WO2008066194A1 - Free-cutting steel excellent in manufacturability - Google Patents

Free-cutting steel excellent in manufacturability Download PDF

Info

Publication number
WO2008066194A1
WO2008066194A1 PCT/JP2007/073277 JP2007073277W WO2008066194A1 WO 2008066194 A1 WO2008066194 A1 WO 2008066194A1 JP 2007073277 W JP2007073277 W JP 2007073277W WO 2008066194 A1 WO2008066194 A1 WO 2008066194A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
machinability
amount
mns
cutting
Prior art date
Application number
PCT/JP2007/073277
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Hashimura
Atsushi Mizuno
Kenichiro Miyamoto
Jun Aoki
Seiji Ito
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1020097008173A priority Critical patent/KR101118852B1/en
Priority to US12/312,567 priority patent/US20100054984A1/en
Priority to BRPI0719310-6A priority patent/BRPI0719310B1/en
Priority to EP07849980A priority patent/EP2096186B1/en
Priority to JP2008547071A priority patent/JP5212111B2/en
Priority to AU2007326255A priority patent/AU2007326255B2/en
Publication of WO2008066194A1 publication Critical patent/WO2008066194A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a low-carbon free-cutting steel that is used in automobiles and general machinery and requires machinability rather than strength characteristics, and in particular, in terms of tool life during cutting, finished surface roughness, and chip disposal.
  • the present invention relates to a free-cutting steel with excellent machinability, low melting of a plate refractory of a sliding nozzle for continuous forging, excellent ductility in hot rolling, and excellent manufacturability.
  • a sulfide of 20/2 m or more alone or a group of sulfides having a length of 20 2 m or more in which a plurality of sulfides are connected in a substantially series shape has a cross section in the rolling direction of 1 mm 2.
  • a method has been devised to improve chip disposal by having more than 30 in the field of view.
  • the sub-m which is the most effective for machinability in practice, is not mentioned for the dispersion of m-level sulfide, including the production method, and cannot be expected from its component system.
  • JP-A-9-840, JP-A-2001-329335, JP-A-2002- No. 3991, JP-A-2000-178683 This is a technique for improving machinability by using BN. However, these are not intended to improve the roughness of the finished surface.
  • JP-A-9-117840, JP-A-2001-329335, and JP-A-2000-178683 aim to improve the tool life.
  • Kai 2002-399 No. 1 public information aims to improve chip disposal. When applied to the chemical components within the range of the examples disclosed in these documents, sufficient effects cannot be obtained in improving the finished surface roughness. Specifically, matrix homogeneity due to fine dispersion in BN steel If it is not made, the effect for improving the finished surface roughness cannot be obtained, but the technology is not described in these patent documents.
  • Japanese Patent Application Laid-Open No. 2004- ⁇ 6 1 76 is also an example in which BN is used for improving machinability, considering the balance with the amount of N added.
  • this technology completely suppresses the occurrence of rolling flaws, while reducing the balance of chemical components of steel materials to ensure machinability, which is a conflicting property, and the amount of B oxide that has high affinity with enzymes.
  • Japanese Laid-Open Patent Publication No. 5-345 951 is a technology for increasing the size of MnS by increasing the oxygen concentration in steel to improve machinability.
  • this technology does not mention anything about the decrease in MnS and the resulting decrease in machinability due to the increase in oxygen, and further measures to prevent significant manufacturability degradation such as refractory erosion and surface flaws. Not touched.
  • JP-A-2001-329335 discloses that, in order to improve hot ductility, it suppresses grain boundary embrittlement due to grain boundary precipitation of BN, and in order to utilize the effect of preventing solid grain B embrittlement, A technique for limiting the amount of N added has also been proposed.
  • the amount of N is simply reduced, there is not enough consideration for the control of the amount of dissolved N in the BT heating to processing temperature range. Becomes insufficient.
  • the amount of N is lower than the stoichiometric composition, the amount of BN necessary to improve the finished surface roughness is insufficient, but it is good because there is no supplementation by other techniques to compensate for it. Finished surface roughness cannot be obtained.
  • Japanese Patent Application Laid-Open No. 2004-27297 proposes a technique for limiting the amount of oxygen in steel in order to reduce surface defects.
  • This is an example of adding Ca to improve machinability in low-carbon free-cutting steel.
  • Japanese Patent Laid-Open No. 2000-1 60284 does not describe a specific effect of improving machinability, and also has a wide range of Ca addition amount, and also describes an effective addition amount for improving machinability.
  • there is a problem that the plate refractory of the sliding nozzle is easily melted when producing the low-carbon free-cutting steel with B added by the continuous forging method, but there is no prior literature that solves this problem. Disclosure of the invention
  • the present invention is a low-carbon free-cutting steel used in automobiles and general machinery, and is particularly excellent in tool life during cutting, finished surface roughness, and machinability of chip disposal, and for continuous forging.
  • Sliding nozzle plate This provides free-cutting steel that has little refractory refractory loss, has excellent ductility in hot rolling, and can prevent deterioration of surface properties due to hot rolling.
  • the ratio of B and N required to obtain BN necessary for machinability at room temperature where cutting is performed is controlled while controlling the amount of solute N in the rolling temperature range.
  • solid solution N is the amount obtained by subtracting the amount of compound N from the total amount of N, and the amount of compound N indicates the amount of N that is substantially BN.
  • This solute N is produced in large quantities because BN is dissolved by heating at a rolling temperature range of 800 to 110 ° C. In order to perform good rolling with less surface flaws, it is necessary to reduce the amount of solute N in this temperature range.
  • Mn is easily consumed as an oxide in molten steel.
  • B As BN to improve machinability and hot ductility
  • MnO refractory damage of the plate refractory of the sliding nozzle for continuous forging
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • MnO in steel is a cross section perpendicular to the rolling direction of steel. Free-cutting steel with excellent manufacturability, characterized in that the area of MnO with an equivalent circle diameter of 0.5 m or more is 15% or less of the area of all Mn inclusions.
  • the abundance density of the sulfide whose main component is MnS is 10000 / mm 2 with an equivalent circle diameter of 0.1 to 0.5 m in the cross section perpendicular to the rolling direction of the steel. Free-cutting steel with excellent manufacturability, characterized by the above.
  • Fig. 1 is a conceptual diagram showing the plunge cutting test method.
  • (A) is a bird's-eye view and (b) is a plan view.
  • FIG. 2 is a conceptual diagram showing the longitudinal turning test method and the quality of the finished surface.
  • (A) is a plan view
  • (b) is an enlarged view of the finished surface (feed mark)
  • Fig. 3 is an MnO measurement by EPMA.
  • It is an optical microscope photograph which shows an example.
  • FIG. 4 shows (a) a TEM rebris photograph and (b) an optical microscope photograph of a sulfide containing MnS as a main component of the present invention.
  • FIG. 5 shows (a) a TEM replication force photograph and (b) an optical microscope photograph of a sulfide containing MnS as a main component in a comparative example.
  • Figure 6 shows the change in machinability due to MnO in terms of the finished surface roughness in longitudinal turning after cutting 800 pieces.
  • FIG. 7 is a diagram showing a balance between finished surface roughness and hot ductility in longitudinal turning in the inventive example and the comparative example.
  • FIG. 8 is an explanatory view of the depth position of 1 Z4 of the thickness of the flange.
  • the present invention improves the machinability by adding B and precipitating BN in the low-carbon free-cutting steel, which requires machinability rather than strength characteristics, without adding Pb.
  • B and N are added so as to satisfy an appropriate relationship, thereby improving machinability and ductility during hot rolling and reducing MnO in the steel.
  • the invention has been completed by improving the machinability and the life of the refractory for injection amount control in continuous fabrication.
  • the present invention improves the machinability by finely dispersing MnS inclusions in steel.
  • the component composition specified in the present invention and the reasons for limitation will be described below.
  • Si 0.00 ⁇ 0.5%
  • the upper limit is 0.5%. Above this, hard oxides are formed. If it is less than 0.001%, it will be difficult to soften the oxide and it will be industrially expensive.
  • Mn is necessary to fix and disperse sulfur in steel as MnS. It is also necessary to soften the oxides in steel and render them harmless. The effect depends on the amount of S to be added, but if it is less than 0.3%, the added S is sufficiently fixed with MnS, and the surface becomes scratched and S becomes FeS and becomes brittle. As the amount of Mn increases, the hardness of the substrate increases and the machinability and cold workability deteriorate, so 3.0% was made the upper limit.
  • the upper limit must be 0.2%.
  • the lower limit is set to 0.001% for elements that are effective in improving machinability.
  • S combines with Mn and exists as a sulfide mainly composed of MnS.
  • Sulfides mainly composed of MnS improve machinability, but sulfides mainly composed of expanded MnS are one of the causes of anisotropy during forging.
  • Large MnS-based sulfides should be avoided, but a large amount is preferred from the viewpoint of improving machinability. Therefore, it is preferable to finely disperse the sulfide mainly composed of MnS. Addition of 0.30% or more is necessary to improve machinability without adding Pb.
  • B precipitates as M and is effective in improving machinability. In particular, it becomes more conspicuous when it is combined with sulfides containing MnS as the main component and finely dispersed in the matrix. These effects are not noticeable at less than 0.0003%, and if added over 0.015%, the reaction with the refractory in the molten steel becomes intense, and the refractory melts at the time of forging, resulting in a significant loss of manufacturability. Therefore, the range is 0.0003% to 0.015%.
  • B tends to form oxides, if dissolved O is high in molten steel, it is consumed as oxides, which may reduce the amount of BN effective in improving machinability. Improving the yield of the amount of B, which is essentially BN, by adding B after lowering dissolved oxygen (free oxygen) to some extent by adding Ca is effective for improving machinability.
  • Ca is a deoxidizing element that can control the amount of dissolved oxygen (free oxygen) in the steel, stabilize the yield of Mn and B, which easily form oxides, and suppress the formation of hard oxides. Can do. In addition, if it is a trace amount, it generates a soft oxide and improves the machinability. If it is less than 0.0001%, there is no effect at all, and if it exceeds 0.0010%, a large amount of soft oxide is generated and adheres to the cutting edge of the tool with unevenness. Oxides are also produced in large quantities, further reducing machinability and hot ductility. Therefore, the component range was defined as 0.0001 to 0.0010%.
  • A1 is a deoxidizing element and forms A1 2 0 3 and AIN in the steel. But Al 2 ⁇ 3 cause tool damage during cutting so hard to promote wear. In addition, forming AIN reduces N for forming BN, which reduces machinability. Therefore, it was set to 0.01% or less, which does not generate a large amount of A1 2 0 3 and AIN.
  • N combines with B to generate BN and improve machinability.
  • BN is an inclusion that improves machinability, and is significantly improved by finely dispersing at high density.
  • the stoichiometric ratio of B and N combines with each other to form BN.
  • BN has a solubility in steel. As the steel temperature rises, the solubility increases and the amount of solute N increases. If there is a large amount of N dissolved in the rolling temperature range (800 to 1100 ° C), it will cause rolling flaws, so it is necessary to limit the amount of N to a certain level or less. It must be controlled according to the amount added.
  • the upper limit of N amount is combined with B without excess or deficiency. If the amount exceeds + 0.0034% with respect to the N content (1.3XB), the occurrence of rolling defects becomes significant, so 1.3XB + 0.0034 or less. On the other hand, when too little N is added, the amount of BN produced decreases.
  • the lower limit of the amount of N relative to the amount of B is 1.3XB—0.010 0 because the amount of BN required to improve machinability cannot be obtained if it is less than 0.0100% of the amount of N (1.3XB) that binds to B without excess or deficiency It was above.
  • N content if the N content is less than 0.0020%, the absolute amount of N is insufficient, and the diffusion distance to the location where B is present in the steel increases. It is not possible to generate enough BN. Therefore, it is necessary to secure 0.0020% or more. Based on the above, N content must satisfy N ⁇ 0.0020% and 1.3XB—0.0100 ⁇ N ⁇ 1.3XB + 0.0034 in order to achieve both manufacturability and machinability.
  • MnO The area of MnO with a circle equivalent diameter of 0.5 m or more is 15% or less than the area of all Mn inclusions
  • Mn is an element with a strong affinity for oxygen. In the presence of a certain amount of dissolved oxygen (free oxygen) in molten steel, the formation of MnO is inevitable. MnO is a relatively low melting point, inclusions soft, itself is not intended to cause deterioration of machinability significant tool wear or the like as a hard inclusions such as Al 2 ⁇ 3. However, when MnO increases, the amount of Mn that becomes MnS decreases and the fine dispersion of MnS is inhibited, so machinability deteriorates. Furthermore, in an environment where a large amount of MnO is generated, the dissolved oxygen (free oxygen) in the molten steel is high in concentration, so that the amount of B oxide generated is also increased, generating BN. The amount of B decreases and the machinability further deteriorates. Also, since Mn becomes MnS and Sn cannot be fixed at high temperatures, hot ductility deteriorates due to the formation of many FeS.
  • the refractory of the plate refractory of the sliding nozzle for continuous forging due to MnO in the molten steel becomes severe and the productivity is significantly deteriorated.
  • the equivalent diameter of MnO is 0.5 m or less, the area ratio is extremely small, and therefore the amount of Mn consumed by MnO is very small, so the amount of Mn S produced is not greatly affected. For this reason, it was specified for a circle equivalent diameter of 0.5 m or more.
  • MnO is usually present alone in addition to MnO alone or in combination with other oxides, but in the present invention, the area measured by the following method is identified as MnO.
  • Figure 3 shows an example of MnO measurement by EPMA.
  • a test piece cut from a depth of 1 Z 4 in the diameter of the cross section perpendicular to the rolling direction of the steel material, embedded in resin, and polished with an electronic probe microanalyzer (EPMA) Measure over 20 fields of view. Since Mn0 1 3 in the steel substrate 1 2 of steel is contained in the sulfide 14 containing Mn S as the main component, the portion where Mn and O overlap in the elemental surface analysis by EPMA And the area is calculated.
  • All Mn inclusions are a general term for all inclusions combined with Mn in steel. Sulfides mainly composed of Mn S, oxides of MnO alone, MnO and others All oxides to which these oxides are bonded are targeted. Since all Mn inclusions can be fixed by elemental surface analysis with EPMA and the area can be measured, the ratio of the measured MnO area to the measured area of all Mn inclusions is obtained. .
  • the dissolved oxygen in the molten steel before LF Lee oxygen achieved by reducing the concentration.
  • the dissolved oxygen (free oxygen) concentration is preferably 200 ppm or less.
  • Addition of Ca is indispensable for controlling free oxygen, but addition of Si or Al, Ti, Zr, Mg, etc. alone or in combination is also effective.
  • Sulfides containing MnS as a main component are inclusions that improve machinability, and are significantly improved by finely dispersing them at high density.
  • the presence or absence of peeling greatly affects the height of the crest, that is, the roughness of the finished surface.
  • Sulfide containing MnS dispersed at high density as the main component can homogenize the steel material to improve the breakability of the steel material, reduce burrs, and improve the finished surface roughness. It is more effective in improving the finished surface roughness of parts that are cut by longitudinal turning, such as the shaft of office automation equipment.
