WO2008069273A1 - 分画大豆蛋白素材の製造法 - Google Patents

分画大豆蛋白素材の製造法 Download PDF

Info

Publication number
WO2008069273A1
WO2008069273A1 PCT/JP2007/073598 JP2007073598W WO2008069273A1 WO 2008069273 A1 WO2008069273 A1 WO 2008069273A1 JP 2007073598 W JP2007073598 W JP 2007073598W WO 2008069273 A1 WO2008069273 A1 WO 2008069273A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
globulin
soybean
fraction
water
Prior art date
Application number
PCT/JP2007/073598
Other languages
English (en)
French (fr)
Inventor
Masahiko Samoto
Mitsutaka Kohno
Original Assignee
Fuji Oil Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Company, Limited filed Critical Fuji Oil Company, Limited
Priority to JP2008548331A priority Critical patent/JP5353244B2/ja
Priority to US12/448,070 priority patent/US7838633B2/en
Publication of WO2008069273A1 publication Critical patent/WO2008069273A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean

Definitions

  • the present invention relates to a method for producing a fractionated soybean protein material. Specifically, it relates to the fractionation technology of 7S globulin, which is a unique protein contained in soybean protein, and lipophilic protein.
  • Soy protein is widely used to improve the physical properties of foods due to its unique gel-forming properties, and it is also being used as a health food ingredient with high nutritional value! /
  • Soybean storage protein precipitates around pH 4.5, and it is relatively easily divided into an acid-soluble protein fraction mainly composed of soluble components other than the storage protein and an acid-precipitated protein fraction mainly composed of storage protein. Can split power.
  • a product obtained by collecting the acid-precipitating protein fraction is a separated soybean protein, which is currently widely used in the food industry.
  • Proteins constituting soy protein are classified into 2S, 7S, US, and 15S globulins based on the sedimentation coefficient by ultracentrifugation analysis.
  • 7S globulin and 11S globulin are the main constituent protein components of the globulin fraction.
  • ricinin is equivalent to 7S globulin
  • glycinin is substantially equivalent to 11S globulin.
  • Proteins constituting soy protein have different properties in physical properties such as viscosity, coagulability, and surface activity, and nutritional management functions.
  • Non-patent Document 1 7S globulin has been reported to reduce blood neutral fat (Non-patent Document 1). 11S globulin is said to dominate the hardness of the tofu gel, which has a high gelling power.
  • Figure 1 shows the dissolution behavior of 7S globulin and 11S globulin with respect to pH. 7S globulin has low solubility at pH 4.8, 11S globulin has low solubility at pH 4.5 to 6, and so on. It can be expected that if the 11S globulin is first precipitated and then the pH is further lowered to precipitate the 7S globulin, then the respective components can be fractionated with high purity.
  • acid-precipitable soy protein has a high affinity with polar lipids constituting membranes such as cell membranes, protein bodies, and oil bodies in addition to 7S globulin and 11S globulin! It has been reported in recent years that there is a mixture!
  • the amount of nitrogen in this acid-precipitable fraction accounted for about 30% of the total amount of nitrogen in defatted soymilk, which was surprisingly high.
  • Non-patent Document 5 Non-patent Document 5
  • Proteins contained in the acid-precipitated fraction with a small amount of 7S globulin and 11S globulin are mainly proteins showing 34 kDa, 24 kDa and 18 kDa in molecular weight estimated by SDS-polyacrylamide electrophoresis, lipoxygenase, ⁇ -conglycinin, It is a mixture of many other miscellaneous proteins. Because this group of proteins shows affinity with polar lipids, It is called a quality affinity protein.
  • Non-Patent Document 4 shows the force S, high ionic strength, and many reducing agents. However, since desalting and washing are essential steps, it is effective at the experimental level, but unsuitable for industrial processes.
  • the present applicant has developed a technique for fractionating into high-purity soybean 7S globulin protein and soybean 11 S globulin protein with a low contamination rate of lipophilic protein (Patent Documents 8 and 9).
  • This method is industrially superior in that 7S globulin is fractionated with high purity.
  • complicated operations are required in order to fractionate the remaining 1 1 S globulin and lipophilic protein mixture into high purity components. Was in a situation where it was difficult to use effectively.
  • Non-patent literature l Okita T et al, J. Nutr. Sci. Vitaminol., 27 (4), 379-388, 1981
  • Non-Patent Document 2 13 ⁇ 4 * 11, ⁇ .3 ⁇ 4 and Shibasaki, K., J.Agric.FoodChem., 24, 117, 1976
  • Non-Patent Document 3 Herman, Planta, 172, 336-345, 1987
  • Non-Patent Document 4 Samoto M et al., Biosci. Biotechnol. Biochem., 58 (11), 2123-2125, 1 994
  • Non-Patent Document 5 Samoto M et al., Biosci Biotechnol Biochem, 62 (5), 935-940, 1998
  • Non-Patent Document 6 T. Nagano, et. Al., Relationship between rheological properties and co informational states of 7S globulin from soybeans at acidic H, Food Hydrocolloids: Structures, Properties, and Functions, Plenum Press, New York, 1994
  • Patent Document 1 Japanese Patent Application Laid-Open No. 55-124457
  • Patent Document 2 Japanese Patent Laid-Open No. 48-56843
  • Patent Document 3 Japanese Patent Laid-Open No. 49 31843
  • Patent Document 4 Japanese Patent Laid-Open No. 58 36345
  • Patent Document 5 Japanese Patent Laid-Open No. 61-187755
  • Patent Document 6 International Publication WO00 / 58492
  • Patent Document 7 US Pat. No. 6,171,640
  • Patent Document 8 International Publication WO02 / 28198
  • Patent Document 9 International Publication WO2004 / 43160
  • the present invention provides a high-purity fractionated soy protein material by efficiently and highly fractionating not only 7S globulin but also the remaining acid-precipitating protein from soybean.
  • the present applicant has first prepared a processed soybean obtained by subjecting a low-denatured soybean to a modification treatment under conditions that selectively modify only the lipophilic protein, and using this as an extraction raw material.
  • Invented a technology that can fractionate 7S globulin, 11S globulin, and lipophilic protein efficiently and with high purity by simple operations (International Application No. PCT / JP2006 / 310751).
  • the above invention has an effect that the separation between 11S globulin and lipophilic protein is particularly improved by the above denaturation treatment.
  • the present invention further develops this knowledge. If soybeans with originally low 11 S globulin content are used, 7S globulin and lipophilicity can be obtained in high purity with high efficiency by a simple operation without the above modification treatment. It came to the idea that protein can be fractionated and was conceived.
  • the above heated soy protein solution has a pH of 5.3 to 5.7 and is higher than the pH at the time of heating.
  • a method for producing a fractionated soy protein material comprising a step of adjusting the pH range to a water-soluble fraction and an insoluble fraction.
  • a method for producing a soybean 7S globulin protein material characterized in that the water-soluble fraction described in 1. above is adjusted to pH 4 to 5 and the insoluble fraction is recovered.
  • a method for producing a non-7S-11S acid-precipitating soybean protein material which comprises collecting the insoluble fraction described in 1. above.
  • 7S globulin and lipophilic protein can be fractionated with high purity.
  • the obtained fractions can be provided as soybean 7S globulin protein material and 7S ⁇ 11S acid-precipitated soybean protein material, respectively, which can be used with their vitality and nutritional physiology function. It is.
  • This fractionation method is different from the conventional fractionation method by adding salt, etc., and is a method that mainly adjusts the pH without adding salts, so it is necessary to recover proteins as precipitates. Dilution and desalting operations to achieve a low ion concentration environment are insoluble, and this is an excellent method that simplifies the operation.
  • 7S globulin is also called ⁇ -conglycinin, and is generally a glycoprotein composed of three types of subunits ( ⁇ ′, ⁇ , / 3). good. These subunits are randomly combined to form a trimer. The isoelectric point is around ⁇ 4.8 and the molecular weight is about 170,000. Hereinafter, it may be simply abbreviated as “7S”.
  • Soybean 7S protein is a soy protein material with increased purity of 7S!
  • 11S globulin is also called glycinin, and an acidic subunit and a basic subunit are linked by a disulfide bond to form a 12-mer consisting of 6 molecules.
  • the molecular weight is about 360,000. Hereinafter, it may be simply abbreviated as “11S”.
  • Both 7S and 11S are acid-precipitated soy proteins, and are the main storage proteins stored in soy protein bodies.
  • “acid-precipitated soy protein” is a protein having a property of being precipitated by adjusting the pH of a solution such as defatted soymilk to the acidic side (pH 4 to 6). Therefore, for example, the protein contained in the isolated soy protein corresponds to this, and the protein in the whey that does not undergo acid precipitation during the production of the isolated soy protein is not included in this.
  • 7S and 11S are considered to be different depending on the variety S, SDS-electrophoresis after staining with Coomassie brilliant blue (CBB), and when the peak area is measured by densitometry, conventional soy protein (SPI) etc. This protein accounts for about 70% of all soybean protein.
  • 7S and 11S may be abbreviated as “MSP”.
  • Lipophilic Proteins is a group of soy protein-precipitating soybean proteins other than 7 S and 11 S, which is a minor acid-precipitating soy protein group of soybeans! /, Lecithin, glycolipids, etc. It is accompanied by a lot of polar lipids. Hereinafter, it may be simply abbreviated as “LP”.
  • This LP mainly contains proteins with estimated molecular weights of 34 kDa, 24 kDa, and 18 kDa as determined by SDS-polyacrylamide electrophoresis, lipoxygenase, ⁇ -conglycinin, and many other miscellaneous proteins (see Figure 2, Lane 3). ).
  • LP has the property that it is harder to be stained by SDS electrophoresis than 7S and 11S. For this reason, SDS electrophoresis bands, which are published as single bands of 7S and 11S in conventional literature, often contain a substantial amount of LP.
  • Non-7S'11S—acid-precipitated soy protein refers to a soy protein material with increased LP purity. Hereinafter, it may be simply abbreviated as “LP-SPI”.
  • Grind sample processed soybeans for whole-fat soybeans, defatted with hexane in advance until the oil content is less than 1.5%) to a particle size of 60 mesh pass. 7 parts water by 1 part by weight Add pH and adjust the pH to 7.5 with a soda, and stir at room temperature for 30 minutes. This is separated into water-soluble fraction A and insoluble fraction A by centrifugation at 1000G for 10 minutes. Add 5 parts by weight of water to insoluble fraction A and stir at room temperature for 30 minutes. This is separated into water-soluble fraction B and insoluble fraction B by centrifugation at 1000G for 10 minutes. Mix water-soluble fractions A and B to make a water-soluble fraction. Insoluble fractions A and B are mixed to form an insoluble fraction. The operating temperature from hydration to separation is from 10 ° C to 25 ° C. Stirring is performed with a propeller (350 rpm).
  • Insoluble fraction C is recovered by centrifugation at 1000G for 10 minutes. Furthermore, to this insoluble fraction C, add 1M Na2SO4 (containing 20 mM mercaptoethanol) solution 5 times the weight of the sample-processed soybean of method 1 and stir well, then centrifuge at 10000G for 20 minutes to obtain a water-soluble fraction. Separate into D and insoluble fraction D. Repeat the same procedure for this insoluble fraction D, separating it into water-soluble fraction E and insoluble fraction E. The insoluble fractions D and E are combined as the LP fraction, and the water-soluble fractions D and E are combined as the 7S and 11S fractions (MSP fraction). The operating temperature is 10 ° C to 25 ° C. Measure the nitrogen content of the LP fraction and MSP fraction obtained as described above by the Kelder method, and measure the ratio of both.
  • soy protein materials are generally heat-sterilized in the final productization process, all of 7S, 11S and LP are heat-denatured. Therefore, it is difficult to fractionate LP into 7S and 11S from the commercial soybean protein material by the methods 1 and 2 above, and measure the LP content.
