WO2014125770A1 - Lead-containing free-machining steel - Google Patents

Lead-containing free-machining steel Download PDF

Info

Publication number
WO2014125770A1
WO2014125770A1 PCT/JP2014/000317 JP2014000317W WO2014125770A1 WO 2014125770 A1 WO2014125770 A1 WO 2014125770A1 JP 2014000317 W JP2014000317 W JP 2014000317W WO 2014125770 A1 WO2014125770 A1 WO 2014125770A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
cutting
inclusions
fine
content
Prior art date
Application number
PCT/JP2014/000317
Other languages
French (fr)
Japanese (ja)
Inventor
橋村 雅之
宏二 渡里
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2015500126A priority Critical patent/JP5954483B2/en
Priority to CN201480009269.4A priority patent/CN104995324B/en
Priority to KR1020157018484A priority patent/KR101685863B1/en
Publication of WO2014125770A1 publication Critical patent/WO2014125770A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Definitions

  • the present invention relates to free-cutting steel, and more particularly to lead-free-cutting steel containing lead.
  • General machine products such as automobiles and electrical appliances include multiple parts. Many of these parts are manufactured by cutting. Therefore, the steel used as the material of the parts is required to have “easy to cut”, that is, excellent machinability.
  • Free-cutting steel has excellent machinability. Typical free-cutting steels are, for example, SUM23, SUM24L, etc. defined in JIS standards. Since Pb enhances the machinability of steel, most free-cutting steel contains Pb. Hereinafter, free-cutting steel containing Pb is referred to as lead free-cutting steel.
  • Patent Document 1 JP-A-11-222646 (Patent Document 1) and JP-A-2004-176175 (Patent Document 2) propose improvement of machinability of free-cutting steel. Specifically, in Patent Document 1 and Patent Document 2, the form of MnS inclusions in steel is controlled to enhance the machinability of steel.
  • An object of the present invention is to provide a lead free-cutting steel excellent in machinability.
  • the lead free-cutting steel according to the present embodiment is, in mass%, C: 0.005 to 0.2%, Mn: 0.3 to 2.0%, P: 0.005 to 0.2%, S: 0 0.01 to 0.7%, Pb: 0.03 to 0.5%, N: 0.004 to 0.02%, and O: 0.003 to 0.03%, with the balance being Fe and Consists of impurities. Further, the number of Pb inclusions having a circle-equivalent diameter of 0.01 to 0.5 ⁇ m in the steel is 10,000 / mm 2 or more.
  • the lead free cutting steel according to the present embodiment has excellent machinability.
  • the number of Pb inclusions having an equivalent circle diameter of 0.01 to 0.5 ⁇ m and the number of MnS inclusions having an equivalent circle diameter of 0.01 to 0.5 ⁇ m in the steel Is 15000 pieces / mm 2 or more.
  • the lead free-cutting steel is one type selected from the group consisting of Cu: 0.5% or less, Ni: 0.5% or less, and Sn: 0.5% or less, instead of part of Fe. You may contain 2 or more types.
  • the lead free-cutting steel may contain one or more selected from the group consisting of Te: 0.2% or less and Bi: 0.5% or less, instead of part of Fe. .
  • the above-mentioned free-cutting steel may contain one or more selected from the group consisting of Cr: 0.5% or less and Mo: 0.5% or less, instead of part of Fe.
  • FIG. 1A is a sectional view in the vicinity of a cutting surface when a cutting edge is large during cutting.
  • FIG. 1B is a cross-sectional view of the vicinity of the cutting surface when the cutting edge is small during cutting.
  • FIG. 2 is a photographic image of Pb inclusions and Pb—MnS inclusions in steel.
  • FIG. 3 is a photographic image of fine Pb inclusions in the matrix.
  • FIG. 4 is a schematic diagram for explaining the cooling rate in the casting process.
  • FIG. 5A is a schematic diagram for explaining a plunge cutting test.
  • FIG. 5B is another schematic diagram for explaining the plunge cutting test.
  • the inventors focused on the relationship between the form of Pb inclusions and MnS inclusions in lead free-cutting steel and machinability, and investigated and examined them. As a result, the present inventors obtained the following knowledge.
  • the component cutting edge means a part of the steel material being cut and adheres to the cutting edge of the cutting tool being cut.
  • the constituent cutting edge functions as a substantial cutting edge while repeatedly falling off and attaching to the tool. Therefore, the constituent cutting edge affects the machinability.
  • FIG. 1A and 1B are cross-sectional views of the vicinity of the cutting surface after the cutting tool is removed during the cutting process.
  • the white broken line in the figure means the cutting edge position of the cutting tool 3.
  • FIG. 1A a large component cutting edge 2 is formed, and the component cutting edge 2 is attached to the steel material 1 away from the cutting tool 3.
  • FIG. 1B the constituent cutting edge is sufficiently smaller than that in FIG. 1A, so that it is detached from the steel material 1 together with the cutting tool 3.
  • the constituent cutting edge when the constituent cutting edge grows greatly, the constituent cutting edge easily adheres to the steel material.
  • the component cutting edge adhering to the steel material comes into contact with the cutting tool again. At this time, the cutting tool may be damaged.
  • the surface roughness of the cutting surface of the steel material may become rough due to the component cutting edge adhering to the steel material.
  • the constituent cutting edge when detached from the cutting tool, a part of the constituent cutting edge may remain on the cutting tool. In this case, a part of the remaining component cutting edge becomes a nucleus, and the component cutting edge grows again. Therefore, the cutting tool is damaged or the steel surface becomes rough.
  • the constituent cutting edge is small as shown in FIG. 1B, the constituent cutting edge is easily detached from the steel material and the cutting tool. In this case, the component cutting edge hardly affects the life of the cutting tool, and the surface roughness of the steel material tends to be good (small).
  • the constituent cutting edge is small, and it is preferable that the constituent cutting edge hardly grows during cutting.
  • the constituent cutting edge is small, the generation of cracks accompanying the falling off of the constituent cutting edge is promoted.
  • the constituent cutting edges frequently fall off while being fine, the surface roughness is improved and the tool life is extended. That is, machinability is increased.
  • FIG. 2 is a cross-sectional photograph of lead free-cutting steel obtained by microstructural observation.
  • matrix 100, Pb inclusions 4, MnS inclusions, and Pb—MnS inclusions 7 are present in the lead free-cutting steel.
  • the Pb inclusion 4 means an inclusion composed of Pb and impurities.
  • the MnS inclusion means an inclusion composed of Mn, S and impurities.
  • the Pb—MnS inclusion 7 means an inclusion containing MnS inclusion 5 and Pb6 adhering to the surface of the MnS inclusion 5.
  • the equivalent circle diameter of each inclusion (Pb inclusion 4, MnS inclusion, and Pb—MnS inclusion 7) in the cross section of the steel material in the drawing direction (for example, the rolling direction) may be larger than 0.5 ⁇ m.
  • Pb inclusions, MnS inclusions, and Pb—MnS inclusions having an equivalent circle diameter larger than 0.5 ⁇ m are referred to as “coarse free cutting inclusions”.
  • Coarse free-cutting inclusions cause stress concentration and promote crack generation and propagation during cutting. The smaller the aspect ratio of the coarse free-cutting inclusion and the more spherical it is, the more easily stress concentration occurs and cracks are more likely to occur and propagate.
  • FIG. 3 is a photographic image of the fine Pb inclusions 40 in the matrix 100 of the lead free-cutting steel of this embodiment obtained by the replica extraction method.
  • spherical fine Pb inclusions 40 having a small aspect ratio are dispersed in matrix 100.