  • This sulfide containing MnS as a main component becomes the precipitation nuclei of BN that are difficult to uniformly disperse in the matrix, thereby uniformly dispersing and improving the machinability of BN, especially the finish surface roughness. Can be more prominent.
  • sulfides mainly composed of MnS include not only pure MnS but also sulfides such as Fe, Ca, Ti, Zr, Mg, and MM coexist in solid solution with or combined with MnS.
  • inclusions such as MnTe, elements other than S forming a compound with Mn and coexisting with MnS in solid solution, and the inclusions deposited with oxide as a nucleus, (Mn, X) (S, Y) (where X is an element that forms a sulfide other than Mn, Y: an element that binds to Mn other than S) It is a collective term for interrelated substances.
  • the solidification cooling rate range should be controlled. If the cooling rate is less than 10 ° C / min, solidification is too slow and crystallization of MnS-based sulfides becomes coarse, making it difficult to finely disperse. If the cooling rate exceeds 100 ° C / min, Generation The density of sulfides composed mainly of fine MnS is saturated, the hardness of the steel slab increases and the risk of cracking increases. Therefore, the cooling rate during fabrication should be 10-100 ° C / min. In order to obtain this cooling rate, it is easily obtained by controlling the size of the saddle cross section, the penetration rate, etc. to appropriate values. This can be applied to both continuous forging and ingot making.
  • the solidification cooling rate here refers to the depth position of 1 Z 4 of the thickness (L) of the steel piece 16 in the cross section 17 of the steel piece 16 produced in the production direction 15 indicated by the arrow. This is the cooling rate from the liquidus temperature to the solidus temperature in Fig. 18 (see Fig. 8 (b)).
  • the cooling rate is calculated by the following formula from the distance between the secondary dendritic arm of the solidified structure in the thickness direction of the flake after solidification.
  • the secondary dendrite arm spacing changes depending on the cooling conditions, and the controlled cooling rate was confirmed by measuring this.
  • V forms carbonitride and can strengthen the steel by secondary precipitation hardening. If it is less than 0.05%, there is no effect in increasing the strength. If it is added in excess of 1.0%, a large amount of carbonitride precipitates, and on the contrary, the mechanical properties are impaired, so this was made the upper limit.
  • Nb 0.005-0.2% Nb also forms carbonitrides and can strengthen steel by secondary precipitation hardening. If it is less than 0.005%, there is no effect in increasing the strength, and if added over 0.2%, a large amount of carbonitride precipitates, and on the contrary, the mechanical properties are impaired, so this was made the upper limit.
  • Cr is an element that improves hardenability and imparts temper softening resistance. Therefore, it is added to steel that requires high strength. In that case, addition of 0.01% or more is required. However, if added in a large amount, Cr carbide is formed and embrittled, so 2.0% was made the upper limit.
  • Mo is an element that imparts resistance to temper softening and improves hardenability. If less than 0.05%, the effect is not observed, and even if added over 1.0%, the effect is saturated, so 0.05% to 1.0% was added.
  • W forms carbonitride and can strengthen the steel by secondary precipitation hardening. If it is less than 0.05%, there is no effect in increasing the strength. If it is added in excess of 1.0%, a large amount of carbonitride precipitates, and on the contrary, the mechanical properties are impaired, so this was made the upper limit.
  • Ni strengthens ferrite and is effective in improving ductility and improving hardenability and corrosion resistance. If less than 0.05%, the effect is not recognized, and even if added over 2.0%, the effect is saturated in terms of mechanical properties, so this was made the upper limit.
  • Cu strengthens ferritic iron and is effective in improving hardenability and corrosion resistance. If it is less than 0.01%, the effect is not recognized, and it exceeds 2.0%. Even so, the effect is saturated in terms of mechanical properties, so we set this as the upper limit. In particular, it is preferable to add at the same time as Ni because it reduces hot ductility and tends to cause defects during rolling.
  • Ti is a deoxidizing element, and can control the amount of oxygen in the steel, and can stabilize the yield of Mn and B, which easily form oxides. If the amount is very small, soft oxides are produced, and the machinability is improved. If it is less than 0.0005%, there is no effect, and if it is 0.1% or more, a large amount of hard oxide is produced in large quantities, and Ti that forms a solid solution without forming an oxide combines with N to form hard TiN. Reduces machinability. Therefore, the component range was defined as 0.0005 to 0.1%. Ti consumes N necessary for BN formation by forming TiN. Therefore, it is desirable that the Ti content be 0.01% or less.
  • Zr is a deoxidizing element and can control the amount of oxygen in the steel. It is possible to stabilize the yield of Mn and B that are easy to form. If the amount is very small, soft oxides are produced, and the machinability is improved. If it is less than 0.005%, there is no effect, and if it is 0.1% or more, a large amount of soft oxide is generated and adheres to the tool edge with unevenness, so that the finished surface roughness is not only extremely deteriorated, Hard oxides are also produced in large quantities, further reducing machinability. Therefore, the component range was defined as 0.0005 to 0.1%.
  • Mg is a deoxidizing element that can control the amount of oxygen in the steel and can stabilize the yield of Mn and B, which easily form oxides. If the amount is very small, soft oxides are produced, and the machinability is improved. If it is less than 0.0003%, there is no effect, and if it is 0.005% or more, a large amount of soft oxide is formed and adheres unevenly to the tool edge, resulting in an extremely poor finished surface roughness. In addition, a large amount of hard oxide is generated, further reducing the machinability. Therefore, the component range was defined as 0.003 to 0.005%.
  • Te is a machinability improving element. It also has the function of controlling the distraction of the MnS shape by generating MnTe and coexisting with MnS to reduce the deformability of MnS. Therefore, it is an effective element for reducing anisotropy. This effect is not observed at less than 0.0003%, and if it exceeds 0.23%, the effect is not only saturated, but the hot ductility is lowered and is likely to cause flaws.
  • B i is a machinability improving element. The effect is not observed at less than 0.005%, and adding more than 0.5% only saturates the machinability improvement effect. In addition, the hot ductility is likely to decrease and cause wrinkles.
  • Pb is a machinability improving element. The effect is not observed at less than 0.005%, and adding more than 0.5% not only saturates the machinability improvement effect but also tends to cause flaws due to a decrease in hot ductility.
  • the effects of the present invention will be described with reference to examples.
  • the steels of the inventive examples of Examples 1 to 72 shown in Tables 1 to 4 were forged in a 270 t converter so that the solidification cooling rate was 4 to 18 ° C / min.
  • the solidification cooling rate of the steel type of claim 1 of Examples 1 to 8 and the steel type of Claim 6 of 62 to 72 is 1 to 7 ° C / min
  • the solidification cooling rate of each steel grade was forged and sorted so as to be 12 to 85 ° C / min.
  • the steels of comparative examples of Examples 73 to 102 shown in Tables 5 to 6 were forged in a 270 t converter so that the solidification cooling rate was 4 to 7 ° C / miii.
  • the 270-t converter material was rolled into billets and then rolled to ⁇ 9.5. This ⁇ 9.5mm rolled material was drawn to ⁇ 8mm and used as a test material. Tensile specimens were taken from the billet and 18 Omm square forged material for hot ductility evaluation before rolling. The solidification cooling rate was adjusted by controlling the squeezing rate if the size of the vertical cross section was large.
  • the machinability of the material was evaluated by three typical cutting methods: drill drilling test with conditions shown in Table 7, plunge cutting test with conditions shown in Table 8, and longitudinal turning test with conditions shown in Table 9.
  • the drilling test is a method of evaluating machinability at the maximum cutting speed (so-called VL1000, unit: m / min) that can cut to a cumulative hole depth of 1000 mm.
  • the plunge cutting test is a method for evaluating the roughness of the finished surface by transferring the tool shape (configuration edge shape) with a high-speed steel parting tool.
  • Figure 1 shows an overview of this experimental method. In the experiment, the finished surface roughness when 200 grooves were machined was measured with a stylus type roughness meter. Set.
  • Longitudinal turning test is a cutting method that cuts the outer circumference of the test piece 2 in the cutting direction 3 while feeding the cemented carbide tool 1 in the longitudinal direction.
  • the surface roughness measurement surface 4 is the finished surface of the tool shape transfer 4 This is a method of repeatedly measuring roughness and evaluating it.
  • Figure 2 shows an overview of this experimental method. In this method, the test piece 2 is rotated while the carbide tool 1 is fed along the test piece 2 (0.05 mni / rev) and cutting is performed with a predetermined depth of cut 6 (1 mm) (cutting speed 80m Z min).
  • the roughness of the stripped surface is 10. In other words, it becomes the finished surface roughness, which greatly affects the surface roughness (theoretical roughness) 11 (see Fig. 2 (b)). If there is no irregularity, the value will be close to the theoretical roughness, but if irregularity occurs, the roughness will decrease (deteriorate) accordingly.
  • Sulfide containing MnS finely dispersed at a high density as a main component can reduce burrs and improve the finished surface roughness by homogenizing the steel material.
  • MnS dispersed at a high density can be used as the main component.
  • This is a method capable of remarkably expressing the effect of sulfide.
  • this method can also show the quality of the finished surface roughness due to the transfer of tool irregularities due to tool wear after heavy cutting, so the experiment evaluated the difference in machinability in the state where tool wear progressed.
  • the finished surface roughness was measured with a stylus-type roughness meter, and the 10-point surface roughness Rz (unit: m) was used as an indicator of the finished surface roughness.
  • chip disposal a chip with a small radius at the time of chip curl or a piece that is divided is preferable, and is marked as “O”.
  • a sample with a small radius of curvature at most turns or a sample with a large radius of curvature that did not reach a chip length of 10 Omm was rated as ⁇ . Chips that exceed 20 mm and with a radius of curvature of 3 or more rolls are curled continuously and defective And x.
  • the area ratio of 0.5 m or more in a circle equivalent system in the cross section perpendicular to the rolling direction of the steel material is measured on the cross section perpendicular to the rolling / drawing direction after ⁇ 8 mm wire drawing.
  • a test piece cut out from a depth of 1 Z 4 in diameter, embedded in resin, and polished was performed with an electronic probe microanalyzer (EPMA). The measurement was performed with 20 fields of view at least 200 ⁇ m ⁇ 200 zm, and the area ratio was determined by taking the MnO area in the inclusions measured by elemental analysis as the ratio to the total Mn inclusion area.
  • MnO in steel exists in the state of being contained in MnS
  • the area where Mn and ⁇ overlapped was identified as MnO by the EPMA analysis.
  • the superposition of Mn and O was performed by image processing.
  • An example of MnO measurement by EPMA is shown in Fig. 3.
  • the sulfide density measurement with a major equivalent of MnS with the maximum equivalent circle diameter of 0.5 m and the minimum diameter of 0.1 ⁇ m is shown in Fig. 3.
  • the sample was extracted by the extraction replica method from the depth position of 1 Z 4 with a diameter of a section perpendicular to the rolling / drawing direction, and was performed with a scanning electron microscope.
  • the measurement was performed at a magnification of 10,000 and 40 visual fields of 80 / im 2 per field were obtained, and this was converted to the number of sulfides containing MnS as the main component per mm 2 .
  • the hot ductility was evaluated by the drawing value of the hot tensile test at 1000 ° C. If the drawing is 50% or more, good rolling is possible, but if the drawing is less than 80%, surface flaws occur frequently, the flaw removal care area after rolling increases, and high-grade varieties with severe surface properties are required. Not applicable. If an aperture value of 80% or more is obtained, the occurrence of surface flaws is remarkably reduced, and it can be used without maintenance, making it applicable to high-grade varieties. In addition, maintenance costs can be reduced. Therefore, the hot ductility was marked as ⁇ when the aperture was 80% or more, and X was marked when it was less than 80%.
  • the refractory ratio of refractory is assumed to be 1 and the erosion ratio is quantified. Value.
  • the melting loss ratio exceeds 1, the refractory melting damage becomes severe. Therefore, when the melting loss ratio was 1 or less, it was evaluated as ⁇ , and over 1 was evaluated as X.
  • the invention examples of Examples 1 to 72 all have a good drilling tool life, finished surface roughness in plunge cutting and longitudinal turning, and hot ductility values of 80% or more compared to Comparative Examples of Examples 73 to 102.
  • good manufacturability with a low melting loss ratio could be obtained.
  • the MnO area ratio is low by controlling the amount of N by a balanced addition amount of B and N and controlling the amount of O by adding Ca as in the inventive examples of Examples 1 to 8, It was possible to obtain a high hot ductility value and a low melting rate without degrading the machinability.
  • very good machinability could be obtained due to the balanced addition of B and N and the low MnO area ratio.
  • Examples 45, 48, 50, 53, 6 with a small amount of Te also known as a free-cutting element It can be seen that good hot ductility and machinability are also obtained with 1, 68, 69, and 55 and 70-72 with both elements of Pb and Te added.
  • Example 80 the MnO area ratio is less than 15%, but the hot ductility is poor because the S and Ca contents are off.
  • Example 81 in the case where Ca was not added, O could not be controlled. Show.
  • Examples 90 and 91 are comparative examples in which the N content is outside the lower limit, but the increase in solid solution B causes an increase in hardness, and the hot ductility is low.
  • Example 93 is a comparative example in which the amounts of S and N are outside the upper limits, and the hot ductility reduction shows a bad value due to the increase in solute N.
  • Example 102 is a comparative example in which MnO is high, and both the finished surface roughness and the erosion index are poor.
  • Fig. 4 shows (a) a TEM replication force photograph and (b) an optical microscope photograph of the sulfide containing MnS as the main component of the present invention.
  • Figure 5 shows (a) a TEM replica photograph and (b) an optical microscope photograph of a sulfide mainly composed of MnS in the comparative example.
  • the size and density of the sulfide mainly composed of MnS are not much different in the observation with the optical microscope of (b), but both the size and density are observed in the observation of the TEM replica of (a). A clear difference can be seen.
  • Fig. 4 shows (a) a TEM replication force photograph and (b) an optical microscope photograph of the sulfide containing MnS as the main component of the present invention.
  • Figure 5 shows (a) a TEM replica photograph and (b) an optical microscope photograph of a sulfide mainly composed of MnS in the comparative example.
  • FIG. 6 shows the change in machinability due to the area ratio of MnO as an example of the finished surface roughness in longitudinal turning after cutting 800 pieces. Since the progress of tool wear during heavy cutting becomes significant when the area ratio of Mn 0> 15%, the superiority or inferiority of the finished surface roughness that is affected by the transfer of irregularities due to tool wear appears remarkably here.
  • Figure 7 shows the finish surface roughness and hot ductility in longitudinal turning in the invention and comparative examples. Show balance. Inventive examples have good finished surface roughness and a hot ductility of 80% or more. In the comparative example, it is in a region where both the finished surface roughness and hot ductility are inferior, or the finished surface roughness is poor even though the hot ductility is good.
  • the invention example in which the B amount and the N amount are balanced and the MnO amount can be controlled has good manufacturability and machinability.
  • the tool life at the time of cutting, the finished surface roughness, and the machinability of chip disposal are excellent, and further, the refractory of the plate refractory of the sliding nozzle for continuous forging is small, and hot rolling Free-cutting steel with good ductility and excellent manufacturability can be provided.