  • SDS-polyacrylamide gel electrophoresis which is a general method for measuring protein composition, has the property that LP is difficult to be stained with CBB! Have difficulty.
  • [LP content estimation method] (a) 7S is ⁇ subunit and subunit ( ⁇ + ⁇ '), 11S is acidic subunit (AS), LP is 34kDa protein and lipoxygenase ( ⁇ 3 4 + Lx) as main proteins in each protein. Select, and obtain the staining ratio of each protein selected by SDS-PAGE. Electrophoresis can be performed under the conditions shown in Table 1.
  • LCI Lipophilic Proteins Content Index
  • P34 LP major component, 34kDa protein
  • Lx LP main component, lipoxygenase
  • the method for fractionating soybean protein of the present invention comprises 1) a step of extracting protein from soybean having a 7S globulin content of 20% by weight or more and a 11S globulin content of 10% by weight or less per total protein to obtain a soybean protein solution; 2) Adjusting the soy protein solution to pH 4 to 5.5 and heating at 40 to 65 ° C, 3) Heating the heated soy protein solution to pH 5.3 to 5.7 It is characterized by comprising a step of adjusting to a pH range that is higher than the pH at the time and fractionating into a water-soluble fraction and an insoluble fraction.
  • the raw soybean used in the fractionation method of the present invention has a 7S globulin content of 20% by weight or more, preferably 30% by weight or more per total protein, and a 11S globulin content of 10% by weight or less, preferably 5%. Soybeans that are less than or equal to weight percent are used.
  • soybeans that are strong and cultivated soybeans lacking 11S globulin by breeding or gene recombination techniques, that is, soybeans having an 11S globulin content of 0% by weight can be used.
  • soybeans described in US2004 / 0037905 A1 can be used.
  • defatted soybeans As raw soybeans because lipids affect protein purity.
  • Degreased soybeans can be made by using a product defatted with an organic solvent such as hexane or a product whose oil content is reduced by pressing.
  • the form of the raw defatted soybean is not particularly limited, but a powder having a maximum particle size of 500 m or less, more preferably 300 m or less, and even more preferably 100 m or less, more preferably pulverized is more preferable. Is appropriate.
  • the PDI indicating the desired protein extraction rate is 60 or more when the protein in the raw defatted soybean is not extremely modified before the processing of the present invention.
  • the moisture content of this soybean is preferably 2 to 15%, more preferably 5 to 10%.
  • the present invention includes a step of extracting a protein from the raw material defatted soybean to obtain a soybean protein solution. That is, a soybean protein solution is obtained by dispersing raw soybeans in an aqueous solvent such as water or an alkaline aqueous solution to extract protein, removing okara which is an insoluble fraction from the extract by centrifugation, and recovering a soluble fraction. Get.
  • an aqueous solvent such as water or an alkaline aqueous solution
  • the amount of the aqueous solvent added is 6 to 15 times the weight of the raw soybean, 7 to 12 times the weight. More preferred. If the amount of the aqueous solvent added is too small, the viscosity will increase, and if it is too large, it will become a dilute solution and the recovery efficiency will deteriorate.
  • the temperature during extraction is preferably about 4 to 50 ° C, more preferably about 10 to 30 ° C. If the temperature is too high, the protein will be denatured and difficult to fractionate. Conversely, if the temperature is too low, the extraction efficiency will deteriorate.
  • Ocara that is insoluble at pH around 6-9 is removed from the resulting extract by centrifugation.
  • the operation of adding 4 to 6 times the amount of water to the resulting okara and further extracting it to increase the amount of recovered soy milk may be repeated.
  • the soy protein solution obtained by the mulching process has a very characteristic composition, unlike that extracted from general defatted soybeans, and has a very low 11S globulin content per total protein. It is 15% by weight or less, preferably 7% or less.
  • the soybean protein solution is adjusted to pH 4 to 5.5, preferably pH 4.8 to 5.2, and heated at 40 to 65 ° C.
  • the heated soy protein solution is adjusted to a pH range between 5.3 and 5.7, which is higher than the pH at the time of heating.
  • 7S can maintain the soluble state and selectively insolubilize LP. Then, the water-soluble fraction mainly composed of 7S and the insoluble fraction mainly composed of insolubilized LP can be fractionated by solid-liquid separation.
  • the water-soluble fraction after solid-liquid separation is washed away before extraction and hardly contains it, it can be spray-dried as it is to obtain a soybean 7S globulin protein material. If whey components are included, the purity of 7S will decrease accordingly, so the water-soluble fraction should be further adjusted to pH 4-5, preferably 4.3-4.8, and the resulting precipitate recovered. Thus, a highly pure soybean 7S globulin protein material can be obtained.
  • the purity of 7S of the material is at least 80% or more, it can be used with the unique characteristics of 7S.
  • it can be used for nutrient function agents such as blood neutral fat reducing agents and body fat reducing agents, and highly viscous materials.
  • the LCI value of the material is 30% or less, more preferably 25% or less, and further preferably 20% or less, and it has an excellent flavor with a very low LP content.
  • a non-7S'11S-acid-precipitating soy protein material (LP-SPI) containing LP in high purity can be obtained by preparing the liquid, sterilizing heating and drying.
  • the obtained LP-SPI can be provided as a high purity product having at least LCI of 60% by weight or more.
  • LP is a force that was thought to be a component that contributes to the flavor deterioration of conventional soy protein materials. This is fractionated with high purity, and LP-SPI is used to vitalize the unique properties of LP. It can be used for any purpose.
  • the amount of oil from which methanol is extracted with a 2: 1 solvent (hereinafter referred to as “chromate oil”) is 7% by weight or more, preferably 8 to 15% by weight, more preferably 9 to 15%. It is possible to carry out depending on whether or not the weight is. However, if the LP-SPI ether extract oil content is 2% or more, the ether extract oil value must be subtracted from the above values.
  • the extracted polar lipid is mainly composed of lecithin and glycolipid.
  • the chromed oil content of conventional unisolated soybean protein is about 4-5% by weight, and high-purity soybean 7S protein and soybean 11S protein are also less than 3%! /.
  • a particularly important function of LP-SPI is blood cholesterol lowering action as described in the specification of international application PCT / JP2006 / 310751, and lowers blood cholesterol level in drugs and foods using this.
  • a composition can be provided.
  • the content of LP-SPI added to the composition for lowering blood cholesterol varies depending on the form and amount of the composition and can be appropriately set. In general, a person skilled in the art may set the content in the composition in consideration of the daily intake of the composition so that the daily intake of the active ingredient can be taken. For example, if the daily intake of LP-SPI is set to 4.5 g, and the daily intake of the composition is 10 g, the content of active ingredients in the composition is 45% by weight. What should I do?
  • the daily intake of LP-SPI of the present invention is not particularly limited, but can be 4 to 10 g.
  • the composition for lowering blood cholesterol of the present invention can be used in combination with a material that is said to have a blood cholesterol lowering effect.
  • a material that is said to have a blood cholesterol lowering effect for example, isoflavones, soy milk, isolated soy protein, concentrated soy protein, lecithin, lactic acid bacteria, polyphenol Nords, polysaccharides, etc. can be used in combination.
  • blood cholesterol When blood cholesterol is provided as a reducing agent, it can be made into preparations of various dosage forms. That is, in the case of oral administration, it can be administered in the form of solid preparations such as tablets, hard capsules, soft capsules, granules or pills, or liquids such as solutions, emulsions or suspensions. In the case of parenteral administration, it is administered in the form of injection solutions or suppositories.
  • additives that are acceptable for formulation such as excipients, stabilizers, preservatives, wetting agents, emulsifiers, lubricants, sweeteners, coloring agents, fragrances, tonicity adjustments.
  • LP-SPI is included as an active ingredient in food packaging, advertising media such as pamphlets, and that the food has a blood cholesterol lowering effect. It can also be a health food such as Japan's food for specified health use.
  • the protein is extracted according to the above (Method 1) and the okara is separated. To obtain a soy protein solution.
  • the soy protein solution was adjusted to pH 5.0 with hydrochloric acid, heated at 60 ° C for 15 minutes, adjusted to pH 5.5 with caustic soda, and stirred with a propeller (300-35030001) for 30 minutes.
  • Insoluble fraction A is separated by centrifugation at 1000 G for 10 minutes, and the water-soluble fraction is recovered.
  • the pH is adjusted to 4.5 with hydrochloric acid, and the resulting insoluble fraction B is collected by centrifugation at 1000 G for 10 minutes and spray-dried to obtain a soybean 7S globulin protein material.
  • the purity of this protein material was determined by SDS-polyacrylamide gel electrophoresis using 3.7 g as a sample. Developed by SDS-PAGE, stained with Coomassie brilliant blue, and then applied to densitometer to calculate the ratio of the band density corresponding to 7S and 11S to the total protein band density By the method. Also determine the LCI values for these samples. According to the above assay, the purity of 7S prepared according to this method is as high as 80% or more, and the LCI value at this time is 30% or less, and LP is greatly reduced. .
  • Insoluble fraction A obtained in the same manner as in Preparation Example 1 is collected and spray-dried to obtain LP-SPI.
  • the oil contained in the solid content of this protein is less than 2% of the oil extracted with ether, and more than 7% of the oil is extracted with a mixed solvent with a 2: 1 ratio of formaldehyde to methanol. Many LPs that show affinity for polar lipids are contained. At this time, the LCI value is high purity of at least 60%.
  • the water-soluble fraction and the insoluble fraction A are fractionated in the same manner as in Example 1.
  • the water-soluble fraction is adjusted to pH 4.5 with hydrochloric acid, and the resulting insoluble fraction B is collected by centrifugation and spray-dried to obtain a protein material.
  • the 7S purity of the obtained protein material is 75% or less.
  • Example 4 The soy protein solution obtained in the same manner as in Example 1 was adjusted to pH 5.0 and fractionated in the same manner except that it was heated at 35 ° C (Comparative Example 4) and 70 ° C (Comparative Example 5).
  • the water-soluble fraction obtained does not increase the purity of 7S at 35 ° C.
  • 70 ° C the purity of 7S is The yield is extremely low.
  • Insoluble fraction A contains 7S contamination at 70 ° C, and none of Comparative Examples 4 and 5 can be fractionated with high purity.
  • Example 6 The soybean protein solution obtained in the same manner as in Example 1 was adjusted to pH 5.0, heated at 60 ° C for 15 minutes, and then adjusted to ⁇ 5.2 (Comparative Example 6) and ⁇ 6.0 with caustic soda. Perform fractionation in the same way.
  • the yield of water-soluble fraction obtained is extremely low at ⁇ 5.2.
  • ⁇ 6.0 does not increase the purity of 7S. Therefore, neither of Comparative Examples 2 and 3 can be fractionated with high purity.
  • Fig. 1 is a graph showing the dissolution behavior of 7S globulin and 11S globulin in each ⁇ .
  • FIG. 2 is a drawing-substituting photograph showing a migration pattern of SDS-polyacrylamide gel electrophoresis of 7S globulin fraction, 11 S globulin fraction, and lipophilic protein fraction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、大豆から7Sグロブリンのみならず、残りの酸沈殿性蛋白質も効率的かつ高純度に分画し、高純度の分画大豆蛋白素材を提供することを目的とする。  1)総蛋白質あたりの7Sグロブリン含量が20重量%以上かつ11Sグロブリン含量が10重量%以下である大豆から蛋白質を抽出し、大豆蛋白溶液を得る工程、 2)上記大豆蛋白溶液をpH4~5.5に調整し、40~65°Cで加温する工程、 3)上記加温した大豆蛋白溶液をpH5.3~5.7であって前記加温時のpHよりも高いpH領域に調整し、水溶性画分と不溶性画分とに分画する工程、を含むことを特徴とする分画大豆蛋白素材の製造法。