  • Fine Pb inclusions embrittle the matrix. Therefore, if a large number of fine Pb inclusions are dispersed in the matrix, the constituent blade tip does not grow coarsely, and the fine constituent blade tip is easily generated and dropped off. As a result, the machinability of lead free-cutting steel is increased. Specifically, if the number of fine Pb inclusions is 10,000 / mm 2 or more, excellent machinability can be obtained.
  • MnS inclusions having an equivalent circle diameter of 0.01 to 0.5 ⁇ m in the cross section in the drawing direction of the steel material are referred to as “fine MnS inclusions”.
  • Fine MnS inclusions are less effective than fine Pb inclusions, but embrittle the matrix. Therefore, if not only fine Pb inclusions but also many fine MnS inclusions are dispersed in the matrix, the machinability is further enhanced. Specifically, if the total number of fine Pb inclusions and fine MnS inclusions is 15000 pieces / mm 2 or more, the machinability of lead free-cutting steel is further enhanced.
  • the present inventors have completed the lead free-cutting steel according to this embodiment.
  • the lead free-cutting steel according to the present embodiment will be described in detail.
  • the lead free-cutting steel according to the present embodiment has the following chemical composition.
  • C 0.005 to 0.2%
  • Carbon (C) increases the strength of the steel. C further affects the amount of oxygen in the steel and the machinability. If the C content is too low, a large amount of oxygen remains in the steel and pinholes are generated. Furthermore, a hard oxide is produced and machinability is reduced. On the other hand, if the C content is too high, the strength of the steel becomes too high and the machinability deteriorates. Therefore, the C content is 0.005 to 0.2%.
  • the minimum with preferable C content is higher than 0.005%, More preferably, it is 0.05%, More preferably, it is 0.07%.
  • the upper limit with preferable C content is less than 0.2%, More preferably, it is 0.12%, More preferably, it is 0.09%.
  • Mn 0.3 to 2.0%
  • Manganese (Mn) forms a soft oxide in the molten steel and suppresses the formation of a hard oxide. Therefore, the machinability of steel is increased. Mn further binds to S to form MnS, thereby reducing the amount of dissolved S. If the amount of dissolved S is reduced, high temperature embrittlement cracking is suppressed. If the Mn content is too low, the above effect is difficult to obtain. If the Mn content is too low, S forms FeS instead of S forming MnS, and the steel becomes brittle. On the other hand, if the Mn content is too high, the hardness of the steel becomes too high, and the machinability and cold workability deteriorate.
  • the Mn content is 0.3 to 2.0%.
  • the minimum with preferable Mn content is higher than 0.3%, More preferably, it is 0.5%, More preferably, it is 0.8%.
  • the upper limit with preferable Mn content is less than 2.0%, More preferably, it is 1.8%, More preferably, it is 1.6%.
  • P 0.005 to 0.2% Phosphorus (P) embrittles the steel and increases the machinability of the steel. If the P content is too low, this effect cannot be obtained. On the other hand, if the P content is too high, the effect of improving machinability is saturated. If the P content is too high, it is further difficult to stably produce steel. Therefore, the P content is 0.005 to 0.2%.
  • the minimum with preferable P content is higher than 0.005%, More preferably, it is 0.03%, More preferably, it is 0.05%.
  • the upper limit with preferable P content is less than 0.2%, More preferably, it is 0.15%, More preferably, it is 0.1%.
  • S 0.01 to 0.7% Sulfur (S) combines with Mn to form MnS inclusions. MnS inclusions enhance the machinability of steel. Furthermore, since Pb is aggregated around MnS crystallized in the solidification process, MnS uniformly disperses Pb in the steel. If the S content is too low, the above effect cannot be obtained. On the other hand, if the S content is too high, a sulfide containing coarse MnS as a main component is generated, and the hot deformation characteristics are deteriorated. Therefore, the S content is 0.01 to 0.7%.
  • the preferable lower limit of the S content is higher than 0.01%, more preferably 0.05%, and further preferably 0.15%. is there.
  • the upper limit with preferable S content is less than 0.7%, More preferably, it is 0.5%, More preferably, it is 0.4%.
  • the preferable S content is 0.28% or more.
  • Pb 0.03 to 0.5%
  • Lead (Pb) hardly dissolves in Fe of the matrix and forms soft Pb inclusions. Further, Pb is adjacent to the periphery of MnS and forms Pb—MnS inclusions. Furthermore, Pb exists as fine Pb inclusions in the matrix, and enhances the machinability of steel. If the Pb content is too low, the above effect cannot be obtained. On the other hand, if the Pb content is too high, it becomes difficult to stably produce lead free-cutting steel. Therefore, the Pb content is 0.03 to 0.5%.
  • the minimum with preferable Pb content is higher than 0.03%, More preferably, it is 0.1%, More preferably, it is 0.15%.
  • the upper limit with preferable Pb content is less than 0.5%, More preferably, it is 0.4%, More preferably, it is 0.35%.
  • N 0.004 to 0.02% Nitrogen (N) affects the machinability and the surface roughness after cutting. If the N content is too low, dislocations in the steel at the time of cutting tend to move. Therefore, the ductility of the matrix becomes too high. In this case, cutting flaking easily occurs and good surface roughness cannot be obtained. On the other hand, if the N content is too high, dislocations are difficult to move. In this case, the steel becomes brittle, and the steel is easily cracked during cold working other than cutting such as wire drawing or cold forging. Therefore, the N content is 0.004 to 0.02%.
  • the minimum with preferable N content is higher than 0.004%, More preferably, it is 0.006%, More preferably, it is 0.008%.
  • the upper limit with preferable N content is less than 0.02%, More preferably, it is 0.018%, More preferably, it is 0.015%.
  • Oxygen (O) affects the shape of MnS. If the O content is too low, the amount of oxygen in MnS is also reduced. Therefore, the stretchability of MnS increases.
  • MnS is easily stretched in a predetermined direction (for example, the rolling direction), and anisotropy is easily generated in the steel. In this case, the cutting edge of the component becomes large during cutting, or irregular dropping of the cut steel portion occurs. Therefore, the steel surface becomes rough and the tool deteriorates.
  • the shape of MnS affects the dispersion of Pb. Therefore, a high aspect ratio (that is, stretched) MnS is not preferable.
  • the O content is 0.003 to 0.03%.
  • the minimum with preferable O content is higher than 0.003%, More preferably, it is 0.005%, More preferably, it is 0.008%, More preferably, it is 0.012%.
  • the upper limit with preferable O content is less than 0.03%, More preferably, it is 0.025%, More preferably, it is 0.022%.
  • a more preferable upper limit of the O content is 0.018%.
  • the remainder of the lead free cutting steel according to the present embodiment is made of iron (Fe) and impurities.
  • the impurities referred to here are ores and scraps used as raw materials for steel, or elements mixed in from the environment of the manufacturing process.
  • Pb inclusions circle equivalent diameter in the stretching direction of the cross section of the steel material is 0.01 ⁇ 0.5 [mu] m (fine Pb inclusions) number N Pb is 10000 / mm 2 or more.
  • the matrix becomes brittle when a large number of fine Pb inclusions are dispersed in the matrix. Therefore, fine cutting edges are frequently generated and dropped during cutting. As a result, machinability is increased.
  • the number of fine Pb inclusions NPb is less than 10,000 / mm 2 , the matrix is not sufficiently brittle. For this reason, the generation and separation of the constituent cutting edges are easily caused by the shape of the coarse free-cutting inclusion.
  • the material of the steel portion including the coarse inclusions is not uniform.
  • the attachment, generation and growth of the constituent cutting edges are also likely to occur non-uniformly in the width direction of the cutting edge.
  • the constituent cutting edge has large irregularities and tends to be coarse.
  • the shape of the detaching piece of the component cutting edge to be detached becomes irregular and large, causing damage to the tool or deteriorating the surface roughness. That is, machinability is reduced.
