WO2008072330A1 - 鉛フリーはんだ中の過剰銅の析出分離装置 - Google Patents

鉛フリーはんだ中の過剰銅の析出分離装置 Download PDF

Info

Publication number
WO2008072330A1
WO2008072330A1 PCT/JP2006/324949 JP2006324949W WO2008072330A1 WO 2008072330 A1 WO2008072330 A1 WO 2008072330A1 JP 2006324949 W JP2006324949 W JP 2006324949W WO 2008072330 A1 WO2008072330 A1 WO 2008072330A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
free solder
solder
intermetallic compound
copper
Prior art date
Application number
PCT/JP2006/324949
Other languages
English (en)
French (fr)
Inventor
Tetsuro Nishimura
Original Assignee
Nihon Superior Sha Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Superior Sha Co., Ltd. filed Critical Nihon Superior Sha Co., Ltd.
Priority to EP06834703A priority Critical patent/EP2096182B1/en
Priority to JP2008549163A priority patent/JP5030304B2/ja
Priority to US12/518,656 priority patent/US8147746B2/en
Priority to CN2006800566431A priority patent/CN101589162B/zh
Priority to ES06834703T priority patent/ES2378251T3/es
Priority to PCT/JP2006/324949 priority patent/WO2008072330A1/ja
Publication of WO2008072330A1 publication Critical patent/WO2008072330A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/08Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/006Pyrometallurgy working up of molten copper, e.g. refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents

Definitions

  • the present invention relates to a method for removing excess copper eluted in a lead-free solder containing tin as a main component in a lead-free soldering process for a printed circuit board having a copper foil and a mounting component having a copper lead wire.
  • the present invention relates to an apparatus for separating and separating as an intermetallic compound.
  • Lead-free solder is mainly composed of tin (Sn) and contains an appropriate amount of copper, silver, zinc, nickel, conoret, bismuth, indium, phosphorus, germanium, etc. Normally, wetting occurs in the temperature range of about 250 ° C. Therefore, in the soldering process, a member such as a printed circuit board is immersed in a solder bath heated to such a temperature range, or a member such as a printed circuit board is brought into contact with a molten solder jet formed in the solder bath. Implemented.
  • copper used for printed circuit boards, component lead wires, and the like is heated to the above temperature range and melts into the solder in the above-described soldering process. This is so-called “copper erosion”.
  • copper erosion occurs, the copper concentration in the solder bath rises sharply and raises the melting point of the solder, which affects the surface tension and fluidity of the solder.
  • defects such as rough solder surface, solder bridges, perforations, unsoldered, and looser will occur, leading to poor solder quality.
  • the present invention has been made to solve the above-mentioned conventional problems, and deposits and separates excess copper eluted in a lead-free solder that safely and efficiently recovers tin. For the purpose of providing equipment!
  • the present inventor has found that when a molten solder with an intermetallic compound precipitated is passed through a perforated plate in which a large number of minute holes are formed, a fine compound is obtained. It has been found that when they pass through the micropores, they bond to each other and become coarse. The coarsened intermetallic compound has a higher settling rate in the molten solder than the fine intermetallic compound before bonding.
  • the present invention has adopted as a solution means an apparatus for depositing and separating copper eluted in a lead-free solder containing tin as a main component as an intermetallic compound.
  • the externally applied metal and molten A deposition tank for depositing an intermetallic compound between copper in the solder and tin in the molten solder, and a porous plate, and passing the molten lead-free solder through the porous plate It is provided with a granulation tank that increases the particle size by bonding the compounds to each other, and a separation tank that settles and separates the coarse intermetallic compound into molten lead-free solder.
  • a first perforated plate having a large number of small-diameter holes and a second perforated plate having a large number of large-diameter holes are arranged in this order in the molten solder flow path.
  • the molten lead-free solder is preferably passed through the first perforated plate and then passed through the second perforated plate.
  • the granulation tank is provided with a porous plate in a cylindrical shape, seals the upper and lower ends of the cylindrical shape, and supplies lead-free solder in which an intermetallic compound is precipitated inside the cylindrical porous plate. If the supply pipe is connected, the lead-free solder melted outside the inner force of the cylindrical perforated plate will be bonded to each other and the intermetallic compounds will bond to each other and the particle size will increase.
  • the granulation tank is provided with the first and second perforated plates as cylindrical plates, the second perforated plate is disposed outside the first perforated plate, and the upper and lower ends of each cylindrical plate are provided at the upper and lower ends. If the supply pipe for supplying lead-free solder on which the intermetallic compound is deposited is connected to the inner side of the first perforated plate, the molten solder is connected to the first perforated plate and the second perforated plate. Since it passes through the perforated plate in this order, the intermetallic compound bonded when passing through the small-diameter hole is re-bonded also when passing through the large-diameter hole, and the particle size gradually increases. Since the particle diameter of the flowing intermetallic compound can be further increased, sedimentation separation in the separation tank can be performed more efficiently.
  • the number of perforated plates provided in the granulation tank is arbitrary, and it is sufficient that at least one perforated plate is disposed in the flow path of the molten solder.
  • the perforated plates are arranged, intermetallic compounds are bonded to each other by the perforated plates, and the particle size can be gradually increased.
  • the inner diameter of the hole of the multi-hole plate provided on the upstream side is smaller than the inner diameter of the hole of the porous plate provided on the downstream side with respect to the flow path of the molten solder.
  • the separation tank deposits coarse intermetallic compounds at the center of the bottom of the tank.
  • a vortex generating means for generating a vortex in the molten solder in the tank is provided, and the coarse intermetallic compound is guided to the center of the tank by the vortex.
  • This eddy current generating means may be realized by providing a stirring means inside the separation tank, but in that case, it is necessary to separately provide the stirring means and its drive mechanism for the separation tank. Therefore, by arranging the nozzle for supplying molten lead-free solder containing coarse intermetallic compounds to the separation tank so as to be inclined with respect to the vertical axis, the nozzle itself is configured as a means for generating eddy currents. I prefer that.
  • the metal introduced into the precipitation tank may be any metal that precipitates an intermetallic compound with the copper in the molten solder and the tin in the molten solder. Is preferably at least one selected from transition metal forces such as Ni, Co and Fe.
  • an intermetallic compound formed between the metal put into the precipitation tank and excess copper in the molten solder and tin in the molten solder is precipitated in the precipitation tank. Since the fine-grained intermetallic compound is coarsened in the granulation tank, the settling rate of the intermetallic compound in the separation tank is increased, and excess copper can be separated efficiently. Therefore, tin can be recovered safely and efficiently without requiring a large-scale facility as in the prior art.
  • FIG. 1 is a conceptual diagram showing a configuration example of an apparatus for depositing and separating excess copper in lead-free solder.
  • FIG. 2 is a process diagram illustrating an outline of a tin recovery process by an apparatus for depositing and separating excess copper in lead-free solder.
  • FIG. 3 is a conceptual diagram showing an example of a precipitation tank.
  • FIG. 4 is a diagram showing a conceptual configuration of a granulation tank.
  • FIG. 5 is a partially cutaway view showing a configuration example of a granulating means provided in the granulation tank.
  • FIG. 6 is a diagram showing a conceptual configuration of a separation tank.
  • FIG. 7 is a diagram showing the state of sedimentation separation in a separation tank, (a) shows the state during stirring by vortex flow, and (b) shows the state after vortex flow stop.
  • FIG. 1 is a conceptual diagram showing an example of the configuration of an apparatus for depositing and separating excess copper in lead-free solder 1 according to the present invention.
  • This precipitation separation apparatus 1 includes a precipitation tank 2 for precipitating excess copper eluted in molten solder as an intermetallic compound, a granulation tank 4 equipped with granulation means 3, and an intermetallic compound of excess copper by precipitation.
  • the precipitation tank 2 and the granulation tank 4 are connected by a supply pipe 7 having a valve 6 to supply molten solder from the precipitation tank 2 to the granulation tank 4, and the granulation tank 4
  • the separation tank 5 is connected by a supply pipe 9 equipped with a valve 8 to supply molten solder to the separation tank 5 as well as four granulation tanks.
  • a nozzle 10 is provided at the tip of a supply pipe 9 for supplying molten solder to the separation tank 5, and the molten solder flows into the separation tank 5 also at the tip opening force of this nozzle 10.
  • the separation tank 5 is further provided with a valve 11 and a pipe 12 for recovering lead-free solder (main component is tin) from which excess copper has been separated and removed.
  • FIG. 2 is a process diagram for explaining the outline of the tin recovery process by the precipitation separator 1.
  • this apparatus first, molten solder containing excessively eluted copper is fed to the precipitation tank 2 due to copper corrosion of a printed circuit board or the like (process Pl).
  • the solder bath itself for performing the soldering process may be used as the precipitation bath 2.
  • a metal is added to the precipitation tank 2, and excess copper is precipitated as a predetermined intermetallic compound (process P2).
  • the element X is added, the element X is precipitated as a (CuX) Sn compound between copper and tin.
  • Molten solder containing intermetallic compounds is supplied to the granulation tank 4 where granulation is performed (process P3). That is, since the intermetallic compound has small grains, it is granulated by the granulating means 3 to be coarsened. Dissolve molten solder containing coarse intermetallic compounds. Supply to separation tank 5, where the intermetallic compounds are separated (process P4). Then, recovery of tin (Sn) from the separation tank 5 and recovery of the separated intermetallic compound are performed (process P5, P6). The collected tin can be reused as a new solder material, for example. Excess copper intermetallic compounds are discarded or reused as raw materials for copper, tin and other materials by subsequent refinement.
  • FIG. 3 is a conceptual diagram showing an example of the precipitation tank 2.
  • the lead-free solder 13 from which excess copper is eluted flows into the precipitation tank 2 and is heated to a predetermined temperature range by the heater 21 to maintain the lead-free solder 13 in a molten state.