Description

明 細 書
分画大豆蛋白素材の製造法
技術分野
[0001] 本発明は分画された大豆蛋白素材の製造法に関する。詳しくは、大豆蛋白質に含 まれる各々特性のある蛋白質である 7Sグロブリンと脂質親和性蛋白質の分画技術に 関する。
背景技術
[0002] 大豆蛋白質は、特有のゲル化力を発揮する性質から、食品の物性改善に幅広く利 用されてレ、ると共に、栄養価の高レ、健康食品素材としての利用も増大して!/、る。
[0003] 大豆の貯蔵蛋白質は、 pH4.5付近で沈澱し、比較的簡単に貯蔵蛋白質以外の可 溶性成分が主体の酸可溶性蛋白画分と貯蔵蛋白質が主体の酸沈殿性蛋白画分と に分けること力できる。この酸沈殿性蛋白画分を回収したものが分離大豆蛋白であり 、現在広く食品工業に利用されている。
[0004] 大豆蛋白質を構成する蛋白質は、また超遠心分析による沈降係数から、 2S, 7S, U S, 15Sの各グロブリンに分類される。このうち、 7Sグロブリンと 11Sグロブリンはグ ロブリン画分の主要な構成蛋白成分である。なお、免疫学的命名法にいう /3—コンク、 リシニンは 7Sグロブリンに、グリシニンは 11Sグロブリンに実質的に相当するものであ
[0005] 大豆蛋白質を構成する蛋白質は、粘性、凝固性、界面活性などの物性や栄養生 理機能において異なる性質を有する。
例えば 7Sグロブリンは血中の中性脂肪を低下させることが報告され (非特許文献 1 )ている。また、 11Sグロブリンは、ゲル化力が高ぐ豆腐ゲルの硬さ'食感を支配して いると言われている。
[0006] このように、大豆蛋白質をこれらの成分に富む画分へ分画することは、生理機能面 や物性機能面における各蛋白質特有の機能を大きく発現させることが可能となり、特 長ある素材の創出につながる可能性がある。そしてこれにより食品産業における蛋白 利用分野の拡大が期待できる。 [0007] 図 1に 7Sグロブリンと 11Sグロブリンの pHに対する溶解挙動を示すとおり、 7Sグロ ブリンは pH4. 8付近において、 11Sグロブリンは pH4. 5〜6において溶解度が低い こと力、ら、 pH6付近でまず 11Sグロブリンを沈澱させ、その後に pHをさらに下げて 7S グロブリンを沈澱させればそれぞれの成分を高純度に分画出来るであろうということ は予想できる。
しかしながら、実際に豆乳を pH6に調整し、不溶性画分と水溶性画分とに分けて S DS—ポリアクリルアミドゲル電気泳動によるパターンを見ると、どちらの画分にも 7Sグ そのため、単純に pHに対する両グロブリンの溶解挙動のみでは高純度に分画する ことが出来ない問題があった。
[0008] そこで、この問題を克服するため、 7Sグロブリンと 11Sグロブリンを分画する技術が いくつか開示されている(非特許文献 2、特許文献;!〜 7等)。
[0009] 一方、酸沈殿性大豆蛋白質には、 7Sグロブリンや 11Sグロブリンの他にも、細胞膜 をはじめプロテインボディーやオイルボディー等の膜を構成する極性脂質との親和力 の高!/、雑多な蛋白質が混在することが近年報告されて!/、る(非特許文献 3)。
かかる報告を受け、本発明者による研究の結果、低変性の脱脂豆乳に対し 1M濃 度になるように硫酸ナトリウムを添加し、 pHを塩酸で 4.5に調製すると、酸可溶性画分 に 7S及び 11Sグロブリンが移行すること、そして一方で酸沈殿性画分には、他の雑 多な蛋白質が移行することがわ力 た (非特許文献 4)。
そしてこの酸沈殿性画分の窒素量は脱脂豆乳中の全窒素量のうち約 30%も占め、 意外にも多量であることが判明した。
さらにこれらは工業的に生産される分離大豆蛋白の約 35%をも占めていることを報 告しており、この一群の蛋白質が従来の豆乳や分離大豆蛋白などの大豆蛋白素材 の風味に影響を与えて!/、ることがわかってきた(非特許文献 5)。
[0010] この 7Sグロブリンと 11Sグロブリンの少ない酸沈殿性画分に含まれる蛋白質は、 SD S-ポリアクリルアミド電気泳動による推定分子量において主に 34kDa、 24kDa、 18kDa を示す蛋白質、リポキシゲナーゼ、 γ —コングリシニンや、その他多くの雑多な蛋白 質が混在したものである。この一群の蛋白質は極性脂質との親和性を示すため、脂 質親和性蛋白質と呼ばれてレ、る。
[0011] 以上の知見によれば、従来の分画技術 (非特許文献 2,特許文献 1〜7)は脂質親 和性蛋白質が酸沈殿性大豆蛋白質の相当な割合を占めてレ、ることを何ら考慮して いないため、 7Sグロブリンや 1 1 Sグロブリンを高純度に分画することを実質的には成 し得て!/、なかったことがわかる。
[0012] 7Sグロブリン、 1 1 Sグロブリンと脂質親和性蛋白質を高純度に分画する方法として は、非特許文献 4の方法が示されている力 S、高いイオン強度にして、多くの還元剤が 必要であるため、脱塩や洗浄が必須工程となるため、実験レベルでは有効であるも、 工業的プロセスには不向きであった。
[0013] そこで、本出願人は脂質親和性蛋白質の混入率の低い、高純度の大豆 7Sグロブリ ン蛋白と大豆 1 1 Sグロブリン蛋白に分画する技術を開発した(特許文献 8 , 9)。この 方法は、 7Sグロブリンを高純度に分画する点において工業的に優れた方法である。 し力、しその一方で、残りの画分である 1 1 Sグロブリンと脂質親和性蛋白質の混合物を 各成分に高純度に分画するためには煩雑な操作が必要となるため、これらの成分が 有効に利用されにくい状況にあった。
[0014] すなわち、 7Sグロブリンだけを高純度に分画するのではなぐ残りの画分について も簡便な方法で高純度に分画できる方法が望まれる。
[0015] (参考文献)
非特許文献 l : Okita T et al, J.Nutr. Sci.Vitaminol. ,27(4), 379-388, 1981
非特許文献2 : 1¾*11,¥.¾ and Shibasaki,K., J.Agric.FoodChem. , 24, 117, 1976 非特許文献 3 : Herman, Planta, 172, 336-345, 1987
非特許文献 4 : Samoto M et al., Biosci. Biotechnol. Biochem. , 58(11), 2123-2125, 1 994
非特許文献 5 : Samoto M et al., Biosci Biotechnol Biochem, 62(5), 935-940, 1998 非特許文献 6 : T. Nagano, et. al., Relationship between rheological properties and co informational states of 7S globulin from soybeans at acidic H, Food Hydrocolloids: Structures, Properties, and Functions, Plenum Press, New York, 1994
特許文献 1:特開昭 55— 124457号公報 特許文献 2:特開昭 48— 56843号公報
特許文献 3:特開昭 49 31843号公報
特許文献 4:特開昭 58 36345号公報
特許文献 5:特開昭 61— 187755号公報
特許文献 6:国際公開 WO00/58492号公報
特許文献 7:米国特許第 6171640号公報
特許文献 8 :国際公開 WO02/28198号公報
特許文献 9:国際公開 WO2004/43160号公報
発明の開示
発明が解決しょうとする課題
[0016] 上記課題に鑑み、本発明は、大豆から 7Sグロブリンのみならず、残りの酸沈殿性蛋 白質も効率的かつ高純度に分画し、高純度の分画大豆蛋白素材を提供することを 目白勺とする。