  • the number of fine Pb inclusions NPb is preferably 15000 pieces / mm 2 or more, more preferably 20000 pieces / mm 2 or more.
  • the upper limit of the number of fine Pb inclusions NPb is not particularly limited.
  • the upper limit of the number of fine Pb inclusions NPb is, for example, 1 million pieces / mm 2 .
  • the total number of the fine Pb inclusions and the number of MnS inclusions (fine MnS inclusions) having a circle-equivalent diameter of 0.01 to 0.5 ⁇ m (hereinafter referred to as fine rebound).
  • the total number of cutting inclusions TN) is 15000 pieces / mm 2 or more.
  • the fine MnS inclusion is less effective than the fine Pb inclusion, the matrix becomes brittle. Therefore, when the total number TN of fine free-cutting inclusions is 15000 pieces / mm 2 or more, the matrix is further embrittled and the machinability is further improved.
  • the total number TN of fine free-cutting inclusions is preferably 20000 pieces / mm 2 or more, more preferably 25000 pieces / mm 2 or more.
  • the upper limit of the total number TN of fine free-cutting inclusions is not particularly limited.
  • the upper limit of the total number TN of fine free-cutting inclusions is, for example, 1 million pieces / mm 2 .
  • the fine Pb inclusion number NPb and the fine free-cutting inclusion total number TN are obtained by the following measuring method.
  • a cross section (hereinafter referred to as a main surface) that is parallel to the drawing direction (for example, rolling direction) of the lead free-cutting steel material (for example, bar steel, wire rod, etc.) and includes the center line of the lead-free-cutting steel material is polished.
  • a test piece is taken from a position (so-called R / 2 position) at a half depth of the radius in the radial direction from the surface of the lead free cutting steel material.
  • a sample is prepared from the main surface of the test piece based on the extraction replica method. Using a transmission electron microscope (TEM), TEM images of any 10 fields of the sample surface are obtained. The magnification of TEM shall be 20000 times. The area of each visual field is 50 ⁇ m 2 (10 ⁇ m ⁇ 5 ⁇ m, that is, 5 ⁇ 10 ⁇ 4 mm 2 ).
  • TEM transmission electron microscope
  • inclusions are identified by EPMA (electron beam microanalyzer) or EDS (energy dispersive X-ray microanalyzer). Thereby, Pb inclusion and MnS inclusion can be specified.
  • EPMA electron beam microanalyzer
  • EDS energy dispersive X-ray microanalyzer
  • the equivalent circle diameter means the diameter of a circle when the area of inclusions is converted into a circle having the same area.
  • the equivalent circle diameter can be measured using a known particle size distribution measurement software using a TEM image.
  • the total number N1 of Pb inclusions (fine Pb inclusions) having an equivalent circle diameter of 0.01 to 0.5 ⁇ m in 10 fields of view and the equivalent circle diameter in 10 fields of view of 0.01 to 0.5 ⁇ m.
  • the total number N2 (pieces) of MnS inclusions (fine MnS inclusions) is determined.
  • the number of fine Pb inclusions NPb (pieces / mm 2 ) and the total number of fine free-cutting inclusions TN (pieces / mm 2 ) are obtained by the following formulas (1) and (2).
  • N Pb N1 / TA (1)
  • TN (N1 + N2) / TA (2)
  • the lead free-cutting steel according to the present embodiment may further contain one or more selected from the group consisting of Cu, Ni and Sn instead of a part of Fe. These selective elements increase the corrosion resistance.
  • Cu 0.5% or less Copper (Cu) is a selective element. Cu increases the corrosion resistance of steel. Cu further increases the machinability of the steel. On the other hand, if the Cu content is too high, the hot ductility of the steel decreases. Therefore, the Cu content is 0.5% or less. If the Cu content is 0.05% or more, the above-described effect is remarkably obtained.
  • the more preferable lower limit of the Cu content is 0.07%, and more preferably 0.15%.
  • the upper limit with preferable Cu content is less than 0.5%, More preferably, it is 0.4%, More preferably, it is 0.3%.
  • Nickel (Ni) is a selective element. Ni increases the corrosion resistance of steel. Ni further increases the ductility of the steel. When the lead free-cutting steel contains Cu, Ni suppresses embrittlement of the lead free-cutting steel and improves the production stability of the steel. On the other hand, if Ni content is too high, ductility will become high too much and machinability will fall. Therefore, the Ni content is 0.5% or less. If the Ni content is 0.05% or more, the above effects are remarkably obtained. A more preferred lower limit of the Ni content is 0.1%. The upper limit with preferable Ni content is less than 0.5%, More preferably, it is 0.4%, More preferably, it is 0.3%.
  • Tin (Sn) is a selective element. Sn increases the corrosion resistance of steel. Sn further increases the machinability of the steel. On the other hand, if the Sn content is too high, the hot ductility of the steel decreases. Therefore, the Sn content is 0.5% or less. If the Sn content is 0.05% or more, the above-described effect is remarkably obtained.
  • the more preferable lower limit of the Sn content is 0.1%, and more preferably 0.2%.
  • the upper limit with preferable Sn content is less than 0.5%, More preferably, it is 0.4%, More preferably, it is 0.3%.
  • the lead free-cutting steel according to the present embodiment may further contain one or more selected from the group consisting of Te and Bi instead of a part of Fe. These elements are selective elements and enhance the machinability of the steel.
  • Te 0.2% or less
  • Tellurium (Te) is a selective element. Te increases the machinability of the steel. Te is particularly effective in controlling the shape of free-cutting inclusions. Specifically, the aspect ratio of MnS inclusions and Pb—MnS inclusions is reduced. On the other hand, if the Te content is too high, the hot ductility of the steel decreases. Therefore, the Te content is 0.2% or less. If the Te content is 0.0003% or more, the above-described effect is remarkably obtained. The more preferable lower limit of the Te content is 0.0008%, and more preferably 0.01%. The upper limit with preferable Te content is less than 0.2%, More preferably, it is 0.1%, More preferably, it is 0.05%.
  • Bi 0.5% or less Bismuth (Bi) is a selective element. Bi increases the machinability of steel. On the other hand, if the Bi content is too high, the hot ductility of the steel decreases. Therefore, the Bi content is 0.5% or less. If the Bi content is 0.005% or more, the above-described effect is remarkably obtained.
  • the more preferable lower limit of the Bi content is 0.008%, and more preferably 0.01%.
  • the upper limit with preferable Bi content is less than 0.5%, More preferably, it is 0.1%, More preferably, it is 0.05%.
  • the lead free-cutting steel according to the present embodiment may further contain one or more selected from the group consisting of Cr and Mo instead of part of Fe. These selective elements increase the hardness of the steel after rolling.
  • the lead free-cutting steel of this embodiment often cuts a material that has been drawn and work-hardened. Generally, the harder the steel, the better the surface roughness, but the tool wear is promoted. Therefore, the hardness of the steel affects the dimensional accuracy. In precision parts, it is preferable to control the hardness of steel after work hardening by wire drawing to about 150 to 250 HV, and it is preferable to adjust the hardness to the optimum depending on the shape to be processed and the amount of cutting.
  • the hardness of steel after work hardening by wire drawing is determined by the hardness of the steel after rolling, work hardening characteristics, and the amount of work.
  • the processing amount for example, the wire drawing area reduction ratio
  • the hardness after processing is not easily increased. Therefore, it is effective to increase the hardness of the steel after rolling in advance.
  • elements that improve the hardenability such as Cr and / or Mo are effective.
  • Chromium (Cr) is a selective element. Cr increases the hardness of the steel after rolling. If the Cr content is too high, the steel becomes too hard or it becomes difficult to obtain machinability as free-cutting steel. Therefore, the Cr content is 0.5% or less. If the Cr content is 0.05% or more, the above effects are remarkably obtained.