  • an appropriate amount of a predetermined element X which is a metal, is added to the precipitation tank 2 using a mother alloy diluted with pure tin to a high concentration.
  • (CuX) Sn-based compound 14 is precipitated in precipitation tank 2.
  • the heating temperature by 21 is higher than the temperature at which the solder melts, and the deposited (CuX) Sn
  • the element X may be any element that does not form an intermetallic compound with copper (Cu) and forms an intermetallic compound with tin (Sn), for example, Ni, Co, Fe, Pt, and the like. Can be mentioned. More preferably, transition metals such as Ni, Co, and Fe are used. When appropriate amounts of these elements are added, (CuX) Sn, an intermetallic compound having a crystalline structure with a melting point higher than that of the solder, is formed in the molten solder.
  • CuX intermetallic compound having a crystalline structure with a melting point higher than that of the solder
  • the element X it is not necessary for the element X to be added to be one kind. Ni, Co, Fe, etc. Two or more selected elements X may be added. Then, after depositing the intermetallic compound, the molten solder 13 is guided to the granulation tank 4 through the supply pipe 7 connected to the discharge port 22 provided at the bottom of the precipitation tank 2.
  • FIG. 4 is a diagram showing a conceptual configuration of the granulation tank 4, and FIG. 5 is a partially cutaway view showing an example of the configuration of the granulation means 3 provided in the granulation tank 4.
  • the granulation tank 4 has a granulation means 3 inside thereof and a heater 41 for heating the granulation tank 4.
  • the heater 41 has a temperature of 230 in the granulation tank 4. Heated to ⁇ 250 ° C to keep lead-free solder in a molten state.
  • the granulating means 3 has a plurality of perforated plates 31, 32, 33.
  • Each of the perforated plates 31, 32, 33 is provided with a number of holes penetrating the front and back. It is preferable that the perforated plates 31, 32, 33 are arranged so that the upstream force is also arranged in this order along the flow path of the molten solder, and the hole diameter gradually increases from the upstream side toward the downstream side. Therefore, the hole diameter of the hole formed in the porous plate 31 is the smallest compared to the hole diameters of the other porous plates 32 and 33, and the hole diameter of the hole formed in the porous plate 32 is larger than the hole diameter of the porous plate 31.
  • the hole diameter of the porous plate 33 is formed to be the largest compared to the hole diameters of the other multi-hole plates 31 and 32.
  • the molten solder supplied from the supply pipe 7 is introduced into the granulating means 3, and sequentially passes through the perforated plates 31, 32, 33 and flows out of the granulating means 3.
  • the form of the perforated plates 31, 32, 33 is not particularly limited, and the flat plates may be sequentially arranged in parallel or may be cylindrical plates.
  • the perforated plates 31, 32, and 33 are provided as cylindrical plates arranged concentrically, and the perforated plates 31, 32, and 33 are also arranged with inner forces in this order.
  • the upper and lower ends of each of the cylindrical perforated plates 31, 32, 33 are sealed by the upper plate 3a and the lower plate 3b, and the supply pipe 7 is connected to the inside of the innermost perforated plate 31 and deposited.
  • the molten solder containing the intermetallic compound from the bath 2 flows into the multi-hole plate 31.
  • the molten solder flowing into the perforated plate 31 flows between the perforated plates 31 and 32 through the holes 31a of the perforated plate 31, and then passes between the perforated plates 32 and 33 through the holes 32a of the perforated plate 32. Flow into. Further, it flows out of the granulating means 3 through the hole 33a of the perforated plate 33.
  • the holes 3la, 32a, 33a provided with a large number of the perforated plates 31, 32, 33 are gradually increased in diameter from the inner side to the outer side of the granulating means 3. That is, the hole diameter of the hole 31a of the first porous plate 31 arranged on the innermost side of the granulating means 3 (that is, the upstream side of the flow path of the molten solder) is larger than the hole diameter of the hole 32a of the second porous plate 32.
  • the hole 32a of the small second porous plate 32 has a smaller hole diameter than the hole 33a of the third porous plate 33.
  • the hole diameter of the hole 31a of the first porous plate 31 may be 2 mm
  • the hole diameter of the hole 32a of the second porous plate 32 may be 3 mm
  • the hole diameter of the hole 33a of the third porous plate 33 may be 4 mm.
  • the perforated plate may be a wire mesh, but from the viewpoint of strength and the inner diameter dimension system, as shown in Fig. 5, a plurality of holes are punched in the metal plate. I prefer using punched metal. [0029] By sequentially passing an intermetallic compound, that is, (CuX) Sn-based compound 14 together with molten solder, through these plural porous plates 31, 32, 33, (CuX) Sn-based compound 14 becomes porous.
  • the molten solder containing the intermetallic compound granulated in the granulation tank 4 is supplied to the separation tank 5 through the supply pipe 9 connected to the discharge port 42 provided at the bottom of the granulation tank 4.
  • the case where three perforated plates are arranged as the granulating means 3 is exemplified.
  • the number of perforated plates is arbitrary. For example, even if there is only one perforated plate, the intermetallic compound can be bonded to increase the particle size when passing through the holes provided in the perforated plate. It is also possible to use two multi-hole plates, or a configuration with four or more plates.
  • FIG. 6 is a diagram showing a conceptual configuration of the separation tank 5.
  • Separation tank 5 is a tank that settles and separates the coarse intermetallic compound in molten solder 13, and is equipped with a heater 51 for heating the temperature in the tank to 230 to 250 ° C to keep the solder in a molten state.
  • a discharge port 53 to which a pipe 12 for collecting tin (molten solder) is connected is provided in the center of the bottom of the separation tank, and the deposited intermetallic compound is received at the top of the discharge port 53.
  • a tray 52 made of a wire mesh is provided.
  • the separation tank 5 is configured to generate a vortex 55 in the molten solder 13 in the tank and concentrate the intermetallic compound in the center of the tank by the vortex 55.
  • a nozzle 10 provided at the tip of a supply pipe 9 for supplying molten lead-free solder containing a coarse intermetallic compound 14 as shown in FIG. Is inclined with respect to the vertical axis, and by supplying molten solder along the inner wall of the separation tank 5, a vortex 55 is generated in the molten solder 13 in the tank.
  • the vortex 55 may be generated by providing a stirring means inside the separation tank 5.
  • FIG. 7 is a diagram showing the state of sedimentation separation in the separation tank 5, (a) shows the state during stirring by vortex flow, and (b) shows the state after vortex flow stop.
  • the intermetallic compound 14, that is, the (CuX) Sn system is, the (CuX) Sn system
  • the compound is attracted to the vortex 55 and gradually gathers in the lower part of the center of the separation tank 5. Go. Thereafter, when the supply of the molten solder to the separation tank 5 is stopped and the vortex is stopped, it is deposited on a tray 52 at the bottom center of the separation tank 5 as shown in FIG. In such a state, if the valve 11 (see FIG. 1) of the pipe 12 connected to the discharge port 53 of the separation tank 5 is opened, the molten solder 13 made of high-purity tin can be recovered. Note that a discharge port for collecting the high-purity tin remaining as the molten solder 13 may be provided in the upper part of the side wall of the separation tank 5 so that only the molten tin supernatant is discharged and recovered. .
  • the force illustrated in the case where the receiving tray 52 is provided above the discharge port 53 and the intermetallic compound is collected by the receiving tray 52 is not limited to such a mode.
  • the intermetallic compound may be directly discharged from the discharge port 53 without installing the tray 52, and the molten solder that also has high purity tin strength may be left in the separation tank 5.
  • an intermetallic compound may be deposited in the center of the bottom of the separation tank 5, and then a separate arch I means may be disposed inside the separation tank 5 to suck the intermetallic compound upward.
  • the apparatus 1 for precipitating and separating excess copper in lead-free solder sequentially processes the molten solder from which excess copper has eluted in the precipitation tank 2, the granulation tank 4 and the separation tank 5. It is realized so that excess copper can be separated and high-purity tin can be efficiently recovered.
  • the granulating tank 4 since the fine particles of the intermetallic compound produced by the excess copper powder are coarsened by the granulating means 3, the sedimentation rate of the intermetallic compound in the separation tank 5 is increased, and the excess Copper can be separated efficiently.
  • an increase in energy costs can be suppressed during the separation of intermetallic compounds.
  • this equipment is much smaller than the equipment used in the conventional tin recovery method and does not involve any dangerous equipment. There are also advantages.
  • the dip solder bath or the jet solder bath can also collect used solder, and tin can be collected using the above-mentioned apparatus 1 in the recycling factory, or transferred to another place.
  • Device 1 can be installed next to the dip solder bath or jet solder bath to collect tin in parallel with the soldering operation. In the latter case, excessively eluted copper can be separated continuously, which is useful for adjusting the copper concentration in the solder bath.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Molten Solder (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 本発明は、錫を主成分とする鉛フリーはんだ中に溶出した過剰銅を析出させて分離する装置を提供し、安全かつ効率的に錫を回収することを目的とする。錫を主成分とする鉛フリーはんだ中に溶出した銅を金属間化合物として析出させて分離する装置1であって、銅が溶出した鉛フリーはんだを溶融状態に維持しつつ、外部から投入される金属及び溶融はんだ中の銅と、前記溶融はんだ中の錫との間で金属間化合物を析出させる析出槽2と、多孔板31,32,33を有し、溶融した鉛フリーはんだを多孔板に通過させることにより金属間化合物を相互に結合させて粒径を大きくする造粒槽4と、粗大化した金属間化合物を溶融した鉛フリーはんだ中に沈降させて分離する分離槽5とを備えた構成である。