課題を解決するための手段
[0017] 本出願人は、先に、低変性の大豆に脂質親和性蛋白質のみを選択的に変性する ような条件で変性処理を施した加工大豆を調製し、これを抽出原料とすることで、 7S グロブリン、 11Sグロブリン、及び脂質親和性蛋白質を簡単な操作で効率よく高純度 に分画できる技術を発明した(国際出願番号: PCT/JP2006/310751)。
先の発明は、上記の変性処理によって 11Sグロブリンと脂質親和性蛋白質との分 離が特に改善される効果を奏する。そして本発明はこの知見をさらに発展させ、仮に 11 Sグロブリンの含量がもともと低い大豆を使用した場合、上記の変性処理を行うこと なぐ簡単な操作で効率良ぐ高純度に 7Sグロブリンと脂質親和性蛋白質とを分画 することができるとの知見に到り、着想されたものである。
[0018] すなわち、上記課題を解決するための本発明は、
1. 1)総蛋白質あたりの 7Sグロブリン含量が 20重量%以上かつ 11Sグロブリン含量 力 ^0重量%以下である大豆から蛋白質を抽出し、大豆蛋白溶液を得る工程、
2)上記大豆蛋白溶液を pH4〜5. 5に調整し、 40〜65°Cで加温する工程、
3)上記加温した大豆蛋白溶液を pH5. 3〜5. 7であって前記加温時の pHよりも高 い pH領域に調整し、水溶性画分と不溶性画分とに分画する工程、を含むことを特徴 とする分画大豆蛋白素材の製造法、
2.前記 1.記載の水溶性画分を pH4〜5に調整し、不溶性画分を回収することを特 徴とする、大豆 7Sグロブリン蛋白素材の製造法、
3.前記 1.記載の不溶性画分を回収することを特徴とする、非 7S - 11S 酸沈殿性 大豆蛋白素材の製造法、である。
発明の効果
[0019] 本発明の効率的かつ簡便な方法により、 7Sグロブリン及び脂質親和性蛋白質をそ れぞれ高純度で分画することが可能となる。得られた画分はそれぞれ大豆 7Sグロブ リン蛋白素材及び 7S · 11 S 酸沈殿性大豆蛋白素材として提供することができ、そ れぞれの物性や栄養生理機能を十分に活力、した利用が可能である。
本分画法は、従来法である塩の添加などによる分画方法とは異なり、塩類を加えず に pH調整を主体として行う方法であるため、蛋白質を沈澱物として回収するのに必 要な低イオン濃度環境にするための希釈や脱塩の操作が不溶であり、操作の簡便 化が図れる優れた方法である。
発明を実施するための最良の形態
[0020] まず、本発明に記載の用語につ!/、て説明する。
[0021] 「7Sグロブリン」は β コングリシニンとも呼ばれ、一般には 3種のサブユニット( α ' 、 α、 /3 )から構成される糖蛋白質である力 何れかのサブユニットが欠損していても 良い。これらのサブユニットはランダムに組み合わされ、 3量体を形成している。等電 点は ρΗ4. 8付近で分子量は 17万程度である。以下、単に「7S」と略記する場合が ある。
[0022] 「大豆 7S蛋白」は 7Sの純度を高めた大豆蛋白素材を!/、う。
[0023] 「11Sグロブリン」はグリシニンとも呼ばれ、酸性サブユニットと塩基性サブユニットが ジスルフイド結合によって結合し、それらが 6分子集まった 12量体を形成している。分 子量は 36万程度である。以下、単に「11S」と略記することがある。
[0024] 7Sと 11Sはいずれも酸沈殿性大豆蛋白質であり、大豆プロテインボディーに貯蔵さ れる主要な貯蔵蛋白質である。 なお、ここにいう「酸沈殿性大豆蛋白質」は、大豆の蛋白質の内、脱脂豆乳などの 溶液の pHを酸性側(pH4〜6)に調整することにより沈澱する性質を有する蛋白質で ある。したがって、例えば分離大豆蛋白に含まれる蛋白質がこれに相当し、分離大豆 蛋白製造時に酸沈殿しなレ、ホエー中の蛋白質はこれに含まれな!/、。
7Sと 11Sは、品種によっても異なると考えられる力 S、 SDS電気泳動においてクマシ 一ブリリアントブルー(CBB)染色後、デンシトメトリーによってピーク面積を測定した 場合、従来の分離大豆蛋白(SPI)などでは大豆蛋白質全体の約 70%を占める蛋白 質である。以下、 7Sと 11Sを併せて「MSP」と略記することがある。
[0025] 「脂質親和性蛋白質」(Lipophilic Proteins)は大豆の酸沈殿性大豆蛋白質の内、 7 Sと 11 S以外のマイナーな酸沈殿性大豆蛋白質群を!/、い、レシチンや糖脂質などの 極性脂質を多く随伴するものである。以下、単に「LP」と略記することがある。
この LP中には SDS-ポリアクリルアミド電気泳動による推定分子量において主に 34k Da、 24kDa、 18kDaを示す蛋白質、リポキシゲナーゼ、 γ —コングリシニンや、その他 多くの雑多な蛋白質が含まれる(図 2、レーン 3参照)。
図 2の通り、 LPは SDS電気泳動法では 7Sや 11Sに比べて染色されにくい性質を 有しており、そのため従来その実態が明確に認識されていな力、つたものである。その ため、従来の文献に 7Sや 11Sの単一のバンドとして掲載されている SDS電気泳動 のバンドには、実際には LPがかなりの量混在していることが多い。
「非 7S ' 11S—酸沈殿性大豆蛋白」は LPの純度を高めた大豆蛋白素材をいう。以 下、単に「LP— SPI」と略することがある。
[0026] 大豆蛋白質中の 7Sと 11Sの総含量の分析は、下記に示す (方法 1)及び (方法 2) によって行うことが出来る。
また LPは雑多な蛋白質が混在したものであるが故、各々の蛋白質を全て特定する ことは困難である力 S、下記 (方法 1)と (方法 2)に示す溶解挙動により分画することが できる。
[0027] (方法 1)
試料加工大豆 (全脂大豆の場合は予めへキサンにより油分 1. 5%未満となるまで 脱脂しておく)を粉砕し、 60メッシュパスの粒度にする。その大豆 1重量部に水 7重量 部を加え、可性ソーダで pHを 7. 5に調整し、室温で 30分攪拌する。これを 1000G、 10分の遠心分離により、水溶性画分 Aと不溶性画分 Aに分離する。さらに不溶性画 分 Aに水 5重量部を加え、室温で 30分攪拌する。これを 1000G、 10分の遠心分離 により、水溶性画分 Bと不溶性画分 Bに分離する。水溶性画分 Aと Bを混合し、水溶 性画分とする。また不溶性画分 Aと Bを混合し、不溶性画分とする。加水から分離ま での操作温度は、 10°C〜25°Cで行なう。また撹拌はプロペラ(350rpm)で行う。
[0028] (方法 2)
方法 1で得られた水溶性画分に塩酸を加えて PH4.5に調整する。これを 1000G、 10 分の遠心分離により、不溶性画分 Cを回収する。さらにこの不溶性画分 Cに対し、 1M Na2SO4 (20mMメルカプトエタノール含有)溶液を方法 1の試料加工大豆の 5重量倍 を添加してよく攪拌し、 10000G、 20分の遠心分離により、水溶性画分 Dと不溶性画分 Dに分離する。この不溶性画分 Dに再度同じ操作を繰り返し、水溶性画分 Eと不溶性 画分 Eに分離する。この不溶性画分 Dと Eを合わせたものを LP画分とし、水溶性画分 Dと Eを合わせたものを 7S及び 11S画分(MSP画分)とする。操作温度は、 10°C〜25 °Cで行なう。以上により得られた LP画分と MSP画分の窒素量をそれぞれケルダ一 ル法で測定し、両者の比率を測定する。
[0029] 次に大豆蛋白素材中の LP含量の測定方法について説明する。
大豆蛋白素材は最終の製品化工程において一般的に加熱殺菌されるため、 7S、 11 S及び LPはいずれも加熱変性が起こっている。そのため、製品化された大豆蛋白 素材から上記方法 1、 2の方法によって LPを 7S, 11Sと分画し、 LP含量を測定する ことが困難である。
