子製蓋にて、再び蓋をして密封した。ブラック ライト BLBを、塗面が lmW/cm2の照射強度で受光するように照射し、メチレンブル 一の分解による水溶液の脱色の経時変化を吸光度により測定した。吸光度の測定に は、デジタル比色計(「miniphoto 10」三紳工業(株)、フィルタ: 660nm)を用いた
[0053] なお、次の基準にて判定した。その結果を、表 3と図 1に示す。
◎ : 72時間経過時に、吸光度が 0. 5未満
〇: 72時間経過時に、吸光度が 0. 5以上、 0. 7未満
△ : 72時間経過時に、吸光度が 0. 7以上、 1. 0未満
X : 72時間経過時に、吸光度が 1. 0以上
なお、以下の表 3〜6において、ブランクとは、光触媒複合粒子分散液の代わりに、 純水を配合したものである。
[0054] [表 3]
Figure imgf000017_0001
また、実施例 2については、リング内に吸着液(8ppmメチレンブルー水溶液)を 30 mL注ぎ入れ、硝子製蓋(50mm X 50mcm X 0. 5mm)で密封し、喑所にて 12時間 以上静置して、塗膜にメチレンブルー水溶液を十分に吸着させ、その後、吸着液を 排出し、リング内を蒸留水で軽く洗浄した後に、 4ppmメチレンブルー水溶液を 30m L注ぎ入れ、上記硝子製蓋にて、再び蓋をして密封した以外は、上記の吸光度測定 によるメチレンブルー分解試験と同様にして、分解試験を行った。
[0056] なお、次の基準にて判定した。その結果を、表 4と図 2に示す。
◎ : 48時間経過時に、吸光度が 0. 1未満
〇: 48時間経過時に、吸光度が 0. 1以上、 0. 3未満
△ : 48時間経過時に、吸光度が 0. 3以上、 0. 5未満
X : 48時間経過時に、吸光度が 0. 5以上
[0057] [表 4]
Figure imgf000018_0001
[0058] (光沢保持率と色差による耐候性試験)
前記試験体に、紫外線照射機「アイスーパー UVテスター W— 151」(岩崎電気 (株 )製)を用いて、ブラックパネル温度が 63°C、湿度が 50%RH、各塗面が lOOOmW /cm2の照射強度で受光するように、試験体に 4時間照射した。その後、槽内の温度 を約 30°C、湿度を 98%RH以上に設定して、 4時間保持し、槽内を結露させた。
[0059] 上述した照射と結露を 1サイクルとし、 120時間毎に光沢保持率と色差の評価を行 つた。光沢と色差の測定には、光沢計と色差計(「SMカラーコンピューター SM— T 型」スガ試験機製)を用いた。
[0060] なお、光沢保持率は、次の基準にて判定した。その結果を、表 5と図 3に示す。 ◎ : 480時間経過時に、外観異常がなぐかつ、光沢保持率が 80%以上
〇:480時間経過時に、外観異常がなぐかつ、光沢保持率が 50%以上
△ : 480時間経過時に、クラック発生などの外観異常が認められる力 光沢保持率が
50%以上
X : 480時間経過時に、クラック発生などの外観異常が認められ、かつ、光沢保持率 が 50%未満
[表 5]
Figure imgf000019_0001
Wl クラック発生などの外観異常
[0062] また、色差は、次の基準にて判定した。その結果を、表 6と図 4に示す。
◎ : 480時間経過時に、外観異常がなぐかつ、色差 1未満
〇: 480時間経過時に、外観異常がなぐかつ、色差 1以上 3未満
△ : 480時間経過時に、クラック発生などの外観異常が認められる力 色差 1以上 3未 満
X : 480時間経過時に、クラック発生などの外観異常が認められ、かつ、色差 3以上 [0063] [表 6] ブランク 実施例 1 比較例 1 比較例 2