Abstract

The invention provides a free-cutting steel which is excellent in machinability and little erodes a plate refractory of a sliding nozzle for continuous casting and which is protected from surface deterioration in hot rolling by virtue its exhibiting excellent ductility in hot rolling. A free-cutting steel which contains by mass C: 0.005 to 0.2%, Si: 0.001 to 0.5%, Mn:0.3 to 3.0%, P: 0.001 to 0.2%, S: 0.30 to 0.60%, B: 0.0003 to 0.015%, O: 0.005 to 0.012%, Ca: 0.0001 to 0.0010%, and Al: ≤ 0.01%, with the N content satisfying the relationships: N ≥ 0.0020% and 1.3×B - 0.0100 ≤ N ≤ 1.3×B + 0.0034 and with the balance being Fe and unavoidable impurities, characterized in that in a section of the steel perpendicular to the direction of rolling, the area of Mn0 of 0.5μm or above in diameter of the equivalent circle is at most 15% based on the total area of all the Mn-containing inclusions.

Description

明 細 書 製造性に優れた快削鋼 技術分野  Description Free-cutting steel with excellent manufacturability
本発明は自動車や一般機械などに用いられ、 強度特性よりも被削 性が要求される低炭快削鋼に関するものであり、 特に切削時の工具 寿命と仕上げ面粗さおよび切り屑処理性に優れた被削性に優れると 共に、 連続铸造用スライディ ングノズルのプレート耐火物の溶損が 少なく、 熱間圧延において良好な延性を有する製造性に優れた快削 鋼に関するものである。 背景技術  The present invention relates to a low-carbon free-cutting steel that is used in automobiles and general machinery and requires machinability rather than strength characteristics, and in particular, in terms of tool life during cutting, finished surface roughness, and chip disposal. The present invention relates to a free-cutting steel with excellent machinability, low melting of a plate refractory of a sliding nozzle for continuous forging, excellent ductility in hot rolling, and excellent manufacturability. Background art
一般機械や自動車は多種の部品を組み合わせて製造されているが 、 その部品は要求精度と製造効率の観点から、 多くの場合、 切削ェ 程を経て製造されている。 その際、 コス ト低減と生産能率の向上が 求められ、 鋼にも被削性の向上が求められている。 特に低炭硫黄快 削鋼 SUM23や低炭硫黄鉛複合快削鋼 SUM24Lは被削性を重要視して発 明されてきた。 これまで被削性を向上させるために S, Pbなどの被 削性向上元素を添加するのが有効であることが知られている。 しか し需要家によっては Pbを環境負荷として使用を避ける場合も有り、 その使用量を低減する方向にある。  General machines and automobiles are manufactured by combining various parts, but these parts are often manufactured through a cutting process from the viewpoint of required accuracy and manufacturing efficiency. At that time, cost reduction and improvement in production efficiency are required, and steel is also required to improve machinability. In particular, low-carbon sulfur free-cutting steel SUM23 and low-carbon sulfur-lead composite free-cutting steel SUM24L have been disclosed with an emphasis on machinability. It has been known that adding machinability improving elements such as S and Pb is effective to improve machinability. However, some customers may avoid using Pb as an environmental burden, and the amount is being reduced.
これまでも Pbを添加しない場合には MnSを主成分とする硫化物の ような切削環境下で軟質となる介在物を形成して被削性を向上させ る手法が使われている。 しかし低炭硫黄鉛複合快削鋼 SUM24Lには低 炭硫黄快削鋼 SUM23と同量の Sが添加されており、 従って従来以上 の S量を添加する必要がある。 しかし多量 S添加では MnSを主成分 とする硫化物を単に粗大にするだけで被削性向上に有効とはならず 、 またマ卜リックスを十分に脆くすることができず、 構成刃先の脱 落および切り屑分離現象に伴う仕上げ面粗さの劣化、 切り屑の不十 分な分断での切り屑処理性不良といった問題が生じる。 更に圧延、 鍛造等の生産工程においては、 粗大 MnSを主成分とする硫化物は被 壊起点になって圧延疵等の製造上の問題を多く引き起こすため、 S 増量だけでは限界がある。 また S以外の被削性向上元素の Te, B i, P , N等の添加もある程度被削性を向上させることができるが、 圧 延ゃ熱間鍛造時に割れ · 疵の発生といった表面性状の劣化を引き起 こすため、 極力少ない方が望ましいとされており、 被削性と製造性 を両立させることはできない。 In the past, when Pb is not added, a technique has been used to improve machinability by forming soft inclusions in a cutting environment such as sulfides mainly composed of MnS. However, SUM24L, a low-carbon sulfur-lead composite free-cutting steel, contains the same amount of S as the low-carbon sulfur free-cutting steel SUM23, so it is necessary to add more S than before. However, MnS is the main component when a large amount of S is added. It is not effective to improve the machinability simply by making the sulfide to be coarse, and the matrix cannot be made sufficiently brittle, and the finished surface due to falling off of the constituent edge and chip separation phenomenon Problems such as deterioration of roughness and poor chip disposal due to insufficient cutting of the chips occur. Furthermore, in production processes such as rolling and forging, sulfides mainly composed of coarse MnS become the point of destruction and cause many manufacturing problems such as rolling mills. Addition of elements other than S, such as Te, Bi, P, and N, can improve the machinability to some extent. However, when rolled, the surface properties such as cracking and flawing during hot forging can be improved. In order to cause deterioration, it is desirable to have as little as possible, and it is impossible to achieve both machinability and manufacturability.
特開平 U— 号公報には単独で 20 /2 m以上の硫化物、 あるい は複数の硫化物が略直列状に連なった長さ 20 2 m以上の硫化物群が 圧延方向断面 1 mm2の視野内に 30個以上存在することによって切屑 処理性を高める方法が考案されている。 しかし事実上被削性に最も 有効であるサブ; mレベルの硫化物の分散については製造方法を含 めて言及されておらず、 またその成分系からも期待できない。 In Japanese Patent Laid-Open Publication No. U-U, a sulfide of 20/2 m or more alone or a group of sulfides having a length of 20 2 m or more in which a plurality of sulfides are connected in a substantially series shape has a cross section in the rolling direction of 1 mm 2. A method has been devised to improve chip disposal by having more than 30 in the field of view. However, the sub-m, which is the most effective for machinability in practice, is not mentioned for the dispersion of m-level sulfide, including the production method, and cannot be expected from its component system.
硫化物以外の介在物を被削性向上に活用しょうとする例はこれま でにも存在しているが、 例えば特開平 9一 Π840号公報、 特開 2001— 329335号公報、 特開 2002— 3991号公報、 特開 2000— 178683号公報 BN を用いて被削性向上を図った技術である。 しかしこれらは仕上げ面 粗さ向上を意図したものではなく、 特開平 9一 17840号公報、 特開 20 01— 329335号公報、 特開 2000— 178683号公報では工具寿命の向上を 目的としており、 特開 2002— 399 1号広報では切り屑処理性の向上を 目的としたものである。 これらで開示された実施例範囲の化学成分 における適用では、 仕上げ面粗さ向上においては十分な効果は得ら れない。 具体的には BNの鋼中の微細分散によるマトリ ックスの均質 化がなされなければ仕上げ面粗さ向上に対する効果は得られないが 、 これらの特許文献にはその技術は述べられていない。 Examples of using inclusions other than sulfides to improve machinability have existed so far. For example, JP-A-9-840, JP-A-2001-329335, JP-A-2002- No. 3991, JP-A-2000-178683. This is a technique for improving machinability by using BN. However, these are not intended to improve the roughness of the finished surface. JP-A-9-117840, JP-A-2001-329335, and JP-A-2000-178683 aim to improve the tool life. Kai 2002-399 No. 1 public information aims to improve chip disposal. When applied to the chemical components within the range of the examples disclosed in these documents, sufficient effects cannot be obtained in improving the finished surface roughness. Specifically, matrix homogeneity due to fine dispersion in BN steel If it is not made, the effect for improving the finished surface roughness cannot be obtained, but the technology is not described in these patent documents.
特開 2004— Π 6 1 76号公報に開示された技術も BNを被削性向上に活 用しょうとする例であり、 N添加量とのバランスを考慮したもので ある。 しかし、 本技術では圧延疵発生を完全に抑制しつつ、 相反す る性質である被削性を確保する鋼材化学成分のバランスについてや 、 酵素と親和性が高い Bの酸化物となる量を抑制して BNとして析出 させる量を増加させるための方法については知見されていない。 特開平 5 — 345 95 1号公報は被削性向上のため鋼中酸素濃度を高め ることで MnSを大型化する技術である。 しかし本技術では酸素を高 めることによる MnS減少とそれに伴う被削性の低下については何ら 言及しておらず、 更には耐火物溶損や表面疵増加等の著しい製造性 劣化の防止策について触られていない。  The technique disclosed in Japanese Patent Application Laid-Open No. 2004-Π 6 1 76 is also an example in which BN is used for improving machinability, considering the balance with the amount of N added. However, this technology completely suppresses the occurrence of rolling flaws, while reducing the balance of chemical components of steel materials to ensure machinability, which is a conflicting property, and the amount of B oxide that has high affinity with enzymes. There is no known method for increasing the amount of BN deposited. Japanese Laid-Open Patent Publication No. 5-345 951 is a technology for increasing the size of MnS by increasing the oxygen concentration in steel to improve machinability. However, this technology does not mention anything about the decrease in MnS and the resulting decrease in machinability due to the increase in oxygen, and further measures to prevent significant manufacturability degradation such as refractory erosion and surface flaws. Not touched.
また、 特開 200 1— 329 3 35号公報では熱間延性向上のため、 BNの粒 界析出による粒界脆化を抑制し、 更に固溶 Bの粒界脆化防止作用の 活用のため、 N添加量を制限する技術も提案されている。 しかし単 に N量を低減しているのみなので、 B T加熱〜加工温度域での固溶 N 量の制御には十分な配慮がなされておらず、 疵防止のために必要な 固溶 N量低減が不十分になる。 また化学量論組成より低い N量へ制 限しているので仕上げ面粗さ向上に必要な BN量は不足するが、 それ を補うための他の技術による補完も図られていないことから良好な 仕上げ面粗さを得ることができない。  In addition, JP-A-2001-329335 discloses that, in order to improve hot ductility, it suppresses grain boundary embrittlement due to grain boundary precipitation of BN, and in order to utilize the effect of preventing solid grain B embrittlement, A technique for limiting the amount of N added has also been proposed. However, since the amount of N is simply reduced, there is not enough consideration for the control of the amount of dissolved N in the BT heating to processing temperature range. Becomes insufficient. In addition, since the amount of N is lower than the stoichiometric composition, the amount of BN necessary to improve the finished surface roughness is insufficient, but it is good because there is no supplementation by other techniques to compensate for it. Finished surface roughness cannot be obtained.
また、 特開 2004— 27297号公報では表面疵低減のため、 鋼中酸素 量を制限する技術が提案されている。 しかし鋼中酸素量の制御方法 には何ら言及されておらず、 未脱酸の低炭快削鋼では特別な制御無 しで鋼中酸素量を制限し疵発生を防止することは不可能である。 低炭快削鋼において被削性向上のために C aを添加する例がこれま でにも存在している。 例えば特開 2000— 1 60284号公報では被削性を 向上させる具体的な効果は記述されておらず、 また C a添加量の範囲 も広く、 被削性向上に効果的な添加量についても記載されていない また、 B添加の低炭快削鋼を連続铸造法で製造する際、 スライデ イ ングノズルのプレート耐火物が溶損し易い問題があるが、 この問 題を解決する先行文献は見当たらない。 発明の開示 Japanese Patent Application Laid-Open No. 2004-27297 proposes a technique for limiting the amount of oxygen in steel in order to reduce surface defects. However, there is no mention of how to control the amount of oxygen in the steel, and it is impossible to limit the amount of oxygen in the steel and prevent the occurrence of flaws in undeoxidized low-carbon free-cutting steel without special control. is there. This is an example of adding Ca to improve machinability in low-carbon free-cutting steel. It also exists in For example, Japanese Patent Laid-Open No. 2000-1 60284 does not describe a specific effect of improving machinability, and also has a wide range of Ca addition amount, and also describes an effective addition amount for improving machinability. In addition, there is a problem that the plate refractory of the sliding nozzle is easily melted when producing the low-carbon free-cutting steel with B added by the continuous forging method, but there is no prior literature that solves this problem. Disclosure of the invention
本発明は、 自動車や一般機械などに用いられる低炭快削鋼であつ て、 特に切削時の工具寿命、 仕上げ面粗さ、 および切り屑処理性の 被削性に優れ、 更には連続铸造用スライディ ングノズルのプレート 耐火物の溶損が少なく、 熱間圧延での延性が優れ、 熱間圧延による 表面性状の劣化を防止できる快削鋼を提供するものである。  The present invention is a low-carbon free-cutting steel used in automobiles and general machinery, and is particularly excellent in tool life during cutting, finished surface roughness, and machinability of chip disposal, and for continuous forging. Sliding nozzle plate This provides free-cutting steel that has little refractory refractory loss, has excellent ductility in hot rolling, and can prevent deterioration of surface properties due to hot rolling.
切削は切り屑を分離する破壊現象であり、 それを促進させること がーつのポイントとなる。 ただし既に述べたごとく、 Sを単純に増 量するだけでは限界がある。 また被削性と製造性を両立させるため には被削性向上元素量についても考慮する必要がある。  Cutting is a destructive phenomenon that separates chips, and it is important to promote them. However, as already mentioned, there is a limit to simply increasing S. In order to achieve both machinability and manufacturability, it is necessary to consider the amount of element that improves machinability.
そこで熱間延性向上のためには圧延温度域での固溶 N量を制御し つつ切削の行なわれる室温において被削性に必要な B Nを得るために 必要な Bと Nの量の比を制御し、 熱間延性と被削性を両立できるこ とを知見した。 ここで固溶 Nとは全 N量から化合物 N量を引いた量 であり、 化合物 N量とは実質的に BNとなっている N量のことを示す 。 この固溶 Nは、 圧延温度域 800〜1 1 00°Cの加熱で BNが固溶するた めに大量に生成する。 表面疵の発生量が少なく良好な圧延を行うた めには、 この温度域での固溶 N量を低減することが必要である。  Therefore, in order to improve hot ductility, the ratio of B and N required to obtain BN necessary for machinability at room temperature where cutting is performed is controlled while controlling the amount of solute N in the rolling temperature range. They found that both hot ductility and machinability can be achieved. Here, solid solution N is the amount obtained by subtracting the amount of compound N from the total amount of N, and the amount of compound N indicates the amount of N that is substantially BN. This solute N is produced in large quantities because BN is dissolved by heating at a rolling temperature range of 800 to 110 ° C. In order to perform good rolling with less surface flaws, it is necessary to reduce the amount of solute N in this temperature range.
さらに、 溶鋼中で酸化物として消費されやすい Mnの MnSとしての 歩留り、 及び Bの BNとしての歩留りを向上させて被削性及び熱間延 性を向上させると共に、 被削性の向上と連続铸造用スライディ ング ノズルのプレート耐火物の溶損を抑制するため、 鋼中の MnO生成量 を低減することが必要であることを知見した。 Furthermore, Mn is easily consumed as an oxide in molten steel. In order to improve the yield and the yield of B as BN to improve machinability and hot ductility, to improve machinability and to suppress the refractory damage of the plate refractory of the sliding nozzle for continuous forging, We found that it was necessary to reduce the amount of MnO produced in steel.
本発明は以上の知見に基づいてなされたものであって、 その要旨 は以下に示す通りである。  The present invention has been made based on the above findings, and the gist thereof is as follows.
( 1 ) 質量%で  (1) By mass%
C : 0.005〜0.2%  C: 0.005-0.2%
Si : 0.00ト 0.5%  Si: 0.00 to 0.5%
Mn: 0.3〜3.0%  Mn: 0.3-3.0%
P : 0.001〜0.2%  P: 0.001 to 0.2%
S : 0.30〜0.60%  S: 0.30 to 0.60%
B : 0.0003〜0.015%  B: 0.0003 to 0.015%