また、一般的な蛋白質組成の測定方法である SDS—ポリアクリルアミドゲル電気泳 動法(SDS-PAGE)では LPが CBB染色されにくいと!/、う性質を有するため、これも正 確な測定が困難である。
したがって簡易的に、 7S, 11S, LPの各蛋白質中の主要な蛋白質を選択し、それ らの染色比率を求め、これらの比率から LP含量を推定する以下の方法を採用するこ と力 Sできる。
[0030] 〔LP含量の推定方法〕 (a)各蛋白質中の主要な蛋白質として、 7Sは αサブユニット及び サブユニット(α + α ')、 11Sは酸性サブユニット(AS)、: LPは 34kDa蛋白質及びリポキシゲナーゼ(Ρ3 4 + Lx)を選択し、 SDS— PAGEにより選択された各蛋白質の染色比率を求める。電 気泳動は表 1の条件で行うことが出来る。
(b) X (%) = (P34 + Lx) /{ (P34 + Lx) + ( α + α,) +AS} X 100 (%)を求める。
(c)低変性脱脂大豆から調製された分離大豆蛋白の LP含量を加熱殺菌前に上記方 法 1 , 2の分画法により測定すると凡そ 38%となることから、 X = 38 (%)となるよう(P34 + Lx)に補正係数 k* = 6を掛ける。
(d)すなわち、以下の式により LP推定含量(Lipophilic Proteins Content Index,以下 「LCI」と略する。)を算出する。
(表 1) アプライ量:蛋白質 0. 1 %サンプル溶液を各ゥエルに ΙΟμΙ
ゥエル幅 : 5mm
ゥエル容積: 30μ1
染色液 :クマシ一ブリリアントブルー (CBB) lg、 メタノール 500ml、 氷酢酸 70ml (CBBをメタノールに完全に溶解させた後、 酢酸と水を加 えて 1Lにする。)
染色時間 : 15時間
脱色時間 : 6時間
デンシトメ一 -夕一: GS-710 Calibrated Imaging Densitometer /
Quantity One Software Ver. Ί.2.3 (Bio ad Japan Co.Ltd) スキャン幅: 5.3mm、 感度: 30
[0032] (数 1) k * x(P34 + Lx)
LCI ( % ) =
k * x(P34 + Lx) + ( c¾ + a') + AS k* :補正係数 (6 )
P34: LP主要成分、 34kDa蛋白質
Lx : LP主要成分、 リポキシゲナーゼ
a : 7S主要成分、 αサブユニット
a ' : 7S主要成分、 α 'サブユニット
AS : 11S主要成分、 酸性サブュニット
[0033] 次に本発明の実施形態について詳細に説明する。 本発明の大豆蛋白質の分画方法は、 1)総蛋白質あたりの 7Sグロブリン含量が 20 重量%以上かつ 11Sグロブリン含量が 10重量%以下である大豆から蛋白質を抽出 し、大豆蛋白溶液を得る工程、 2)上記大豆蛋白溶液を pH4〜5. 5に調整し、 40〜6 5°Cで加温する工程、 3)上記加温した大豆蛋白溶液を pH5. 3〜5. 7であって加温 時の pHよりも高!/、pH領域に調整し、水溶性画分と不溶性画分とに分画する工程を 含むことを特徴とする。
[0034] 〔原料大豆〕
本発明の分画方法に使用する原料大豆は、総蛋白質あたりの 7Sグロブリン含量が 20重量%以上、好ましくは 30重量%以上であって、かつ 11Sグロブリン含量が 10重 量%以下、好ましくは 5重量%以下である大豆を用いる。力、かる大豆は特に育種ある いは遺伝子組換え技術により 11Sグロブリンを欠失させた大豆、すなわち 11 Sグロブ リン含量が 0重量%である大豆を用いることができる。例えば US2004/0037905 A1な どに記載されるような大豆を使用することができる。
[0035] なお、本発明の各種大豆蛋白素材を調製する場合には、脂質が含まれていると蛋 白質の純度に影響するため、脱脂大豆を原料大豆として用いることが好ましい。脱脂 大豆は、へキサン等の有機溶剤で脱脂したものや圧搾などで油分を低下させたもの を使用すること力できる。
[0036] 原料脱脂大豆の形態は特に問わないが、より好ましくは粉砕している方が良ぐ最 大粒子径が 500 m以下、より好ましくは 300 m以下、さらに好ましくは 100 m以下 の粉末が適当である。
[0037] また原料脱脂大豆中の蛋白質の変性が本発明の加工処理前に極度に進んでいな いものが望ましぐ蛋白質抽出率を示す PDIは 60以上であることが好ましい。この大豆 の水分は 2〜15%が好ましぐ 5〜10%がより好ましい。
[0038] 本発明は上記原料脱脂大豆から蛋白質を抽出し、大豆蛋白溶液を得る工程を含 む。すなわち、原料大豆を水やアルカリ水溶液などの水系溶媒に分散させて蛋白質 を抽出し、遠心分離により抽出液から不溶性画分であるオカラを除去して、可溶性画 分を回収することにより大豆蛋白溶液を得る。
[0039] 水系溶媒の添加量は原料大豆に対し、 6〜; 15重量倍が好ましぐ 7〜; 12重量倍が より好ましい。水系溶媒の添加量が少なすぎると粘度が高くなり、多すぎると希薄溶 液となって回収効率が悪くなる。
抽出時の温度は、 4〜50°C程度が好ましぐ 10〜30°C程度がより好ましい。温度が 高すぎるとたん白質が変性を受けて分画しにくい状態となり、逆に温度が低すぎると 抽出効率が悪くなつてしまう。
得られた抽出液から中性付近 pH6〜9において不溶物であるオカラを遠心分離等 により除去する。得られたオカラに対しさらに水を 4〜6重量倍加え、さらに抽出し豆 乳の回収量を上げる操作を繰り返しても良い。
[0040] 力、かる工程により得られた大豆蛋白溶液は、一般的な脱脂大豆から抽出した場合 とは異なり極めて特徴的な組成を有しており、 11Sグロブリン含量が極めて低ぐ総蛋 白質あたり 15重量%以下、好ましくは 7%以下である。
[0041] 次に、上記の大豆蛋白溶液を pH4〜5. 5、好ましくは pH4. 8〜5. 2に調整し、 40 〜65°Cで加温する。次に、加温された大豆蛋白溶液を pH5. 3〜5. 7であって加温 時の pHよりも高!/、pH領域に調整する。
力、かる工程を経ることにより、 7Sは可溶な状態を保持しつつ、 LPを選択的に不溶 化すること力 Sできる。そして、 7S主体の水溶性画分と不溶化した LPが主体の不溶性 画分とを固液分離により分画することができる。
[0042] 固液分離後の水溶性画分についてはホエー成分が抽出前に予め洗浄除去されて 殆ど含まれない場合にはそのまま噴霧乾燥し、大豆 7Sグロブリン蛋白素材を得ること 力 Sできる。またホエー成分が含まれる場合には、その分 7Sの純度が低下するため、 水溶性画分をさらに pH4〜5、好ましくは 4. 3〜4. 8に調整し、生成する沈殿を回収 することにより、高純度の大豆 7Sグロブリン蛋白素材を得ることができる。
該素材の 7Sの純度は少なくとも 80%以上の高純度となるため、 7S特有の特性を活 力、した利用が可能である。例えば血中中性脂肪低減剤や体脂肪低減剤などの栄養 機能剤や高粘性素材などに利用できる。また該素材の LCI値は 30%以下であり、より 好ましくは 25%以下、さらに好ましくは 20%以下であり、 LP含量が極めて少なぐ風 味に優れるものである。
[0043] 一方、固液分離後の不溶性画分を回収し、必要により可性ソーダで中和して中和 液を調製し、殺菌加熱、乾燥することにより LPを高純度に含む非 7S ' 11S—酸沈殿 性大豆蛋白素材 (LP— SPI)を得ることができる。得られた LP— SPIは少なくとも LCI が 60重量%以上の高純度品として提供することができる。
LPは従来の大豆蛋白素材の風味劣化の一因となる成分と考えられていたものであ る力 これを高純度に分画し、 LP— SPIとすることにより、 LP固有の特性を活力、した 用途への使用が可能となる。