0時間 0.00 0.00 0.00 0.00
1 2 0時間後 0.21 0.51 0.63 0.84
2 4 0時間後 0.36 0.95 1.59 2.12 3
差 3 6 0時間後 0.42 1.45 2.32 3 2.92
4 8 0時間後 0.42 2.20 3.27 4.05 3
6 0 0時間後 0.41 2.91※^ 3.99 ^'3 4.91 3 判定 © 〇 X X
«3 : クラック発生などの外観異常
[0064] 表 3〜6と、図 1〜4から明らかなように、実施例で得られたェマルジヨン塗料は、光 沢や色差の劣化が遅ぐ優れた光触媒活性を発揮できるものであった。特に、塩酸 酸性チタニアゾルを用いたェマルジヨン塗料は、メチレンブルーの分解に優れ、光触 媒活性が良好であった。一方、比較例 1、 2で得られたェマルジヨン塗料は、実施例 に比べて、光沢や色差の劣化が早ぐ光触媒活性が劣るものであった。
[0065] [試験 2: ρΗ調整の際の ρΗ値の違いによるェマルジヨン塗料の評価]
(光触媒複合粒子分散液 5の製造)
イオン交換水 1Lに、 Ca2+が 1 · 99mM、 HPO 2—が 1 · 19mMになるように、塩化
4
カルシウムとリン酸を添加し、 5N塩酸にて ρΗ1 · 5の水溶液に調整して溶解した。該 水溶液に光触媒用酸化チタン(昭和タイタニゥム (株)製「スーパータイタニア F4」 ) 1 Ogを分散させ、分散水溶液を得た。該分散水溶液を、 25%アンモニア水にて、表 7 に示す pHになるように調整して、酸化チタンの表面にリン酸カルシウムを析出させた 。その後、 25%アンモニア水で最終 pHを表 7に示す値に調整して、表 7に示す光触 媒複合粒子分散液 5を調製した。
[0066] (光触媒複合粒子分散液 6〜; 11の製造)
表 7に示す pHの値になるように、 25%アンモニア水で調整した以外は、光触媒複 合粒子分散液 5と同様にして製造し、表 7に示す光触媒複合粒子分散液 6〜; 11を調
; ^^し/ [0067] [表 7]
Figure imgf000021_0001
[0068] (ェマルジヨン塗料の製造)
上記調製した光触媒複合粒子分散液 5〜; 11を用いて、表 8に示す配合にて、実施 例 3〜7、比較例 3、及び比較例 4のェマルジヨン塗料を製造した。表 8中、樹脂成分 は、商品名「ポリデュレックス H— 7000」(旭化成ケミカルズ (株)製、固形分 42%)を 用いた。
[0069] また、各実施例には、消泡剤(ビックケミー(株)製「BYK— 028」)を 0. 1 %、成膜 助剤 (イーストマンケミカル (株)製「テキサノール」)を 4· 0%、増粘剤(サンノプコ(株) 製「SNシックナー 618」)を適量添加した。更に、最終 pH調整値の低い光触媒複合 粒子分散液 5、 8、 10を用いた実施例 3、 6と比較例 3は、 25%アンモニア水にて最 終 pHを 8. 5に調整して、ェマルジヨン塗料を製造した。得られた各ェマルジヨン塗料 の最終 pH値と、粘度(フォードカップ No4)を表 8に示す。
[0070] また、各ェマルジヨン塗料につ!/、て、貯蔵安定性試験を行った。
貯蔵安定性試験は、 23°Cで 2力月間保持したェマルジヨン塗料の粘度の変化(フォ ードカップ(秒))を調べたものである。また、 2力月後の各ェマルジヨン塗料について、 次の基準にて判定した。その結果を、表 8に示す。
◎:水希釈不要
〇: 10%未満の水希釈で復元する(塗装可能)
Δ: 10%以上の水希釈で復元する(塗装可能)
X:水希釈しても復元しない(塗装不可能)
[0071] [表 8]
Figure imgf000023_0001
