WO2008069232A1 - 分子モジュール - Google Patents

分子モジュール Download PDF

Info

Publication number
WO2008069232A1
WO2008069232A1 PCT/JP2007/073482 JP2007073482W WO2008069232A1 WO 2008069232 A1 WO2008069232 A1 WO 2008069232A1 JP 2007073482 W JP2007073482 W JP 2007073482W WO 2008069232 A1 WO2008069232 A1 WO 2008069232A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
tag
substance
rod
labeling
Prior art date
Application number
PCT/JP2007/073482
Other languages
English (en)
French (fr)
Inventor
Eisaku Katayama
Takashi Murayama
Taku Kashiyama
Takuya Kobayashi
Original Assignee
The University Of Tokyo
Juntendo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo, Juntendo University filed Critical The University Of Tokyo
Priority to EP20070859710 priority Critical patent/EP2098538A4/en
Priority to US12/517,964 priority patent/US8304520B2/en
Priority to JP2008548307A priority patent/JP5152807B2/ja
Publication of WO2008069232A1 publication Critical patent/WO2008069232A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/23Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a GST-tag

Definitions

  • the present invention relates to a molecular module used for purifying or labeling a target compound, a tag and a labeled protein using the molecular module, and a protein purification method.
  • the affinity labeling method is known as a method for identifying a component to which a specific drug binds.
  • derivatives such as fluorescent dyes or radioisotopes added to the ligand are photocrosslinked, and information such as the molecular weight and amino acid sequence of the labeled molecules is obtained using electrophoresis or various types of chromatography. To get.
  • affinity purification is often used for isolation and purification of a substance to be bound by a ligand such as a receptor.
  • a ligand such as a receptor
  • affinity purification is often used for isolation and purification of a substance to be bound by a ligand such as a receptor.
  • the target is a protein or its complex
  • a classical chromatographic method in which resin beads with ligands immobilized by covalent bonding are packed in a column, passed through a solution of raw materials containing the target, and only the bound fraction is dissociated and eluted.
  • When targeting large membrane fractions or suspended cells that are standard but difficult to be applied to the column use the same resin beads or magnetic beads as described above to collect them by centrifugation or magnetic force.
  • the Chi method is also used.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-291836
  • the present invention specifically binds to a high molecule serving as a receptor for a specific ligand such as a drug and can consistently handle various processes for searching its properties.
  • the purpose is to provide tools.
  • the present inventor has added the tag and the label to the compound to be searched through a rod-like structure substance, thereby improving the properties of the target compound. It was found that it was suitable for a wide range of search methods such as identification, isolation, and microscopic observation without change.
  • the label and the tag can be directly added to the target compound without using a rod-like structure substance.
  • a method of using a search target compound as a fusion protein of a label and a tag a method of adding a substance having an affinity for the search target compound to each of the label and the tag, and binding to the search target compound can be considered.
  • the three-dimensional structure of the search target compound may be destroyed or deformed, and the original properties may be lost.
  • the structural problem of the search target compound or a compound existing in the vicinity of the search target compound may not be able to bind the label and tag to the search target compound. May not be sufficiently exposed from the surface of the compound to be searched, and the function as a label or tag may be insufficient.
  • the present invention provides the following (1) to (; 14).
  • a molecular module used for binding to a target compound and purifying or labeling the compound comprising a rod-shaped structure substance, an interacting substance that interacts with the target compound, a tag, And a labeling substance, wherein the interacting substance is disposed at one end of the rod-shaped structure substance, and the tag and the labeling substance are disposed at another end of the rod-shaped structure substance.
  • the tag is a histidine tag or a biotinylated peptide (1) to (1)
  • It has a protein body, a rod-shaped structure substance, a tag, and a labeling substance, the protein body is disposed at one end of the rod-shaped structure substance, and the tag and the labeling substance are disposed at another end of the rod-shaped structure substance.
  • a tag and a labeled protein
  • (11) It has a protein body, a rod-shaped structural protein, a tag, and a labeled protein, the protein body is disposed at one end of the rod-shaped structural protein, and the tag and the labeled protein are disposed at another end of the rod-shaped structural protein.
  • a step of expressing a DNA encoding a fusion protein having the structure described above in a cell, crushing the cell and contacting the disrupted solution with a substance having an affinity for the tag, a substance having an affinity for the tag A method for purifying a protein, comprising a step of recovering the bound fusion protein.
  • FIG. 1 A schematic diagram of a molecular module of the present invention (A) and a schematic diagram of a tag and a labeled protein of the present invention (B).
  • FIG. 2 Proteins with mutations in the dynein stalk site (a rod-shaped short! / Type protein is used. This type is referred to as the “short type”), histidine tag
  • the figure which shows the amino acid sequence of the fusion protein containing a biotinylated peptide and GFP.
  • the single underlined portion is GFP
  • the double underlined portion is a biotinylated peptide
  • the underlined portion of the broken line is a histidine tag
  • the portion surrounded by a frame is the linker
  • the portion not underlined is the protein with mutations in the dynein stalk site.
  • FIG. 3 is a view showing the amino acid sequence of a fusion protein containing a protein having a mutation at the dynein stalk site (short type), a histidine tag, a biotinylated peptide, and DsRed.
  • the one underlined part is DsRed
  • the two underlined parts are biotinylated peptides
  • the underlined part of the broken line is the histidine tag
  • the part surrounded by a frame is the linker
  • the portion not underlined is the protein with mutations in the dynein stalk site.
  • FIG. 4 Protein with mutations in the dynein stalk site (the length of the rod-shaped structure! /, A type of protein is used. This type is hereinafter referred to as the “long type”), histidine tag
  • the figure which shows the amino acid sequence of the fusion protein containing a biotinylated peptide and GFP.
  • the single underlined portion is GFP
  • the double underlined portion is a biotinylated peptide
  • the underlined portion of the broken line is a histidine tag
  • the portion surrounded by a frame is the linker
  • the portion not underlined is the protein with mutations in the dynein stalk site.
  • FIG. 5 is a view showing the amino acid sequence of a fusion protein containing a protein having a mutation at the dynein stalk site (long type), a histidine tag, a biotinylated peptide, and DsRed.
  • the underlined part is DsRed
  • the double underlined part is biotinylated peptide
  • the underlined part of the broken line is the histidine tag
  • the part surrounded by the frame is the linker
  • the part without a mark is a protein with a mutation in the stalk site of dynein.
  • FIG. 6 A drawing showing the amino acid sequence of a fusion protein containing a rod-like region of ⁇ -actinin, a histidine tag, a biotinylated peptide, and GFP.
  • the single underlined portion is GFP
  • the double underlined portion is a biotinylated peptide
  • the underlined portion of the broken line is a histidine tag
  • the portion surrounded by a frame is the linker
  • the underlined part is the a-actinin rod-shaped region.
  • FIG. 7 is a diagram schematically showing the structure of a spacer module.
  • FIG. 8 Electrophoresis diagram of spacer module purified with Ni beads (A), and diagram showing the results of a reactivity experiment between spacer module purified with M beads and Streptavidin (B).
  • FIG. 9 is a diagram showing an observation result of a spacer module by a rotary shadowing method.
  • the arrow in the figure indicates the spacer module.
  • FIG. 10 is a diagram showing the localization of a fusion protein bound to a spacer module in a cell.
  • FIG. 11 A diagram showing the localization of clathrin light chain and forceolin-1 bound to a spacer module in cells.
  • FIG. 12 Electrophoresis diagram of fractions at each purification step when the spacer module and IP3R1 fusion protein is purified on a Ni column. A indicates Calo IP3R1 with a spacer module, and B indicates His-tagged IP3R1. Lane 1: Sample added to the column, Lane 2: Through-column, Lane 3: —First wash fraction, Lane 4: Second wash fraction, Lanes 5-8: Elution fraction.
  • FIG. 13 is an electrophoretogram of a HEK cell extract that expresses a clathrin light chain with a spacer module bound to the C terminus, purified on an M column. In contrast, a histidine tag is added instead of the spacer module.
  • FIG. 14 View of clathrin molecule (triskelion) purified from a HEK cell expressing spacer module-bound clathrin light chain using a module by rotary shadowing. Findings.
  • the arrow in the figure indicates the GFP of the spacer module.
  • the short type (“sh ortj" in the figure) and the long type (“long” in the figure) have different lengths, but V and misalignment protrude from the center of the molecule and the other end of the module is localized there. I understand.
  • Electropherogram of coated vesicle purified from HEK cells expressing spacer module-fused clathrin light chain (right). In the center is a clathrin molecule (triskeli 0n ) purified solely after solubilization. The left is a molecular weight marker. The fraction purified as coated vesicles contains a number of constituent proteins other than clathrin.
  • FIG. 17 is a diagram showing intracellular localization of a cytoplasmic dynein light chain bound to a spectrin repeat-type spacer module.
  • A shows a single spacer module, and B shows that bound to the cytoplasmic dynein light chain.
  • FIG. 18 Subcellular localization of clathrin light chain fused with spectrin repeat-type spacer module. When the spacer module is expressed alone, it does not localize at a specific site! (A) When fused to a light clathrin light chain, it shows the same localization as wild-type clathrin (B).
  • FIG. 19 shows the amino acid sequence of a fusion protein containing two ⁇ -actinin rod-shaped regions, a histidine tag, a biotinylated peptide, and GFP.
  • the single underlined portion is GFP
  • the double underlined portion is a biotinylated peptide
  • the underlined portion of the broken line is a histidine tag
  • the portion surrounded by a frame is the linker
  • the underlined part is the a-actinin rod-shaped region.
  • the molecular module of the present invention binds to a target compound and is used to purify or label the compound.