  • the minimum with preferable Cr content is 0.08%, More preferably, it is 0.1%.
  • the upper limit with preferable Cr content is less than 0.5%, More preferably, it is 0.3%, More preferably, it is 0.2%.
  • Mo 0.5% or less Molybdenum (Mo) is a selective element. Mo increases the hardness of the steel after rolling. If the Mo content is too high, the steel becomes too hard or it becomes difficult to obtain machinability as free-cutting steel. Therefore, the Mo content is 0.5% or less. If the Mo content is 0.02% or more, the above-described effects can be obtained remarkably. A preferable lower limit of the Mo content is 0.03%. The upper limit with preferable Mo content is less than 0.2%, More preferably, it is 0.1%.
  • molten steel satisfying the above chemical composition is made into a slab by a continuous casting method.
  • the molten steel is made into an ingot by the ingot-making method. (Casting process).
  • a slab or an ingot is hot-worked and a lead free-cutting steel material is manufactured (hot work process).
  • molten steel is cast to produce a slab.
  • the cross-sectional area of the slab is, for example, any of 350 mm ⁇ 560 mm, 220 mm ⁇ 220 mm, and 150 mm ⁇ 150 mm.
  • the cooling rate RC of the molten steel is controlled by the cross-sectional area of the material and the cooling conditions during the solidification process.
  • Pb has almost no solubility in molten steel and is dispersed as droplets in the molten steel.
  • Pb aggregates with MnS inclusions to form coarse free-cutting inclusions (Pb—MnS inclusions), or Pb grains aggregate to form coarse Pb inclusions.
  • Pb also produces fine Pb inclusions.
  • FIG. 4 is a cross-sectional view of the cast slab.
  • the cooling rate from the liquidus temperature to the solidus temperature at the point P1 at the position W / 4 from the surface toward the material center is the cooling rate in the casting step S1. It is defined as RC (° C./min).
  • RC ° C./min
  • the cooling rate RC is 15 to 30 ° C./min, many fine Pb inclusions are dispersed in the steel.
  • the number of fine Pb inclusions NPb is less than 10,000 / mm 2 .
  • the cooling rate RC exceeds 30 ° C./min
  • the solid solution S increases excessively.
  • the hot ductility of the steel is reduced. Therefore, when producing a raw material (slab) by a continuous casting method, breakout may occur.
  • the material may crack during hot working, or wrinkles due to the crack may occur.
  • the secondary dendrite arm interval ⁇ 2 depends on the cooling rate. Therefore, the cooling rate RC can be obtained by measuring the secondary dendrite arm interval ⁇ 2.
  • the molten steel is sufficiently stirred during continuous casting. Specifically, the molten steel in the mold is stirred during continuous casting so that the molten steel flow velocity VE is 10 to 40 cm / s.
  • the molten steel flow velocity VE is less than 10 cm / s, stirring is insufficient. Therefore, fine Pb inclusions are difficult to be generated and uniformly dispersed, and the number of fine Pb inclusions NPb is less than 10,000 / mm 2 .
  • the molten steel flow velocity VE exceeds 40 cm / s, the fluctuation of the molten metal surface becomes too large and continuous casting becomes difficult.
  • the molten steel flow speed VE by controlling the cooling rate RC, may be 10,000 / mm 2 or more fine Pb inclusions number N Pb.
  • the production by continuous casting has been described.
  • the ingot is formed by top pouring using a mold having a cross-sectional area of 40000 mm 2 or less (for example, 200 mm ⁇ 200 mm).
  • the molten steel is stirred at a speed corresponding to the molten steel flow velocity VE of 10 to 40 cm / s, and the cooling rate RC is also 15 to 30 ° C./min.
  • Hot working process In the hot working process, the material is first heated. The heated material is hot worked to produce a lead free cutting steel material.
  • Lead free-cutting steel materials are, for example, steel bars, wire rods, billets and the like.
  • Hot working includes, for example, block rolling, continuous rolling with a VH stand, hot forging, and the like.
  • the surface temperature of the material at the start of hot processing (hereinafter referred to as processing start temperature) is set to 1000 ° C. or higher. If the machining start temperature is low, the fine Pb inclusions are unevenly distributed, because they do not uniformly dispersed, not a fine Pb inclusions number N Pb is 10000 / mm 2 or more.
  • the processing start temperature is less than 1000 ° C.
  • fine MnS inclusions may not be sufficiently generated.
  • the total number TN of fine free-cutting inclusions may be less than 15000 / mm 2 .
  • the hot working may be performed a plurality of times.
  • the material is heated and subjected to ingot rolling (first hot working), and then the ingot rolled material is heated again to produce a steel bar (second heat).
  • first hot working first hot working
  • second heat second heat
  • the processing start temperature during at least one hot processing (at the first hot processing) is set to 1000 ° C. or higher
  • the number of fine Pb inclusions NPb becomes 10,000 / mm 2 or higher.
  • the preferable cooling rate RC is 20 ° C./min or more, and the preferable molten steel flow velocity VE is 20 cm / s or more.
  • the number of fine Pb inclusions NPb is 10000 / mm 2 or more, but is often less than 15000 / mm 2 . In this case, in order for the total number TN of fine free-cutting inclusions to be 15000 pieces / mm 2 or more, it is preferable that many fine MnS inclusions are generated.
  • the cooling rate RC is 20 ° C./min or more and the molten steel flow velocity VE is 20 cm / s or more, many fine MnS inclusions are generated during hot working. Therefore, the total number TN of fine free-cutting inclusions is 15000 pieces / mm 2 or more, and further excellent machinability is obtained.
  • the processing start temperature is 1000 ° C. or higher, stretching of coarse free-cutting inclusions during hot processing is also suppressed.
  • the processing start temperature can be measured by, for example, a radiation thermometer arranged on the entry side of a hot working apparatus (a lump rolling mill, a continuous rolling mill, a hot forging machine, etc.).
  • Lead free cutting steel was manufactured with various chemical compositions and manufacturing conditions, and machinability was evaluated.
  • the raw material (slab section 220 ⁇ 220 mm) was manufactured by continuous casting using molten steel.
  • the cooling rate RC (° C./min) when casting the steel of each test number was as shown in Table 1.
  • the cooling rate RC of each test number was obtained by calculation based on the above formula (3) by measuring the secondary dendrite arm interval.
  • the electromagnetic stirring was implemented with respect to the molten steel in a mold at the time of continuous casting.
  • the molten steel flow velocity VE (cm / s) of each test number during electromagnetic stirring was as shown in Table 1.
  • a round bar material having an outer diameter of 50 mm was manufactured by performing hot working on the material of each test number. In each hot working, any one of a block rolling, a drawing rolling and a hot forging was performed. In the first hot working of each test number, the working start temperature T (° C.) was measured. Table 1 shows the processing start temperature T for each test number.
  • test number each time hot working was performed, the surface of the material after hot working was observed to check for cracks. When cracking occurred, the test of that test number was stopped.
  • [Free-cutting inclusion observation test] A test piece for observing the structure was taken from the round bar of each test number. Of the surface of the test piece, a cross section that is parallel to the longitudinal direction of the round bar (that is, the rolling direction or the stretching direction) and includes the center line of the round bar is defined as a specular surface. Based on the above-described method, the number of fine Pb inclusions NPb (pieces / mm 2 ) and the total number of fine free-cutting inclusions TN (pieces / mm 2 ) were determined on the microscopic surface. Table 1 shows the number of fine Pb inclusions NPb and the total number of fine free-cutting inclusions TN for each test number.
  • Drill drilling test The machinability of the steel of each test number was evaluated by a drill drilling test.
  • a 15 mm deep hole was continuously formed a plurality of times at an arbitrary cutting speed using a drill on the round bar material of each test number. Then, the maximum cutting speed VL1000 (m / min) that was capable of being cut until the cumulative hole depth reached 1000 mm (that is, 67 or more holes with a depth of 15 mm could be drilled) was obtained.