[光触媒活性評価]
(吸光度測定によるメチレンブルー分解試験)
各ェマルジヨン塗料について、試験 1の実施例 2の場合と同様にして、メチレンブル 一分解試験を行った。その結果を、表 9と図 5に示す。なお、以下の表 9〜; 11におい て、ブランクとは、光触媒複合粒子分散液の代わりに、純水を配合したものである。 [0073] [表 9]
Figure imgf000024_0001
[0074] (光沢保持率と色差による耐候性試験)
試験 1の場合と同様にして、耐候性試験を行った。光沢保持率の結果を、表 10と図 6に、色差の結果を、表 11と図 7に示す。
[0075] [表 10] D¾0076l
Figure imgf000025_0001
※ クラック発生などの外観異常
Figure imgf000026_0001
[0077] 表 9〜; L Iと、図 5 7から明ら力なように、実施例のェマルジヨン塗料は、製造の際 にデカンテーシヨンを行わなくとも、貯蔵安定性が良好で、かつ、優れた光触媒活性 を発揮すること力できる。
[0078] 一方、比較例 3のェマルジヨン塗料は、実施例と比べて、光沢や色差の劣化が早く 、光触媒活性や貯蔵安定性が劣るものであった。これは、ェマルジヨン塗料に含まれ る分散液の最終 pH調整値が 5未満であったため、リン酸カルシウムが酸化チタンの 表面に十分に析出できな力、つたことによるものと考えられる。また、比較例 4のェマル ジョン塗料は、実施例と同様の光触媒活性を発揮することはできた力 貯蔵安定性は 、本発明の実施例に比べ、劣るものであった。本発明のェマルジヨン塗料の製造方 法によれば、光触媒複合粒子の生産性を高め、かつ、光触媒活性の優れたェマル ジョン塗料を得ることが実現できる。
産業上の利用可能性
[0079] 以上詳述したように、本発明は、ェマルジヨン塗料の製造方法とこれより得られるェ マルジヨン塗料及び該ェマルジヨン塗料から形成される塗膜に係るものであり、本発 明により、リン酸イオン及びカルシウムイオンが溶解した酸性溶液から再析出法で析 出させたリン酸カルシウムを酸化チタン表面に形成してなる光触媒複合粒子を塗料 に配合して塗料成分の劣化を抑制可能にしたェマルジヨン塗料を提供することがで きる。また、本発明により、酸化チタンの表面にリン酸カルシウムを簡便な工程で被覆 させること力 Sでき、光触媒複合粒子の生産性を高めると共に、該光触媒複合粒子を 含む塗料や塗膜の有機物光分解機能ゃ耐候性が向上できるェマルジヨン塗料の製 造方法とこれより得られるェマルジヨン塗料及び該ェマルジヨン塗料から形成される 塗膜を提供することができる。本発明では、リン酸カルシウム担持光触媒粒子複合体 を簡便な手法で高い生産性で作製することができるため、本発明は、該光触媒粒子 複合体を配合したェマルジヨン塗料を簡便な工程で高い生産性で製造することがで きる新しいェマルジヨン塗料の生産技術を提供するものとして有用である。
図面の簡単な説明
[0080] [図 1]光触媒活性試験 (メチレンブルー分解試験)の結果を示す吸光度の経時変化
[図 2]光触媒活性試験 (メチレンブルー分解試験)の結果を示す吸光度の経時変化
[図 3]光触媒活性試験 (耐候性試験)の結果を示す光沢保持率の経時変化を示すグ ラフである。
[図 4]光触媒活性試験 (耐候性試験)の結果を示す色差の経時変化を示すグラフで ある。
園 5]光触媒活性試験 (メチレンブルー分解試験)の結果を示す吸光度の経時変化 園 6]光触媒活性試験 (耐候性試験)の結果を示す光沢保持率の経時変化を示すグ ラフである。
[図 7]光触媒活性試験 (耐候性試験)の結果を示す色差の経時変化を示すグラフで め 。