  • the molecular module of the present invention comprises a rod-shaped structure substance, an interacting substance that interacts with the target compound, a tag, And a labeling substance, the interaction substance is arranged at one end of the rod-like structure substance, and the tag and the labeling substance are arranged at another end of the rod-like structure substance.
  • the target compound is not particularly limited as long as it can be purified or labeled by the molecular module of the present invention, and a wide range of biopolymers such as proteins and nucleic acids, and low-molecular compounds that bind to these can be widely used. .
  • the rod-like structure substance is not particularly limited as long as it is a substance that can take a rod-like structure, but is preferably a protein.
  • S for example, a protein having an antiparallel coiled coil structure, spectrin Proteins having a repeat structure, filamentous phage, phage filamentous protein, and the like are preferred.
  • a protein having an antiparallel coiled coil structure for example, stalk sites of dynein, which is a motor protein, and artificial mutations are added to this dynein stalk site so that the antiparallel coiled coil structure becomes stronger. It is possible to raise the quality of protein.
  • a protein As a protein with such an artificial mutation, a protein (short type) consisting of a peptide represented by the amino acid sequence described in SEQ ID NO: 6 and a peptide represented by the amino acid sequence described in SEQ ID NO: 7 or SEQ ID NO:
  • An example is a protein (long type) comprising a peptide represented by the amino acid sequence described in 8 and a peptide represented by the amino acid sequence described in SEQ ID NO: 9.
  • the long rod-like structure is 150% longer than the short rod.
  • the antiparallel coiled coil structure can be performed by referring to “Current Opinion in Structural Biology 2001, 11: 450-457”.
  • Examples of the protein having a spectrin repeat structure include a rod-like region of ⁇ -actinin and a protein to which an artificial mutation has been added so that the spectrin repeat structure becomes stronger.
  • Examples of the ⁇ -actinin rod-shaped region include a protein represented by the amino acid sequence described in SEQ ID NO: 10, and a peptide represented by the amino acid sequence described in SEQ ID NO: 13. It is possible to enumerate proteins consisting of two peptides represented by the amino acid sequence set forth in SEQ ID NO: 14. In the case of a protein composed of these two peptides, a labeling substance or the like is inserted between the two peptides.
  • filamentous phage examples include fl phage, fd phage, M13 phage and the like.
  • the rod-shaped structure substance may be a substance other than protein, and examples of such a non-proteinaceous substance include carbon nanotubes, carbon nanohorns, and amylose.
  • the length and diameter of the rod-shaped structural substance are not particularly limited as long as an appropriate distance can be secured between the target compound, the tag and the labeling substance, but the length should be 5 to 50 nm.
  • the diameter that is more preferably 10 to 30 nm is more preferably 2 to 5 nm, and the diameter that is preferably 1 to 10 nm is more preferable.
  • the interacting substance may be any protein, low molecular ligand, or the like as long as it interacts with the target compound.
  • the type of interacting substance to be selected can be determined according to the type of target compound. For example, if the target compound is a protein, the interacting substance can be an antibody that recognizes it, and if the target compound is an antibody, the interacting substance can be the antigen that the antibody recognizes, If the target compound is a receptor, the interacting substance can be a ligand for that receptor, and conversely if the target compound is a ligand, the interacting substance can be a receptor for that ligand. I'll do it.
  • the tag may be a general tag used for protein purification, for example, a histidine tag, a biotinylated peptide (for example, a peptide represented by the amino acid sequence described in SEQ ID NO: 11), polyarginine And FK506 binding protein (FKBP).
  • FKBP polyarginine And FK506 binding protein
  • the tag may be inserted inside the protein.
  • the site for inserting the tag is not particularly limited as long as it does not lose the function of the protein used as the labeling substance, but a site having a loop structure is preferable.
  • Examples of insertion sites that have a loop structure are between the 173rd and 174th amino acid residues in GFP and between the 170th and 171st amino acid residues in DsRed.
  • fluorescent substances, dyes, heavy metal compounds, heavy metal colloids, oxidoreductases, etc. can be used as the labeling substances, which are generally used for labeling biomolecules.
  • the labeling substance it is more preferable to use a fluorescent protein which is preferably a proteinaceous substance.
  • the fluorescent protein it is preferable to use GFP (Aeauorea victoria green fluorescent orotein) DsRed (Discosoma sp. Red fluorescent protein), etc.
  • enhanced green fluorescence which is a mutant of GFP.
  • Protein Enhanced Green Fluorescence Protein: EGFP
  • Yellow Fluorescence Protein YFP
  • Enhanced Yellow Fluorescence Protein EYFP
  • Cyan Fluorescence Prote in: CFP Enhanced Cyan Fluorescence Protein
  • ECFP Enhanced Cyan Fluorescence Protein
  • BFP Blue Fluorescence Protein
  • EBFP Enhanced Blue Fluorescence Protein
  • DsRed variants Monomer banana fluorescent protein (mBanana), monomer orange fluorescent protein (mO range), monomer mandarin orange fluorescent protein ( mTangerine), monomeric strawberry fluorescent protein (mStrawberry), and monomeric cherry colored fluorescent protein (mCherry), etc.
  • a non-protein fluorescent substance may be used as a labeling substance.
  • Fluorescein-based, rhodamine-based, eosin-based, and NBD-based fluorescent materials can be used. Specifically, fluorescein 5-isothiocyanate, diacyl (isobutyryl, acetyl or bivaloyl) fluorescein 5 and / or 6-strength rubonic acid pentafluorophenyl ester, 6- (diacyl-5 and / or 6-carboxamido-fluorescein) aminohexanoic acid pentafluorophenyl ester, Texas Red (trademark of Texas Red, Molecular Probes, In), Tetramethylrhodamine-5 (and 6) isothiocyanate, eosin isothio Cyanate, erythrocin 5-isothiocyanate, 4 chloro-7 ditrobens-2 oxone 1,3 diazo monoreole, 4-furnoroleo 7 ditro benz-2-oxa-1,3 diazole
  • the three members of the rod-shaped structure substance, the tag, and the labeling substance may be a fusion protein composed of one polypeptide chain.
  • the interacting substance when the interacting substance is a low molecular weight ligand, the active group at the tip of the rod-shaped structure substance (such as the amino group of the N-terminal amino acid, the carboxyl group of the C-terminal amino acid, or the thiol group of the cysteine residue) It can be covalently bonded via
  • the interacting substance is a protein, it may be a four-part fusion protein including the interacting substance.
  • the molecular module of the present invention is used for purification or labeling of a target compound. Specifically, it can be used for the following applications.
  • the molecular module of the present invention When the molecular module of the present invention is added to a crude extract of a biological component, one end thereof specifically binds to the target biological component to form a complex.
  • the complex can be recovered with magnetic beads through resin tags.
  • the target to be purified can be used as a single substance or as a complex, and even as a larger organelle or cell as a whole. Can be purified.
  • a fluorescent substance as a labeling substance, it is possible to show the localization of a target compound in a cell or an organelle by observing a fluorescent signal under a microscope, or to track the dynamics of the compound in a living state. . It is also possible to search for ligand binding sites in tissue samples by immunoelectron microscopy using appropriate gold colloids that bind to the tag. It is. Furthermore, since the molecular module of the present invention has a unique shape with a spherical portion at the tip of the rod, it seems possible to directly indicate the binding region in protein molecules and complexes using high-resolution electron microscope images. It is.
  • FIG. 1 (A) The positional relationship among the rod-shaped structure substance, the interaction substance, the tag, and the labeling substance is as shown in FIG. 1 (A), for example.
  • the interacting substance [4] is disposed at one end of the rod-shaped structure [3]
  • the tag [1] and the labeling substance [2] are disposed at the other end of the rod-shaped structure [3].
  • the tag [1] may be bound directly to the rod-shaped structural material [3] by binding to the labeling material [2]!
  • the positional relationship may be such that the tag [1] directly binds to the rod-shaped structure [3] and the labeling substance [2] binds to the tag [1].
  • the target compound [5] can be kept at a certain distance from the tag [1] and the labeling substance [2], and various adverse effects due to the proximity of both substances can be achieved. Can be eliminated.
  • the tag and the labeled protein of the present invention have a protein body, a rod-shaped structure substance, a tag, and a labeling substance, the protein body is disposed at one end of the rod-shaped structure substance, and the tag and the labeling substance are It is arranged at the other end of the rod-shaped structure material.
  • the rod-like structure substance, tag, and labeling substance in the tag and labeled protein of the present invention can be the same as the molecular module of the present invention, and the positional relationship of each substance is the same as in the case of the molecular module (Fig. 1 (B)).
  • the protein body It is possible to use a protein that plays an important role in the living body, such as a receptor protein.
  • the rod-shaped structural substance, the tag, and the labeling substance are all proteins. It is more preferable that these are fusion proteins composed of one polypeptide chain together with the protein body. Specific examples of such fusion proteins are shown in FIGS. 2 to 6 and FIG. 19 (however, the protein body is not included).
  • Figure 2 shows the amino acid sequence of a fusion protein that uses a protein with a mutation in the stalk site of dynein (short type) as a rod-shaped structural substance, a histidine tag and biotinylated peptide as a tag, and GFP as a labeling substance. .
  • Figure 3 shows a protein (short type) in which the stalk site of dynein is mutated as a rod-shaped structural substance, a histidine tag and biotinylated peptide as a tag, and Ds as a labeling substance.
  • the amino acid sequence of the fusion protein using Red is shown.
  • Fig. 4 shows the amino acid sequence of a fusion protein using a protein (long type) with a mutation in the dynein stalk site as a rod-shaped structural substance, a histidine tag and biotinylated peptide as a tag, and GFP as a labeling substance.
  • FIG. 5 shows the amino acid sequence of a fusion protein using a rod-like structural substance with a mutation in the stalk site of dynein (long type), a histidine tag and biotinylated peptide as tags, and DsRed as a labeling substance.