  • a drill with a diameter of 5 mm made by NACHI (trademark) was used.
  • the projecting amount of the drill was 60 mm
  • the feed was 0.33 mm / rev
  • a commercially available water-soluble cutting oil was used for drilling.
  • the drilling direction was a direction (transverse direction) perpendicular to the longitudinal direction of the round bar. Drilling was repeatedly performed until the drill was melted or broken to obtain a cutting speed VL1000. The larger the cutting speed VL1000, the higher the number of holes that can be drilled. Therefore, it was determined that the tool life was excellent and the machinability was high.
  • plunge cutting test The surface roughness after cutting the steel of each test number was evaluated by the plunge cutting test shown in FIGS. 5A and 5B.
  • the plunge cutting test the surface of the round bar 30 was cut using the parting tool 20 while rotating the round bar 30 around the axis, and grooves G1 to G10 were sequentially formed as shown in FIG. 5B.
  • the parting tool 20 was advanced in the radial direction of the round bar 30 to form the groove G1.
  • the parting tool 20 was moved backward in the radial direction of the round bar 30 and then moved a predetermined distance in the axial direction of the round bar.
  • the parting tool 20 was advanced again in the radial direction to form the groove G2. Thereafter, the grooves G3 to G10 were sequentially formed in the same manner. After forming the groove G10, the parting tool 20 was moved again to the position of the groove G1, and the groove processing was repeated again for the grooves G1 to G10. After performing 200 groove processing (20 grooves for each of the grooves G1 to G10), the surface roughness of the bottom surface of the groove G10 was evaluated.
  • the material of the parting tool 20 corresponds to JIS standard SHK57, and the rake angle was 20 ° and the clearance angle was 6 °.
  • the cutting speed of the parting tool 20 during grooving was 80 m / min, and the feed was 0.05 mm / rev.
  • a commercially available water-insoluble cutting oil was used for cutting.
  • the surface roughness was measured by the following method.
  • the maximum height Rmax ( ⁇ m) was measured according to JIS B0601 (1972) using a stylus type surface roughness meter on the bottom surface of the groove G10 after the 200-groove processing. It was evaluated that the smaller the maximum height Rmax, the better the machinability.
  • Test results The test results are shown in Table 1. “Yes” in the “work crack” column in Table 1 means that a crack was confirmed after hot working. “None” means that no cracks were observed.
  • N Pb the number of fine Pb inclusions NPb (pieces / mm 2 ) of each test number is described.
  • TN the total number of fine free-cutting inclusions TN (pieces / mm 2 ) of each test number is described.
  • VL1000 the cutting speed (m / min) of each test number obtained in the drill drilling test is described.
  • Rmax the maximum height Rmax ( ⁇ m) of the surface of each test number obtained in the plunge cutting test is described.
  • the chemical composition is appropriate, the cooling rate RC (° C./min) in the casting process, the molten steel flow rate VE (cm / s), the processing start temperature in the hot working process. T (° C.) was also appropriate. Therefore, the number of fine Pb inclusions NPb (pieces / mm 2 ) in the steel is 10000 pieces / mm 2 or more, and the total number of fine free-cutting inclusions TN (pieces / mm 2 ) is 15000 pieces / mm 2 or more. It was. Therefore, the cutting speeds VL1000 of test numbers 1 to 15 were all high and were 130 m / min or higher. Further, the maximum heights Rmax of test numbers 1 to 15 were all small and 14.5 ⁇ m or less.
  • the chemical composition was appropriate, the cooling rate RC was in the range of 15 to 30 ° C./min, the molten steel flow velocity VE was 10 to 40 cm / s, and the processing start temperature T was 1000 ° C. or higher. . Therefore, the cutting speed VL1000 was 130 m / min or more, and the maximum height Rmax was 14.5 ⁇ m or less. However, the Pb content was less than 0.15%, and the cooling rate RC was less than 20 ° C./min.
  • test number 16 although the number of fine Pb inclusions NPb (pieces / mm 2 ) in steel was 10,000 pieces / mm 2 or more, the total number of fine free-cutting inclusions TN (pieces / mm 2 ) was 15000. The number was less than pieces / mm 2 . Therefore, both the cutting speed VL1000 and the maximum height Rmax were inferior to those of test numbers 1 to 15.
  • test number 18 Although the chemical composition was appropriate, the cooling rate RC was too slow. Moreover, the molten steel flow velocity VE was too slow. Furthermore, the processing start temperature T was less than 1000 ° C. Therefore, the number of fine Pb inclusions NPb (pieces / mm 2 ) and the total number of fine free-cutting inclusions TN (pieces / mm 2 ) in the round bar were too small. As a result, the cutting speed VL1000 was too small and the maximum height Rmax was too high.
  • test number 19 Although the chemical composition was appropriate, the molten steel flow velocity VE was too slow. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, and the maximum height Rmax was high.
  • Test number 20 was too low in oxygen content. Furthermore, the molten steel flow velocity VE was too slow. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, the cutting speed VL1000 was small, and the maximum height Rmax was also high.
  • test number 22 the N content was too low. Therefore, the maximum height Rmax was large and the machinability was low. It is considered that the ductility of the matrix became too high because the N content was low.
  • test number 23 Although the chemical composition was appropriate, the cooling rate RC and the molten steel flow rate VE were too slow. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, the cutting speed VE was small, and the maximum height Rmax was high.
  • test number 24 the chemical composition, the cooling rate RC, and the molten steel flow rate VE were appropriate, but the processing start temperature T was less than 1000 ° C. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, the cutting speed VE was small, and the maximum height Rmax was high.
  • test number 25 the chemical composition, the molten steel flow velocity VE, and the processing start temperature T were appropriate, but the cooling rate RC was too slow. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, the cutting speed VE was small, and the maximum height Rmax was high.

Abstract

Provided is a lead-containing free-machining steel having excellent machinability. This lead-containing free-machining steel contains, in terms of mass%, 0.005-0.2% C, 0.3-2.0% Mn, 0.005-0.2% P, 0.01-0.7% S, 0.03-0.5% Pb, 0.004-0.02% N, and 0.003-0.03% O, with the remainder comprising Fe and impurities. The steel contains Pb inclusions (40) having a diameter of 0.01-0.5 μm in terms of equivalent-circle diameter, the number of the inclusions being 10,000 per mm2 or larger.

Description

鉛快削鋼Lead free cutting steel
 本発明は、快削鋼に関し、さらに詳しくは、鉛を含有する鉛快削鋼に関する。 The present invention relates to free-cutting steel, and more particularly to lead-free-cutting steel containing lead.
 自動車や電化製品等の一般的な機械製品は複数の部品を含む。これらの部品の多くは、切削加工により製造される。したがって、部品の素材となる鋼には、「削られやすさ」、つまり、優れた被削性が要求される。 General machine products such as automobiles and electrical appliances include multiple parts. Many of these parts are manufactured by cutting. Therefore, the steel used as the material of the parts is required to have “easy to cut”, that is, excellent machinability.
 快削鋼は被削性に優れる。代表的な快削鋼はたとえば、JIS規格に規定されたSUM23、SUM24L等である。Pbは鋼の被削性を高めるため、快削鋼の多くはPbを含有する。以下、Pbを含有する快削鋼を鉛快削鋼と称する。 Free-cutting steel has excellent machinability. Typical free-cutting steels are, for example, SUM23, SUM24L, etc. defined in JIS standards. Since Pb enhances the machinability of steel, most free-cutting steel contains Pb. Hereinafter, free-cutting steel containing Pb is referred to as lead free-cutting steel.