[0044] 以上のように分画された LPは脂質に対して強い親和性を有するため、大豆蛋白素 材が本発明の LP— SPIに相当するか否かの判定は、当該蛋白中のクロ口ホルム:メ タノールが 2 : 1の溶媒で抽出される油分(以下、「クロメタ油分」と記載する。)が 7重量 %以上、好ましくは 8〜; 15重量%、より好ましくは 9〜; 15重量%であるか否かで行うこ とが可能である。ただし、 LP— SPIのエーテル抽出油分が 2%以上含まれる場合に は、上記数値からエーテル抽出油分を差し引かなければならない。抽出される極性 脂質はレシチンや糖脂質が主成分である。
ちなみに分画されていない従来の分離大豆蛋白のクロメタ油分は 4〜5重量%程 度で、高純度の大豆 7S蛋白や大豆 11S蛋白も 3%以下に過ぎな!/、。
[0045] LP— SPIの特に重要な機能は国際出願 PCT/JP2006/310751号明細書に記 載の通り、血中コレステロール低下作用であり、これを用いた剤や食品などの血中コ レステロール低下用組成物を提供できる。
血中コレステロール低下用組成物中に添加する LP— SPIの含有量は、組成物の 形態 ·量によっても異なり、適宜設定することができる。通常は 1日あたりの有効成分 の摂取量を摂取できるように、 1日あたりの組成物の摂取量を考慮し、組成物中の含 有量を当業者が設定すればよい。例えば、 1日あたりの LP— SPIの摂取量を 4. 5gと 設定した場合、 1日あたりの組成物の摂取量が 10gである場合は、組成物中の有効 成分の含有量を 45重量%とすれば良い。本発明の LP— SPI1日あたりの摂取量は 特に限定されないが、 4〜10gとすることができる。
[0046] 本発明の血中コレステロール低下用組成物には、 LP— SPIを使用する以外に、血 中コレステロール低下作用のあるといわれる材料を併用することも可能である。例え ば、イソフラボン、豆乳、分離大豆蛋白、濃縮大豆蛋白、レシチン、乳酸菌、ポリフエ ノール類、多糖類等を併用できる。
[0047] 血中コレステロールを低下剤として提供する場合は、種々の投与形態の製剤とする こと力 Sできる。すなわち、経口的投与の場合に、錠剤、硬カプセル剤、軟カプセル剤 、粒剤もしくは丸剤等の固形製剤や、溶液、ェマルジヨンもしくはサスペンジョンなど の液剤の形態等で投与することができる。また、非経口的投与の場合に、注射溶液 や坐剤などの形態で投与される。これらの製剤の調製にあたっては製剤化のために 許容される添加剤、例えば賦形剤、安定剤、防腐剤、湿潤剤、乳化剤、滑沢剤、甘 味料、着色料、香料、張度調製剤、緩衝剤、酸化防止剤、 pH調整剤等を併用して製 斉 IJィ匕すること力 Sでさる。
血中コレステロールを低下用食品として提供する場合は、一般的な食品の形態で ある清涼飲料、乳製品、豆乳、発酵豆乳、大豆蛋白飲料、豆腐、納豆、油揚げ、厚 揚げ、がんもどき、ハンバーグ、ミートボール、唐揚げ、ナゲット、各種総菜、焼き菓子 、栄養バー、シリアル、飴、ガム、ゼリー等の菓子類、タブレット、パン類、米飯類など 、様々な食品に配合することができる。さらに、食品の場合には食品の包装やパンフ レット等の宣伝媒体等に LP— SPIが有効成分として含まれる旨、そしてこれにより食 品が血中コレステロールの低下作用を有する旨を直接的又は間接的に記載した、 日 本の特定保健用食品などの健康食品にもすることができる。
[0048] 以下に本発明を実施するための具体的な調製例を記載する。
[0049] (調製例 1) 一高純度大豆 7Sグロブリン蛋白素材の調製方法
総蛋白質あたりの 7Sグロブリン含量が 20重量%以上であり、力、つ 11Sグロブリン含 量が 10重量%以下である大豆を使用し、これから上述の(方法 1)に従って蛋白質を 抽出し、オカラを分離して大豆蛋白溶液を得る。
次に、該大豆蛋白溶液を塩酸にて pHを 5.0に調整し、 60°Cで 15分間加熱後、苛性 ソーダで pHを 5.5にして30分間プロぺラ攪拌(300〜350卬01)後、不溶性画分 Aを 100 0G、 10分の遠心分離にて分離し、水溶性画分を回収する。これを塩酸にて pHを 4.5 に調整し、生じた不溶性画分 Bを 1000G、 10分の遠心分離にて回収し、噴霧乾燥して 大豆 7Sグロブリン蛋白素材を得る。
この蛋白素材の純度検定は 3.7 gを試料として SDS-ポリアクリルアミドゲル電気泳 動に供し、 SDS-PAGEにより展開し、クマシ一ブリリアントブルーで染色後、デンシトメ 一ターに供し、全蛋白質のバンドの濃さに対する 7Sと 11 Sに相当するバンドの濃さ が占める割合を算出する方法により行う。また、これらのサンプルの LCI値も求める。 上記検定法によれば本法に従って調製される 7Sの純度は 80%以上の高純度となり 、また、このときの LCI値は、 30%以下となって LPが非常に低減化されたものとなる。
[0050] (調製例 2) — LP— SPIの調製方法
調製例 1と同様にして得られる不溶性画分 Aを回収し、噴霧乾燥することによって、 LP— SPIを得る。この蛋白の固形分中に含まれる油分は、エーテルで抽出される油 分は 2%未満であり、クロ口ホルム:メタノールの比が 2 : 1の混合溶媒で抽出される油 分が 7%以上であり、極性脂質に親和性を示す LPが多く含まれる。このときの LCI値 は少なくとも 60%以上の高純度となる。
[0051] (比較例 1)
市販の IOM大豆(アメリカ産)(総蛋白質中、 7Sグロブリン含量 18%、 11Sグロブリ ン含量 36%)を使用し、(方法 1)に従って蛋白質を抽出し、オカラを分離して大豆蛋 白溶液を得る。
次に、実施例 1と同様の方法で水溶性画分と不溶性画分 Aに分画する。水溶性画 分を塩酸にて PH4.5に調整し、生じた不溶性画分 Bを遠心分離にて回収し、噴霧乾 燥して蛋白素材を得る。得られた蛋白素材の 7S純度は 75%以下となる。
[0052] (比較例 2、 3)
調製例 1と同様にして得る大豆蛋白溶液を pH3. 5 (比較例 2)および pH6 (比較例 3)に調整して 60°Cで加熱する以外はそれぞれ同様にして分画を行った場合、得ら れる水溶性画分はいずれも純度が高いものが得られず、 80%に満たない。不溶性 画分 Aの回収量が低下し、 LPとして回収されるべき画分が可溶化する量が多くなると 考えられる。
[0053] (比較例 4, 5)
実施例 1と同様にして得る大豆蛋白溶液を pH5. 0に調整し、 35°C (比較例 4)およ び 70°C (比較例 5)で加熱する以外はそれぞれ同様にして分画を行った場合、得ら れる水溶性画分は 35°Cでは 7Sの純度は上がらない。一方、 70°Cでは 7Sの純度は 上がるが、極端に収量が低くなる。不溶性画分 Aは 70°Cでは 7Sのコンタミが多くなり 、比較例 4, 5のいずれも高純度に分画することができない。
[0054] (比較例 6, 7)
実施例 1と同様にして得る大豆蛋白溶液を pH5. 0に調整して 60°Cで 15分間加熱 後、苛性ソーダで ρΗ5· 2 (比較例 6)および ρΗ6· 0に調整する以外は、それぞれ同 様にして分画を行う。得られる水溶性画分は ρΗ5. 2では極端に収量が少なくなる。 また ρΗ6. 0では 7Sの純度が上がらない。したがって比較例 2, 3のいずれも高純度 に分画することができない。
図面の簡単な説明
[0055] [図 1]7Sグロブリンと 11Sグロブリンの各 ρΗにおける溶解挙動を示すグラフである。
[図 2]7Sグロブリン画分、 11 Sグロブリン画分、脂質親和性蛋白質画分の SDS—ポリ アクリルアミドゲル電気泳動による泳動パターンを示した図面代用写真である。