  • the FIG. 6 shows an amino acid sequence of a fusion protein using a single ⁇ -actinin rod-shaped region as a rod-shaped structural substance, a histidine tag and biotinylated peptide as a tag, and GFP as a labeling substance.
  • FIG. 6 shows an amino acid sequence of a fusion protein using a single ⁇ -actinin rod-shaped region as a rod-shaped structural substance, a histidine tag and biotinylated peptide as a tag, and GFP as a labeling substance.
  • FIGS. 2, 3, 4, 5, 6, and 19 show the amino acid sequence of a fusion protein using two ⁇ -actinin rod-shaped regions as rod-shaped structural substances, histidine tag and biotinylated peptide as tags, and GFP as a labeling substance.
  • the amino acid sequences in FIGS. 2, 3, 4, 5, 6, and 19 are also shown in SEQ ID NOs: 1, 2, 3, 4, 5, and 12, respectively.
  • the protein purification method of the present invention comprises a protein body, a rod-shaped structure protein, a tag, and a labeling protein, the protein body is disposed at one end of the rod-shaped structure protein, and the tag and the labeling protein are composed of a rod-shaped structure protein.
  • This protein purification method is an application of the tag and labeled protein of the present invention.
  • this method can be carried out in the same manner as a conventional method for purifying a tagged protein except that a tag and a labeled protein are added via a rod-like structural protein.
  • spacer module A protein having the amino acid sequence shown in FIG. 2 and FIG. 4 (hereinafter referred to as “spacer module”) was designed.
  • This spacer module is GFP, histi It has a protein that has a gin tag (8 X His), biotin acceptor domain (BAD), and an inverted flat coil coil structure.
  • Figure 7 shows a schematic diagram of the structure of this spacer module. His-tag and biotinylated peptide are inserted into the loop part of GFP (173-174), and proteins with antiparallel coiled coil structure are added to the N-terminal and C-terminal of GFP. Proteins with an antiparallel coiled-coil structure were artificially modified to be more stable based on cytoplasmic dynein stalk.
  • the spacer module shown in Fig. 2 and the spacer module shown in Fig. 4 differ in proteins that have an inverted flat fl-type coiloled coil structure.
  • the former has a short rod-like structure, and the latter Long! /, With type rod-like structure.
  • CDNAs encoding the four types of spacer modules designed in the Examples were inserted into the pCold vector and expressed in large quantities in E. coli (GFP-short, DsRed_short, GFP_long, DsRe d_long). After disrupting the cells, the supernatant was bound to Ni beads. The beads were washed with a solution containing 20 mM imidazole and then eluted with 300 mM imidazole. The eluted fraction was subjected to SDS-PAGE. The result is shown in FIG. 8A.
  • the histidine tag functions as a purification tag.
  • the length of the rod-shaped part of the short type spacer module was estimated to be 16 nm, and the length of the rod-shaped part of the long type spacer module was estimated to be 24 nm.
  • the spacer module purified with Ni beads was transferred to a PVDF membrane after SDS-PAGE and blotted with streptavidin HRP. The result is shown in FIG. 8B.
  • Example 4 Observation of shape of spacer module by rotary shadowing method cDNA encoding the above spacer module was inserted into pCold TF vector, It was expressed as a fusion protein with the trigger factor, a fungal protein. The purified fusion protein was observed by the rotary shadowing method. The result is shown in FIG.
  • Both the short type and long type spacer modules showed a dumbbell-like structure.
  • the rod-shaped part between the spherical structures is longer in the long type. This is in line with the above expectations.
  • the spacer module (GFP-short) was expressed alone or as a fusion protein with other proteins in HeLa cells, and intracellular GFP fluorescence was detected.
  • GFP fluorescence was detected when expressed alone, when expressed as a fusion protein with a clathrin light chain (C-terminal fusion), when expressed as a fusion protein with force veline-1 (N-terminal fusion), and type 1
  • Figures 10A, 10B, and 10C show microscopic photographs showing the intracellular localization of the spacer module when expressed as a fusion protein with ryanodine receptor (R yRl) (internal insertion, 1379-1380), respectively.
  • Figure 10D shows microscopic photographs showing the intracellular localization of the spacer module when expressed as a fusion protein with ryanodine receptor (R yRl) (internal insertion, 1379-1380), respectively.
  • Figure 10D shows microscopic photographs showing the intracellular localization of the spacer module when expressed as a
  • the spacer module When the spacer module was expressed alone, the spacer module was scattered in the cells except for the nucleus. When expressed as a fusion protein of clathrin light chain and force veline-1, the spacer module was localized around the nucleus and in the cytoplasm. When expressed as a fusion protein with RyRl, it was shown that the spacer module was localized in the form of a mesh in the cell and was present in the endoplasmic reticulum. In any fusion protein, the endogenous protein and the localization site were consistent, suggesting that the spacer module does not affect the structure and function of the protein as a fusion target.
  • a fusion protein in which GFP-short is bound to the C terminus of the clathrin light chain and a fusion protein in which DsRed-short is bound to the N terminus of force veline-1 are expressed in HeLa cells, respectively. I observed the cells. The result is shown in FIG.
  • Example 7 Purification of spacer module fusion protein expressed in mammalian cells (Part 1) DNA encoding a fusion protein of GFP-short and IP3R1 (N-terminal fusion) was introduced into Flp-In T-REx HEK cells, and a stable expression strain was selected. After inducing expression with doxycycline, a membrane fraction was prepared. IP3R1 was solubilized with CHAPS and applied to an M column. The column was washed with 100 mM i midazole and then eluted with 300 mM imidazole. Proteins contained in the fractions of each purification step were separated by electrophoresis. For comparison, IP3R1 having a histidine tag inserted at the N-terminus was also expressed in the same manner, and the proteins contained in the fractions at each purification stage were examined. The results are shown in FIG.
  • the fusion protein with the spacer module is an IP3R with a histidine tag inserted at the N-terminus.
  • DNA encoding GFP-short or GFP-long and clathrin light chain fusion protein (C-terminal fusion) was introduced into Flp-In T-REx HEK cells, and stable expression strains were selected. After expression induction by doxycycline, a membrane fraction was prepared. 0.5 M NaCretriskelion was extracted and applied to a Ni column. The column was washed with 100 mM imidazole and then eluted with 300 mM imidazole. Proteins contained in the 300 mM imidazole elution fraction were detected by electrophoresis. As a control, a clathrin light chain having a histidine tag inserted at the C-terminal was expressed. The result is shown in FIG.
  • the clathrin light chain fused with the spacer module and the clathrin heavy chain with a molecular weight of 160 kDa were purified, indicating that the protein was purified as a protein complex.
  • Example 8 The clathrin complex purified in Example 8 was observed by the rotary shadowing method. The result is shown in FIG.
  • the clathrin complex inserted with a histidine tag at the C end showed a typical triskelion.
  • a sphere corresponding to GFP is located slightly away from the center of the triskelion that matches the C terminus of the clathrin light chain.
  • a state structure was observed.
  • a spherical structural force S corresponding to GFP and a rod-shaped part are also observed at a position further away from the center, and the position of the spacer module in the protein complex is observed. I was able to confirm
  • Example 10 Example of purification of intracellular organelles from cells expressing spacer module fusion protein
  • a fusion protein C-terminal fusion
  • GFP spacer module
  • Flp-In T-REx It was introduced into HEK cells and a stable expression strain was selected. After inducing expression with doxycycline, the membrane fraction was prepared by homogenizing cells with 0.1 M MES, pH 6.5, 0.5 mM MgC12, 1 mM EGTA solution. The membrane fraction was bound to Streptavidin magnetic beads, washed with the above buffer, and then treated with TEV protease for 1 hour at room temperature. The eluted fraction was observed with an electron microscope by a negative staining method. The results are shown in Fig. 15.
  • Example 1 Example of purification of an organelle containing a spacer module fusion protein expressed in a mammalian cell
  • Proteins contained in the coated vesicle fraction obtained in Example 10 were separated by electrophoresis.
  • triskelion obtained by extracting the membrane fraction with 0.5 M NaCl was purified in the same manner. The result is shown in FIG.
  • Spectrin repeat-type spacer module (represented by the amino acid sequence described in SEQ ID NO: 10) And expressed in HeLa cells alone or as a fusion protein with other proteins, and intracellular GFP fluorescence was detected.
  • a micrograph showing the intracellular localization of the spectrin repeat-type spacer module when expressed alone and when expressed as a fusion protein with cytoplasmic dynein light chain (TcTex-1) is shown in Fig. 17A. And in Figure 17B.
  • the spectrin repeat-type spacer module When expressed alone, it was scattered in cells excluding the nucleus. When expressed as a fusion protein with a cytoplasmic dynein light chain, the spectrin repeat-type spacer module was localized around the nucleus. Since the endogenous protein and the localization site were consistent, it was suggested that the spectrin repeat-type spacer module does not affect the structure and function of the protein as a fusion target.
  • Spectrin repeat type spacer module (including peptide represented by amino acid sequence of SEQ ID NO: 13 and peptide represented by amino acid sequence of SEQ ID NO: 14) alone or a fusion protein with other proteins And expressed in HeLa cells, and the intracellular GFP fluorescence was detected.
  • 18A and 18B are micrographs showing the intracellular localization of the spectrin repeat-type spacer module when expressed alone and when expressed as a fusion protein with clathrin light chain, respectively. Shown in
  • the spectrin repeat-type spacer module When expressed alone, it was scattered in cells excluding the nucleus. When expressed as a fusion protein with a clathrin light chain, the spectrumin repeat-type spacer module was localized in a punctate manner around the nucleus and in the cytoplasm. It was suggested that the spectrin repeat-type spacer module does not affect the structure and function of the protein as a fusion target.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 薬物など特定のリガンドに対する受容体となる高分子に特異的に結合し、その性質を探索するためのさまざまな過程に一貫して対応できる汎用の実験用ツールを提供することを目的とする。この目的を達成するため、標的化合物と結合し、その化合物を精製又は標識するために使用する分子モジュールであって、棒状構造物質と、標的化合物と相互作用をする相互作用物質と、タグと、標識物質とを有し、相互作用物質が棒状構造物質の一端に配置され、タグと標識物質が棒状構造物質の別の一端に配置されていることを特徴とする分子モジュールを開発した。