 近年、環境への配慮から、Pb含有量を抑えた快削鋼や、Pbを含有しないPbフリー快削鋼が提案されている。しかしながら、被削性は鉛快削鋼の方が優れる。したがって、現在でも鉛快削鋼の需要は高い。最近では、部品の形状及び表面粗さ等の表面品質に対してさらに高い精度が要求されている。そのため、鉛快削鋼においてもさらなる被削性の向上が求められている。 In recent years, free-cutting steel with reduced Pb content and Pb-free free-cutting steel not containing Pb have been proposed in consideration of the environment. However, the machinability of lead free cutting steel is better. Therefore, the demand for lead free cutting steel is still high. Recently, higher accuracy is required for surface quality such as part shape and surface roughness. Therefore, further improvement in machinability is demanded also in lead free cutting steel.
 従来から、Pbを含有すれば、被削性が高まることは知られている。しかしながら、鋼中でのPbの存在形態についての報告事例はほとんどない。また、上述の低炭素鉛快削鋼SUM24LはPb、S及びPを含有する。しかしながら、SUM24Lでも被削性が十分ではない場合があり、所望の表面粗さが得られない場合がある。また、SUM24Lに相当する化学組成に、被削性を高めるSやPをさらに含有すれば、被削性が高まるものの、製造工程中に割れやすくなる。 Conventionally, it is known that if Pb is contained, machinability is increased. However, there are almost no reports of the existence form of Pb in steel. Moreover, the above-mentioned low carbon lead free-cutting steel SUM24L contains Pb, S and P. However, even with SUM24L, the machinability may not be sufficient, and the desired surface roughness may not be obtained. Further, if S or P that enhances the machinability is further contained in the chemical composition corresponding to SUM24L, the machinability is improved, but it is easily broken during the manufacturing process.
 特開平11-222646号公報(特許文献1)及び特開2004-176175号公報(特許文献2)は、快削鋼の被削性の改善を提案する。具体的には、特許文献1及び特許文献2では、鋼中のMnS介在物の形態を制御して、鋼の被削性を高めている。 JP-A-11-222646 (Patent Document 1) and JP-A-2004-176175 (Patent Document 2) propose improvement of machinability of free-cutting steel. Specifically, in Patent Document 1 and Patent Document 2, the form of MnS inclusions in steel is controlled to enhance the machinability of steel.
特開平11-222646号公報JP-A-11-222646 特開2004-176175号公報JP 2004-176175 A
 しかしながら、鉛快削鋼の場合、MnS介在物の形態を単に制御しただけでは、十分な被削性が得られない場合がある。 However, in the case of lead free cutting steel, sufficient machinability may not be obtained by simply controlling the form of MnS inclusions.
 本発明の目的は、被削性に優れた鉛快削鋼を提供することである。 An object of the present invention is to provide a lead free-cutting steel excellent in machinability.
 本実施形態による鉛快削鋼は、質量%で、C:0.005~0.2%、Mn:0.3~2.0%、P:0.005~0.2%、S:0.01~0.7%、Pb:0.03~0.5%、N:0.004~0.02%、及び、O:0.003~0.03%を含有し、残部はFe及び不純物からなる。さらに、鋼中の0.01~0.5μmの円相当径を有するPb介在物数が10000個/mm以上である。 The lead free-cutting steel according to the present embodiment is, in mass%, C: 0.005 to 0.2%, Mn: 0.3 to 2.0%, P: 0.005 to 0.2%, S: 0 0.01 to 0.7%, Pb: 0.03 to 0.5%, N: 0.004 to 0.02%, and O: 0.003 to 0.03%, with the balance being Fe and Consists of impurities. Further, the number of Pb inclusions having a circle-equivalent diameter of 0.01 to 0.5 μm in the steel is 10,000 / mm 2 or more.
 本実施形態による鉛快削鋼は、優れた被削性を有する。 The lead free cutting steel according to the present embodiment has excellent machinability.
 好ましくは、上記鉛快削鋼では、鋼中の0.01~0.5μmの円相当径を有するPb介在物数と、0.01~0.5μmの円相当径を有するMnS介在物数との総計が15000個/mm以上である。 Preferably, in the lead free-cutting steel, the number of Pb inclusions having an equivalent circle diameter of 0.01 to 0.5 μm and the number of MnS inclusions having an equivalent circle diameter of 0.01 to 0.5 μm in the steel Is 15000 pieces / mm 2 or more.
 上記鉛快削鋼は、Feの一部に代えて、Cu:0.5%以下、Ni:0.5%以下、及び、Sn:0.5%以下からなる群から選択される1種又は2種以上を含有してもよい。また、上記鉛快削鋼は、Feの一部に代えて、Te:0.2%以下、及び、Bi:0.5%以下からなる群から選択される1種以上を含有してもよい。さらに上記快削鋼はFeの一部に代えて、Cr:0.5%以下、及び、Mo:0.5%以下からなる群から選択される1種以上を含有してもよい。 The lead free-cutting steel is one type selected from the group consisting of Cu: 0.5% or less, Ni: 0.5% or less, and Sn: 0.5% or less, instead of part of Fe. You may contain 2 or more types. The lead free-cutting steel may contain one or more selected from the group consisting of Te: 0.2% or less and Bi: 0.5% or less, instead of part of Fe. . Furthermore, the above-mentioned free-cutting steel may contain one or more selected from the group consisting of Cr: 0.5% or less and Mo: 0.5% or less, instead of part of Fe.
図1Aは、切削時において、構成刃先が大きい場合の切削面近傍の断面図である。FIG. 1A is a sectional view in the vicinity of a cutting surface when a cutting edge is large during cutting. 図1Bは、切削時において、構成刃先が小さい場合の切削面近傍の断面図である。FIG. 1B is a cross-sectional view of the vicinity of the cutting surface when the cutting edge is small during cutting. 図2は、鋼中のPb介在物及びPb-MnS介在物の写真画像である。FIG. 2 is a photographic image of Pb inclusions and Pb—MnS inclusions in steel. 図3は、マトリクス中の微細なPb介在物の写真画像である。FIG. 3 is a photographic image of fine Pb inclusions in the matrix. 図4は、鋳造工程における冷却速度を説明するための模式図である。FIG. 4 is a schematic diagram for explaining the cooling rate in the casting process. 図5Aは、プランジ切削試験を説明するための模式図である。FIG. 5A is a schematic diagram for explaining a plunge cutting test. 図5Bは、プランジ切削試験を説明するための他の模式図である。FIG. 5B is another schematic diagram for explaining the plunge cutting test.
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。以下、元素の含有量の「%」は、質量%を意味する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. Hereinafter, “%” of the element content means mass%.
 本発明者らは、鉛快削鋼中のPb介在物及びMnS介在物の形態と被削性との関係に注目し、調査及び検討を行った。その結果、本発明者らは次の知見を得た。 The inventors focused on the relationship between the form of Pb inclusions and MnS inclusions in lead free-cutting steel and machinability, and investigated and examined them. As a result, the present inventors obtained the following knowledge.
 (A)鋼の被削性が高ければ、切削加工された鋼材の表面粗さは良好になり、切削工具の寿命も伸びる。被削性は、切削中に切削工具の刃先に付着する「構成刃先」の影響を受ける。 (A) If the machinability of steel is high, the surface roughness of the cut steel material will be good, and the life of the cutting tool will be extended. The machinability is affected by the “component edge” that adheres to the edge of the cutting tool during cutting.
 構成刃先とは、切削されている鋼材の一部であって、切削加工中の切削工具の刃先に付着するものを意味する。切削中において、構成刃先は工具からの脱落と付着とを繰り返しながら、実質的な刃先として機能する。したがって、構成刃先は、被削性に影響する。 The component cutting edge means a part of the steel material being cut and adheres to the cutting edge of the cutting tool being cut. During cutting, the constituent cutting edge functions as a substantial cutting edge while repeatedly falling off and attaching to the tool. Therefore, the constituent cutting edge affects the machinability.