O : 0.005〜0.012%  O: 0.005-0.012%
Ca: 0.0001〜0.0010%  Ca: 0.0001 to 0.0010%
A1≤0.01%  A1≤0.01%
を含有し、 N含有量が、  N content is
N≥ 0.0020 %、 かつ 1.3X B— 0.0100≤ N≤ 1.3X B + 0.0034を満 たし、 残部が Fe及び不可避的不純物よりなり、 更に鋼中の MnOに関 して、 鋼材の圧延方向と直角な断面において円相当径にて 0.5 m 以上の MnOの面積が、 全 Mn系介在物の面積に対して 15%以下である ことを特徴とする製造性に優れた快削鋼。  N≥0.0020% and 1.3XB—0.0100≤ N≤1.3XB + 0.0034, the balance is Fe and unavoidable impurities, and MnO in steel is a cross section perpendicular to the rolling direction of steel. Free-cutting steel with excellent manufacturability, characterized in that the area of MnO with an equivalent circle diameter of 0.5 m or more is 15% or less of the area of all Mn inclusions.
( 2 ) ( 1 ) に記載の鋼が、 MnSを主成分とする硫化物に関して 、 鋼材の圧延方向と直角な断面において円相当径にて 0.1〜0.5 m のものの存在密度が 10000個/ mm2以上であることを特徴とする製造 性に優れた快削鋼。 (2) Regarding the sulfide described in (1), the abundance density of the sulfide whose main component is MnS is 10000 / mm 2 with an equivalent circle diameter of 0.1 to 0.5 m in the cross section perpendicular to the rolling direction of the steel. Free-cutting steel with excellent manufacturability, characterized by the above.
( 3 ) さらに、 質量%で、 V : 0.05- 1.0% (3) Furthermore, in mass%, V: 0.05-1.0%
Nb: 0.005〜0.2%  Nb: 0.005-0.2%
Cr: 0.01〜2.0%  Cr: 0.01-2.0%
Mo: 0.05〜 1.0%  Mo: 0.05-1.0%
W: 0.05〜 1.0%  W: 0.05-1.0%
Ni: 0.05~2.0%  Ni: 0.05 ~ 2.0%
Cu: 0.01〜2.0%  Cu: 0.01 to 2.0%
Sn: 0.005〜2.0%  Sn: 0.005-2.0%
Zn: 0.0005〜0.5%  Zn: 0.0005-0.5%
Ti : 0.0005〜0.1%  Ti: 0.0005-0.1%
Zr: 0.0005〜0.1%  Zr: 0.0005-0.1%
Mg: 0.0003〜 0.005 %  Mg: 0.0003 to 0.005%
Te: 0.0003〜0.2%  Te: 0.0003-0.2%
Bi : 0.005〜0.5%  Bi: 0.005-0.5%
Pb: 0.005〜0.5%  Pb: 0.005-0.5%
の 1種または 2種以上を含むことを特徴とする ( 1 ) 〜 ( 5 ) の いずれかに記載の製造性に優れた快削鋼。 図面の簡単な説明  The free-cutting steel excellent in manufacturability according to any one of (1) to (5), characterized by containing one or more of the following. Brief Description of Drawings
図 1は、 プランジ切削試験方法を示す概念図で、 (a) は鳥瞰図 、 ( b ) は平面図である。  Fig. 1 is a conceptual diagram showing the plunge cutting test method. (A) is a bird's-eye view and (b) is a plan view.
図 2は、 長手旋削試験方法と仕上げ面粗さの良否を示す概念図で 、 (a) は平面図、 (b) は仕上げ面 (送りマーク) 拡大図である 図 3は、 EPMAによる MnO測定例を示す光学顕微鏡写真である。 図 4は、 本発明例の MnSを主成分とする硫化物の、 ( a) TEMレブ リカ写真、 (b) 光学顕微鏡写真である。 図 5は、 比較例の MnSを主成分とする硫化物の、 (a) TEMレプリ 力写真、 (b ) 光学顕微鏡写真である。 Fig. 2 is a conceptual diagram showing the longitudinal turning test method and the quality of the finished surface. (A) is a plan view, (b) is an enlarged view of the finished surface (feed mark), and Fig. 3 is an MnO measurement by EPMA. It is an optical microscope photograph which shows an example. FIG. 4 shows (a) a TEM rebris photograph and (b) an optical microscope photograph of a sulfide containing MnS as a main component of the present invention. FIG. 5 shows (a) a TEM replication force photograph and (b) an optical microscope photograph of a sulfide containing MnS as a main component in a comparative example.
図 6は、 MnOによる被削性の変化を 800個切削後の長手旋削での仕 上げ面粗さで示した図である。  Figure 6 shows the change in machinability due to MnO in terms of the finished surface roughness in longitudinal turning after cutting 800 pieces.
図 7は、 発明例と比較例での長手旋削での仕上げ面粗さ一熱間延 性バランスを示した図である。  FIG. 7 is a diagram showing a balance between finished surface roughness and hot ductility in longitudinal turning in the inventive example and the comparative example.
図 8は、 铸片厚みの 1 Z4の深さ位置の説明図である。 発明を実施するための最良の形態  FIG. 8 is an explanatory view of the depth position of 1 Z4 of the thickness of the flange. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 強度特性よりも被削性が要求される低炭快削鋼におい て、 Pbを添加せずとも、 Bを添加して BNを析出させることによって 被削性を向上させるものであって、 鋼成分組成については、 特に B と Nを、 適正な関係を満足するよう添加することにより、 被削性と 熱間圧延時の延性を向上させると共に、 鋼中 MnOを低減することに より、 被削性と連続铸造での注入量制御用耐火物の寿命を向上させ て、 発明を完成したものである。 更に本発明は、 鋼中 MnS系介在物 を微細分散して被削性を向上させるものである。 以下に本発明で規 定した成分組成とその限定理由について説明する。  The present invention improves the machinability by adding B and precipitating BN in the low-carbon free-cutting steel, which requires machinability rather than strength characteristics, without adding Pb. With regard to the steel component composition, in particular, B and N are added so as to satisfy an appropriate relationship, thereby improving machinability and ductility during hot rolling and reducing MnO in the steel. The invention has been completed by improving the machinability and the life of the refractory for injection amount control in continuous fabrication. Furthermore, the present invention improves the machinability by finely dispersing MnS inclusions in steel. The component composition specified in the present invention and the reasons for limitation will be described below.
[C] 0.005〜0. 2%  [C] 0.005 to 0.2%
cは鋼材の基本強度と鋼中の酸素量に関係するので被削性に大き な影響を及ぼす。 Cを多く添加して強度を高めると被削性を低下さ せるのでその上限を 0. 2%とした。 一方、 単純に吹鍊によって C量 を低減させすぎるとコス トがかさむだけでなく、 Cによる脱酸が行 われなくなるため鋼中酸素量が多量に残留してピンホール等の不具 合の原因となる。 従ってピンホール等の不具合を容易に防止で.きる C量 0.005 %を下限とした。  Since c is related to the basic strength of steel and the amount of oxygen in the steel, it greatly affects the machinability. Increasing the strength by adding more C reduces the machinability, so the upper limit was made 0.2%. On the other hand, if the amount of C is simply reduced too much by blowing, not only will the cost be increased, but deoxidation by C will not be performed, so a large amount of oxygen will remain in the steel, causing problems such as pinholes. Become. Therefore, it is possible to easily prevent defects such as pinholes. The C content of 0.005% is set as the lower limit.
[Si] 0.00卜 0. 5% Siの過度な添加は硬質酸化物を生じて被削性を低下させるが、 適 度な添加は酸化物を軟質化させ、 被削性を低下させない。 その上限 は 0.5%であり、 それ以上では硬質酸化物を生じる。 0.001%未満で は酸化物の軟質化が困難になるとともに工業的にはコス トがかかる [Si] 0.00 卜 0.5% Excessive addition of Si produces hard oxides and reduces machinability, but appropriate addition softens the oxides and does not reduce machinability. The upper limit is 0.5%. Above this, hard oxides are formed. If it is less than 0.001%, it will be difficult to soften the oxide and it will be industrially expensive.
[Mn] 0.3〜3· 0% [Mn] 0.3 ~ 3 · 0%
Mnは鋼中硫黄を MnSとして固定 · 分散させるために必要である。 また鋼中酸化物を軟質化させ、 酸化物を無害化させるために必要で ある。 その効果は添加する S量にも依存するが、 0.3%未満では添 加 Sを MnSとして十分に固定で傷表面傷、 Sが FeSとなり脆くなる。 Mn量が大きくなると素地の硬さが大きくなり被削性や冷間加工性が 低下するので、 3.0%を上限とした。  Mn is necessary to fix and disperse sulfur in steel as MnS. It is also necessary to soften the oxides in steel and render them harmless. The effect depends on the amount of S to be added, but if it is less than 0.3%, the added S is sufficiently fixed with MnS, and the surface becomes scratched and S becomes FeS and becomes brittle. As the amount of Mn increases, the hardness of the substrate increases and the machinability and cold workability deteriorate, so 3.0% was made the upper limit.
[ P ] 0.001〜0.2%  [P] 0.001 ~ 0.2%
Pは鋼中において素地の硬さが大きくなり、 冷間加工性だけでな く、 熱間加工性ゃ錡造特性が低下するので、 その上限を 0.2%にし なければならない。 一方、 被削性向上に効果がある元素で下限値を 0.001%とした。  P increases the hardness of the substrate in the steel and lowers not only the cold workability but also the hot workability and the forging properties, so the upper limit must be 0.2%. On the other hand, the lower limit is set to 0.001% for elements that are effective in improving machinability.
[ S ] 0.30〜0.60%  [S] 0.30 ~ 0.60%
Sは Mnと結合して MnSを主成分とする硫化物として存在する。 MnS を主成分とする硫化物は被削性を向上させるが、 伸延した MnSを主 成分とする硫化物は鍛造時の異方性を生じる原因の一つである。 大 きな MnSを主成分とする硫化物は避けるべきであるが、 被削性向上 の観点からは多量の添加が好ましい。 従って MnSを主成分とする硫 化物を微細分散させることが好ましい。 Pbを添加しない場合の被削 性向上には 0.30%以上の添加が必要である。 一方、 S添加量が多す ぎると粗大 MnSを主成分とする硫化物の生成が避けられないだけで なく、 FeS等による铸造特性、 熱間変形特性の劣化から製造中に割 れを生じる。 そのため上限を 0.60%とした。 S combines with Mn and exists as a sulfide mainly composed of MnS. Sulfides mainly composed of MnS improve machinability, but sulfides mainly composed of expanded MnS are one of the causes of anisotropy during forging. Large MnS-based sulfides should be avoided, but a large amount is preferred from the viewpoint of improving machinability. Therefore, it is preferable to finely disperse the sulfide mainly composed of MnS. Addition of 0.30% or more is necessary to improve machinability without adding Pb. On the other hand, if too much S is added, not only the formation of sulfides mainly composed of coarse MnS is unavoidable, but also during manufacturing due to deterioration of forging characteristics and hot deformation characteristics due to FeS and the like. Cause this. Therefore, the upper limit was made 0.60%.
[B ] 0.0003〜0.015%  [B] 0.0003 to 0.015%
Bは Mとして析出すると被削性向上に効果がある。 特に MnSを主 成分とする硫化物と複合析出してマトリックス中に微細分散するこ とでより顕著となる。 これらの効果は 0.0003 %未満では顕著でなく 、 0.015%を超えて添加すると溶鋼中で耐火物との反応が激しくな り、 錡造時に耐火物の溶損が大きくなり、 製造性を著しく損なう。 そこで 0.0003 %〜0.015%を範囲とした。  B precipitates as M and is effective in improving machinability. In particular, it becomes more conspicuous when it is combined with sulfides containing MnS as the main component and finely dispersed in the matrix. These effects are not noticeable at less than 0.0003%, and if added over 0.015%, the reaction with the refractory in the molten steel becomes intense, and the refractory melts at the time of forging, resulting in a significant loss of manufacturability. Therefore, the range is 0.0003% to 0.015%.
Bは酸化物を形成しやすいため、 溶鋼中の溶存 Oが高いと酸化物 として消費されてしまい、 被削性向上に有効な BN量が減少する場合 がある。 Ca添加により溶解酸素 (フリー酸素) をある程度下げてか ら Bを添加することにより実質 BNとなる B量の歩留まりを向上させ ることは、 被削性向上に有効である。  Since B tends to form oxides, if dissolved O is high in molten steel, it is consumed as oxides, which may reduce the amount of BN effective in improving machinability. Improving the yield of the amount of B, which is essentially BN, by adding B after lowering dissolved oxygen (free oxygen) to some extent by adding Ca is effective for improving machinability.
[O] 0.005〜0.012%  [O] 0.005-0.012%
Oは酸化物とならず単独で存在する場合には冷却時に気泡となり 、 ピンホールの原因となる。 硬質酸化物の生成により被削性の劣化 ゃ疵の原因となる場合もあり制御が必要である。 更に被削性向上の ために添加している Mn, Bを溶鋼中で酸化物として消費してしまい 、 Mn Sになる Mn及び B Nになる B量を減少させて被削性に影響を及ぼ す場合がある。 0.005 %未満では Simsの II型と言われる形態の MnSを 主成分とする硫化物が生成することで被削性は劣化する。 更に溶鋼 中で脱硫 S反応が起きやすくなり、 安定した S添加ができなくなる 。 従って 0.005 %を下限とした。 〇量 0.012%を越えると溶鋼中で Mn , Bの酸化物が生成しやすくなり、 実質的に MnSになる Mn及び Mと なる Bが減少して被削性を劣化させ、 更には硬質酸化物が多量に生 成し傷発生量が増大する。 更には耐火物溶損も激しくなるため、 0. 012%を上限とした。 Oの制御には Caの添加が必須である。 [Ca] 0.0001〜0.0010% If O is not an oxide and exists alone, it becomes bubbles during cooling and causes pinholes. The formation of hard oxides may cause deterioration of machinability and must be controlled. In addition, Mn and B added to improve machinability are consumed as oxides in the molten steel, and the amount of Mn that becomes Mn S and the amount of B that becomes BN is reduced, affecting the machinability. There is a case. If it is less than 0.005%, the machinability deteriorates due to the formation of sulfides mainly composed of MnS in the form of Sims type II. Furthermore, desulfurization S reaction is likely to occur in molten steel, and stable S addition cannot be performed. Therefore, 0.005% was set as the lower limit. 〇 If the amount exceeds 0.012%, oxides of Mn and B are likely to be formed in the molten steel, and Mn that becomes MnS and B that becomes M are reduced and machinability is deteriorated. A large amount of is generated and the amount of scratches increases. Furthermore, since the refractory material melts severely, the upper limit was made 0.012%. Addition of Ca is essential for O control. [Ca] 0.0001 to 0.0010%
Caは脱酸元素であり、 鋼材中の溶解酸素 (フリー酸素) 量を制御 することができ、 酸化物を形成しやすい Mn, Bの歩留りを安定させ 、 更に硬質酸化物の生成を抑制する事ができる。 また微量であれば 軟質酸化物を生成し、 被削性を向上させる働きがある。 0.0001 %未 満ではその効果は全く無く、 0.0010%超では多量の軟質酸化物が生 成することで工具刃先へ凹凸をもって付着し、 そのため仕上面粗さ が極端に悪くなるばかりでなく、 硬質の酸化物も大量に生成し、 更 に被削性や熱間延性を低下させる。 したがって成分範囲を 0.0001〜 0.0010%と規定した。  Ca is a deoxidizing element that can control the amount of dissolved oxygen (free oxygen) in the steel, stabilize the yield of Mn and B, which easily form oxides, and suppress the formation of hard oxides. Can do. In addition, if it is a trace amount, it generates a soft oxide and improves the machinability. If it is less than 0.0001%, there is no effect at all, and if it exceeds 0.0010%, a large amount of soft oxide is generated and adheres to the cutting edge of the tool with unevenness. Oxides are also produced in large quantities, further reducing machinability and hot ductility. Therefore, the component range was defined as 0.0001 to 0.0010%.
[Al] A1≤0.01%  [Al] A1≤0.01%
A1は脱酸元素で、 鋼中には A1203や AINを生成する。 しかし Al23は硬質なので切削時に工具損傷の原因となり、 磨耗を促進させる 。 また AINを形成することで BNを形成するための Nが減少してしま い、 被削性が低下する。 そこで A1203や AINを多量に生成しない 0.0 1%以下とした。 A1 is a deoxidizing element and forms A1 2 0 3 and AIN in the steel. But Al 23 cause tool damage during cutting so hard to promote wear. In addition, forming AIN reduces N for forming BN, which reduces machinability. Therefore, it was set to 0.01% or less, which does not generate a large amount of A1 2 0 3 and AIN.
[N≥ 0.0020 % , かつ、 1.3X B— 0. (H00≤ N≤ 1.3X B + 0.0034 を満足する Nを含有]  [N≥ 0.0020% and 1.3X B— 0. (contains N that satisfies H00≤ N≤ 1.3X B + 0.0034]