Description

明 細 書
分子モジユーノレ
技術分野
[0001] 本発明は、標的化合物を精製又は標識するために使用する分子モジュール、並び にこの分子モジュールを利用したタグ及び標識付加タンパク質、及びタンパク質の精 製方法に関する。
背景技術
[0002] タンパク質や核酸など細胞を構成する何らかの高分子成分に結合して作用する生 理活性物質や薬物、抗体など特定のリガンドに対する受容体となる分子の性質を探 索するには、通常、各種の既存技術の中から必要に応じて選んだいくつかの手法を 組み合わせて用いる。例えば、未知の受容体を薬物などの誘導体をリガンドとした光 ァフィ二ティ標識法などにより同定する手法、細胞内におけるその受容体の局在部位 を明らかにする手法、当該受容体を単離精製して性質を調べる手法、受容体 (複合 体)分子内における結合部位をより高い分解能で明らかにする手法など、 目的に応じ てさまざまな手法を併用せざるを得なレ、。たとえ一種類のリガンドに関する研究であ つても、それぞれの手法に適したリガンド誘導体を別々に作製する必要があり、その ために必要とされる負担は多大なものである。
[0003] 特定の薬物が結合する成分を同定するための方法として、ァフィ二ティ標識法が知 られている。この方法は、リガンドに蛍光色素や放射性同位元素などを付加した誘導 体を対象に光架橋して、電気泳動や各種のクロマトグラフィを用いて、標識された分 子の分子量やアミノ酸配列などの情報を得るものである。
[0004] また、受容体などリガンドの結合対象となる物質の単離精製にはァフィ二ティ精製と 称される一連の手法がしばしば用いられる。対象がタンパク質やその複合体の場合、 共有結合によりリガンドを固定化した樹脂ビーズをカラムに詰めて対象を含む原材料 の溶液を通し、結合した分画のみを解離させて溶出する古典的クロマトグラフィ法が 標準的であるが、カラムにかけ難い大きな膜分画や浮遊細胞を対象とする場合には 、上述と同様の樹脂ビーズや磁気ビーズなどを用いて遠心分離や磁力で集めるバッ チ法も使われる。特に細胞内小器官や浮遊細胞などの膜内に埋まるタンパク質を結 合させて目的対象を分離する際には、樹脂や磁気ビーズの表面に直接固定化され たリガンドが相手に触れ難い場合も多ぐその問題を解決するにはビーズとリガンドの 間に直鎖状の炭素でできたスぺーサーを揷入する。し力、し炭素鎖を長くすると往々 にして疎水性が強くなり、リガンドによる対象との結合が必ずしもそれらの特異性を反 映しなくなる可能性も高い。この問題を軽減するには水溶性が高ぐし力、も常にその 長レ、距離を保てるスぺーサーを用いることが望ましレ、。
[0005] 一方、細胞内外におけるリガンド結合タンパク質の局在部位を顕微鏡的に示すに は、生化学ある!/、は分子生物学的手法で調製したタンパク質の一部または全部を用 V、て特異抗体を作製し、それを用いた蛍光抗体法や免疫電子顕微鏡法などにより存 在部位を明らかにする。さらに標的分子 (複合体)内における結合部位の探索には受 容体'リガンド複合体を純化そして結晶化して X線回折にかけるなど、原子分解能の 得られる手段により構造データを得るのが常套手段である。
[0006] 作業ロボット化などにより多くの材料を網羅的に探索する方法は工夫されてはいる ものの、当初の目的を果すには、基本的にはこれらを組み合わせて一歩一歩地道に 進めて行く外に術がない。どのような過程を採用するにせよ、それぞれの手法に合わ せて個別の探索用リガンドを跳える必要があり、労力、時間、さらには費用の面で相 当の負担を強!/、られるのが常である。
[0007] 特許文献 1:特開 2005— 291836号公報
発明の開示
発明が解決しょうとする課題
[0008] 上述したような状況に際し、リガンド ' ·受容体間の特異的親和性(ァフイエティ)を生 力、して全ての探索過程に共通に使うことのできる便利な材料が存在すれば、上記の 負担を大幅に削減することが可能である。タンパク質工学や有機化学を駆使してそ のような目的に使える汎用のタンパク質モジュールを新たに開発することが望まれる 。本発明は、そのような要望に応え、薬物など特定のリガンドに対する受容体となる高 分子に特異的に結合し、その性質を探索するためのさまざまな過程に一貫して対応 できる汎用の実験用ツールを提供することを目的とする。 課題を解決するための手段
[0009] 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、探索対象とする化 合物にタグと標識とを棒状構造物質を介して付加することにより、対象化合物の性質 を変えることなぐ同定、単離、顕微鏡観察などの広範な探索手法に適した形態にで さることを見出した。
[0010] 標識とタグは、棒状構造物質を介さずに対象化合物に直接付加することも可能で はある。例えば、探索対象化合物を標識とタグとの融合タンパク質とする方法、標識 とタグのそれぞれに探索対象化合物と親和性のある物質を付加し、探索対象化合物 に結合させる方法などが考えられる。しかし、前者の場合、標識とタグが揷入されたこ とにより、探索対象化合物の立体構造が破壊または変形され、本来の性質が失われ てしまう可能性がある。また、後者の場合、探索対象化合物又はその近傍に存在す る化合物の構造上の問題力も標識とタグが探索対象化合物にうまく結合できない場 合があり、また、結合できたとしても、標識やタグが探索対象化合物の表面から十分 に露出せず、標識やタグとしての機能が不十分になる可能性がある。
[0011] 本発明は、以上の知見に基づき完成されたものである。
即ち、本発明は、以下の(1)〜(; 14)を提供するものである。
[0012] (1)標的化合物と結合し、その化合物を精製又は標識するために使用する分子モジ ユールであって、棒状構造物質と、標的化合物と相互作用をする相互作用物質と、タ グと、標識物質とを有し、相互作用物質が棒状構造物質の一端に配置され、タグと標 識物質が棒状構造物質の別の一端に配置されていることを特徴とする分子モジユー ル。
(2)棒状構造物質、相互作用物質、タグ、及び標識物質が、一本のポリペプチド鎖を 形成していることを特徴とする(1)に記載の分子モジュール。
(3)棒状構造物質が、逆平行型コイルドコイル構造をとるタンパク質、又はスぺクトリ ンリピート構造をとるタンパク質であることを特徴とする(1)又は(2)に記載の分子モ ジユーノレ。
[0013] (4)タグが、ヒスチジンタグ、又はビォチン化ペプチドであることを特徴とする(1)乃至
(3)の V、ずれかに記載の分子モジュール。 (5)標識物質が、 GFP又は DsRedであることを特徴とする(1)乃至(4)の!/、ずれかに 記載の分子モジュール。
(6)タンパク質本体と、棒状構造物質と、タグと、標識物質とを有し、タンパク質本体 が棒状構造物質の一端に配置され、タグと標識物質が棒状構造物質の別の一端に 配置されていることを特徴とするタグ及び標識付加タンパク質。
[0014] (7)タンパク質本体、棒状構造物質、タグ、及び標識物質が、一本のポリペプチド鎖 を形成していることを特徴とする(6)に記載のタグ及び標識付加タンパク質。
(8)棒状構造物質が、逆平行型コイルドコイル構造をとるタンパク質、又はスぺクトリ ンリピート構造をとるタンパク質であることを特徴とする(6)又は(7)に記載のタグ及び 標識付加タンパク質。
(9)タグが、ヒスチジンタグ、又はビォチン化ペプチドであることを特徴とする(6)乃至 (8)の!/、ずれかに記載のタグ及び標識付加タンパク質。
[0015] (10)標識物質が、 GFP又は DsRedであることを特徴とする(6)乃至(9)のいずれかに 記載のタグ及び標識付加タンパク質。
(11)タンパク質本体と、棒状構造タンパク質と、タグと、標識タンパク質を有し、タン ノ^質本体が棒状構造タンパク質の一端に配置され、タグと標識タンパク質が棒状 構造タンパク質の別の一端に配置されている構造の融合タンパク質をコードする DN Aを細胞内で発現させる工程、前記細胞を破砕し、その破砕液をタグと親和性を持つ 物質と接触させる工程、タグと親和性を持つ物質に結合した融合タンパク質を回収 する工程を含むことを特徴とするタンパク質の精製方法。
[0016] (12)棒状構造タンパク質が、逆平行型コイルドコイル構造をとるタンパク質、又はス ぺクトリンリピート構造をとるタンパク質であることを特徴とする(11)に記載のタンパク 質の精製方法。
(13)タグが、ヒスチジンタグ、又はビォチン化ペプチドであることを特徴とする(11)又 は(12)に記載のタンパク質の精製方法。
(14)標識タンパク質が、 GFP又は DsRedであることを特徴とする(11)乃至(13)のい ずれかに記載のタンパク質の精製方法。
発明の効果 [0017] 従来、物質の性質を探索するためには、探索手法ごとに探索対象物質をその手法 に適した形態に変換することが必要であった力 本発明の分子モジュールを用いるこ とにより、そのような煩雑な作業を省略することが可能になる。
図面の簡単な説明
[0018] [図 1]本発明の分子モジュールの模式図(A)及び本発明のタグ及び標識付加タンパ ク質の模式図 (B)。
[図 2]ダイニンのストーク部位に変異を加えたタンパク質 (棒状構造の短!/、タイプのタ ンパク質を使用している。以下、このタイプのものを「shortタイプ」という。)、ヒスチジン タグ、ビォチン化ペプチド、 GFPを含む融合タンパク質のアミノ酸配列を示す図。一 本下線を付けた部分が GFPであり、二本下線を付けた部分がビォチン化ペプチドで あり、破線の下線を付けた部分がヒスチジンタグであり、枠で囲った部分がリンカ一で あり、下線等をつけていない部分がダイニンのストーク部位に変異を加えたタンパク 質である。
[図 3]ダイニンのストーク部位に変異を加えたタンパク質(shortタイプ)、ヒスチジンタグ 、ビォチン化ペプチド、 DsRedを含む融合タンパク質のアミノ酸配列を示す図。一本 下線を付けた部分が DsRedであり、二本下線を付けた部分がビォチン化ペプチドで あり、破線の下線を付けた部分がヒスチジンタグであり、枠で囲った部分がリンカ一で あり、下線等をつけていない部分がダイニンのストーク部位に変異を加えたタンパク 質である。
[図 4]ダイニンのストーク部位に変異を加えたタンパク質 (棒状構造の長!/、タイプのタ ンパク質を使用している。以下、このタイプのものを「longタイプ」という。)、ヒスチジン タグ、ビォチン化ペプチド、 GFPを含む融合タンパク質のアミノ酸配列を示す図。一 本下線を付けた部分が GFPであり、二本下線を付けた部分がビォチン化ペプチドで あり、破線の下線を付けた部分がヒスチジンタグであり、枠で囲った部分がリンカ一で あり、下線等をつけていない部分がダイニンのストーク部位に変異を加えたタンパク 質である。