 図1A及び図1Bは、切削加工の途中で切削工具を取り外した後の、切削面近傍の断面図である。図中の白色の破線は、切削工具3の刃先位置を意味する。図1Aでは、大きな構成刃先2が形成されており、構成刃先2が切削工具3から離れて鋼材1に付着している。一方、図1Bでは、構成刃先が図1Aよりも十分に小さかったため、切削工具3とともに鋼材1から脱離している。 1A and 1B are cross-sectional views of the vicinity of the cutting surface after the cutting tool is removed during the cutting process. The white broken line in the figure means the cutting edge position of the cutting tool 3. In FIG. 1A, a large component cutting edge 2 is formed, and the component cutting edge 2 is attached to the steel material 1 away from the cutting tool 3. On the other hand, in FIG. 1B, the constituent cutting edge is sufficiently smaller than that in FIG. 1A, so that it is detached from the steel material 1 together with the cutting tool 3.
 以上のとおり、構成刃先が大きく成長すれば、構成刃先が鋼材に付着しやすくなる。鋼材に付着した構成刃先は、切削工具と再び接触する。このとき切削工具が損傷する場合がある。さらに、鋼材に付着した構成刃先により、鋼材の切削表面の表面粗さが粗くなる場合がある。さらに、構成刃先が切削工具から脱離する場合、構成刃先の一部が切削工具に残存する場合がある。この場合、残存した構成刃先の一部が核となり、再び構成刃先が成長してしまう。そのため、切削工具が損傷したり、鋼材表面が粗くなる。 As described above, when the constituent cutting edge grows greatly, the constituent cutting edge easily adheres to the steel material. The component cutting edge adhering to the steel material comes into contact with the cutting tool again. At this time, the cutting tool may be damaged. Furthermore, the surface roughness of the cutting surface of the steel material may become rough due to the component cutting edge adhering to the steel material. Furthermore, when the constituent cutting edge is detached from the cutting tool, a part of the constituent cutting edge may remain on the cutting tool. In this case, a part of the remaining component cutting edge becomes a nucleus, and the component cutting edge grows again. Therefore, the cutting tool is damaged or the steel surface becomes rough.
 一方、図1Bのように構成刃先が小さい場合、構成刃先は鋼材及び切削工具から容易に脱離しやすい。この場合、構成刃先が切削工具の寿命に影響しにくく、鋼材の表面粗さも良好に(小さく)なりやすい。 On the other hand, when the constituent cutting edge is small as shown in FIG. 1B, the constituent cutting edge is easily detached from the steel material and the cutting tool. In this case, the component cutting edge hardly affects the life of the cutting tool, and the surface roughness of the steel material tends to be good (small).
 以上のとおり、構成刃先は小さい方が好ましく、切削時に構成刃先が成長しにくい方が好ましい。構成刃先が小さい場合、構成刃先の脱落に伴うクラック生成が促進される。さらに、構成刃先は微細なまま頻繁に脱落するため、表面粗さが良好になり、工具寿命も伸びる。すなわち、被削性が高まる。 As described above, it is preferable that the constituent cutting edge is small, and it is preferable that the constituent cutting edge hardly grows during cutting. When the constituent cutting edge is small, the generation of cracks accompanying the falling off of the constituent cutting edge is promoted. Furthermore, since the constituent cutting edges frequently fall off while being fine, the surface roughness is improved and the tool life is extended. That is, machinability is increased.
 (B)図2は、ミクロ組織観察により得られた鉛快削鋼の断面写真である。図2を参照して、鉛快削鋼中には、マトリクス100と、Pb介在物4と、MnS介在物と、Pb-MnS介在物7とが存在する。本明細書において、Pb介在物4とは、Pb及び不純物からなる介在物を意味する。MnS介在物は、Mn、S及び不純物からなる介在物を意味する。Pb-MnS介在物7とは、MnS介在物5と、MnS介在物5の表面に付着するPb6とを含有する介在物を意味する。これらの3つの介在物を総称して、本明細書では、「快削介在物」と称する。 (B) FIG. 2 is a cross-sectional photograph of lead free-cutting steel obtained by microstructural observation. Referring to FIG. 2, matrix 100, Pb inclusions 4, MnS inclusions, and Pb—MnS inclusions 7 are present in the lead free-cutting steel. In this specification, the Pb inclusion 4 means an inclusion composed of Pb and impurities. The MnS inclusion means an inclusion composed of Mn, S and impurities. The Pb—MnS inclusion 7 means an inclusion containing MnS inclusion 5 and Pb6 adhering to the surface of the MnS inclusion 5. These three inclusions are collectively referred to herein as “free-cutting inclusions”.
 鋼材の延伸方向(たとえば圧延方向)の断面における、各介在物(Pb介在物4、MnS介在物及びPb-MnS介在物7)の円相当径は、0.5μmよりも大きい場合がある。以下、0.5μmよりも大きい円相当径を有するPb介在物、MnS介在物及びPb-MnS介在物を、「粗大快削介在物」と称する。粗大快削介在物は、切削時において、応力集中を引き起こしてクラック発生及び進展を促進する。粗大快削介在物のアスペクト比が小さく、球状であるほど、応力集中が起こりやすく、クラックが発生及び進展しやすい。 The equivalent circle diameter of each inclusion (Pb inclusion 4, MnS inclusion, and Pb—MnS inclusion 7) in the cross section of the steel material in the drawing direction (for example, the rolling direction) may be larger than 0.5 μm. Hereinafter, Pb inclusions, MnS inclusions, and Pb—MnS inclusions having an equivalent circle diameter larger than 0.5 μm are referred to as “coarse free cutting inclusions”. Coarse free-cutting inclusions cause stress concentration and promote crack generation and propagation during cutting. The smaller the aspect ratio of the coarse free-cutting inclusion and the more spherical it is, the more easily stress concentration occurs and cracks are more likely to occur and propagate.
 (C)一方、マトリクス100中には、鋼材の延伸方向の断面における円相当径が0.5μm以下のPb介在物が存在する。以下、鋼材の延伸方向の断面における円相当径が0.01~0.5μmのPb介在物を「微細Pb介在物」と称する。 (C) On the other hand, in the matrix 100, Pb inclusions having a circle-equivalent diameter of 0.5 μm or less in the cross section in the drawing direction of the steel material are present. Hereinafter, Pb inclusions having an equivalent circle diameter of 0.01 to 0.5 μm in the cross section in the drawing direction of the steel material are referred to as “fine Pb inclusions”.
 図3は、レプリカ抽出法により得られた、本実施形態の鉛快削鋼のマトリクス100中の微細Pb介在物40の写真画像である。図3を参照して、マトリクス100中には、アスペクト比が小さい球状の微細Pb介在物40が分散して存在する。 FIG. 3 is a photographic image of the fine Pb inclusions 40 in the matrix 100 of the lead free-cutting steel of this embodiment obtained by the replica extraction method. Referring to FIG. 3, spherical fine Pb inclusions 40 having a small aspect ratio are dispersed in matrix 100.
 微細Pb介在物は、マトリクスを脆化する。したがってマトリクス中に微細Pb介在物が多数分散していれば、構成刃先が粗大に成長することなく、微細な構成刃先が生成及び脱落を繰り返しやすい。その結果、鉛快削鋼の被削性が高まる。具体的には、微細Pb介在物数が10000個/mm以上であれば、優れた被削性が得られる。 Fine Pb inclusions embrittle the matrix. Therefore, if a large number of fine Pb inclusions are dispersed in the matrix, the constituent blade tip does not grow coarsely, and the fine constituent blade tip is easily generated and dropped off. As a result, the machinability of lead free-cutting steel is increased. Specifically, if the number of fine Pb inclusions is 10,000 / mm 2 or more, excellent machinability can be obtained.