Nは Bと結びついて BNを生成して被削性を向上させる。 BNは被削 性を向上させる介在物であり、 微細に高密度で分散させることで著 しく向上する。 質量比で B : N = 10.8 : 14 (= 1 : 1.3) の化学量 論比で過不足なく Bと Nが化合し、 BNが形成される。 BNは鋼に対し て溶解度を有しており、 鋼材温度上昇に伴い溶解度は大きくなり、 固溶 N量が増加する。 圧延温度域 ( 800~1100°C) で固溶する N量 が多い場合、 圧延疵の原因となるため一定量以下の固溶 N量に制限 する必要があり、 鋼材に添加する N量を B添加量に合わせて制御し なければならない。 従って、 N量の上限は、 Bと過不足なく結合す る N量 (1.3X B) に対し + 0.0034%を超えると圧延疵の発生が顕 著になるので、 1.3X B + 0.0034以下とした。 一方、 添加する N量 が少な過ぎる場合は BN生成量が減少する。 B量に対する N量の下限 は、 Bと過不足なく結合する N量 (1.3X B) に対し一 0.0100%未 満では被削性向上に必要な BN量が得られないため、 1.3X B— 0.010 0以上とした。 また、 N量が 0.0020 %未満では、 Nの絶対量が不足 し、 鋼中で Bの存在している箇所まで拡散する距離が大きくなるた め、 化学量論比の N添加量であつても十分な BNを生成することはで きない。 そのため 0.0020%以上を確保する必要がある。 以上により 、 製造性と被削性を両立させるベく、 N含有量は N≥ 0.0020 %、 か つ 1.3X B— 0.0100≤N≤ 1.3X B + 0.0034を満たす事が必要である N combines with B to generate BN and improve machinability. BN is an inclusion that improves machinability, and is significantly improved by finely dispersing at high density. By mass ratio B: N = 10.8: 14 (= 1: 1.3) The stoichiometric ratio of B and N combines with each other to form BN. BN has a solubility in steel. As the steel temperature rises, the solubility increases and the amount of solute N increases. If there is a large amount of N dissolved in the rolling temperature range (800 to 1100 ° C), it will cause rolling flaws, so it is necessary to limit the amount of N to a certain level or less. It must be controlled according to the amount added. Therefore, the upper limit of N amount is combined with B without excess or deficiency. If the amount exceeds + 0.0034% with respect to the N content (1.3XB), the occurrence of rolling defects becomes significant, so 1.3XB + 0.0034 or less. On the other hand, when too little N is added, the amount of BN produced decreases. The lower limit of the amount of N relative to the amount of B is 1.3XB—0.010 0 because the amount of BN required to improve machinability cannot be obtained if it is less than 0.0100% of the amount of N (1.3XB) that binds to B without excess or deficiency It was above. In addition, if the N content is less than 0.0020%, the absolute amount of N is insufficient, and the diffusion distance to the location where B is present in the steel increases. It is not possible to generate enough BN. Therefore, it is necessary to secure 0.0020% or more. Based on the above, N content must satisfy N≥0.0020% and 1.3XB—0.0100≤N≤1.3XB + 0.0034 in order to achieve both manufacturability and machinability.
[MnO] 円相当径にて 0.5 m以上の MnOの面積が全 Mn系介在物 の面積に対して 15%以下 [MnO] The area of MnO with a circle equivalent diameter of 0.5 m or more is 15% or less than the area of all Mn inclusions
Mnは酸素との親和力の強い元素であり、 溶鋼中で一定量の溶解酸 素 (フリー酸素) 存在下においては MnOの形成が不可避となる。 MnO は比較的低融点 · 軟質の介在物であり、 そのものが Al23のような 硬質介在物として著しい工具磨耗等の被削性劣化を引き起こすもの ではない。 しかし MnOが増加すると MnS となる Mn量が減少し、 MnSの 微細分散が阻害されることから被削性は劣化する。 更に多量の MnO が生成している環境下では溶鋼中の溶解酸素 (フリー酸素) は高濃 度になっており、 そのため B酸化物の生成量も増加していることな り、 BNとして生成する Bの量が減少し、 被削性が更に劣化すること になる。 また MnSになる Mnが減少することで高温で Sを固定できな くなるため、 FeSが多数生成することで熱間延性が劣化する。 Mn is an element with a strong affinity for oxygen. In the presence of a certain amount of dissolved oxygen (free oxygen) in molten steel, the formation of MnO is inevitable. MnO is a relatively low melting point, inclusions soft, itself is not intended to cause deterioration of machinability significant tool wear or the like as a hard inclusions such as Al 23. However, when MnO increases, the amount of Mn that becomes MnS decreases and the fine dispersion of MnS is inhibited, so machinability deteriorates. Furthermore, in an environment where a large amount of MnO is generated, the dissolved oxygen (free oxygen) in the molten steel is high in concentration, so that the amount of B oxide generated is also increased, generating BN. The amount of B decreases and the machinability further deteriorates. Also, since Mn becomes MnS and Sn cannot be fixed at high temperatures, hot ductility deteriorates due to the formation of many FeS.
更には溶鋼中での MnOによる連続铸造用スライディ ングノズルの プレート耐火物の溶損が激しくなり、 著しく製造性を劣化する。 鋼 材の圧延方向と直角な断面において円相当径にて 0. 5 z m以上の鋼 中 MnOの面積が、 全 Mn系介在物の面積中 1 5 %超であると被削性、 製 造性の劣化が著しくなるので、 良好な被削性及び製造性を得るため には鋼中 MnOが全 Mn系介在物中 1 5 %以下であることが必要である。 Furthermore, the refractory of the plate refractory of the sliding nozzle for continuous forging due to MnO in the molten steel becomes severe and the productivity is significantly deteriorated. steel If the area of MnO in steel with an equivalent circle diameter of 0.5 zm or more in the cross section perpendicular to the rolling direction of the material exceeds 15% of the total Mn inclusion area, machinability and manufacturability Deterioration becomes significant, so to obtain good machinability and manufacturability, MnO in the steel must be 15% or less of the total Mn inclusions.
MnOが円相当径にて 0. 5 m以下であれば、 その面積比率はきわめ て小さく、 従って MnOに消費された Mn量も僅かであるため Mn S生成量 には大きく影響しない。 そのため円相当径にて 0. 5 m以上のもの について規定した。  If the equivalent diameter of MnO is 0.5 m or less, the area ratio is extremely small, and therefore the amount of Mn consumed by MnO is very small, so the amount of Mn S produced is not greatly affected. For this reason, it was specified for a circle equivalent diameter of 0.5 m or more.
ここで、 本発明で言う Mn Oの同定、 および面積の測定方法につい て説明する。  Here, the identification method of Mn 2 O and the area measurement method referred to in the present invention will be described.
MnOは、 通常、 MnO単独で存在する他、 他の酸化物と結合して存在 するものがあるが、 本発明では、 次の方法で測定したものを MnOと 同定し面積を求めるものである。  MnO is usually present alone in addition to MnO alone or in combination with other oxides, but in the present invention, the area measured by the following method is identified as MnO.
EPMAによる MnO測定例を図 3に示す。 鋼材の圧延方向と直角な断 面の直径の 1 Z 4の深さ位置より切り出し、 樹脂へ埋め込み研磨し た試験片を電子プローブマイクロアナライザー (EPMA) にて、 1視 野 200 m X 200 mを 20視野以上の測定を行う。 鋼材の鋼素地 1 2中 の Mn0 1 3は Mn Sを主成分とする硫化物 14に含まれた状態で存在するの で、 EPMAでの元素面分析で Mnと Oが重なっている部分を MnOとし、 その面積を求めるものである。  Figure 3 shows an example of MnO measurement by EPMA. A test piece cut from a depth of 1 Z 4 in the diameter of the cross section perpendicular to the rolling direction of the steel material, embedded in resin, and polished with an electronic probe microanalyzer (EPMA) Measure over 20 fields of view. Since Mn0 1 3 in the steel substrate 1 2 of steel is contained in the sulfide 14 containing Mn S as the main component, the portion where Mn and O overlap in the elemental surface analysis by EPMA And the area is calculated.
全 Mn系介在物とは、 鋼中で Mnと化合している介在物の全てを総称 するものであり、 後述する Mn Sを主成分とする硫化物、 MnO単独の酸 化物、 及び MnOと他の酸化物が結合している酸化物の全てを対象と するものである。 全 Mn系介在物も EPMAでの元素面分析で固定し、 面 積測定をすることができるので、 この測定した全 Mn系介在物の面積 に対する上記測定した MnOの面積の比率を求めるものである。  All Mn inclusions are a general term for all inclusions combined with Mn in steel. Sulfides mainly composed of Mn S, oxides of MnO alone, MnO and others All oxides to which these oxides are bonded are targeted. Since all Mn inclusions can be fixed by elemental surface analysis with EPMA and the area can be measured, the ratio of the measured MnO area to the measured area of all Mn inclusions is obtained. .
MnO生成量を低減させるためには、 LF前の溶鋼中の溶解酸素 (フ リー酸素) 濃度を低減することにより達成される。 該溶解酸素 (フ リ一酸素) 濃度を 200ppm以下とするのが好ましい。 但し、 低減し過 ぎるとメタル/スラグ間で脱硫反応が進行し、 被削性維持のための 鋼中 Sの確保が困難になるので十分な配慮が必要であり、 150ppm以 上とするのが好ましい。 溶解酸素 (フリー酸素) 制御方法としては 、 LF処理前に事前脱酸を行う ことが効果的である。 フリー酸素の制 御には Caの添加が必須であるが、 他にも S i , Al , T i , Z r, Mg等の単 独もしくは複合添加も有効である。 In order to reduce the amount of MnO produced, the dissolved oxygen in the molten steel before LF Lee oxygen) achieved by reducing the concentration. The dissolved oxygen (free oxygen) concentration is preferably 200 ppm or less. However, if the amount is too low, desulfurization reaction proceeds between the metal and slag, and it becomes difficult to secure S in the steel to maintain machinability. . As a method for controlling dissolved oxygen (free oxygen), it is effective to perform pre-deoxidation before LF treatment. Addition of Ca is indispensable for controlling free oxygen, but addition of Si or Al, Ti, Zr, Mg, etc. alone or in combination is also effective.
[MnSを主成分とする硫化物分散] 円相当径にて 0. 1〜0. 5 m の存在密度が 10000個 Z mm2以上 [Sulfide dispersion mainly composed of MnS] The existence density of 0.1 to 0.5 m in the equivalent circle diameter is 10000 pieces Z mm 2 or more
MnSを主成分とする硫化物は被削性を向上させる介在物であり、 微細に高密度で分散させることで著しく向上する。 特に長手旋削の 様に送りマークと呼ばれる山を仕上げ面に形成しながら進行する切 削方法の場合には、 むしれの有無が山の高低、 すなわち仕上げ面粗 さに大きく影響するが、 微細の高密度で分散した MnSを主成分とす る硫化物は鋼材を均質化することで鋼材の破断性を良好にし、 むし れを低減させ仕上げ面粗さを良好にすることができる。 OA機器のシ ャフ トのような長手旋削により切削を行う部品の仕上げ面粗さ向上 にはより有効である。 その効果を発揮するには 10000個/ mm2以上の 存在密度が必要であり、 その寸法は円相当径にて 0. 1〜0. 5 mでな ければならない。 通常 MnSを主成分とする硫化物分布は光学顕微鏡 にて観察し、 その寸法、 密度を測定する。 当該寸法の MnSを主成分 とする硫化物は光学顕微鏡での観察では確認することが不可能なも のであり、 透過型電子顕微鏡 (TEM) によりはじめて観察できる。 光学顕微鏡観察での寸法、 密度に差は無くても TEM観察では明確な 差が認められる寸法の MnSを主成分とする硫化物であり、 本発明で はこれを制御し、 存在形態を数値化することにより従来技術との差 別化を図るものである。 この寸法を超えた MnSを主成分とする硫化 物を 10000個ノ mm2以上の密度で存在させるには請求項の範囲を超え た多量の Sの添加を必要とするが、 多量添加すると粗大 MnSを主成 分とする硫化物も多数存在する確立が高くなり、 熱間圧延時の疵発 生が増大する。 請求項の範囲の S添加量で MnSを主成分とする硫化 物がこの寸法を超えると、 MnSを主成分とする硫化物の量が不足し 仕上げ面粗さ向上に必要な密度を維持できなくなる。 また最小径 0. 1μ m未満のものは実質上被削性には影響を及ぼさない。 従って円 相当径にて 0. 1〜0.5 mの MnSを主成分とする硫化物の存在密度が 1 0000個 Zmm2以上とした。 この MnSを主成分とする硫化物は、 マトリ ックス中に均一微細分散させることが難しい BNの析出核となること で、 を均一微細分散させ BNの被削性、 特に仕上げ面粗さ向上効果 をより顕著にすることができる。 Sulfides containing MnS as a main component are inclusions that improve machinability, and are significantly improved by finely dispersing them at high density. In particular, in the case of a cutting method that progresses while forming a crest called a feed mark on the finished surface as in longitudinal turning, the presence or absence of peeling greatly affects the height of the crest, that is, the roughness of the finished surface. Sulfide containing MnS dispersed at high density as the main component can homogenize the steel material to improve the breakability of the steel material, reduce burrs, and improve the finished surface roughness. It is more effective in improving the finished surface roughness of parts that are cut by longitudinal turning, such as the shaft of office automation equipment. An abundance density of 10000 / mm 2 or more is necessary to exert this effect, and the dimensions must be 0.1 to 0.5 m at the equivalent circle diameter. Usually, the sulfide distribution with MnS as the main component is observed with an optical microscope, and its dimensions and density are measured. Sulfides containing MnS of this dimension as the main component cannot be confirmed by observation with an optical microscope, and can only be observed with a transmission electron microscope (TEM). Even if there is no difference in size and density in optical microscope observation, this is a sulfide mainly composed of MnS with a size that can be clearly seen in TEM observation. In the present invention, this is controlled to quantify the existence form. The difference from the conventional technology It is intended to be separated. Existence of sulfides mainly composed of MnS exceeding this size with a density of 10000 mm 2 or more requires the addition of a large amount of S exceeding the scope of the claims, but if a large amount is added, coarse MnS There is a high probability that there are many sulfides mainly composed of, and soot generation during hot rolling increases. If the amount of S added in the scope of claims exceeds MnS, the amount of sulfide containing MnS as the main component is insufficient, and the density required for improving the finished surface roughness cannot be maintained. . In addition, those with a minimum diameter of less than 0.1 μm do not substantially affect the machinability. The density of sulfides mainly comprised of MnS of 0. 1 to 0.5 m in circle equivalent diameter therefore has one 0000 or ZMM 2 or more. This sulfide containing MnS as a main component becomes the precipitation nuclei of BN that are difficult to uniformly disperse in the matrix, thereby uniformly dispersing and improving the machinability of BN, especially the finish surface roughness. Can be more prominent.
なお、 MnSを主成分とする硫化物とは、 純粋な MnSのみならず、 Fe , Ca, Ti, Zr, Mg, MM等の硫化物が MnSと固溶したり結合して共存 している介在物や、 MnTeの様に S以外の元素が Mnと化合物を形成し て MnSと固溶 · 結合して共存している介在物や、 酸化物を核として 析出した上記介在物、 すなわち化学式では、 (Mn, X) ( S , Y) (ここで、 X : Mn以外の硫化物形成元素、 Y : S以外で Mnと結合す る元素) として表記できる介在物を含むものであり、 Mn硫化物系介 在物を総称して言うものである。  Note that sulfides mainly composed of MnS include not only pure MnS but also sulfides such as Fe, Ca, Ti, Zr, Mg, and MM coexist in solid solution with or combined with MnS. In addition to inclusions such as MnTe, elements other than S forming a compound with Mn and coexisting with MnS in solid solution, and the inclusions deposited with oxide as a nucleus, (Mn, X) (S, Y) (where X is an element that forms a sulfide other than Mn, Y: an element that binds to Mn other than S) It is a collective term for interrelated substances.
MnSを主成分とする硫化物の寸法、 密度を得るためには、 含有す る Mnと Sの比 MnZ Sをし 2〜 2.8にするとより効果的である。  In order to obtain the size and density of sulfides mainly composed of MnS, it is more effective to set the ratio MnZ S between Mn and S to 2 to 2.8.
更に効果的に微細 MnSを主成分とする硫化物を生成させるには、 凝固冷却速度範囲を制御するとよい。 冷却速度が 10°C/min未満で は凝固が遅すぎて晶出した MnSを主成分とする硫化物が粗大化して しまい、 微細分散しずらくなり、 冷却速度が 100°C/min超では生成 する微細 MnSを主成分とする硫化物の密度は飽和し、 鋼片の硬度が 上昇し割れの発生する危険が増す。 従って铸造時の冷却速度は 10〜 100°C/minがよい。 この冷却速度を得るには铸型断面の大きさ、 铸 込み速度等を適正な値に制御することで容易に得られる。 これは連 続鎳造法、 造塊法共に適用可能である。 In order to produce sulfides containing fine MnS as the main component more effectively, the solidification cooling rate range should be controlled. If the cooling rate is less than 10 ° C / min, solidification is too slow and crystallization of MnS-based sulfides becomes coarse, making it difficult to finely disperse. If the cooling rate exceeds 100 ° C / min, Generation The density of sulfides composed mainly of fine MnS is saturated, the hardness of the steel slab increases and the risk of cracking increases. Therefore, the cooling rate during fabrication should be 10-100 ° C / min. In order to obtain this cooling rate, it is easily obtained by controlling the size of the saddle cross section, the penetration rate, etc. to appropriate values. This can be applied to both continuous forging and ingot making.