Claims

請求の範囲
[1] 光触媒複合粒子と樹脂成分とを含むェマルジヨン塗料を製造する方法であって、 光触媒複合粒子として、酸化チタンが分散し、かつ、リン酸イオン及びカルシウムィォ ンが溶解した酸性の分散水溶液を、該分散水溶液の pHよりアルカリ側に調整して、 酸化チタンの表面にリン酸カルシウムを再析出させて付着させた光触媒複合粒子を 作製し、得られた該光触媒複合粒子を光触媒成分として塗料に配合することを特徴 とするェマルジヨン塗料の製造方法。
[2] 前記酸性の分散水溶液を、アンモニア水を用いて pH調整する、請求項 1に記載の ェマルジヨン塗料の製造方法。
[3] 前記酸化チタンとして、酸性チタニアゾルを用いる、請求項 1に記載のェマルジヨン 塗料の製造方法。
[4] pH4. 0以下の酸性の分散水溶液を、 pH5. 0-11. 0に pH調整する、請求項 1に 記載のェマルジヨン塗料の製造方法。
[5] リン酸カルシウムと酸化チタンの質量比を 0. 1 : 99. 9〜50 : 50とする、請求項 1に 記載のェマルジヨン塗料の製造方法。
[6] 光触媒複合粒子と樹脂成分とを含むェマルジヨン塗料であって、該光触媒複合粒 子力 リン酸イオン及びカルシウムイオンを含む溶液から、酸化チタンの表面にリン酸 カルシウムを再析出させて付着させてなる、再析出リン酸カルシウムで酸化チタン表 面を高純度かつ均一に被覆した高機能性光触媒複合粒子からなり、該光触媒複合 粒子が、光触媒成分として塗料に配合されて!、ることを特徴とするェマルジヨン塗料
[7] 請求項 6に記載のェマルジヨン塗料から形成される塗膜であって、該塗膜の膜厚が ;!〜 20 a mであることを特徴とする塗膜。
PCT/JP2007/074175 2006-12-15 2007-12-15 エマルジョン塗料の製造方法とこれより得られるエマルジョン塗料から形成される塗膜 WO2008072748A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07850667.2A EP2105482B1 (en) 2006-12-15 2007-12-15 Process for production of emulsion coating material and films made from the coating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-339215 2006-12-15
JP2006339215A JP5028993B2 (ja) 2006-12-15 2006-12-15 エマルジョン塗料の製造方法とこれより得られるエマルジョン塗料から形成される塗膜

Publications (1)

Publication Number Publication Date
WO2008072748A1 true WO2008072748A1 (ja) 2008-06-19

Family

ID=39511761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074175 WO2008072748A1 (ja) 2006-12-15 2007-12-15 エマルジョン塗料の製造方法とこれより得られるエマルジョン塗料から形成される塗膜

Country Status (3)

Country Link
EP (1) EP2105482B1 (ja)
JP (1) JP5028993B2 (ja)
WO (1) WO2008072748A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403584B2 (ja) * 2006-12-15 2014-01-29 独立行政法人産業技術総合研究所 再析出法で合成された耐候性を有する耐汚染材料とその製造方法
JP5414025B2 (ja) * 2008-11-10 2014-02-12 地方独立行政法人 岩手県工業技術センター 水系撥水性塗料組成物
JP5544515B2 (ja) * 2008-12-25 2014-07-09 独立行政法人産業技術総合研究所 耐候性・耐汚染性塗膜形成用エマルション塗料の製造方法、そのエマルション塗料及び耐候性・耐汚染性塗膜
KR101823170B1 (ko) * 2009-12-29 2018-01-29 더블유.알. 그레이스 앤드 캄파니-콘. 복합 무기 입자 및 이의 제조 방법 및 사용 방법
WO2015194466A1 (ja) * 2014-06-17 2015-12-23 石原産業株式会社 二酸化チタン顔料及びその製造方法並びにそれを配合した組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244166A (ja) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol 環境浄化材料及びその製造方法
WO1999033566A1 (fr) * 1997-12-25 1999-07-08 Japan As Represented By Director General Of The Agency Of Industrial Science And Technology Poudre photocatalysante pour la purification de l'environnement, composition polymere contenant ladite poudre et article moule la comprenant, et leurs procedes de production
JP2001031420A (ja) * 1999-07-22 2001-02-06 Agency Of Ind Science & Technol 水酸アパタイト皮膜の製造方法
WO2003006159A1 (fr) * 2001-07-10 2003-01-23 Yoshiyuki Nagae Matiere de revetement, peinture et procede de production de la matiere de revetement
WO2003053576A1 (fr) * 2001-12-21 2003-07-03 Showa Denko K.K. Particule photocatalytique hautement active, procede de production et utilisation d'une telle particule
JP2004243307A (ja) * 2002-06-27 2004-09-02 Showa Denko Kk 高活性光触媒粒子およびその製造方法ならびにその用途
JP2007077391A (ja) * 2005-08-15 2007-03-29 Fujikura Kasei Co Ltd エマルション塗料及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445789B2 (ja) * 2004-04-05 2010-04-07 王子コーンスターチ株式会社 アパタイト被覆用組成物及びアパタイト被覆二酸化チタンの製造方法
JP5403584B2 (ja) * 2006-12-15 2014-01-29 独立行政法人産業技術総合研究所 再析出法で合成された耐候性を有する耐汚染材料とその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244166A (ja) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol 環境浄化材料及びその製造方法
WO1999033566A1 (fr) * 1997-12-25 1999-07-08 Japan As Represented By Director General Of The Agency Of Industrial Science And Technology Poudre photocatalysante pour la purification de l'environnement, composition polymere contenant ladite poudre et article moule la comprenant, et leurs procedes de production
JP2001031420A (ja) * 1999-07-22 2001-02-06 Agency Of Ind Science & Technol 水酸アパタイト皮膜の製造方法
WO2003006159A1 (fr) * 2001-07-10 2003-01-23 Yoshiyuki Nagae Matiere de revetement, peinture et procede de production de la matiere de revetement
WO2003053576A1 (fr) * 2001-12-21 2003-07-03 Showa Denko K.K. Particule photocatalytique hautement active, procede de production et utilisation d'une telle particule
JP2004243307A (ja) * 2002-06-27 2004-09-02 Showa Denko Kk 高活性光触媒粒子およびその製造方法ならびにその用途
JP2007077391A (ja) * 2005-08-15 2007-03-29 Fujikura Kasei Co Ltd エマルション塗料及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAGAKU DAIJITEN HENSHU IINKAI: "Kagaku Daijiten 9 reduced-size edition", 15 August 1989, KYORITSU SHUPPAN CO., LTD, pages: 798, XP008108977 *
See also references of EP2105482A4 *