[図 5]ダイニンのストーク部位に変異を加えたタンパク質(longタイプ)、ヒスチジンタグ 、ビォチン化ペプチド、 DsRedを含む融合タンパク質のアミノ酸配列を示す図。一本 下線を付けた部分が DsRedであり、二本下線を付けた部分がビォチン化ペプチドで あり、破線の下線を付けた部分がヒスチジンタグであり、枠で囲った部分がリンカ一で あり、下線等をつけていない部分がダイニンのストーク部位に変異を加えたタンパク 質である。
[図 6]—本の α—ァクチニンの棒状領域、ヒスチジンタグ、ビォチン化ペプチド、 GFP を含む融合タンパク質のアミノ酸配列を示す図。一本下線を付けた部分が GFPであり 、二本下線を付けた部分がビォチン化ペプチドであり、破線の下線を付けた部分がヒ スチジンタグであり、枠で囲った部分がリンカ一であり、下線等をつけていない部分が aーァクチニンの棒状領域である。
[図 7]スぺーサーモジュールの構造を模式的に示した図。
[図 8]Niビーズで精製したスぺーサーモジュールの電気泳動図(A)、及び Mビーズで 精製したスぺーサーモジュールと Streptavidinとの反応性実験の結果を示す図(B)。
[図 9]ロータリーシャドウイング法によるスぺーサーモジュールの観察結果を示す図。 図中の矢印がスぺーサーモジュールを示す。
[図 10]スぺーサーモジュールと結合させた融合タンパク質の細胞内における局在を 示す図。
[図 11]スぺーサーモジュールと結合させたクラスリン軽鎖と力べォリン- 1の細胞内に おける局在を示す図。
[図 12]スぺーサーモジュールと IP3R1の融合タンパク質を Niカラムで精製した際の各 精製段階の画分の電気泳動図。 Aがスぺーサーモジュール付カロ IP3R1を示し、 Bが H isタグ付加 IP3R1を示す。レーン 1 :カラムに添加したサンプル、レーン 2 :カラム通過 物、レーン 3 :—回目の洗浄画分、レーン 4 :二回目の洗浄画分、レーン 5〜8:溶出画 分。
[図 13]スぺーサーモジュールを C末に結合させたクラスリン軽鎖を発現させた HEK細 胞抽出物を Mカラムで精製した際の電気泳動図。対照ではスぺーサーモジュールの 代わりにヒスチジンタグを付加してある。
[図 14]スぺーサーモジュール結合クラスリン軽鎖を発現させた HEK細胞からモジユー ルを用いて精製したクラスリン分子(triskelion)のロータリーシャドウイング法による観 察結果。図中の矢印はスぺーサーモジュールの GFPを指す。 shortタイプ(図中の「sh ortj )と longタイプ(図中の「long」 )では長さが異なるが、 V、ずれも分子の中心から突 出し、そこにモジュールの他端が局在することが分かる。
園 15]スぺーサーモジュール融合クラスリン軽鎖を発現させた HEK細胞から精製した 被覆小胞(coated vesicle)のネガティブ染色法による観察結果。低倍率の視野(下) 中に見られる粒子の大部分が被覆小胞である。矢印で指す個々の粒子の拡大図を 上パネルに示す。挿入図は被覆小胞中の分子配列の模式図。
園 16]スぺーサーモジュール融合クラスリン軽鎖を発現した HEK細胞から精製した被 覆小胞(coated vesicle)の電気泳動図(右)。中央は可溶化後に単独で精製したクラ スリン分子 (triskeli0n)。左は分子量マーカー.。被覆小胞として精製された分画はク ラスリン以外の多数の構成タンパク質を含む。
[図 17]スぺクトリンリピート型スぺーサーモジュールと結合させた細胞質ダイニン軽鎖 の細胞内における局在を示す図。 Aが単独のスぺーサーモジュールを示し、 Bが細 胞質ダイニン軽鎖と結合したものを示す。
[図 18]スぺクトリンリピート型スぺーサーモジュールを融合したクラスリン軽鎖の細胞 内局在。スぺーサーモジュール単独発現の場合には特定部位に局在しな!、 (A)力 クラスリン軽鎖に融合した場合には野生型クラスリンと同等の局在を示す (B)。
[図 19]二本の α—ァクチニンの棒状領域、ヒスチジンタグ、ビォチン化ペプチド、 GFP を含む融合タンパク質のアミノ酸配列を示す図。一本下線を付けた部分が GFPであり 、二本下線を付けた部分がビォチン化ペプチドであり、破線の下線を付けた部分がヒ スチジンタグであり、枠で囲った部分がリンカ一であり、下線等をつけていない部分が aーァクチニンの棒状領域である。
符号の説明
1 タグ
2 標識物質
3 棒状構造物質
4 相互作用物質
5 標的化合物 6 タン/ ク質本体 発明を実施するための最良の形態
[0020] 以下、本発明を詳細に説明する。
本発明の分子モジュールは、標的化合物と結合し、その化合物を精製又は標識す るために使用するものであって、棒状構造物質と、標的化合物と相互作用をする相 互作用物質と、タグと、標識物質とを有し、相互作用物質が棒状構造物質の一端に 配置され、タグと標識物質が棒状構造物質の別の一端に配置されて V、ることを特徴 とするあのである。
[0021] 標的化合物は、本発明の分子モジュールにより精製又は標識可能なものであれば 特に制限はなぐタンパク質や核酸など生体高分子やこれらと結合する低分子化合 物などを広く使用することができる。
[0022] 棒状構造物質としては、棒状構造をとり得る物質であれば特に制限はないが、タン ノ ク質であること力 S好ましく、例えば、逆平行型コイルドコイル構造をとるタンパク質、 スぺクトリンリピート構造をとるタンパク質、繊維状ファージ、ファージの繊維状タンパ ク質などが好ましい。逆平行型コイルドコイル構造をとるタンパク質としては、例えば、 モータータンパク質であるダイニンのストーク部位や、このダイニンのストーク部位に 対して、逆平行型コイルドコイル構造がより強固になるように人為的な変異を加えたタ ンパク質を挙げること力 Sできる。このような人為的な変異を加えたタンパク質として、配 列番号 6記載のアミノ酸配列で表されるペプチドと配列番号 7記載のアミノ酸配列で 表されるペプチドとからなるタンパク質(shortタイプ)や配列番号 8記載のアミノ酸配 列で表されるペプチドと配列番号 9記載のアミノ酸配列で表されるペプチドとからなる タンパク質 (longタイプ)を例示できる。本例においては、長尺型の棒状構造は短尺 型の 150%の長さを有する。逆平行コイルドコイル構造は他にも、 「Current Opinion i n StructuralBiology 2001, 11 :450-457」などを参照して行うことができる。スぺクトリンリ ピート構造をとるタンパク質としては、例えば、 α—ァクチニンの棒状領域や、スぺタト リンリピート構造がより強固になるように人為的な変異を加えたタンパク質を挙げること ができる。 α—ァクチニンの棒状領域としては、例えば、配列番号 10記載のアミノ酸 配列で表されるタンパク質や、配列番号 13記載のアミノ酸配列で表されるペプチドと 配列番号 14記載のアミノ酸配列で表されるペプチドの二つからなるタンパク質を挙 げること力 Sできる。なお、この二つのペプチドからなるタンパク質の場合、標識物質等 は二つのペプチドの間に揷入する。繊維状ファージとしては、 flファージ、 fdファージ 、 M13ファージなどを例示できる。棒状構造物質は、タンパク質以外の物質であって もよく、そのような非タンパク質性の物質としては、カーボンナノチューブ、カーボンナ ノホーン、アミロースなどを例示できる。
[0023] 棒状構造物質の長さ及び直径は、標的化合物とタグ及び標識物質との間に適当な 距離を確保できるのであれば特に制限はないが、長さは 5〜50 nmとするのが好ましく 、 10〜30 nmとするのが更に好ましぐ直径は 1〜10 nmとするのが好ましぐ 2〜5 nmと するのが更に好ましい。
[0024] 相互作用物質は、標的化合物と相互作用をするものであればどのようなものでもよ ぐタンパク質や低分子リガンドなどを例示できる。どのような相互作用物質を選択す るかは、標的化合物の種類に応じて決めればよい。例えば、標的化合物がタンパク 質であれば、相互作用物質はそれを認識する抗体とすることができ、標的化合物が 抗体であれば、相互作用物質はその抗体が認識する抗原とすることができ、標的化 合物が受容体であれば相互作用物質はその受容体に対するリガンドとすることがで き、逆に標的化合物カ^ガンドであれば相互作用物質はそのリガンドに対する受容体 とすること力 Sでさる。
[0025] タグとしては、タンパク質の精製などに利用されている一般的なものでよぐ例えば、 ヒスチジンタグ、ビォチン化ペプチド (例えば、配列番号 11記載のアミノ酸配列で表さ れるペプチド)、ポリアルギニン、 FK506結合タンパク質(FKBP)などを挙げることがで きる。タグは、分子モジュール中に一つだけでもよいが、二つ以上あってもよい。標識 物質がタンパク質である場合、タグはそのタンパク質の内部に揷入されていてもよい 。タグを揷入する部位は、標識物質として使用するタンパク質の機能を失わせない部 位であれば特に限定されないが、ループ構造をとっている部位が好ましい。ループ 構造をとっている挿入部位としては、 GFPにおける 173番目のアミノ酸残基と 174番 目のアミノ酸残基の間、 DsRedにおける 170番目のアミノ酸残基と 171番目のアミノ酸 残基の間などを例示できる。 標識物質としては、生体分子などの標識に一般的に用いられているものでよぐ例 えば、蛍光物質、色素、重金属化合物、重金属コロイド、酸化還元酵素などを使用す ること力 Sできる。標識物質は、タンパク質性のものを使用するのが好ましぐ蛍光タン パク質を使用するのが更に好ましい。蛍光タンパク質としては、 GFP (Aeauorea victor ia green fluorescent oroteinノゃ DsRed (Discosoma sp. red fluorescent protein )など を使用するのが好ましい。