ここでいう凝固冷却速度とは、 図 8に示すように、 矢印に示す铸 造方向 15で铸造した铸片 16の横断面 17において、 铸片の厚み (L) の 1 Z 4の深さ位置 18 (図 8 ( b ) 参照) における液相線温度から 固相線温度までの冷却時の速度のことをいう。 冷却速度は凝固後の 铸片厚み方向凝固組織の 2次デンドライ 卜アームの間隔から下記式 により計算で求める。  As shown in FIG. 8, the solidification cooling rate here refers to the depth position of 1 Z 4 of the thickness (L) of the steel piece 16 in the cross section 17 of the steel piece 16 produced in the production direction 15 indicated by the arrow. This is the cooling rate from the liquidus temperature to the solidus temperature in Fig. 18 (see Fig. 8 (b)). The cooling rate is calculated by the following formula from the distance between the secondary dendritic arm of the solidified structure in the thickness direction of the flake after solidification.
X2 0.41 X2 0.41
Rc =  Rc =
770 こ こで Rc: 冷却速度 CZiiiin) 、 λ 2 : 2次デンドライ トァー ムの間隔 ( m )  770 Where Rc: Cooling rate CZiiiin), λ2: Secondary dendritic arm spacing (m)
つまり冷却条件により 2次デンドライ トアーム間隔が変化するの で、 これを測定することにより制御した冷却速度を確認した。  In other words, the secondary dendrite arm spacing changes depending on the cooling conditions, and the controlled cooling rate was confirmed by measuring this.
次に、 任意添加選択元素の規定理由について説明する。  Next, the reason for defining the optional additive element will be described.
[鋼材強化元素]  [Steel reinforcement element]
[V] 0.05〜1.0%  [V] 0.05-1.0%
Vは炭窒化物を形成し、 二次析出硬化により鋼を強化することが できる。 0.05%未満では高強度化に効果はなく、 1.0%を超えて添 加すると多くの炭窒化物を析出し、 かえって機械的性質を損なうの で、 これを上限とした。  V forms carbonitride and can strengthen the steel by secondary precipitation hardening. If it is less than 0.05%, there is no effect in increasing the strength. If it is added in excess of 1.0%, a large amount of carbonitride precipitates, and on the contrary, the mechanical properties are impaired, so this was made the upper limit.
[Nb] 0.005〜0.2% Nbも炭窒化物を形成し、 二次析出硬化により鋼を強化することが できる。 0.005 %未満では高強度化に効果はなく、 0.2%を超えて添 加すると多くの炭窒化物を析出し、 かえって機械的性質を損なうの で、 これを上限とした。 [Nb] 0.005-0.2% Nb also forms carbonitrides and can strengthen steel by secondary precipitation hardening. If it is less than 0.005%, there is no effect in increasing the strength, and if added over 0.2%, a large amount of carbonitride precipitates, and on the contrary, the mechanical properties are impaired, so this was made the upper limit.
[Cr] 0.01〜2·0%  [Cr] 0.01 ~ 2.0%
Crは焼入れ性向上、 焼戻し軟化抵抗付与元素である。 そのため高 強度化が必要な鋼には添加される。 その場合、 0.01%以上の添加を 必要とする。 しかし多量に添加すると Cr炭化物を生成し脆化させる ため、 2.0%を上限とした。  Cr is an element that improves hardenability and imparts temper softening resistance. Therefore, it is added to steel that requires high strength. In that case, addition of 0.01% or more is required. However, if added in a large amount, Cr carbide is formed and embrittled, so 2.0% was made the upper limit.
[Mo] 0.05〜1.0%  [Mo] 0.05-1.0%
Moは焼戻し軟化抵抗を付与するとともに、 焼入れ性を向上させる 元素である。 0.05%未満ではその効果が認められず、 1.0%を超え て添加してもその効果が飽和しているので、 0.05%〜 1.0%を添加 範囲とした。  Mo is an element that imparts resistance to temper softening and improves hardenability. If less than 0.05%, the effect is not observed, and even if added over 1.0%, the effect is saturated, so 0.05% to 1.0% was added.
[W] 0.05〜 1.0%  [W] 0.05-1.0%
Wは炭窒化物を形成し、 二次析出硬化により鋼を強化することが できる。 0.05%未満では高強度化に効果はなく、 1.0%を超えて添 加すると多くの炭窒化物を析出し、 かえって機械的性質を損なうの で、 これを上限とした。  W forms carbonitride and can strengthen the steel by secondary precipitation hardening. If it is less than 0.05%, there is no effect in increasing the strength. If it is added in excess of 1.0%, a large amount of carbonitride precipitates, and on the contrary, the mechanical properties are impaired, so this was made the upper limit.
[Nil 0.05〜2.0%  [Nil 0.05-2.0%
Niはフェライ トを強化し、 延性を延性向上させるとともに焼入れ 性向上、 耐食性向上にも有効である。 0.05%未満ではその効果は認 められず、 2.0%を超えて添加しても、 機械的性質の点では効果が 飽和するので、 これを上限とした。  Ni strengthens ferrite and is effective in improving ductility and improving hardenability and corrosion resistance. If less than 0.05%, the effect is not recognized, and even if added over 2.0%, the effect is saturated in terms of mechanical properties, so this was made the upper limit.
[Cu] 0.01〜2.0%  [Cu] 0.01-2.0%
Cuはフェライ 卜を強化し、 焼入れ性向上、 耐食性向上にも有効で ある。 0.01%未満ではその効果は認められず、 2.0%を超えて添加 しても、 機械的性質の点では効果が飽和するので、 これを上限とし た。 特に熱間延性を低下させ、 圧延時の疵の原因となりやすいので 、 Niと同時に添加することが好ましい。 Cu strengthens ferritic iron and is effective in improving hardenability and corrosion resistance. If it is less than 0.01%, the effect is not recognized, and it exceeds 2.0%. Even so, the effect is saturated in terms of mechanical properties, so we set this as the upper limit. In particular, it is preferable to add at the same time as Ni because it reduces hot ductility and tends to cause defects during rolling.
[脆化による被削性向上元素]  [Machinability improving element due to embrittlement]
CSn] 0.005〜2.0%  CSn] 0.005-2.0%
Snはフェライ トを脆化させ、 工具寿命を延ばすとともに、 表面粗 さ向上に効果がある。 0.005 %未満ではその効果は認められず、 2.0 %を超えて添加しても、 その効果が飽和するので、 これを上限とし た。  Sn embrittles ferrite and prolongs tool life and improves surface roughness. If less than 0.005%, the effect is not recognized, and even if added over 2.0%, the effect is saturated, so this was made the upper limit.
[Zn] 0.0005〜0.5%  [Zn] 0.0005-0.5%
Znはフェライ トを脆化させ、 工具寿命を延ばすとともに、 表面粗 さ向上に効果がある。 0.0005 %未満ではその効果は認められず、 0. 5%を超えて添加しても、 その効果が飽和するので、 これを上限と した。  Zn embrittles ferrite and prolongs tool life and improves surface roughness. If less than 0.0005%, the effect is not recognized, and even if added over 0.5%, the effect is saturated, so this was made the upper limit.
[脱酸調整による被削性向上元素]  [Machinability improving element by adjusting deoxidation]
[ΤΠ 0.0005〜0.1%  [ΤΠ 0.0005-0.1%
Tiは脱酸元素であり、 鋼中の酸素量を制御することができ、 酸化 物を形成しやすい Mn, Bの歩留りを安定させる事ができる。 また微 量であれば軟質酸化物を生成し、 被削性を向上させる働きがある。 0.0005 %未満ではその効果は全く無く、 0.1%以上では多量の硬質 の酸化物を大量に生成し、 更に酸化物を形成せずに固溶する Tiは N と化合して硬質の TiNを形成し、 被削性を低下させる。 したがって 成分範囲を 0.0005〜0.1%と規定した。 Tiは TiNを形成することで BN 形成に必要な Nを消費する。 そのため Ti添加量は 0.01%以下が望ま しい。  Ti is a deoxidizing element, and can control the amount of oxygen in the steel, and can stabilize the yield of Mn and B, which easily form oxides. If the amount is very small, soft oxides are produced, and the machinability is improved. If it is less than 0.0005%, there is no effect, and if it is 0.1% or more, a large amount of hard oxide is produced in large quantities, and Ti that forms a solid solution without forming an oxide combines with N to form hard TiN. Reduces machinability. Therefore, the component range was defined as 0.0005 to 0.1%. Ti consumes N necessary for BN formation by forming TiN. Therefore, it is desirable that the Ti content be 0.01% or less.
[Zr] 0.0005〜0· 1%  [Zr] 0.0005〜0 · 1%
Zrは脱酸元素であり、 鋼中の酸素量を制御することができ、 酸化 物を形成しやすい Mn, Bの歩留りを安定させる事ができる。 また微 量であれば軟質酸化物を生成し、 被削性を向上させる働きがある。 0. 0005 %未満ではその効果は全く無く、 0. 1 %以上では多量の軟質 酸化物が生成することで工具刃先へ凹凸をもって付着し、 そのため 仕上げ面粗さが極端に悪くなるばかりでなく、 硬質酸化物も大量に 生成し、 更に被削性を低下させる。 従って成分範囲を0. 0005〜0. 1 %と規定した。 Zr is a deoxidizing element and can control the amount of oxygen in the steel. It is possible to stabilize the yield of Mn and B that are easy to form. If the amount is very small, soft oxides are produced, and the machinability is improved. If it is less than 0.005%, there is no effect, and if it is 0.1% or more, a large amount of soft oxide is generated and adheres to the tool edge with unevenness, so that the finished surface roughness is not only extremely deteriorated, Hard oxides are also produced in large quantities, further reducing machinability. Therefore, the component range was defined as 0.0005 to 0.1%.
[Mg] 0. 0003〜0. 005 %  [Mg] 0.0003-0.005%
Mgは脱酸元素であり、 鋼中の酸素量を制御することができ、 酸化 物を形成しやすい Mn, Bの歩留りを安定させる事ができる。 また微 量であれば軟質酸化物を生成し、 被削性を向上させる働きがある。 0. 0003 %未満ではその効果は全く無く、 0. 005 %以上では多量の軟 質酸化物が生成することで工具刃先へ凹凸をもって付着し、 そのた め仕上げ面粗さが極端に悪くなるばかりでなく、 硬質の酸化物も大 量に生成し、 更に被削性を低下させる。 したがって成分範囲を 0. 00 03〜0. 005 %と規定した。  Mg is a deoxidizing element that can control the amount of oxygen in the steel and can stabilize the yield of Mn and B, which easily form oxides. If the amount is very small, soft oxides are produced, and the machinability is improved. If it is less than 0.0003%, there is no effect, and if it is 0.005% or more, a large amount of soft oxide is formed and adheres unevenly to the tool edge, resulting in an extremely poor finished surface roughness. In addition, a large amount of hard oxide is generated, further reducing the machinability. Therefore, the component range was defined as 0.003 to 0.005%.
[硫化物形態制御及び工具一鋼材間の潤滑による被削性向上元素 [Machinability improving element by sulfide form control and lubrication between tool and steel
] ]
[Te] Te: 0. 0003〜0. 2 %  [Te] Te: 0.0003-0.2%
Teは被削性向上元素である。 また MnTeを生成したり、 MnSと共存 することで MnSの変形能を低下させて MnS形状の伸延を制御する働き がある。 したがって異方性の低減に有効な元素である。 この効果は 0. 0003 %未満では認められず、 0. 2 %を超えると効果が飽和するだ けでなく、 熱間延性が低下して疵の原因となりやすい。  Te is a machinability improving element. It also has the function of controlling the distraction of the MnS shape by generating MnTe and coexisting with MnS to reduce the deformability of MnS. Therefore, it is an effective element for reducing anisotropy. This effect is not observed at less than 0.0003%, and if it exceeds 0.23%, the effect is not only saturated, but the hot ductility is lowered and is likely to cause flaws.
[B i ] 0. 005〜0. 5 %  [B i] 0.005 to 0.5%
B iは被削性向上元素である。 その効果は、 0. 005 %未満では認め られず、 0. 5 %を超えて添加しても被削性向上効果が飽和するだけ でなく、 熱間延性が低下して疵の原因となりやすい。 B i is a machinability improving element. The effect is not observed at less than 0.005%, and adding more than 0.5% only saturates the machinability improvement effect. In addition, the hot ductility is likely to decrease and cause wrinkles.
[Pb] 0· 005〜0.5%  [Pb] 0.005-0.5%
Pbは被削性向上元素である。 その効果は 0.005 %未満では認めら れず、 0.5%を超えて添加しても被削性向上効果が飽和するだけで なく、 熱間延性が低下して疵の原因となりやすい。 実施例  Pb is a machinability improving element. The effect is not observed at less than 0.005%, and adding more than 0.5% not only saturates the machinability improvement effect but also tends to cause flaws due to a decrease in hot ductility. Example
本発明の効果を実施例によって説明する。 表 1 〜 4に示す実施例 1 〜72の発明例の鋼は、 270 t転炉で溶製後、 凝固冷却速度が 4〜1 8°C/minになる様に錡造した。 この中で実施例 1〜 8の請求項 1 の 鋼種、 及び 62〜 72の請求項 6の鋼種の凝固冷却速度は 1〜 7 °C/mi n、 実施例 9〜61の請求項 2〜 6の鋼種の凝固冷却速度は 12〜85°C /minとなる様に铸造仕分けた。 表 5〜 6に示す実施例 73〜 102の比 較例の鋼は、 270 t転炉で溶製後、 凝固冷却速度が 4〜 7 °C/miiiに なる様に铸造した。 発明例、 比較例共に 270 t転炉材はビレツ 卜に 分塊圧後、 Φ 9.5に圧延した。 この Φ 9.5mm圧延材を Φ 8 mmまで伸線 を行って試験材とした。 熱間延性評価用に圧延前にビレツ ト及び 18 Omm角铸造材から引張試験片を採取した。 尚、 凝固冷却速度の調整 は鍀型断面の大きさゃ鐯込み速度の制御によって行った。  The effects of the present invention will be described with reference to examples. The steels of the inventive examples of Examples 1 to 72 shown in Tables 1 to 4 were forged in a 270 t converter so that the solidification cooling rate was 4 to 18 ° C / min. Among them, the solidification cooling rate of the steel type of claim 1 of Examples 1 to 8 and the steel type of Claim 6 of 62 to 72 is 1 to 7 ° C / min, Claims 2 to 6 of Examples 9 to 61 The solidification cooling rate of each steel grade was forged and sorted so as to be 12 to 85 ° C / min. The steels of comparative examples of Examples 73 to 102 shown in Tables 5 to 6 were forged in a 270 t converter so that the solidification cooling rate was 4 to 7 ° C / miii. In both the inventive example and the comparative example, the 270-t converter material was rolled into billets and then rolled to Φ9.5. This Φ9.5mm rolled material was drawn to Φ8mm and used as a test material. Tensile specimens were taken from the billet and 18 Omm square forged material for hot ductility evaluation before rolling. The solidification cooling rate was adjusted by controlling the squeezing rate if the size of the vertical cross section was large.
材料の被削性は表 7に条件を示すドリル穿孔試験、 表 8に条件を 示すプランジ切削試験、 表 9に条件を示す長手旋削試験の代表的な 3種類の切削方法によって評価した。 ドリル穿孔試験は累積穴深さ 1000mmまで切削可能な最高の切削速度 (いわゆる VL1000、 単位 : m /min) で被削性を評価する方法である。 プランジ切削試験は高速 度鋼の突切工具によって工具形状 (構成刃先形状) を転写して仕上 げ面粗さを評価する方法である。 この実験方法の概要を図 1 に示す 。 実験では 200溝加工した場合の仕上げ面粗さを触針式粗さ計で測 定した。 10点表面粗さ Rz (単位 : m ) の仕上げ面粗さを示す指標 とした。 長手旋削試験は超硬工具 1 を長手方向に送りながら試験片 2の鋼材外周を切削方向 3に切り込む切削方法で、 プランジ切削と 同様、 工具形状の転写での表面粗さ測定面 4の仕上げ面粗さを繰り 返し測定して評価する方法である。 この実験方法の概要を図 2に示 す。 本方法は試験片 2 を回転させながら超硬工具 1 を試験片 2に沿 つて送り (0. 05mni/ r ev) 、 所定の切込量 6 ( 1 mm) で切削 (切削 速度 80m Z m i n) を行うもので、 送りマーク 5と呼ばれる山を仕上 げ面 7 に形成しながら進行させて表面粗さ測定面 8 を形成する切削 方法であり、 むしれでの劣化 9の有無が山の高低となってむしれた 面の粗さ (理論粗さ +むしれ) 10となる。 すなわち、 仕上げ面粗さ となり良好な面の粗さ (理論粗さ) 1 1に大きく影響する (図 2 ( b ) 参照) 。 むしれが無ければ理論粗さに近い値となるが、 .むしれが 生じると、 その分粗さは低下 (劣化) する。 微細に高密度で分散し た MnSを主成分とする硫化物は鋼材を均質化することでむしれを低 減させ仕上げ面粗さを良好にできるため、 高密度に分散した MnSを 主成分とする硫化物の効果を顕著に表すことができる方法である。 また本方法は多量切削後の工具磨耗による工具凹凸の転写による仕 上げ面粗さの良否も顕著に表すことができるので、 実験では工具磨 耗が進行した状態での被削性の差を評価できる 800個切削後の仕上 げ面粗さで評価した。 仕上げ面粗さは触針式粗さ計で測定し、 1 0点 表面粗さ Rz (単位 : m ) を仕上げ面粗さを示す指標とした。 切り 屑処理性に関しては切り屑カール時の半径が小さいもの、 あるいは 分断されているものが好ましく、 〇とした。 巻き数が多く とも曲率 半径が小さいもの、 あるいは曲率半径が大きく とも切り屑長さが 10 Ommに達しなかったものは良好で〇とした。 切り屑が 20匪を超えた 曲率半径で 3巻き以上連続してカールして長く伸びた切り屑を不良 とし、 xとした。 