Description

明 細 書
鉛フリーはんだ中の過剰銅の析出分離装置
技術分野
[0001] 本発明は、銅箔を有するプリント基板、銅リード線を有する実装部品等の鉛フリーは んだ付け工程において、錫を主成分とする鉛フリーはんだ中に溶出する過剰銅を、 金属間化合物として析出させて分離する装置に関する。
背景技術
[0002] 鉛フリーはんだは、錫 (Sn)を主体とし、これに銅、銀、亜鉛、ニッケル、コノ レト、ビ スマス、インジウム、リン、ゲルマニウム等を適量含有させたものであり、融点以上の通 常 250°C程度の温度域でぬれ作用が生じる。従って、はんだ付け工程は、このような 温度域に加熱したはんだ槽にプリント基板等の部材をどぶ漬けしたり、はんだ槽内に 形成した溶解はんだの噴流にプリント基板等の部材を接触させたりして実施される。
[0003] しかし、プリント基板や、部品のリード線等に用いられる銅は、上記のはんだ付けェ 程において、上記温度域に熱せられ、はんだ中に溶け出す。これがいわゆる「銅食 われ」である。この銅食われが生じると、はんだ槽中の銅濃度が急激に上昇して、は んだの融点を上昇させるので、はんだの表面張力、流動性に影響を与える。その結 果、はんだレべラーの表面の荒れ、はんだブリッジ、穴あき、未はんだ、ッ入ッララ等 の不具合が生じ、はんだの品質不良を招く。
[0004] このため、はんだ槽中の銅濃度が上昇した場合には、はんだ槽中のはんだの一部 または全部を入れ替えることが行われる。このとき、抜き取られた使用済みのはんだ は、そのまま廃棄される力、或いは何らかの処理を加えて過剰銅を分離して錫を回収 し、これをはんだ原料として再利用する。
[0005] 従来、錫の回収方法としては、融点差を利用する方法、電解精鍊法などが用いら れてきた。
[0006] し力しながら、従来の錫の回収方法では、大掛力りな設備を必要とするので、設備 の設置面積を広くする必要が生じ、また、被精鍊物の温度を高く保っためには、火炎 の問題ゃ大電力を消費するヒーターや電解槽等の装備が必要である。このため、環 境に悪く、危険かつ非効率な作業を強 、られて 、た。
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上記従来の問題を解決するためになされたものであって、安全かつ効 率的に錫を回収すベぐ鉛フリーはんだ中に溶出した過剰銅を析出させて分離する 装置を提供することを目的として!ヽる。
課題を解決するための手段
[0008] 上記目的を達成するため、本発明者が鋭意研究を行ったところ、次のような知見が 得られた。
[0009] (1)過剰な銅が溶出した鉛フリーはんだ槽中に金属である Ni、 Co、 Fe等の元素を、 純錫で高濃度に希釈した母合金によって適量添加すると、錫銅溶融合金がこれと反 応して金属間化合物、すなわち(CuX) Sn系化合物(但し、 Xは、 Ni、 Co、 Fe等、添
6 5
カロした元素)として析出する。したがって、この(CuX) Sn系化合物を分離すれば、残
6 5
つた錫 (Sn)を回収できる。
[0010] (2)—方、上記 (CuX) Sn系化合物は、粒が小さぐ溶融はんだ中を浮遊するため
6 5
、その回収は容易ではない。長時間放置しておけば、やがて微細な (CuX) Sn系化
6 5 合物は沈殿して回収しやすくなるが、はんだが溶融する 230〜250°Cという温度を長 時間維持することはエネルギーコストの上昇を招く。それ故、 (CuX) Sn
6 5系化合物を 効率的に分離、除去するためには、この微細な化合物を粗大化して沈降速度を速め ることが有用である。
[0011] そして本発明者は、上記知見に基づき更なる研究を重ねた結果、微小な孔を多数 形成した多孔板に、金属間化合物が析出した溶融はんだを通過させると、微細な化 合物が微小孔を通過する際、相互に結合して粗大化することを見出した。この粗大 化した金属間化合物は、結合前の微細な金属間化合物に比して溶融はんだ中での 沈降速度は速くなる。
[0012] それ故、本発明が解決手段として採用したところは、錫を主成分とする鉛フリーはん だ中に溶出した銅を金属間化合物として析出させて分離する装置であって、銅が溶 出した鉛フリーはんだを溶融状態に維持しつつ、外部力 投入される金属及び溶融 はんだ中の銅と、前記溶融はんだ中の錫との間で金属間化合物を析出させる析出 槽と、多孔板を有し、溶融した鉛フリーはんだを前記多孔板に通過させることにより前 記金属間化合物を相互に結合させて粒径を大きくする造粒槽と、粗大化した金属間 化合物を溶融した鉛フリーはんだ中に沈降させて分離する分離槽とを備える点にあ る。
[0013] また造粒槽は、溶融はんだの流路に対して、小径の孔を多数設けた第 1の多孔板 と、大径の孔を多数設けた第 2の多孔板をこの順に配置し、溶融した鉛フリーはんだ を第 1の多孔板に通過させた後、第 2の多孔板に通過させることが好ましい。これによ り、小径の孔を通過する際に結合した金属間化合物は、大径の孔を通過する際にも 結合し、次第に粒径を大きくしていくので、分離槽での沈降分離を更に効率的に行う ことができる。
[0014] また造粒槽は、多孔板を筒状に設け、その筒状の上下端部を封止すると共に、そ の筒状多孔板の内側に金属間化合物を析出した鉛フリーはんだを供給する供給管 を接続して成る構成とすれば、筒状多孔板の内側力 外側に溶融した鉛フリーはん だが流出する際に、金属間化合物同士が互いに結合し、その粒径が大きくなる。
[0015] また造粒槽は、第 1及び第 2の多孔板を筒状板として設け、第 2の多孔板を第 1の 多孔板の外側に配置すると共に各筒状板の上下端部を封止し、第 1の多孔板の内 側に金属間化合物を析出した鉛フリーはんだを供給する供給管を接続して成る構成 とすれば、溶融はんだは、第 1の多孔板と第 2の多孔板をこの順に通過していくので 、小径の孔を通過する際に結合した金属間化合物は、大径の孔を通過する際にも再 度結合し、次第に粒径が大きくなり、第 2の多孔板力 流出する金属間化合物の粒 径を更に大きくできるので、分離槽での沈降分離を更に効率的に行うことができる。
[0016] 但し、造粒槽に設ける多孔板の数は任意であり、溶融はんだの流路に対して少なく とも 1枚の多孔板を配置して 、ればよ 、。また複数枚の多孔板を配置する場合には、 それぞれの多孔板で金属間化合物を互いに結合させ、その粒径を次第に大きくして いくことができる。この場合には、溶融はんだの流路に対し、上流側に設けられる多 孔板の孔の内径が下流側に設けられる多孔板の孔の内径より小さいことが好ましい。
[0017] 一方、分離槽は、槽内の底部中心部に粗大化した金属間化合物を沈積させるため に、槽内の溶融はんだに渦流を生じさせる渦流発生手段を設けた構成とし、その渦 流によって槽の中心部に粗大化した金属間化合物を導くことが好ましい。この渦流発 生手段は、分離槽の内部に撹拌手段を設けることによって実現しても良いが、その場 合には分離槽に対して撹拌手段とその駆動機構を別途設ける必要がある。そこで、 粗大化した金属間化合物を含む溶融した鉛フリーはんだを分離槽に供給する際のノ ズルを鉛直軸に対して傾斜させて配置することにより、そのノズル自体を渦流発生手 段として構成することが好ま 、。