これらの蛍光タンパク質以外にも、 GFPの変異体である強 化緑色蛍光タンパク質(Enhanced Green Fluorescence Protein:EGFP)、黄色蛍光タ ンパク質(Yellow Fluorescence Protein :YFP)、強化黄色蛍光タンパク質(Enhanced Y ellow f luorescence Protein: EYFP)、 ンノ'ノ 光タンノヽク貧 (Cyan Fluorescence Prote in:CFP)、強化シアン蛍光タンパク質(Enhanced Cyan Fluorescence Protein:ECFP) 、青色蛍光タンパク質(Blue Fluorescence Protein:BFP)、及び強化青色蛍光タンパ ク質(Enhanced Blue Fluorescence Protein: EBFP)、並びに DsRedの変異体であるモ ノマーバナナ色蛍光タンパク質(mBanana)、モノマーオレンジ色蛍光タンパク質(mO range)、モノマーミカン色蛍光タンパク質(mTangerine)、モノマーイチゴ色蛍光タン パク質(mStrawberry)、及びモノマーサクランボ色蛍光タンパク質(mCherry)などを使 用することもできる。標識物質として非タンパク質性の蛍光物質を使用してもよぐ例 えば、フルォレセイン系、ローダミン系、ェォシン系、 NBD系の蛍光物質を使用するこ とができ、具体的には、フルォレセイン 5—イソチオシァネート、ジァシル (イソブチ リル、ァセチル又はビバロイル)フルォレセイン 5及び/又は 6—力ルボン酸ペンタ フルオロフェニルエステル、 6—(ジァシルー 5及び/又は 6—カルボキサミドーフル ォレセイン)ァミノへキサン酸ペンタフルオロフェニルエステル、テキサス ·レッド(Texa s Red: Molecular Probes, In の商標)、テトラメチルローダミン一 5 (及び 6)イソチオシ ァネート、ェォシン イソチオシァネート、エリトロシン 5—イソチオシァネート、 4 クロロー 7 二トロべンズー2 ォキサ 1 , 3 ジァゾ一ノレ、 4ーフノレオロー 7 二トロ ベンズー2 ォキサ—1 , 3 ジァゾール、 3—(7 二トロべンズー2 ォキサ—1 , 3 ジァゾ一ルー 4ーィノレ)メチルァミノプロピオ二トリル、 6 - (7 二トロべンズー2 ォ キサ一 1 , 3 ジァゾール 4 ィル)ァミノへキサン酸、スクシンイミジノレ 12— (N メ チルー N— (7 二トロべンズー2 ォキサ 1 , 3 ジァゾ一ルー 4 ィル)アミノドデ カノエート、 7—ジェチルアミノー 3—(4' イソチオシアナトフェニノレ) 4ーメチルク マリン(CP)、 7—ヒドロキシクマリンー4 酢酸、 7—ジメチルァミノクマリンー4 酢酸 、スクシンィミジル 7—ジメチルァミノクマリンー4 アセテート、 7—メトキシクマリンー4 酢酸、 4 ァセトアミドー 4, 一イソチオシアナトスチルベン 2, 2, 一ジスルホン酸( SITS) , 9 クロロアタリジン、スクシンィミジル 3—(9一力ルバゾール)プロピオネート、 スクシンィミジル 1ーピレンブチレート、スクシンィミジル 1ーピレンノナノエート、 p 二 トロフエニル 1ーピレンブチレート、 9 アントラセンプロピオン酸、スクシンィミジルァ ントラセンー9 プロピオネート、 2 アントラセンスルホユルクロリドなどを使用しても よい。
[0027] 棒状構造物質、タグ、及び標識物質の三者は一つのポリペプチド鎖からなる融合タ ンパク質であってもよい。この場合、相互作用物質が低分子リガンドであるときは、棒 状構造物質の先端部分の活性基 (N末アミノ酸の アミノ基、 C末アミノ酸のカルボ キシル基、またはシスティン残基のチオール基など)を介して共有結合させることがで きる。また、相互作用物質がタンパク質であるときは、相互作用物質も含めた四者の 融合タンノ ク質としてもよい。
[0028] 本発明の分子モジュールは、標的とする化合物の精製又は標識のために使用され る。具体的には、以下の用途に使用することができる。
[0029] (1)生体成分の精製
本発明の分子モジュールを生体成分の粗抽出物に加えれば、その一端が目的の 生体成分に特異的に結合して複合体を形成する。その複合体をタグを介して樹脂ビ ーズゃ磁気ビーズで回収することができる。その際、 目的に応じて溶液中に塩ゃ界 面活性剤を添加することにより、純化を目標とする対象を単体で、あるいは複合体の まま、ひいてはさらに大きな細胞内小器官や細胞全体としても精製することができる。
[0030] (2)顕微鏡観察時の標識
標識物質として蛍光物質を用いることで、蛍光シグナルを顕微鏡観察することにより 、細胞内あるいは小器官内における標的化合物の局在を示したり、生きた状態でそ の化合物の動態を追跡することもできる。また、タグに結合する適当な金コロイドを用 いた免疫電子顕微鏡法により、組織試料中におけるリガンド結合部位の探索も可能 である。更に、本発明の分子モジュールは棒の先端に球状部分を有す特有な形状を 示すので、高分解能の電子顕微鏡画像を用いてタンパク質分子や複合体中の結合 領域を直接示すことも可能と思われる。
[0031] 棒状構造物質、相互作用物質、タグ、標識物質の位置関係は、例えば、図 1 (A)に 示すようになる。相互作用物質〔4〕は、棒状構造物質〔3〕の一端に配置され、タグ〔1 〕と標識物質〔2〕が棒状構造物質〔3〕の別の一端に配置されている。この図では、タ グ〔1〕は、標識物質〔2〕と結合してレ、る力 棒状構造物質〔3〕に直接結合してもよ!/、。 また、この図とは逆に、タグ〔1〕が棒状構造物質〔3〕に直接結合し、標識物質〔2〕が タグ〔1〕に結合するような位置関係になってもよい。このように位置関係をとることによ り、標的化合物〔5〕と、タグ〔1〕及び標識物質〔2〕とが一定の距離を保つができ、両 物質が近接することによる様々な悪影響を排除することができる。
[0032] 本発明のタグ及び標識付加タンパク質は、タンパク質本体と、棒状構造物質と、タ グと、標識物質とを有し、タンパク質本体が棒状構造物質の一端に配置され、タグと 標識物質が棒状構造物質の別の一端に配置されていることを特徴とするものである
本発明のタグ及び標識付加タンパク質における棒状構造物質、タグ、標識物質は、 本発明の分子モジュールと同様のものを使用でき、また、各物質の位置関係も分子 モジュールの場合と同様である(図 1 (B) )。タンパク質本体としては特に制限はなぐ 受容体タンパク質など生体内で重要な働きをしているタンパク質などを使用すること ができる。
[0033] 棒状構造物質、タグ、標識物質はいずれもタンパク質であることが好ましぐこれら はタンパク質本体と共に、一つのポリペプチド鎖からなる融合タンパク質であることが 更に好ましい。図 2〜6及び図 19にこのような融合タンパク質の具体例を示す(但し、 タンパク質本体は含まれない。)。図 2は、棒状構造物質としてダイニンのストーク部 位に変異を加えたタンパク質(shortタイプ)、タグとしてヒスチジンタグ及びビォチン化 ペプチド、標識物質として GFPを用いた融合タンパク質のアミノ酸配列を示すもので ある。図 3は、棒状構造物質としてダイニンのストーク部位に変異を加えたタンパク質 (shortタイプ)、タグとしてヒスチジンタグ及びビォチン化ペプチド、標識物質として Ds Redを用いた融合タンパク質のアミノ酸配列を示すものである。図 4は、棒状構造物質 としてダイニンのストーク部位に変異を加えたタンパク質(longタイプ)、タグとしてヒス チジンタグ及びビォチン化ペプチド、標識物質として GFPを用いた融合タンパク質の アミノ酸配列を示すものである。図 5は、棒状構造物質としてダイニンのストーク部位 に変異を加えたタンパク質(longタイプ)、タグとしてヒスチジンタグ及びビォチン化ぺ プチド、標識物質として DsRedを用いた融合タンパク質のアミノ酸配列を示すものであ る。図 6は、棒状構造物質として一本の α—ァクチニンの棒状領域、タグとしてヒスチ ジンタグ及びビォチン化ペプチド、標識物質として GFPを用いた融合タンパク質のァ ミノ酸配列を示すものである。図 19は、棒状構造物質として二本の α—ァクチニンの 棒状領域、タグとしてヒスチジンタグ及びビォチン化ペプチド、標識物質として GFPを 用いた融合タンパク質のアミノ酸配列を示すものである。なお、図 2、図 3、図 4、図 5、 図 6、及び図 19のアミノ酸配列は、それぞれ配列番号 1、 2、 3、 4、 5、及び 12にも示 す。
[0034] 本発明のタンパク質の精製方法は、タンパク質本体と、棒状構造タンパク質と、タグ と、標識タンパク質を有し、タンパク質本体が棒状構造タンパク質の一端に配置され 、タグと標識タンパク質が棒状構造タンパク質の部位の別の一端に配置される構造を とる融合タンパク質をコードする DNAを細胞内で発現させる工程、前記細胞を破砕し 、その破砕液をタグと親和性を持つ物質と接触させる工程、タグと親和性を持つ前記 物質に結合した融合タンパク質を回収する工程を含むことを特徴とするものである。
[0035] このタンパク質の精製方法は、本発明のタグ及び標識付加タンパク質を応用したも のである。また、この方法は、タグ及び標識タンパク質を、棒状構造タンパク質を介し て付加することを除き、通常のタグ付きタンパク質の精製方法と同様に行うことができ 実施例
[0036] 以下、実施例により本発明を更に詳細に説明する。
[0037] 〔実施例 1〕 スぺーサーモジュールの設計
図 2及び図 4に示すアミノ酸配列からなるタンパク質(以下、このタンパク質を「スぺ ーサーモジユーノレ」という。)を設計した。このスぺーサーモジユーノレは、 GFP、ヒスチ ジンタグ(8 X His)、ビォチン化ペプチド(biotin acceptor domain, BAD)、逆平 fi型コ ィルドコイル構造をとるタンパク質を有する。図 7にこのスぺーサーモジュールの構造 の模式図を示す。 His-tagとビォチン化ペプチドは、 GFPのループ部分(173-174)に 揷入されており、逆平行型コイルドコイル構造をとるタンパク質は、 GFPの N末端及び C末端に付加されている。逆平行型コイルドコイル構造をとるタンパク質は、細胞質ダ ィニンの stalkをもとにして、より安定するように人工的な変異を導入した。図 2に示す スぺーサーモジユーノレと図 4に示すスぺーサーモジユーノレとでは、逆平 fl型コイノレド コイル構造をとるタンパク質が異なり、前者は短いタイプの棒状構造を有し、後者は 長!/、タイプの棒状構造を有する。
また、 GFPの代わりに DsRedを用い同様のスぺーサーモジュールも設計した(図 3及 び図 5)。
[0038] 〔実施例 2〕 Mビーズによるスぺーサーモジュールの精製
実施例で設計した 4種類のスぺーサーモジュールをコードする cDNAを pColdベクタ 一に挿入して大腸菌で大量発現させた(GFP-short、 DsRed_short、 GFP_long、 DsRe d_long)。菌体を破砕後、上清を Niビーズに結合した。ビーズを 20 mM imidazoleを含 む溶液で洗った後、 300 mM imidazoleで溶出した。溶出画分を SDS-PAGEした。この 結果を図 8Aに示す。