The machinability of the material was evaluated by three typical cutting methods: drill drilling test with conditions shown in Table 7, plunge cutting test with conditions shown in Table 8, and longitudinal turning test with conditions shown in Table 9. The drilling test is a method of evaluating machinability at the maximum cutting speed (so-called VL1000, unit: m / min) that can cut to a cumulative hole depth of 1000 mm. The plunge cutting test is a method for evaluating the roughness of the finished surface by transferring the tool shape (configuration edge shape) with a high-speed steel parting tool. Figure 1 shows an overview of this experimental method. In the experiment, the finished surface roughness when 200 grooves were machined was measured with a stylus type roughness meter. Set. It was used as an index indicating the finished surface roughness of 10-point surface roughness Rz (unit: m). Longitudinal turning test is a cutting method that cuts the outer circumference of the test piece 2 in the cutting direction 3 while feeding the cemented carbide tool 1 in the longitudinal direction.Similar to plunge cutting, the surface roughness measurement surface 4 is the finished surface of the tool shape transfer 4 This is a method of repeatedly measuring roughness and evaluating it. Figure 2 shows an overview of this experimental method. In this method, the test piece 2 is rotated while the carbide tool 1 is fed along the test piece 2 (0.05 mni / rev) and cutting is performed with a predetermined depth of cut 6 (1 mm) (cutting speed 80m Z min). This is a cutting method in which a crest called feed mark 5 is formed on the finished surface 7 and progressed to form the surface roughness measuring surface 8. The roughness of the stripped surface (theoretical roughness + stripping) is 10. In other words, it becomes the finished surface roughness, which greatly affects the surface roughness (theoretical roughness) 11 (see Fig. 2 (b)). If there is no irregularity, the value will be close to the theoretical roughness, but if irregularity occurs, the roughness will decrease (deteriorate) accordingly. Sulfide containing MnS finely dispersed at a high density as a main component can reduce burrs and improve the finished surface roughness by homogenizing the steel material. Therefore, MnS dispersed at a high density can be used as the main component. This is a method capable of remarkably expressing the effect of sulfide. In addition, this method can also show the quality of the finished surface roughness due to the transfer of tool irregularities due to tool wear after heavy cutting, so the experiment evaluated the difference in machinability in the state where tool wear progressed. Possible to evaluate the finished surface roughness after cutting 800 pieces. The finished surface roughness was measured with a stylus-type roughness meter, and the 10-point surface roughness Rz (unit: m) was used as an indicator of the finished surface roughness. With regard to chip disposal, a chip with a small radius at the time of chip curl or a piece that is divided is preferable, and is marked as “O”. A sample with a small radius of curvature at most turns or a sample with a large radius of curvature that did not reach a chip length of 10 Omm was rated as ◯. Chips that exceed 20 mm and with a radius of curvature of 3 or more rolls are curled continuously and defective And x.
鋼材中の MnOに関して、 鋼材の圧延方向と直角な断面において円 相当系にて 0. 5 m以上のものの面積比率の測定は、 φ 8 mm伸線後 の圧延 · 伸線方向と直角な断面の直径の 1 Z 4の深さ位置より切り 出し、 樹脂へ埋め込み研磨した試験片を電子プローブマイクロアナ ライザ一 (EPMA) にて行った。 測定は 1視野 200 ^ m X 200 z mを 20 視野以上行い、 そこで元素面分析で測定される介在物中の MnO面積 を全 Mn系介在物面積に対する比率として面積率を求めた。 鋼材中の MnOは MnS中に含まれた状態で存在するので、 EPMAでの分析で Mnと〇 が重なる面積を MnOの面積として MnSと識別した。 Mnと Oの重ね合わ せは画像処理によって行った。 EPMAによる MnO測定例を図 3に示す 円相当径にて最大径 0. 5 m、 最小径 0. 1μ mの寸法の MnSを主成 分とする硫化物密度の測定は、 Φ 8 mm伸線後の圧延 · 伸線方向と直 角な断面の直径の 1 Z 4の深さ位置より抽出レプリカ法にて採取し て過型電子顕微鏡にて行った。 測定は 10000倍で 1視野 80 /i m2を 40 視野以上行い、 それを 1 mm2当たりの MnSを主成分とする硫化物数に 換算して算出した。 Regarding MnO in steel, the area ratio of 0.5 m or more in a circle equivalent system in the cross section perpendicular to the rolling direction of the steel material is measured on the cross section perpendicular to the rolling / drawing direction after φ 8 mm wire drawing. A test piece cut out from a depth of 1 Z 4 in diameter, embedded in resin, and polished was performed with an electronic probe microanalyzer (EPMA). The measurement was performed with 20 fields of view at least 200 ^ m × 200 zm, and the area ratio was determined by taking the MnO area in the inclusions measured by elemental analysis as the ratio to the total Mn inclusion area. Since MnO in steel exists in the state of being contained in MnS, the area where Mn and 〇 overlapped was identified as MnO by the EPMA analysis. The superposition of Mn and O was performed by image processing. An example of MnO measurement by EPMA is shown in Fig. 3. The sulfide density measurement with a major equivalent of MnS with the maximum equivalent circle diameter of 0.5 m and the minimum diameter of 0.1 μm is shown in Fig. 3. The sample was extracted by the extraction replica method from the depth position of 1 Z 4 with a diameter of a section perpendicular to the rolling / drawing direction, and was performed with a scanning electron microscope. The measurement was performed at a magnification of 10,000 and 40 visual fields of 80 / im 2 per field were obtained, and this was converted to the number of sulfides containing MnS as the main component per mm 2 .
熱間延性は 1000°Cでの高温引張試験の絞りの値により評価した。 絞りは 50%以上であれば良好な圧延は可能であるが、 80%未満であ れば表面疵が多発し、 圧延後の疵除去手入れ面積が大きくなり、 表 面性状の厳しい高級品種には適用できない。 80 %以上の絞りの値が 得られれば表面疵の発生が著しく低減し、 無手入れでの使用も可能 となり、 高級品種に適用可能となる。 更には手入れコス トも削減で きる。 よって絞り 80%以上で熱間延性を〇とし、 80%未満のもので Xとした。  The hot ductility was evaluated by the drawing value of the hot tensile test at 1000 ° C. If the drawing is 50% or more, good rolling is possible, but if the drawing is less than 80%, surface flaws occur frequently, the flaw removal care area after rolling increases, and high-grade varieties with severe surface properties are required. Not applicable. If an aperture value of 80% or more is obtained, the occurrence of surface flaws is remarkably reduced, and it can be used without maintenance, making it applicable to high-grade varieties. In addition, maintenance costs can be reduced. Therefore, the hot ductility was marked as ◯ when the aperture was 80% or more, and X was marked when it was less than 80%.
連続铸造用スライディ ングノズルのプレート耐火物の溶損状況は 、 スライディ ングノズルプレートの材質として MgO— C質 (Mg0 = 87 %、 Al 23 = 10 %、 C = 3 % ) を使用し、 溶損割合を評価した。 溶 損割合は 0. 5 m以上の MnOの面積が全 Mn系介在物の面積に対して 15 %であるときの耐火物の溶損割合を 1 として、 各々の溶損割合を数 値化した値である。 溶損割合が 1 を超えると耐火物溶損が激しくな るので、 溶損割合 1以下で〇、 1超で Xとして評価した。 実施例 1 〜72の発明例はいずれも実施例 73〜 102の比較例に対してドリルェ 具寿命、 プランジ切削及び長手旋削における仕上げ面粗さが良好で 、 かつ熱間延性が 80 %以上値と、 低い溶損割合の良好な製造性を得 ることができた。 例えば実施例 1〜 8の発明例の様に B , Nのバラ ンスの取れた添加量により N量を制御すること、 及び C a添加による O量制御で MnO面積率が低い場合には、 被削性を劣化されずに高い 熱間延性の値と低い溶損割合を得ることができた。 また B, Nのバ ランスの取れた添加量と低い MnO面積率により非常に良好な被削性 を得ることができた。 実施例 9〜18、 及び 56〜59の様に微細な MnS を主成分とする硫化物密度が請求項 2を満たしている場合には、 仕 上げ面粗さ、 特に長手旋削時の値が更に良好になっている。 実施例 19〜55、 及び 60〜72の請求項 3〜 6の任意添加選択元素を添加した ものにおいても、 良好な仕上げ面粗さと製造性が得られていること がわかる。 その内、 快削元素として知られる Pbを微量添加した実施 例 47, 52 , 60, 62〜67、 同じく快削元素として知られる Teを微量添 加した実施例 45, 48, 50, 53, 6 1 , 68 , 69、 更には Pbと Teの両元素 を添加した 55, 70〜72においても良好な熱間延性と被削性が得られ ていることがわかる。 The refractory status of the plate refractory of the sliding nozzle for continuous forging , MgO-C protein as the material of Suraidi ring nozzle plate (Mg0 = 87%, Al 23 = 10%, C = 3 %) was used to evaluate the melting rate. When the area of MnO of 0.5 m or more is 15% with respect to the area of all Mn inclusions, the refractory ratio of refractory is assumed to be 1 and the erosion ratio is quantified. Value. When the melting loss ratio exceeds 1, the refractory melting damage becomes severe. Therefore, when the melting loss ratio was 1 or less, it was evaluated as ◯, and over 1 was evaluated as X. The invention examples of Examples 1 to 72 all have a good drilling tool life, finished surface roughness in plunge cutting and longitudinal turning, and hot ductility values of 80% or more compared to Comparative Examples of Examples 73 to 102. Thus, good manufacturability with a low melting loss ratio could be obtained. For example, when the MnO area ratio is low by controlling the amount of N by a balanced addition amount of B and N and controlling the amount of O by adding Ca as in the inventive examples of Examples 1 to 8, It was possible to obtain a high hot ductility value and a low melting rate without degrading the machinability. In addition, very good machinability could be obtained due to the balanced addition of B and N and the low MnO area ratio. When the density of the sulfide mainly composed of fine MnS satisfies Claim 2 as in Examples 9 to 18 and 56 to 59, the finished surface roughness, particularly the value during longitudinal turning is further increased. It is getting better. It can be seen that excellent finished surface roughness and manufacturability were also obtained in Examples 19 to 55 and those to which the optional addition optional elements of claims 3 to 6 of 60 to 72 were added. Among them, Examples 47, 52, 60, 62 to 67 with a small amount of Pb known as a free-cutting element Examples 45, 48, 50, 53, 6 with a small amount of Te also known as a free-cutting element It can be seen that good hot ductility and machinability are also obtained with 1, 68, 69, and 55 and 70-72 with both elements of Pb and Te added.
これに対して比較例は何れも小さな凝固冷却速度で铸造している ため、 微細な MnSを主成分とする硫化物密度が小さくなつており、 全般的に被削性、 特に長手旋削での仕上げ面粗さが悪い値を示して おり、 同じレベルの小さい凝固冷却速度で铸造した実施例 1〜 8の 請求項 1 の発明例に対しても、 化学成分が本発明の範囲を外れてい るために悪い値を示している。 例えば実施例 76の比較例の様に MnO 面積率の高い場合では MnS量、 BN量の減少により仕上げ面粗さは悪 い値となり、 '溶損割合は大きな値となっている。 実施例 80の比較例 では MnO面積率 15%以下を満たしているが、 S, Ca量が外れている ために熱間延性が悪い値となっている。 実施例 81の比較例の様に Ca 無添加の場合では Oの制御ができず、 多数生成した MnOや硬質酸化 物により熱間延性は 80%未満で溶損割合は大きな値の悪い製造性を 示している。 更に実施例 90, 91は N量が下限を外れている比較例で あるが、 固溶 Bの増加により硬さ増加を招き、 熱間延性は低い値を 示す。 また実施例 93は S , N量が上限を外れている比較例で、 固溶 N増大のため熱間延性低下は悪い値を示す。 実施例 102は MnOが高い 比較例で、 仕上げ面粗さ、 溶損指数共に悪い値を示す。 On the other hand, since all of the comparative examples were manufactured at a low solidification cooling rate, the density of sulfides mainly composed of fine MnS was reduced, and overall machinability, especially finishing by longitudinal turning. The surface roughness is a bad value Thus, even for the inventive examples of claims 1 to 8 manufactured at the same solidification cooling rate of the same level, the chemical components are out of the scope of the present invention, and thus show bad values. For example, as in the comparative example of Example 76, when the MnO area ratio is high, the finished surface roughness becomes poor due to the decrease in the MnS content and the BN content, and the melting rate is large. In the comparative example of Example 80, the MnO area ratio is less than 15%, but the hot ductility is poor because the S and Ca contents are off. As in the comparative example of Example 81, in the case where Ca was not added, O could not be controlled. Show. Furthermore, Examples 90 and 91 are comparative examples in which the N content is outside the lower limit, but the increase in solid solution B causes an increase in hardness, and the hot ductility is low. Further, Example 93 is a comparative example in which the amounts of S and N are outside the upper limits, and the hot ductility reduction shows a bad value due to the increase in solute N. Example 102 is a comparative example in which MnO is high, and both the finished surface roughness and the erosion index are poor.
図 4に本発明例の MnSを主成分とする硫化物の、 ( a ) TEMレプリ 力写真、 ( b ) 光学顕微鏡写真を示す。 図 5に比較例の MnSを主成 分とする硫化物の、 ( a ) TEMレプリカ写真、 ( b ) 光学顕微鏡写 真を示す。 この様に発明例と比較例では (b ) の光学顕微鏡での観 察では大差ない MnSを主成分とする硫化物寸法、 密度であるが、 ( a ) の TEMレプリカの観察では寸法、 密度共に明確な差が見られる 図 6に MnO面積率による被削性の変化を 800個切削後の長手旋削で の仕上げ面粗さを例として示す。 多量切削時の工具磨耗の進行が Mn 0面積率〉15%で著しくなるため、 工具磨耗による凹凸の転写で左 右される仕上げ面粗さの優劣が、 ここを境として顕著に表れている 図 7に発明例と比較例での長手旋削での仕上げ面粗さ一熱間延性 バランスを示す。 発明例は仕上げ面粗さが良好で、 熱間延性も 80 % 以上の良好な領域にある。 比較例では仕上げ面粗さ、 熱間延性共に 不良な領域にあるか、 もしくは熱間延性が良好でも仕上げ面粗さが 不良な鋼種である。 Fig. 4 shows (a) a TEM replication force photograph and (b) an optical microscope photograph of the sulfide containing MnS as the main component of the present invention. Figure 5 shows (a) a TEM replica photograph and (b) an optical microscope photograph of a sulfide mainly composed of MnS in the comparative example. Thus, in the example of the invention and the comparative example, the size and density of the sulfide mainly composed of MnS are not much different in the observation with the optical microscope of (b), but both the size and density are observed in the observation of the TEM replica of (a). A clear difference can be seen. Fig. 6 shows the change in machinability due to the area ratio of MnO as an example of the finished surface roughness in longitudinal turning after cutting 800 pieces. Since the progress of tool wear during heavy cutting becomes significant when the area ratio of Mn 0> 15%, the superiority or inferiority of the finished surface roughness that is affected by the transfer of irregularities due to tool wear appears remarkably here. Figure 7 shows the finish surface roughness and hot ductility in longitudinal turning in the invention and comparative examples. Show balance. Inventive examples have good finished surface roughness and a hot ductility of 80% or more. In the comparative example, it is in a region where both the finished surface roughness and hot ductility are inferior, or the finished surface roughness is poor even though the hot ductility is good.
これより B量、 N量のバランスが取れ、 更に MnO量の制御できた 発明例は、 製造性及び被削性は共に良好であることがわかる。 From this, it can be seen that the invention example in which the B amount and the N amount are balanced and the MnO amount can be controlled has good manufacturability and machinability.
table
Figure imgf000027_0001
Figure imgf000027_0001
表 2 Table 2
Figure imgf000028_0001
Figure imgf000028_0001
表 3 Table 3
Figure imgf000029_0001
Figure imgf000029_0001
表 4 Table 4
Figure imgf000030_0001
Figure imgf000030_0001
表 5 Table 5
Figure imgf000031_0001
Figure imgf000031_0001
表 6 Table 6
Figure imgf000032_0001
Figure imgf000032_0001
表 7 Table 7
Figure imgf000033_0001
表 9
Figure imgf000033_0002
産業上の利用可能性
Figure imgf000033_0001
Table 9
Figure imgf000033_0002
Industrial applicability
本発明によれば、 切削時の工具寿命、 仕上げ面粗さ、 及び切り屑 処理性の被削性に優れ、 更には連続铸造用スライディ ングノズルの プレート耐火物の溶損が少なく、 熱間圧延での延性が良好な製造性 に優れる快削鋼を提供できる。  According to the present invention, the tool life at the time of cutting, the finished surface roughness, and the machinability of chip disposal are excellent, and further, the refractory of the plate refractory of the sliding nozzle for continuous forging is small, and hot rolling Free-cutting steel with good ductility and excellent manufacturability can be provided.