[0018] 尚、上記構成において、析出槽に投入する金属は、溶融はんだ中の銅と共に、溶 融はんだ中の錫との間で金属間化合物を析出するものであれば良いが、その元素 X は、 Ni、 Coおよび Fe等の遷移金属力 選択される 1種以上であることが好ましい。 発明の効果
[0019] 本発明によれば、析出槽に投入される金属及び溶融はんだ中の過剰銅と、溶融は んだ中の錫との間で形成される金属間化合物が析出槽で析出し、その微細な粒の 金属間化合物が造粒槽で粗大化するので、分離槽での金属間化合物の沈降速度 が速くなり、過剰銅を効率的に分離できる。したがって、従来のように大がかりな設備 を必要とすることなく、安全かつ効率的に錫を回収できるようになる。
図面の簡単な説明
[0020] [図 1]鉛フリーはんだ中の過剰銅の析出分離装置の一構成例を示す概念図である。
[図 2]鉛フリーはんだ中の過剰銅の析出分離装置による錫回収処理の概要を説明す るプロセス図である。
[図 3]析出槽の一例を示す概念図である。
[図 4]造粒槽の概念的構成を示す図である。
[図 5]造粒槽に設けられる造粒手段の一構成例を示す一部切欠図である。
[図 6]分離槽の概念的構成を示す図である。
[図 7]分離槽における沈降分離の様子を示す図であり、 (a)は渦流による撹拌時の状 態を示しており、 (b)は渦流停止後の状態を示している。
符号の説明
[0021] 1 過剰銅の析出分離装置 2 析出槽
3 造粒手段
4 造粒槽
5 分離槽
10 ノズル
31, 32, 33 多孔板
50 渦流発生手段
発明を実施するための最良の形態
[0022] 以下、本発明の実施の形態を、図面を参照しつつ詳細に説明する。図 1は、本発 明に係る鉛フリーはんだ中の過剰銅の析出分離装置 1の一構成例を示す概念図で ある。この析出分離装置 1は、溶融はんだ中に溶出した過剰銅を金属間化合物とし て析出させる析出槽 2と、造粒手段 3を備えた造粒槽 4と、過剰銅の金属間化合物を 沈降分離する分離槽 5から成り、析出槽 2と造粒槽 4はバルブ 6を備えた供給管 7によ つて接続され、析出槽 2から溶融はんだを造粒槽 4に供給すると共に、造粒槽 4と分 離槽 5はバルブ 8を備えた供給管 9によって接続され、造粒槽 4カゝら分離槽 5に溶融 はんだを供給する。分離槽 5に溶融はんだを供給する供給管 9の先端にはノズル 10 が設けられ、このノズル 10の先端開口力も溶融はんだが分離槽 5に流入する。尚、 分離槽 5には更に過剰銅が分離除去された鉛フリーはんだ (主成分は錫)を回収す るためのバルブ 11と管 12が設けられている。
[0023] 図 2は、析出分離装置 1による錫回収処理の概要を説明するプロセス図である。こ の装置 1では、まず、プリント基板等の銅食われにより、過剰に溶出した銅を含む溶 融はんだを析出槽 2に供給する(プロセス Pl)。但し、はんだ付け工程を行うための はんだ槽自体を析出槽 2として利用してもよい。そして析出槽 2に金属を添加し、過 剰銅を所定の金属間化合物として析出させる(プロセス P2)。具体的には、元素 Xを 添加した場合、元素 Xは銅及び錫との間で (CuX) Sn系化合物として析出する。この
6 5
金属間化合物を含む溶融はんだは造粒槽 4に供給され、そこで造粒が行われる (プ ロセス P3)。すなわち、上記の金属間化合物は粒が小さいため、造粒手段 3によって これを造粒して粗大化する。そして粗大化した金属間化合物を含む溶融はんだを分 離槽 5に供給し、そこで金属間化合物を分離する (プロセス P4)。そして分離槽 5から 錫(Sn)の回収と、分離した金属間化合物の回収が行われる(プロセス P5, P6)。回 収された錫は例えば新たなはんだ原料として再利用できる。また過剰銅の金属間化 合物は廃棄されるか、或いはその後の精鍊により、銅、錫その他の原料として再利用 される。
[0024] 図 3は析出槽 2の一例を示す概念図である。例えば、析出槽 2に過剰な銅が溶出し た鉛フリーはんだ 13を流入させ、これをヒーター 21で所定の温度範囲に加熱して鉛 フリーはんだ 13を溶融状態に維持する。この状態で、析出槽 2に金属である所定の 元素 Xを、純錫で高濃度に希釈した母合金によって適量投入添加する。元素 Xの金 属を添加することにより、 (CuX) Sn系化合物 14が析出槽 2に析出する。尚、ヒータ
6 5
一 21による加熱温度は、はんだが溶解する温度以上であって、析出した (CuX) Sn
6 5 系化合物が溶解しない温度以下に設定すればよい。即ち、 230〜250°Cとすればよ い。
[0025] 元素 Xとしては、銅 (Cu)とは金属間化合物を形成せず、錫 (Sn)と金属間化合物を 形成する元素であればよぐ例えば、 Ni、 Co、 Fe、 Pt等が挙げられる。また、より好まし くは Ni、 Co、 Fe等の遷移金属である。これらの元素が適量添加されると、溶融はんだ 中で、はんだより融点の高い結晶構造を有する金属間化合物である(CuX) Snが形
6 5 成される。但し、添加する元素 Xは 1種である必要はなぐ Ni、 Co、 Fe等力 選択した 2種以上の元素 Xを添加しても良い。そして金属間化合物を析出させた後、析出槽 2 の底部に設けた排出口 22に接続された供給管 7を介して溶融はんだ 13を造粒槽 4 に導く。
[0026] 図 4は造粒槽 4の概念的構成を示す図であり、図 5は造粒槽 4に設けられる造粒手 段 3の一構成例を示す一部切欠図である。図 4に示すように造粒槽 4は、その内部に 造粒手段 3を有すると共に、造粒槽 4を加熱するヒーター 41を備えており、ヒーター 4 1は造粒槽 4内の温度を 230〜 250°Cに加熱して鉛フリーはんだを溶融状態に保つ ようにしてある。そして造粒槽 4内の造粒手段 3に溶融はんだを通過させることにより、 溶融はんだに含まれる微細な金属間化合物を粗大化し、溶融はんだと分離しやす!/、 大粒の金属間化合物に造粒する。造粒手段 3は複数の多孔板 31, 32, 33を有して おり、多孔板 31, 32, 33のそれぞれには表裏を貫通する多数の孔が設けられている 。多孔板 31, 32, 33は溶融はんだの流路に沿って上流側力もこの順に配置され、 上流側から下流側に向かうに従って、孔径が次第に大きくなるように形成することが 好ましい。そのため、多孔板 31に形成される孔の孔径は他の多孔板 32, 33の孔径 に比して最も小さくなり、多孔板 32に形成される孔の孔径は多孔板 31の孔径よりも 大きぐ多孔板 33の孔径よりも小さくなり、多孔板 33に形成される孔の孔径は他の多 孔板 31 , 32の孔径に比して最も大きくなるように形成される。供給管 7から供給され る溶融はんだはこの造粒手段 3に導入され、多孔板 31, 32, 33を順次通過して造粒 手段 3から流出する。