Also Published As

Publication number Publication date
EP2105482B1 (en) 2018-02-21
EP2105482A1 (en) 2009-09-30
EP2105482A4 (en) 2013-03-06
JP2008150480A (ja) 2008-07-03
JP5028993B2 (ja) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5196710B2 (ja) コーティング材とその用途
EP1740660B1 (en) Coating material and use thereof
WO2008072748A1 (ja) エマルジョン塗料の製造方法とこれより得られるエマルジョン塗料から形成される塗膜
Uskoković et al. Dynamic light scattering and zeta potential of colloidal mixtures of amelogenin and hydroxyapatite in calcium and phosphate rich ionic milieus
JP4071384B2 (ja) 光触媒を含む塗料組成物
JP5616542B2 (ja) 有害物質の吸着、分解、遮断及び脱臭用造成物及びこれの製造方法
JP2006299210A (ja) コーティング材、光触媒膜及びその用途
KR20090108590A (ko) 광촉매 활성을 나타내는 코팅제의 제조방법 및 이것에 의해 얻어지는 코팅제
CN1147543C (zh) 用于有机物光催化分解的二氧化钛纳米涂料及其制备方法
Tutunaru et al. Electrochemical study of metribuzin pesticide degradation on bismuth electrode in aqueous solution
CN109908869A (zh) 一种硬水软化纳米吸附材料的制备方法
JP4819784B2 (ja) 光触媒を含む塗料組成物
JP2003080078A (ja) 光活性を有する化合物及びその用途
JP2004269737A (ja) 塗料
JP2007077391A (ja) エマルション塗料及びその製造方法
CN107200333A (zh) 一种二氧化硅亲水纳米粒子的制备方法及应用
CN108367937A (zh) 浓缩光活性、中性二氧化钛溶胶
JP2006297351A (ja) 光触媒膜及びその製造方法
WO2004069946A1 (ja) 光触媒-酸化チタン複合膜形成用塗布剤
JP2004058050A (ja) 複合セラミックス材料の製造方法
JP2000302422A (ja) 光触媒膜形成用コーティング組成物
JP3691004B2 (ja) 抗菌・防かび性に優れたNi系粉末およびその製法、並びに該Ni系粉末を含む抗菌・防かび性に優れた材料、樹脂および部材
JP2000256102A (ja) 抗菌材及びその製造方法
JP2001224966A (ja) 酸化チタン光触媒体及びその製造方法
Lubambo et al. Dewetting pattern and stability of thin xyloglucan films adsorbed on silicon and mica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007850667

Country of ref document: EP