Claims

1. 質量%で 1. In mass%
C : 0.005〜0· 2%  C: 0.005 to 0 · 2%
Si : 0.0(H〜0.5%  Si: 0.0 (H to 0.5%
Mn: 0.3〜3· 0%  Mn: 0.3 to 3% 0%
 Contract
Ρ : 0.001〜0.2%  :: 0.001-0.2%
S : 0.30〜0.60%  S: 0.30 to 0.60%
B : 0.0003〜0.015%  B: 0.0003 to 0.015%
〇 : 0.005〜0.012%  ○: 0.005-0.012%
Ca: 0.0001〜0.0010% 匪  Ca: 0.0001 to 0.0010% 匪
A1≤0.01%  A1≤0.01%
を含有し、 N含有量が、  N content is
N≥ 0.0020 % , かつ、 1.3X B— 0.0100≤ N≤ 1.3X B + 0.0034を 満たし、 残部が Fe及び不可避的不純物よりなり、 さらに鋼中の MnO に関して、 鋼材の圧延方向と直角な断面において円相当径にて 0.5 m以上の MnOの面積が、 全 Mn系介在物の面積に対して 15%以下で あることを特徴とする製造性に優れた快削鋼。  N≥ 0.0020% and 1.3XB— 0.0100≤ N≤ 1.3XB + 0.0034, the balance is Fe and unavoidable impurities, and MnO in steel is equivalent to the circle diameter in the cross section perpendicular to the rolling direction of the steel. Free-cutting steel with excellent manufacturability, characterized in that the area of MnO of 0.5 m or more is 15% or less of the total Mn inclusion area.
2. 請求項 1 に記載の鋼が、 MnSを主成分とする硫化物に関して 、 鋼材の圧延方向と直角な断面において円相当径にて 0.1〜0.  2. The steel according to claim 1 is about 0.1 to 0 in terms of equivalent circle diameter in a cross section perpendicular to the rolling direction of the steel material with respect to a sulfide mainly composed of MnS.
のものの存在密度が 10000個 Zmiii2以上であることを特徴とする製造 性に優れた快削鋼。 A free-cutting steel with excellent manufacturability, characterized by a density of 10000 pcs Zmiii 2 or more.
3. さらに、 質量%で、  3. Furthermore, in mass%,
V : 0.05〜 1.0%  V: 0.05 to 1.0%
Nb: 0.005〜0.2%  Nb: 0.005-0.2%
Cr: 0.01〜2.0%  Cr: 0.01-2.0%
Mo: 0.05〜 1.0% W : 0.05〜 1.0% Mo: 0.05-1.0% W: 0.05-1.0%
Ni : 0.05〜2.0%  Ni: 0.05-2.0%
Cu: 0.01〜2.0%  Cu: 0.01 to 2.0%
Sn: 0.005〜2.0%  Sn: 0.005-2.0%
Zn: 0.0005〜0· 5%  Zn: 0.0005-0. 5%
Ti : 0.0005〜0.1%  Ti: 0.0005-0.1%
Zr: 0.0005〜0.1%  Zr: 0.0005-0.1%
Mg: 0.0003〜 0.005 %  Mg: 0.0003 to 0.005%
Te: 0.0003〜0.2%  Te: 0.0003-0.2%
Bi : 0.005〜0.5%  Bi: 0.005-0.5%
Pb: 0.005〜0.5%  Pb: 0.005-0.5%
の 1種または 2種以上を含むことを特徴とする請求項 1または 2 に記載の製造性に優れた快削鋼。  The free-cutting steel excellent in manufacturability according to claim 1 or 2, characterized by containing one or more of the following.
PCT/JP2007/073277 2006-11-28 2007-11-27 Free-cutting steel excellent in manufacturability WO2008066194A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020097008173A KR101118852B1 (en) 2006-11-28 2007-11-27 Free-cutting steel excellent in manufacturability
US12/312,567 US20100054984A1 (en) 2006-11-28 2007-11-27 Machining steel superior in manufacturability
BRPI0719310-6A BRPI0719310B1 (en) 2006-11-28 2007-11-27 STEEL FOR HIGHER MACHINING AT PRODUCTION CAPACITY.
EP07849980A EP2096186B1 (en) 2006-11-28 2007-11-27 Free-cutting steel excellent in manufacturability
JP2008547071A JP5212111B2 (en) 2006-11-28 2007-11-27 Free-cutting steel with excellent manufacturability
AU2007326255A AU2007326255B2 (en) 2006-11-28 2007-11-27 Free-cutting steel excellent in manufacturability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-319895 2006-11-28
JP2006319895 2006-11-28

Publications (1)

Publication Number Publication Date
WO2008066194A1 true WO2008066194A1 (en) 2008-06-05

Family

ID=39467977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073277 WO2008066194A1 (en) 2006-11-28 2007-11-27 Free-cutting steel excellent in manufacturability

Country Status (9)

Country Link
US (1) US20100054984A1 (en)
EP (1) EP2096186B1 (en)
JP (1) JP5212111B2 (en)
KR (1) KR101118852B1 (en)
CN (1) CN101573463A (en)
AU (1) AU2007326255B2 (en)
BR (1) BRPI0719310B1 (en)
TW (1) TW200840875A (en)
WO (1) WO2008066194A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514929A (en) * 2006-12-28 2010-05-06 ポスコ Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability
KR101018091B1 (en) 2008-07-09 2011-02-25 주식회사 포스코 Lead-free free cutting steel with excellent surface roughness through low built-up edge and manufacturing method thereof
JP2011231398A (en) * 2010-04-09 2011-11-17 Nippon Steel Corp Electric resistance welded steel tube with excellent machinability
WO2013133270A1 (en) * 2012-03-07 2013-09-12 新日鐵住金株式会社 Steel sheet for hot stamping, method for producing same, and hot-stamped steel material
WO2014125770A1 (en) * 2013-02-18 2014-08-21 新日鐵住金株式会社 Lead-containing free-machining steel
WO2014125779A1 (en) * 2013-02-18 2014-08-21 新日鐵住金株式会社 Free machining steel with lead
WO2016199843A1 (en) * 2015-06-10 2016-12-15 新日鐵住金株式会社 Free-cutting steel

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884212A (en) * 2010-10-06 2013-01-16 新日铁住金株式会社 Case hardened steel and method for producing the same
CN102607906A (en) * 2012-02-21 2012-07-25 山东省冶金科学研究院 Standard sample for spectral analysis of free cutting steel SAE1215
CN103255359B (en) * 2013-04-17 2015-12-02 杭州钢铁集团公司 A kind of bismuth-containing free-cutting steel
CN103911550A (en) * 2014-03-24 2014-07-09 北京科技大学 Environment-friendly low-carbon high-sulfur and bismuth free-cutting steel with excellent thermoplasticity
CN104313466A (en) * 2014-10-31 2015-01-28 武汉钢铁(集团)公司 Low-carbon microalloyed free-cutting steel
CN104696379B (en) * 2015-02-10 2017-12-19 山东金马工业集团股份有限公司 Section fork product and preparation method thereof
CN107201482B (en) * 2017-04-19 2019-01-25 马鞍山市鑫龙特钢有限公司 A kind of wind-powered electricity generation pinion steel and preparation method thereof
CN107217162A (en) * 2017-06-04 2017-09-29 游理淋 A kind of method that metal alloy is prepared under electromagnetic field effect
JP6918238B2 (en) * 2018-06-13 2021-08-11 日鉄ステンレス株式会社 Martensitic S Free-cutting stainless steel
US11074548B2 (en) 2019-12-05 2021-07-27 Coupang Corp. Computer implemented systems and methods for optimization of a product inventory by intelligent distribution of inbound products
CN111876688A (en) * 2020-08-12 2020-11-03 宝武集团鄂城钢铁有限公司 Smelting method of high-nitrogen sulfur-containing free-cutting steel
CN112795848B (en) * 2021-03-22 2021-06-25 北京科技大学 Free-cutting corrosion-resistant steel and preparation method thereof
CN113913704B (en) * 2021-12-13 2022-03-11 北京科技大学 Tellurium-sulfur co-processed aluminum deoxidized steel and preparation method and application thereof
CN116949353A (en) * 2023-06-02 2023-10-27 江阴兴澄特种钢铁有限公司 Bi-containing free-cutting non-quenched and tempered steel for automobile engine crankshaft and manufacturing method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345951A (en) 1985-12-23 1993-12-27 Kobe Steel Ltd Free cutting steel
JPH0917840A (en) 1995-06-29 1997-01-17 Samsung Electron Co Ltd Separation device for semiconductor chip and its separation method
JPH11222646A (en) 1998-02-05 1999-08-17 Kobe Steel Ltd Steel for machine structural use having excellent chip treatability
JP2000160284A (en) 1998-11-25 2000-06-13 Sumitomo Metal Ind Ltd Free-cutting steel
JP2000178683A (en) 1998-12-11 2000-06-27 Nkk Joko Kk Free-cutting non-heat treated steel excellent in toughness
JP2001329335A (en) 2000-05-16 2001-11-27 Kobe Steel Ltd Low carbon sulfur based bn free cutting steel excellent in hot ductility
JP2002003991A (en) 2000-06-21 2002-01-09 Kawasaki Steel Corp Free cutting steel
JP2002249823A (en) * 2001-02-22 2002-09-06 Kawasaki Steel Corp Method for producing free cutting steel
JP2004027297A (en) 2002-06-26 2004-01-29 Nkk Bars & Shapes Co Ltd Sulfur and sulfur composite free-cutting steel having excellent machinability less in surface defect
JP2004176175A (en) * 2002-11-15 2004-06-24 Nippon Steel Corp Steel superior in machinability and manufacturing method therefor
JP2004176176A (en) 2002-11-15 2004-06-24 Nippon Steel Corp Steel superior in machinability
JP2006089784A (en) * 2004-09-22 2006-04-06 Jfe Bars & Shapes Corp Bn-containing free cutting steel
JP2006249457A (en) * 2005-03-08 2006-09-21 Jfe Bars & Shapes Corp Bn free-cutting steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4213948B2 (en) * 2002-11-15 2009-01-28 新日本製鐵株式会社 Steel with excellent machinability
JP4348164B2 (en) * 2002-11-15 2009-10-21 新日本製鐵株式会社 Steel with excellent machinability
JP4264247B2 (en) * 2002-11-15 2009-05-13 新日本製鐵株式会社 Steel with excellent machinability and method for producing the same
WO2004050932A1 (en) * 2002-11-15 2004-06-17 Nippon Steel Corporation Steel excellent in machinability and method for production thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345951A (en) 1985-12-23 1993-12-27 Kobe Steel Ltd Free cutting steel
JPH0917840A (en) 1995-06-29 1997-01-17 Samsung Electron Co Ltd Separation device for semiconductor chip and its separation method
JPH11222646A (en) 1998-02-05 1999-08-17 Kobe Steel Ltd Steel for machine structural use having excellent chip treatability
JP2000160284A (en) 1998-11-25 2000-06-13 Sumitomo Metal Ind Ltd Free-cutting steel
JP2000178683A (en) 1998-12-11 2000-06-27 Nkk Joko Kk Free-cutting non-heat treated steel excellent in toughness
JP2001329335A (en) 2000-05-16 2001-11-27 Kobe Steel Ltd Low carbon sulfur based bn free cutting steel excellent in hot ductility
JP2002003991A (en) 2000-06-21 2002-01-09 Kawasaki Steel Corp Free cutting steel
JP2002249823A (en) * 2001-02-22 2002-09-06 Kawasaki Steel Corp Method for producing free cutting steel
JP2004027297A (en) 2002-06-26 2004-01-29 Nkk Bars & Shapes Co Ltd Sulfur and sulfur composite free-cutting steel having excellent machinability less in surface defect
JP2004176175A (en) * 2002-11-15 2004-06-24 Nippon Steel Corp Steel superior in machinability and manufacturing method therefor
JP2004176176A (en) 2002-11-15 2004-06-24 Nippon Steel Corp Steel superior in machinability
JP2006089784A (en) * 2004-09-22 2006-04-06 Jfe Bars & Shapes Corp Bn-containing free cutting steel
JP2006249457A (en) * 2005-03-08 2006-09-21 Jfe Bars & Shapes Corp Bn free-cutting steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2096186A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514929A (en) * 2006-12-28 2010-05-06 ポスコ Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability
KR101018091B1 (en) 2008-07-09 2011-02-25 주식회사 포스코 Lead-free free cutting steel with excellent surface roughness through low built-up edge and manufacturing method thereof
JP2011231398A (en) * 2010-04-09 2011-11-17 Nippon Steel Corp Electric resistance welded steel tube with excellent machinability
CN104160050B (en) * 2012-03-07 2016-05-18 新日铁住金株式会社 Steel plate and manufacture method and drop stamping steel for drop stamping
WO2013133270A1 (en) * 2012-03-07 2013-09-12 新日鐵住金株式会社 Steel sheet for hot stamping, method for producing same, and hot-stamped steel material
JP5541421B2 (en) * 2012-03-07 2014-07-09 新日鐵住金株式会社 Hot stamping steel plate, manufacturing method thereof, and hot stamping steel material
US10161023B2 (en) 2012-03-07 2018-12-25 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping, method for production thereof, and hot stamping steel material
CN104160050A (en) * 2012-03-07 2014-11-19 新日铁住金株式会社 Steel sheet for hot stamping, method for producing same, and hot-stamped steel material
WO2014125779A1 (en) * 2013-02-18 2014-08-21 新日鐵住金株式会社 Free machining steel with lead
JP5954484B2 (en) * 2013-02-18 2016-07-20 新日鐵住金株式会社 Lead free cutting steel
JP5954483B2 (en) * 2013-02-18 2016-07-20 新日鐵住金株式会社 Lead free cutting steel
WO2014125770A1 (en) * 2013-02-18 2014-08-21 新日鐵住金株式会社 Lead-containing free-machining steel
WO2016199843A1 (en) * 2015-06-10 2016-12-15 新日鐵住金株式会社 Free-cutting steel
JPWO2016199843A1 (en) * 2015-06-10 2018-04-12 新日鐵住金株式会社 Free-cutting steel

Also Published As

Publication number Publication date
EP2096186A1 (en) 2009-09-02
EP2096186B1 (en) 2012-10-24
AU2007326255B2 (en) 2010-06-24
JPWO2008066194A1 (en) 2010-03-11
EP2096186A4 (en) 2011-07-13
CN101573463A (en) 2009-11-04
BRPI0719310A2 (en) 2014-07-15
US20100054984A1 (en) 2010-03-04
KR101118852B1 (en) 2012-03-16
TW200840875A (en) 2008-10-16
AU2007326255A1 (en) 2008-06-05
KR20090055648A (en) 2009-06-02
BRPI0719310B1 (en) 2018-01-23
TWI363804B (en) 2012-05-11
JP5212111B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2008066194A1 (en) Free-cutting steel excellent in manufacturability
KR100708430B1 (en) Steel excellent in machinability and method for production thereof
CN102165085B (en) Environmentally-friendly, Pb-free free-machining steel, and manufacturing method for same
US20060016520A1 (en) Steel for steel pipes
TWI307720B (en)
JP4876638B2 (en) Low carbon sulfur free cutting steel
JP5092578B2 (en) Low carbon sulfur free cutting steel
TWI221857B (en) Sulfur-containing free-cutting steel
JP4546917B2 (en) Free-cutting steel with excellent hot ductility
JP2004176176A (en) Steel superior in machinability
TWI609092B (en) Quick cut steel
CN115244199A (en) Stainless steel, stainless steel material, and method for producing stainless steel
JP4348163B2 (en) Steel excellent in machinability and manufacturing method thereof
JP4478137B2 (en) Method for producing B-containing low-carbon lead-free free-cutting steel
JP5114753B2 (en) Steel with excellent machinability and method for producing the same
JP5326203B2 (en) Method for producing low-carbon free-cutting steel with B added
JPH11293391A (en) Low carbon free cutting steel excellent in chip treatability, and its production
WO2023085137A1 (en) Die steel having excellent mirror finish properties
TWI747777B (en) Free-cutting steel and its manufacturing method
WO2023286338A1 (en) Ni-cr-mo-based alloy for welded pipe having excellent workability and corrosion resistance
KR101281284B1 (en) Low-carbon lead-free free-cutting steel having excellent machinability and hot workability and method for manufacturing casting strip for the same
US20180230580A1 (en) Stainless steel product
JP2004169054A (en) Steel having excellent machinability
JP2001214239A (en) Steel for machine structural use excellent in partibility of chip and producing method thetrfor
JP2004176177A (en) Steel superior in machinability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038284.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07849980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008547071

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007326255

Country of ref document: AU

Ref document number: 1020097008173

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12312567

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2007326255

Country of ref document: AU

Date of ref document: 20071127

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007849980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0719310

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090526