[0027] 多孔板 31, 32, 33の形態は特に限定されるものではなぐ平板を順次並列させて もよいし、筒状板であってもよい。例えば本実施形態では、図 5に示すように多孔板 3 1, 32, 33は同心円状に配置される筒状板として設けられており、各多孔板 31, 32, 33は内側力もこの順に配置されている。そして各筒状多孔板 31, 32, 33の上下端 部は上板 3a及び下板 3bによって封止されており、供給管 7は最も内側に配置された 多孔板 31の内側に接続され、析出槽 2からの金属間化合物を含む溶融はんだは多 孔板 31の内側に流入する。そして多孔板 31の内側に流入した溶融はんだは、多孔 板 31の孔 31aを通って多孔板 31と 32の間の流れ込み、その後、多孔板 32の孔 32a を通って多孔板 32と 33の間に流れ込む。そして更に、多孔板 33の孔 33aを通って 造粒手段 3の外側に流出する。
[0028] 各多孔板 31, 32, 33〖こ多数設けた孔 3 la, 32a, 33aは、造粒手段 3の内側から 外側に向かうに従って、孔径が次第に大きくなる。即ち、造粒手段 3の最も内側 (即ち 、溶融はんだの流路の上流側)に配置された第 1の多孔板 31の孔 31aの孔径は第 2 の多孔板 32の孔 32aの孔径よりも小さぐ第 2の多孔板 32の孔 32aの孔径は第 3の 多孔板 33の孔 33aの孔径よりも小さく形成されている。例えば、第 1の多孔板 31の孔 31aの孔径を 2mm、第 2の多孔板 32の孔 32aの孔径を 3mm、第 3の多孔板 33の孔 33aの孔径を 4mmとしても良い。尚、多孔板としては、金網のようなものであっても良 いが、強度の観点、内径寸法制度の観点からは、図 5に示すように、金属板に対して 複数の孔をパンチング形成した、 、わゆるパンチングメタルを用いるのが好まし 、。 [0029] このような複数の多孔板 31, 32, 33に、溶融はんだと共に金属間化合物、即ち(C uX) Sn系化合物 14を順次通過させることにより、 (CuX) Sn系化合物 14は、多孔
6 5 6 5
板 31, 32, 33の孔 31a, 32a, 33aを通過するたびに結合し、少しずつその粒径が 大きくなつていく。そして造粒槽 4で造粒され、粗大化した金属間化合物を含む溶融 はんだは、造粒槽 4の底部に設けた排出口 42に接続された供給管 9を介して分離槽 5に供給される。
[0030] 尚、本実施形態では、造粒手段 3として多孔板を 3枚配置する場合を例示して ヽる 力 多孔板の数は任意である。例えば多孔板が 1枚であったとしても、多孔板に設け た孔を通過する際に金属間化合物は結合して粒径を大きくすることができる。また多 孔板を 2枚にしても良 、し、 4枚以上を配置した構成としても良 、。
[0031] 図 6は分離槽 5の概念的構成を示す図である。分離槽 5は溶融はんだ 13中の粗大 化した金属間化合物を沈降分離する槽であり、槽内温度を 230〜250°Cに加熱して はんだを溶融状態に保っためのヒーター 51を備えている。また分離槽の底部中央に は、錫 (溶融はんだ)を回収するための管 12が接続される排出口 53が設けられてお り、その排出口 53の上部には沈積した金属間化合物を受けるために金網等で構成 された受皿 52が設けられる。したがって、金属間化合物を沈降させる際には、金属 間化合物を底部中央の受皿 52に向力つて沈降させることが好ましい。そこで、この分 離槽 5は槽内の溶融はんだ 13に渦流 55を発生させ、その渦流 55により金属間化合 物を槽中心部に集中させるように構成している。この渦流発生手段 50として、本実施 形態では図 6に示す如ぐ粗大化した金属間化合物 14を含む溶融した鉛フリーはん だを分離槽 5に供給する供給管 9の先端に設けたノズル 10を鉛直軸に対して傾斜さ せており、分離槽 5の内壁に沿って溶融はんだを供給することにより、槽内の溶融は んだ 13に渦流 55を発生させている。但し、このような形態に限定されるものではなく 、分離槽 5の内部に撹拌手段を設けることによって渦流 55を発生させても良い。
[0032] 図 7は分離槽 5における沈降分離の様子を示す図であり、 (a)は渦流による撹拌時 の状態を、(b)は渦流停止後の状態をそれぞれ示している。図 7 (a)に示す如ぐ分 離槽 5内に渦流 55が発生している状態では、金属間化合物 14、即ち(CuX) Sn系
6 5 化合物はその渦流 55に引き寄せられ、次第に分離槽 5の中心部の下部に集まって いく。その後、分離槽 5への溶融はんだの供給を止めて渦流を停止させると、同図 (b )に示す如ぐ分離槽 5の底部中央の受皿 52上に沈積する。このような状態で、分離 槽 5の排出口 53に接続された管 12のバルブ 11 (図 1参照)を開けば、高純度の錫か ら成る溶融はんだ 13を回収できる。尚、溶融はんだ 13として残った高純度の錫を回 収するための排出口を分離槽 5の側壁上部に設け、溶融した錫の上澄みだけを排出 して、回収するように構成しても良い。
[0033] 尚、図例では、排出口 53の上部に受皿 52を設け、該受皿 52で金属間化合物を回 収する場合を例示した力 このような態様に限られるものはない。例えば受皿 52を設 けることなぐ排出口 53から金属間化合物を直接排出させ、分離槽 5に高純度の錫 力も成る溶融はんだを残留させるように構成してもよ 、。また分離槽 5の底部中央に 金属間化合物を沈積させた後、分離槽 5の内部に別途吸弓 I手段を配置して金属間 化合物を上方力 吸引するように構成してもよい。
[0034] 上述のように鉛フリーはんだ中の過剰銅の析出分離装置 1は、過剰銅が溶出した 溶融はんだを、析出槽 2、造粒槽 4及び分離槽 5において順次処理していくことにより 、過剰銅を分離して高純度の錫を効率的に回収できるように実現されている。特に、 造粒槽 4では、造粒手段 3により過剰銅カゝら生成される金属間化合物の微細な粒を 粗大化するので、分離槽 5での金属間化合物の沈降速度が速くなり、過剰銅を効率 的に分離できるようになつている。そして金属間化合物の分離に際し、エネルギーコ ストの上昇が抑えられる。また、この装置設備は、従来の錫の回収方法で使用されて いた設備に比して極めて規模が小さぐまた危険な設備を伴わないので、作業の安 全性が確保されると!/ヽぅ利点もある。
[0035] また、ディップはんだ槽または噴流はんだ槽カも使用済みはんだを回収し、リサイク ル工場において上記の装置 1を用いて錫を回収することもできるし、別の場所に移す ことなぐ即ち、ディップはんだ槽または噴流はんだ槽の横に装置 1を設置し、はんだ 付けの作業と並行して錫の回収を行うこともできる。後者の場合には、過剰に溶出し た銅を連続的に分離することができるので、はんだ槽内の銅濃度の調整にも有用で ある。
産業上の利用可能性 本発明によれば、鉛フリーはんだ槽中に溶出した過剰銅を分離して、高効率に錫 を回収することができる。このようにして回収された錫は、はんだ資源として再利用で きる。