V、ずれのスぺーサーモジュールも単一のバンドとして検出されたことから、ヒスチジ ンタグが精製用タグとして機能していることわかる。なお、 shortタイプのスぺーサーモ ジュールの棒状部分の長さは 16 nm、 longタイプのスぺーサーモジュールの棒状部 分の長さは 24 nmと予想された。
[0039] 〔実施例 3〕 Streptavidin HRPによるビォチン化の検出
Niビーズで精製したスぺーサーモジュールを SDS-PAGE後、 PVDF膜に転写し、 str eptavidin HRPでブロッテイングした。この結果を図 8Bに示す。
いずれのスぺーサーモジュールも streptavidinに反応しており、ビォチン化されてい ること力 Sわ力、る。
[0040] 〔実施例 4〕 ロータリーシャドウイング法によるスぺーサーモジュールの形態観察 上記スぺーサーモジュールをコードする cDNAを pCold TFベクターに揷入し、大腸 菌タンパク質である trigger factorとの融合タンパク質として発現させた。精製した融合 タンパク質をロータリーシャドウイング法で観察した。この結果を図 9に示す。
shortタイプ及び longタイプのいずれのスぺーサーモジュールもダンベル様構造を 示した。球状構造の間の棒状部分は長尺型の方が長力、つた。これは上の予想と一致 している。
[0041] 〔実施例 5〕 スぺーサーモジュールを融合させたタンパク質の細胞内局在
スぺーサーモジュール(GFP-short)を単独、又は他のタンパク質との融合タンパク 質として HeLa細胞へ発現させ、細胞内の GFP蛍光を検出した。単独で発現させた場 合、クラスリン軽鎖との融合タンパク質(C末融合)として発現させた場合、力べォリン- 1との融合タンパク質 (N末融合)として発現させた場合、及び 1型リアノジン受容体 (R yRl)との融合タンパク質(内部揷入, 1379-1380)として発現させた場合のスぺーサ 一モジュールの細胞内局在を示す顕微鏡写真をそれぞれ図 10A、図 10B、図 10C 及び図 10Dに示す。
[0042] スぺーサーモジュールを単独で発現させた場合、スぺーサーモジュールは核を除 く細胞内に散在していた。クラスリン軽鎖及び力べォリン- 1との融合タンパク質して発 現させた場合、スぺーサーモジュールは核周囲と細胞質に点状に局在した。 RyRlと の融合タンパク質して発現させた場合、スぺーサーモジュールは細胞内に網目状に 局在し、小胞体に存在することが示された。いずれの融合タンパク質についても、内 在性タンパク質と局在部位が一致していたことから、スぺーサーモジュールは、融合 対象としてタンパク質の構造、機能に影響を与えないことが示唆された。
[0043] 〔実施例 6〕 異なるスぺーサーモジュールによる二重標識
クラスリン軽鎖の C末に GFP-shortを結合させた融合タンパク質と力べォリン- 1の N 末に DsRed-shortを結合させた融合タンパク質を、それぞれ HeLa細胞に発現させ、 両者が発現して!/、る細胞を観察した。この結果を図 11に示す。
両融合タンパク質は、核周囲と細胞質に点状に局在していたが、その存在位置は 異なっていた。
[0044] 〔実施例 7〕 哺乳類細胞に発現させたスぺーサーモジュール融合タンパク質の精製 例(その 1) GFP-shortと IP3R1の融合タンパク質(N末融合)をコードする DNAを、 Flp-In T-REx HEK細胞に導入し、安定発現株を選択した。 doxycyclineにより発現誘導した後、膜 画分を調製した。 IP3R1は CHAPSで可溶化し、 Mカラムにかけた。カラムは 100 mM i midazoleで洗浄後、 300 mM imidazoleで溶出した。各精製段階の画分中に含まれる タンパク質を電気泳動により分離した。また、比較のため、 N末にヒスチジンタグを揷 入した IP3R1についても同様に発現させ、各精製段階の画分中に含まれるタンパク質 を調べた。この結果を図 12に示す。
スぺーサーモジュールとの融合タンパク質は、 N末にヒスチジンタグを揷入した IP3R
1と同様に精製されたことから、スぺーサーモジュールは精製用タグとして機能するこ とがわかった。
[0045] 〔実施例 8〕 哺乳類細胞に発現させたスぺーサーモジュール融合タンパク質の精製 例(その 2)
GFP-shortまたは GFP-longとクラスリン軽鎖の融合タンパク質(C末融合)をコードす る DNAを、 Flp-In T-REx HEK細胞に導入し、安定発現株を選択した。 doxycyclineに より発現誘導した後、膜画分を調製した。 0.5 M NaCretriskelionを抽出して Niカラム に力、けた。カラムは 100 mM imidazoleで洗浄後、 300 mM imidazoleで溶出した。 300 mM imidazole溶出画分中に含まれるタンパク質を電気泳動により検出した。対照とし て C末にヒスチジンタグを揷入したクラスリン軽鎖を発現させた。この結果を図 13に示 す。
スぺーサーモジュールを融合したクラスリン軽鎖とともに分子量 160 kDaのクラスリン 重鎖が精製されたことからタンパク質複合体として精製されていることがわ力 た。
[0046] 〔実施例 9〕 ロータリーシャドウイング法によるスぺーサーモジュール融合クラスリン複 合体の形態観察
実施例 8で精製したクラスリン複合体をロータリーシャドウイング法で観察した。この 結果を図 14に示す。
C末にヒスチジンタグを揷入したクラスリン複合体は典型的な三脚巴構造 (triskelion )を示した。 shortタイプのスぺーサーモジュールを融合したクラスリン軽鎖では、クラス リン軽鎖の C末に一致する triskelionの中心からやや離れた位置に GFPに対応する球 状構造が観察された。 longタイプのスぺーサーモジュールを融合したクラスリン軽鎖 では、中心からさらに離れた位置に GFPに対応する球状構造力 S、さらに棒状部分も 観察され、タンパク質複合体中におけるスぺーサーモジュールの局在が確認できた
[0047] 〔実施例 10〕 スぺーサーモジュール融合タンパク質を発現させた細胞からの細胞内 小器官の精製例
スぺーサーモジュール(GFPにヒスチジンタグとビォチン化配列を含み両脇に TEV プロテアーゼ部位を有する)とクラスリン軽鎖の融合タンパク質(C末融合)をコードす る DNAを、 Flp-In T-REx HEK細胞に導入し、安定発現株を選択した。 doxycyclineに より発現誘導した後、 0.1 M MES, pH 6.5, 0.5 mM MgC12, 1 mM EGTA溶液で細胞 をホモジナイズして膜画分を調製した。膜画分を Streptavidin磁気ビーズに結合させ て上記緩衝液で洗浄後、 TEVプロテアーゼで室温、 1時間処理した。溶出画分をネ ガティブ染色法により電子顕微鏡観察した。その結果を図 15に示す。
溶出画分には直径 100 匪程度の小胞が多数観察された。拡大すると小胞はサッカ 一ボール状の骨格で取り囲まれており、典型的なクラスリン被覆小胞(coated vesicles )の形状を示すことが確認された。
[0048] 〔実施例 1 1〕 哺乳類細胞に発現させたスぺーサーモジュール融合タンパク質を含 む細胞内小器官の精製例
実施例 10で得られた被覆小胞画分中に含まれるタンパク質を電気泳動により分離 した。また、比較のため、同膜画分を 0.5 M NaClで抽出した triskelionを同様に精製し た。この結果を図 16に示す。
被覆小胞画分では、 triskelionに含まれるクラスリン重鎖および軽鎖に加えて多数の 別の構成タンパク質のバンドが検出された。 27 kDa付近のバンドは TEVプロテアーゼ 由来である。スぺーサーモジュールが細胞内小器官精製用タグとして有効に機能す ることがわかった。
[0049] 〔実施例 12〕 スぺクトリンリピート型スぺーサーモジュールを融合させたタンパク質の 細胞内局在 (その 1 )
スぺクトリンリピート型スぺーサーモジュール (配列番号 10記載のアミノ酸配列で表 されるタンパク質を含む)を単独、又は他のタンパク質との融合タンパク質として HeLa 細胞へ発現させ、細胞内の GFP蛍光を検出した。単独で発現させた場合、及び細胞 質ダイニン軽鎖 (TcTex-1)との融合タンパク質として発現させた場合のスぺクトリンリ ピート型スぺーサーモジュールの細胞内局在を示す顕微鏡写真をそれぞれ図 17A 及び図 17Bに示す。
[0050] スぺクトリンリピート型スぺーサーモジュールを単独で発現させた場合は核を除く細 胞内に散在していた。細胞質ダイニン軽鎖との融合タンパク質して発現させた場合、 スぺクトリンリピート型スぺーサーモジュールは核周囲に局在していた。内在性タンパ ク質と局在部位が一致していたことから、スぺクトリンリピート型スぺーサーモジュール は、融合対象としてタンパク質の構造、機能に影響を与えないことが示唆された。
[0051] 〔実施例 13〕 スぺクトリンリピート型スぺーサーモジュールを融合させたタンパク質の 細胞内局在 (その 2)
スぺクトリンリピート型スぺーサーモジュール (配列番号 13記載のアミノ酸配列で表 されるペプチドと配列番号 14記載のアミノ酸配列で表されるペプチドを含む)を単独 、又は他のタンパク質との融合タンパク質として HeLa細胞へ発現させ、細胞内の GFP 蛍光を検出した。単独で発現させた場合、及びクラスリン軽鎖との融合タンパク質とし て発現させた場合のスぺクトリンリピート型スぺーサーモジュールの細胞内局在を示 す顕微鏡写真をそれぞれ図 18A及び図 18Bに示す。
[0052] スぺクトリンリピート型スぺーサーモジュールを単独で発現させた場合は核を除く細 胞内に散在していた。クラスリン軽鎖との融合タンパク質して発現させた場合、スぺク トリンリピート型スぺーサーモジュールは核周囲と細胞質に点状に局在していた。ス ぺクトリンリピート型スぺーサーモジュールは、融合対象としてタンパク質の構造、機 能に影響を与えないことが示唆された。
[0053] 本明細書は、本願の優先権の基礎である日本国特許出願(特願 2006-332530号) の明細書および/または図面に記載されている内容を包含する。また、本発明で引 用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入 れるものとする。