Claims

請求の範囲
[1] 1)総蛋白質あたりの 7Sグロブリン含量が 20重量%以上かつ 11Sグロブリン含量が 1 0重量%以下である大豆から蛋白質を抽出し、大豆蛋白溶液を得る工程、
2)上記大豆蛋白溶液を pH4〜5. 5に調整し、 40〜65°Cで加温する工程、
3)上記加温した大豆蛋白溶液を pH5. 3〜5. 7であって前記加温時の pHよりも高 い pH領域に調整し、水溶性画分と不溶性画分とに分画する工程、を含むことを特徴 とする分画大豆蛋白素材の製造法。
[2] 請求項 1記載の水溶性画分を pH4〜5に調整し、不溶性画分を回収することを特徴 とする、大豆 7Sグロブリン蛋白素材の製造法。
[3] 請求項 1記載の不溶性画分を回収することを特徴とする、非 7S ' 11S—酸沈殿性大 豆蛋白素材の製造法。
PCT/JP2007/073598 2006-12-06 2007-12-06 分画大豆蛋白素材の製造法 WO2008069273A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008548331A JP5353244B2 (ja) 2006-12-06 2007-12-06 分画大豆蛋白素材の製造法
US12/448,070 US7838633B2 (en) 2006-12-06 2007-12-06 Method for production of fractionated soybean protein material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006329745 2006-12-06
JP2006-329745 2006-12-06