Claims

請求の範囲
[1] 錫を主成分とする鉛フリーはんだ中に溶出した銅を金属間化合物として析出させて 分離する装置であって、
銅が溶出した鉛フリーはんだを溶融状態に維持しつつ、外部から投入される金属 及び溶融はんだ中の銅と、前記溶融はんだ中の錫との間で金属間化合物を析出さ せる析出槽と、
多孔板を有し、溶融した鉛フリーはんだを前記多孔板に通過させることにより前記 金属間化合物を相互に結合させて粒径を大きくする造粒槽と、
粗大化した金属間化合物を溶融した鉛フリーはんだ中に沈降させて分離する分離 槽とを備えることを特徴とする鉛フリーはんだ中の過剰銅の析出分離装置。
[2] 前記造粒槽は、小径の孔を多数設けた第 1の多孔板と、大径の孔を多数設けた第 2の多孔板を備え、溶融した鉛フリーはんだを前記第 1の多孔板に通過させた後、前 記第 2の多孔板に通過させる請求の範囲第 1項記載の鉛フリーはんだ中の過剰銅の 析出分離装置。
[3] 前記造粒槽は、前記多孔板を筒状に設け、その筒状の上下端部を封止すると共に 、前記多孔板の内側に金属間化合物を析出した鉛フリーはんだを供給する供給管を 接続して成る請求の範囲第 1項記載の鉛フリーはんだ中の過剰銅の析出分離装置。
[4] 前記造粒槽は、前記第 1及び第 2の多孔板を筒状板として設け、第 2の多孔板を第 1の多孔板の外側に配置すると共に各筒状板の上下端部を封止し、前記第 1の多孔 板の内側に金属間化合物を析出した鉛フリーはんだを供給する供給管を接続して成 る請求の範囲第 2項記載の鉛フリーはんだ中の過剰銅の析出分離装置。
[5] 前記分離槽は、槽内に渦流を生じさせる渦流発生手段を有し、渦流の中心部に粗 大化した金属間化合物を導くようにした請求の範囲第 1項乃至第 4項のいずれかに 記載の鉛フリーはんだ中の過剰銅の析出分離装置。
[6] 前記渦流発生手段は、粗大化した金属間化合物を含む溶融した鉛フリーはんだを 前記分離槽に供給する際のノズルを鉛直軸に対して傾斜させて成る請求の範囲第 5 項記載の鉛フリーはんだ中の過剰銅の析出分離装置。
[7] 前記金属は遷移金属である請求の範囲第 1項乃至第 6項の 、ずれか記載の鉛フリ 一はんだ中の過剰銅の析出分離装置。
PCT/JP2006/324949 2006-12-14 2006-12-14 鉛フリーはんだ中の過剰銅の析出分離装置 WO2008072330A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06834703A EP2096182B1 (en) 2006-12-14 2006-12-14 Apparatus for precipitation/separation of excess copper in lead-free solder
JP2008549163A JP5030304B2 (ja) 2006-12-14 2006-12-14 鉛フリーはんだ中の過剰銅の析出分離装置
US12/518,656 US8147746B2 (en) 2006-12-14 2006-12-14 Apparatus for precipitation/separation of excess copper in lead-free solder
CN2006800566431A CN101589162B (zh) 2006-12-14 2006-12-14 无铅焊料中过量铜的析出分离装置
ES06834703T ES2378251T3 (es) 2006-12-14 2006-12-14 Aparato de deposición y separación para el cobre sobrante en suelda sin plomo
PCT/JP2006/324949 WO2008072330A1 (ja) 2006-12-14 2006-12-14 鉛フリーはんだ中の過剰銅の析出分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324949 WO2008072330A1 (ja) 2006-12-14 2006-12-14 鉛フリーはんだ中の過剰銅の析出分離装置