Claims

請求の範囲
[I] 標的化合物と結合し、その化合物を精製又は標識するために使用する分子モジュ ールであって、棒状構造物質と、標的化合物と相互作用をする相互作用物質と、タ グと、標識物質とを有し、相互作用物質が棒状構造物質の一端に配置され、タグと標 識物質が棒状構造物質の別の一端に配置されていることを特徴とする分子モジユー ル。
[2] 棒状構造物質、相互作用物質、タグ、及び標識物質が、一本のポリペプチド鎖を形 成して!/、ることを特徴とする請求項 1に記載の分子モジュール。
[3] 棒状構造物質が、逆平行型コイルドコイル構造をとるタンパク質、又はスぺクトリンリ ピート構造をとるタンパク質であることを特徴とする請求項 1又は 2に記載の分子モジ ユール。
[4] タグが、ヒスチジンタグ、又はビォチン化ペプチドであることを特徴とする請求項 1乃 至 3の!/、ずれか一項に記載の分子モジュール。
[5] 標識物質が、 GFP、又は DsRedであることを特徴とする請求項 1乃至 4のいずれか一 項に記載の分子モジュール。
[6] タンパク質本体と、棒状構造物質と、タグと、標識物質とを有し、タンパク質本体が 棒状構造物質の一端に配置され、タグと標識物質が棒状構造物質の別の一端に配 置されていることを特徴とするタグ及び標識付加タンパク質。
[7] タンパク質本体、棒状構造物質、タグ、及び標識物質が、一本のポリペプチド鎖を 形成して V、ることを特徴とする請求項 6に記載のタグ及び標識付加タンパク質。
[8] 棒状構造物質が、逆平行型コイルドコイル構造をとるタンパク質、又はスぺクトリンリ ピート構造をとるタンパク質であることを特徴とする請求項 6又は 7に記載のタグ及び 標識付加タンパク質。
[9] タグが、ヒスチジンタグ、又はビォチン化ペプチドであることを特徴とする請求項 6乃 至 8のいずれか一項に記載のタグ及び標識付加タンパク質。
[10] 標識物質が、 GFP又は DsRedであることを特徴とする請求項 6乃至 9のいずれか一 項に記載のタグ及び標識付加タンパク質。
[I I] タンパク質本体と、棒状構造タンパク質と、タグと、標識タンパク質を有し、タンパク 質本体が棒状構造タンパク質の一端に配置され、タグと標識タンパク質が棒状構造 タンパク質の別の一端に配置されている構造の融合タンパク質をコードする DNAを細 胞内で発現させる工程、前記細胞を破砕し、その破砕液をタグと親和性を持つ物質 と接触させる工程、タグと親和性を持つ物質に結合した融合タンパク質を回収するェ 程を含むことを特徴とするタンパク質の精製方法。
[12] 棒状構造タンパク質が、逆平行型コイルドコイル構造をとるタンパク質、又はスぺタト リンリピート構造をとるタンパク質であることを特徴とする請求項 11に記載のタンパク 質の精製方法。
[13] タグが、ヒスチジンタグ、又はビォチン化ペプチドであることを特徴とする請求項 11 又は 12に記載のタンパク質の精製方法。
[14] 標識タンパク質が、 GFP又は DsRedであることを特徴とする請求項 11乃至 13のい ずれか一項に記載のタンパク質の精製方法。
PCT/JP2007/073482 2006-12-08 2007-12-05 分子モジュール WO2008069232A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20070859710 EP2098538A4 (en) 2006-12-08 2007-12-05 MOLECULAR MODULE
US12/517,964 US8304520B2 (en) 2006-12-08 2007-12-05 Labeled fusion protein
JP2008548307A JP5152807B2 (ja) 2006-12-08 2007-12-05 分子モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006332530 2006-12-08
JP2006-332530 2006-12-08

Publications (1)

Publication Number Publication Date
WO2008069232A1 true WO2008069232A1 (ja) 2008-06-12

Family

ID=39492115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073482 WO2008069232A1 (ja) 2006-12-08 2007-12-05 分子モジュール

Country Status (4)

Country Link
US (1) US8304520B2 (ja)
EP (1) EP2098538A4 (ja)
JP (1) JP5152807B2 (ja)
WO (1) WO2008069232A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020027237A1 (ja) * 2018-08-01 2021-08-02 国立大学法人 鹿児島大学 ペプチド融合タンパク質

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322901B2 (en) * 2013-02-20 2016-04-26 Maxim Integrated Products, Inc. Multichip wafer level package (WLP) optical device
AU2021416090A1 (en) * 2020-12-28 2023-07-13 New York University Crosslinked helix dimer mimics of sos and methods of using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332530A (ja) 2005-05-30 2006-12-07 Nikon Corp 投影光学系、露光装置、及びデバイスの製造方法
JP2006343207A (ja) * 2005-06-08 2006-12-21 Univ Of Tokyo 顕微鏡解析用プローブ及び顕微鏡解析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178117A1 (en) * 2000-08-02 2002-02-06 Erasmus Universiteit Rotterdam Targeting through integrins
AU2003208811A1 (en) * 2002-02-05 2003-09-02 Immunolex Therapeutics Aps A pair of antibody fv fragments stabilized by coiled­coil peptides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332530A (ja) 2005-05-30 2006-12-07 Nikon Corp 投影光学系、露光装置、及びデバイスの製造方法
JP2006343207A (ja) * 2005-06-08 2006-12-21 Univ Of Tokyo 顕微鏡解析用プローブ及び顕微鏡解析方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 11, 2001, pages 450 - 457
DJINOVIC-CARUGO K. ET AL.: "Structure of the alpha-actinin rod: molecular basis for cross-linking of actin filaments", CELL, vol. 98, 1999, pages 537 - 546, XP008109108 *
GIBBONS I.R. ET AL.: "The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk", J. BIOL. CHEM., vol. 280, 2005, pages 23960 - 23965, XP008109109 *
KATAYAMA E. ET AL.: "Native structure and arrangement of inositol-1,4,5-triphosphate receptor molecules in bovine cerebellar Purkinje cells as studied by quick-freeze deep-etch electron microscopy", EMBO J., vol. 15, 1996, pages 4844 - 4851, XP008109117 *
KATAYAMA E.: "Bunshi o Miru: Denshi Kenbikyo ni yoru Tanpakushitsu Fukugotai no Kansatsubo", CELL TECHNOLOGY, vol. 26, April 2007 (2007-04-01), pages 438 - 443, XP008110998 *
MEDALIA O. ET AL.: "Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography", SCIENCE, vol. 298, 2002, pages 1209 - 1213, XP008109110 *
See also references of EP2098538A4 *
SMITH C.J. AND PEARSE B.M.: "Clathrin: anatomy of a coat protein", TRENDS CELL BIOL., vol. 9, 1999, pages 335 - 338, XP008109116 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020027237A1 (ja) * 2018-08-01 2021-08-02 国立大学法人 鹿児島大学 ペプチド融合タンパク質
US11643474B2 (en) 2018-08-01 2023-05-09 Kagoshima University Peptide fusion protein

Also Published As

Publication number Publication date
US8304520B2 (en) 2012-11-06
JP5152807B2 (ja) 2013-02-27
US20100105882A1 (en) 2010-04-29
EP2098538A1 (en) 2009-09-09
EP2098538A4 (en) 2009-12-02
JPWO2008069232A1 (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
US20220283171A1 (en) Methods and systems for producing nanolipoprotein particles
US7939284B2 (en) Methods using O6-alkylguanine-DNA alkyltransferases
US20120149870A1 (en) Sequentially arranged streptavidin-binding modules as affinity tags
KR101104417B1 (ko) 단백질 g 변형체를 이용한 항체의 특이적 공유결합 커플링방법
US11360100B2 (en) Methods and compositions useful in detecting proteins
CN116355092B (zh) 抗人血清白蛋白的纳米抗体及其应用
JP2010156715A (ja) Ble遺伝子によってコード化されるタンパク質およびブレオマイシン・ファミリー由来抗生物質の新しい使用
US20240018216A1 (en) Methods and composition involving thermophilic fibronectin type iii (fn3) monobodies
JP2013501771A (ja) 複合体形成系
JP2019504637A (ja) エピトープタグ、並びにタグ付けされたポリペプチドの検出、捕捉及び/又は精製のための方法
Doh et al. MiniVIPER is a peptide tag for imaging and translocating proteins in cells
JP5152807B2 (ja) 分子モジュール
Hytönen et al. Dual‐affinity avidin molecules
Smith et al. Location of auxilin within a clathrin cage
CN106164096B (zh) 蛋白包被的聚合物基底
Walkup IV et al. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands
CA2785359C (en) Protein display
US20140329706A1 (en) Affinity tags, and related affinity ligands, engineered proteins, modified supports, compositions, methods and systems
EP1978093A1 (en) Method of crosslinking two objects of interest
CN116284424B (zh) 抗鼠抗体可结晶段的纳米抗体及其应用
EP0726951B1 (en) Manufacture and use of polypeptides tagged using binding molecules
Maio Designed metallo-tags for probing natural systems
KR20080094347A (ko) 금 표면에서의 특이적인 dna와 단백질의 spri 방법
WO2023154731A1 (en) Ligand operable protein cages
ZA200404373B (en) Protein knobs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859710

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548307

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12517964

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007859710

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007859710

Country of ref document: EP