Publications (1)

Publication Number Publication Date
WO2008069273A1 true WO2008069273A1 (ja) 2008-06-12

Family

ID=39492151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073598 WO2008069273A1 (ja) 2006-12-06 2007-12-06 分画大豆蛋白素材の製造法

Country Status (3)

Country Link
US (1) US7838633B2 (ja)
JP (1) JP5353244B2 (ja)
WO (1) WO2008069273A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110504A1 (ja) * 2008-03-04 2009-09-11 不二製油株式会社 腎症患者用大豆蛋白素材及びこれを使用した食品
US20110165314A1 (en) * 2009-12-22 2011-07-07 Green Brent E pH Adjusted Soy Protein Isolate and Uses
WO2020218402A1 (ja) 2019-04-26 2020-10-29 株式会社Mizkan Holdings 種子貯蔵タンパク質を用いた乳化組成物及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077461B2 (ja) * 2010-06-07 2012-11-21 不二製油株式会社 減脂豆乳及び大豆乳化組成物、並びにそれらの製造法
NZ613012A (en) * 2010-12-16 2015-07-31 Burcon Nutrascience Mb Corp Soy protein products of improved water-binding capacity
JP6482249B2 (ja) * 2014-11-19 2019-03-13 日東電工株式会社 駆動装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058492A1 (fr) * 1999-03-30 2000-10-05 Fuji Oil Company, Limited Fractionnement des globulines 7s et 11s du soja et leur procede de production
US6171640B1 (en) * 1997-04-04 2001-01-09 Monsanto Company High beta-conglycinin products and their use
WO2002028198A1 (fr) * 2000-10-02 2002-04-11 Fuji Oil Company, Limited Protéine de soja fractionnée et procédé de production
JP2003284504A (ja) * 2002-03-29 2003-10-07 Fuji Oil Co Ltd 大豆7sたん白を含有する賦型食品及びその製造法
JP2003289812A (ja) * 2002-04-01 2003-10-14 Fuji Oil Co Ltd 大豆7sたん白含有ゲルを用いたゲル状食品及びその製造法
WO2004043160A1 (ja) * 2002-11-12 2004-05-27 Fuji Oil Company, Limited 分画された大豆蛋白及びその製造法
WO2005055735A1 (ja) * 2003-12-11 2005-06-23 Fuji Oil Company, Limited 改良大豆7sたん白及びその製造法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510224B2 (ja) 1971-11-13 1980-03-14
JPS5235739B2 (ja) 1972-07-21 1977-09-10
JPS55124457A (en) 1979-03-19 1980-09-25 Noda Sangyo Kagaku Kenkyusho Preparation of 7s protein
US4370267A (en) 1981-08-10 1983-01-25 A. E. Staley Manufacturing Company Fractionation and isolation of 7S and 11S protein from isoelectrically precipitated vegetable protein mixtures
JPS61187755A (ja) 1985-02-14 1986-08-21 Fuji Oil Co Ltd 大豆蛋白の製造法
US9107428B2 (en) * 2005-05-30 2015-08-18 Fuji Oil Company, Limited Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171640B1 (en) * 1997-04-04 2001-01-09 Monsanto Company High beta-conglycinin products and their use
WO2000058492A1 (fr) * 1999-03-30 2000-10-05 Fuji Oil Company, Limited Fractionnement des globulines 7s et 11s du soja et leur procede de production
WO2002028198A1 (fr) * 2000-10-02 2002-04-11 Fuji Oil Company, Limited Protéine de soja fractionnée et procédé de production
JP2003284504A (ja) * 2002-03-29 2003-10-07 Fuji Oil Co Ltd 大豆7sたん白を含有する賦型食品及びその製造法
JP2003289812A (ja) * 2002-04-01 2003-10-14 Fuji Oil Co Ltd 大豆7sたん白含有ゲルを用いたゲル状食品及びその製造法
WO2004043160A1 (ja) * 2002-11-12 2004-05-27 Fuji Oil Company, Limited 分画された大豆蛋白及びその製造法
WO2005055735A1 (ja) * 2003-12-11 2005-06-23 Fuji Oil Company, Limited 改良大豆7sたん白及びその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAGASAKI K. ET AL.: "Potential improvement of soymilk gelation properties by using soybeans with modified protein subunit compositions", BREEDING SCIENCE, vol. 50, 2000, pages 101 - 107 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110504A1 (ja) * 2008-03-04 2009-09-11 不二製油株式会社 腎症患者用大豆蛋白素材及びこれを使用した食品
US20110165314A1 (en) * 2009-12-22 2011-07-07 Green Brent E pH Adjusted Soy Protein Isolate and Uses
US20140065289A1 (en) * 2009-12-22 2014-03-06 Brent E. Green Ph adjusted soy protein isolate and uses
US9456621B2 (en) * 2009-12-22 2016-10-04 Burcon Nutrascience (Mb) Corp. pH adjusted soy protein isolate and uses
US10327456B2 (en) * 2009-12-22 2019-06-25 Burcon Nutrascience (Mb) Corp. pH adjusted soy protein isolate and uses
WO2020218402A1 (ja) 2019-04-26 2020-10-29 株式会社Mizkan Holdings 種子貯蔵タンパク質を用いた乳化組成物及びその製造方法

Also Published As

Publication number Publication date
JPWO2008069273A1 (ja) 2010-03-25
JP5353244B2 (ja) 2013-11-27
US7838633B2 (en) 2010-11-23
US20100022754A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4596006B2 (ja) 分画された大豆蛋白素材およびそれに適した加工大豆、並びにそれらの製造法
EP3481216B2 (en) Process for obtaining a rapeseed protein isolate and protein isolate thereby obtained
EP2578089A1 (en) Fat-reduced soybean protein material and soybean emulsion composition, and processes for production thereof
JP5353244B2 (ja) 分画大豆蛋白素材の製造法
EP3481217B1 (en) Rapeseed protein isolate, food comprising the isolate and use as foaming or emulsifying agent
BRPI0413240B1 (pt) processo para preparar um isolado de proteína do linho
Deak et al. Soy protein products, processing, and utilization
JP5327391B2 (ja) 大豆加工素材及び大豆加工素材の製造法
JP5772163B2 (ja) 粉末状大豆素材及びこれを利用した食用組成物
Badjona et al. Faba Beans protein as an unconventional protein source for the food industry: processing influence on nutritional, techno-functionality, and bioactivity
WO2012101733A1 (ja) 粉末状大豆素材及びこれを利用した食用組成物
JP5532603B2 (ja) 低変性大豆蛋白質組成物の殺菌法
WO2009110504A1 (ja) 腎症患者用大豆蛋白素材及びこれを使用した食品
US7264839B2 (en) Protein beverage
Majumder Characterization of Chemical, Nutritional, and Techno-Functional Properties of Protein-Rich Fractions Obtained from Canola Cold-Pressed Cake
RU2337567C2 (ru) Способ получения изолята белка льна
Zhang et al. Soybean protein and soybean peptides: Biological activity, processing technology, and application prospects
JP5609854B2 (ja) 血清コレステロール低減用組成物
JP2014233266A (ja) 米糠タンパク質を含む糖尿病性腎症進展抑制用栄養組成物
JPWO2019188788A1 (ja) 大豆ペースト状食品乃至ゲル状食品の製造方法
JP2007210943A (ja) 脂質代謝改善用組成物
JP2013118841A (ja) 腎機能改善用組成物
JP2013138667A (ja) 腎機能改善用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12448070

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008548331

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850207

Country of ref document: EP

Kind code of ref document: A1