Publications (1)

Publication Number Publication Date
WO2008072330A1 true WO2008072330A1 (ja) 2008-06-19

Family

ID=39511361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324949 WO2008072330A1 (ja) 2006-12-14 2006-12-14 鉛フリーはんだ中の過剰銅の析出分離装置

Country Status (6)

Country Link
US (1) US8147746B2 (ja)
EP (1) EP2096182B1 (ja)
JP (1) JP5030304B2 (ja)
CN (1) CN101589162B (ja)
ES (1) ES2378251T3 (ja)
WO (1) WO2008072330A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170095891A1 (en) * 2015-10-01 2017-04-06 Iowa State University Research Foundation, Inc. Lead-free composite solder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168826A (ja) * 1987-12-24 1989-07-04 Toyo Denshi Kogyo Kk 溶融半田内の銅分除去装置
JPH05295461A (ja) * 1992-04-17 1993-11-09 Nippon Light Metal Co Ltd アルミニウム精製方法及び装置
US5388756A (en) * 1993-12-27 1995-02-14 At&T Corp. Method and apparatus for removing contaminants from solder
JP2006206951A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd はんだ材料の不純物除去方法
EP1908853A1 (en) 2005-07-26 2008-04-09 Nihon Superior Sha Co., Ltd METHOD OF DEPOSITING COPPER IN LEAD-FREE SOLDER, METHOD OF GRANULATING (CuX)6Sn5 COMPOUND AND METHOD OF SEPARATING THE SAME, AND METHOD OF RECOVERING TIN

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159267A (ja) * 1983-02-28 1984-09-08 Nec Home Electronics Ltd 半田槽内に析出した銅成分の分離方法
US5948312A (en) * 1997-12-04 1999-09-07 Shipley Company, L.L.C. Skimmer system
JP2005042191A (ja) * 2003-07-22 2005-02-17 Shirogane:Kk 錫ベースの鉛フリー半田および錫鉛ベース半田に於ける鉄、ニッケル等の銅共晶体による除去精錬

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168826A (ja) * 1987-12-24 1989-07-04 Toyo Denshi Kogyo Kk 溶融半田内の銅分除去装置
JPH05295461A (ja) * 1992-04-17 1993-11-09 Nippon Light Metal Co Ltd アルミニウム精製方法及び装置
US5388756A (en) * 1993-12-27 1995-02-14 At&T Corp. Method and apparatus for removing contaminants from solder
JP2006206951A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd はんだ材料の不純物除去方法
EP1908853A1 (en) 2005-07-26 2008-04-09 Nihon Superior Sha Co., Ltd METHOD OF DEPOSITING COPPER IN LEAD-FREE SOLDER, METHOD OF GRANULATING (CuX)6Sn5 COMPOUND AND METHOD OF SEPARATING THE SAME, AND METHOD OF RECOVERING TIN

Also Published As

Publication number Publication date
EP2096182B1 (en) 2011-11-30
EP2096182A4 (en) 2010-03-31
JP5030304B2 (ja) 2012-09-19
CN101589162B (zh) 2011-03-30
CN101589162A (zh) 2009-11-25
JPWO2008072330A1 (ja) 2010-03-25
EP2096182A1 (en) 2009-09-02
ES2378251T3 (es) 2012-04-10
US20100007068A1 (en) 2010-01-14
US8147746B2 (en) 2012-04-03

Similar Documents

Publication Publication Date Title
JP5209249B2 (ja) 銅の製造方法
JP2009114520A (ja) 脱銅電解液からの脱ニッケル方法および装置
CN103857830A (zh) 氢氧化铟或含氢氧化铟的化合物的制造方法
JP5209248B2 (ja) 銅電解液原料の製造方法及びこれを用いた銅の製造方法
JP5143495B2 (ja) 銅溶解液の製造方法及び銅の製造方法
WO2008072330A1 (ja) 鉛フリーはんだ中の過剰銅の析出分離装置
JP5070581B2 (ja) 貴金属の分離回収方法
EP2377956B1 (en) Device for copper precipitation in lead-free solder, granulation and separation of (cux) 6sn5 compounds and recovery of tin
CN112204159B (zh) 有选择性地氧化合金的金属的方法
JP5165958B2 (ja) 貴金属の回収方法及び銅の製造方法
JP2007217760A (ja) 金属の回収方法とその装置
CN106636648A (zh) 一种含金属废弃物的综合回收分离方法
TW202117025A (zh) 還原爐的分隔牆
JP5068772B2 (ja) インジウム及び塩化第二鉄を含有するエッチング廃液からのインジウムの回収方法
JP5016410B2 (ja) 銅溶解液の浄液方法及び銅の製造方法
JP2010248613A (ja) 溶融金属浄化装置
TH90438A (th) เครื่องตกสะสมและเครื่องแยกสำหรับทองแดงส่วนเกินในโลหะบัดกรีชนิดไร้ตะกั่ว
TH41660B (th) เครื่องตกสะสมและเครื่องแยกสำหรับทองแดงส่วนเกินในโลหะบัดกรีชนิดไร้ตะกั่ว
JP2010248614A (ja) 溶融金属浄化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680056643.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834703

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549163

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006834703

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12518656

Country of ref document: US