 (D)マトリクス中に、微細Pb介在物とともに、鋼材の延伸方向の断面における円相当径が0.01~0.5μmのMnS介在物が多数存在すれば、さらに優れた被削性が得られる。以下、鋼材の延伸方向の断面における円相当径が0.01~0.5μmのMnS介在物を、「微細MnS介在物」と称する。微細MnS介在物は、微細Pb介在物よりも効果が低いものの、マトリクスを脆化する。したがって、微細Pb介在物だけでなく、微細MnS介在物もマトリクスに多数分散していれば、被削性がさらに高まる。具体的には、微細Pb介在物数及び微細MnS介在物数の総計が15000個/mm以上であれば、鉛快削鋼の被削性はさらに高まる。 (D) If there are a large number of MnS inclusions having an equivalent circle diameter of 0.01 to 0.5 μm in the cross section in the drawing direction of the steel material together with fine Pb inclusions in the matrix, further excellent machinability can be obtained. . Hereinafter, MnS inclusions having an equivalent circle diameter of 0.01 to 0.5 μm in the cross section in the drawing direction of the steel material are referred to as “fine MnS inclusions”. Fine MnS inclusions are less effective than fine Pb inclusions, but embrittle the matrix. Therefore, if not only fine Pb inclusions but also many fine MnS inclusions are dispersed in the matrix, the machinability is further enhanced. Specifically, if the total number of fine Pb inclusions and fine MnS inclusions is 15000 pieces / mm 2 or more, the machinability of lead free-cutting steel is further enhanced.
 以上の知見に基づいて、本発明者らは、本実施形態による鉛快削鋼を完成した。以下、本実施形態による鉛快削鋼について詳述する。 Based on the above findings, the present inventors have completed the lead free-cutting steel according to this embodiment. Hereinafter, the lead free-cutting steel according to the present embodiment will be described in detail.
 [化学組成]
 本実施の形態による鉛快削鋼は、以下の化学組成を有する。
[Chemical composition]
The lead free-cutting steel according to the present embodiment has the following chemical composition.
 C:0.005~0.2%
 炭素(C)は、鋼の強度を高める。Cはさらに、鋼中の酸素量及び被削性に影響を与える。C含有量が低すぎれば、鋼中に酸素が多量に残存し、ピンホールが発生する。さらに、硬質酸化物が生成され、被削性が低下する。一方、C含有量が高すぎれば、鋼の強度が高くなり過ぎ、被削性が低下する。したがって、C含有量は0.005~0.2%である。C含有量の好ましい下限は0.005%よりも高く、さらに好ましくは0.05%であり、さらに好ましくは0.07%である。C含有量の好ましい上限は0.2%未満であり、さらに好ましくは0.12%であり、さらに好ましくは0.09%である。
C: 0.005 to 0.2%
Carbon (C) increases the strength of the steel. C further affects the amount of oxygen in the steel and the machinability. If the C content is too low, a large amount of oxygen remains in the steel and pinholes are generated. Furthermore, a hard oxide is produced and machinability is reduced. On the other hand, if the C content is too high, the strength of the steel becomes too high and the machinability deteriorates. Therefore, the C content is 0.005 to 0.2%. The minimum with preferable C content is higher than 0.005%, More preferably, it is 0.05%, More preferably, it is 0.07%. The upper limit with preferable C content is less than 0.2%, More preferably, it is 0.12%, More preferably, it is 0.09%.
 Mn:0.3~2.0%
 マンガン(Mn)は、溶鋼中において軟質な酸化物を形成し、硬質酸化物の生成を抑制する。そのため、鋼の被削性が高まる。Mnはさらに、Sと結合してMnSを形成し、固溶S量を低減する。固溶S量が低減すれば、高温脆化割れが抑制される。Mn含有量が低すぎれば、上記効果が得られにくい。Mn含有量が低すぎればさらに、SがMnSを形成する代わりにFeSを形成し、鋼が脆化する。一方、Mn含有量が高すぎれば、鋼の硬度が高くなりすぎ、被削性及び冷間加工性が低下する。したがって、Mn含有量は0.3~2.0%である。Mn含有量の好ましい下限は0.3%よりも高く、さらに好ましくは0.5%であり、さらに好ましくは0.8%である。Mn含有量の好ましい上限は2.0%未満であり、さらに好ましくは1.8%であり、さらに好ましくは1.6%である。
Mn: 0.3 to 2.0%
Manganese (Mn) forms a soft oxide in the molten steel and suppresses the formation of a hard oxide. Therefore, the machinability of steel is increased. Mn further binds to S to form MnS, thereby reducing the amount of dissolved S. If the amount of dissolved S is reduced, high temperature embrittlement cracking is suppressed. If the Mn content is too low, the above effect is difficult to obtain. If the Mn content is too low, S forms FeS instead of S forming MnS, and the steel becomes brittle. On the other hand, if the Mn content is too high, the hardness of the steel becomes too high, and the machinability and cold workability deteriorate. Therefore, the Mn content is 0.3 to 2.0%. The minimum with preferable Mn content is higher than 0.3%, More preferably, it is 0.5%, More preferably, it is 0.8%. The upper limit with preferable Mn content is less than 2.0%, More preferably, it is 1.8%, More preferably, it is 1.6%.
 P:0.005~0.2%
 燐(P)は鋼を脆化し、鋼の被削性を高める。P含有量が低すぎれば、この効果が得られない。一方、P含有量が高すぎれば、被削性向上の効果が飽和する。P含有量が高すぎればさらに、鋼を安定的に製造することが困難になる。したがって、P含有量は0.005~0.2%である。P含有量の好ましい下限は0.005%よりも高く、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。P含有量の好ましい上限は0.2%未満であり、さらに好ましくは0.15%であり、さらに好ましくは0.1%である。
P: 0.005 to 0.2%
Phosphorus (P) embrittles the steel and increases the machinability of the steel. If the P content is too low, this effect cannot be obtained. On the other hand, if the P content is too high, the effect of improving machinability is saturated. If the P content is too high, it is further difficult to stably produce steel. Therefore, the P content is 0.005 to 0.2%. The minimum with preferable P content is higher than 0.005%, More preferably, it is 0.03%, More preferably, it is 0.05%. The upper limit with preferable P content is less than 0.2%, More preferably, it is 0.15%, More preferably, it is 0.1%.
 S:0.01~0.7%
 硫黄(S)は、Mnと結合してMnS介在物を形成する。MnS介在物は鋼の被削性を高める。さらに、Pbは、凝固過程で晶出したMnSの周辺に凝集されるため、MnSは、Pbを鋼中に均一に分散する。S含有量が低すぎれば、上記効果が得られない。一方、S含有量が高すぎれば、粗大なMnSを主成分とする硫化物が生成され、熱間変形特性が低下する。したがって、S含有量は0.01~0.7%である。被削性と圧延等の製造性とのバランスを考慮した場合、S含有量の好ましい下限は0.01%よりも高く、さらに好ましくは0.05%であり、さらに好ましくは0.15%である。S含有量の好ましい上限は0.7%未満であり、さらに好ましくは0.5%であり、さらに好ましくは0.4%である。製造時における鋼の品質安定性を維持しつつ、被削性以外の機械的特定よりも被削性を優先する場合、好ましいS含有量は0.28%以上である。
S: 0.01 to 0.7%
Sulfur (S) combines with Mn to form MnS inclusions. MnS inclusions enhance the machinability of steel. Furthermore, since Pb is aggregated around MnS crystallized in the solidification process, MnS uniformly disperses Pb in the steel. If the S content is too low, the above effect cannot be obtained. On the other hand, if the S content is too high, a sulfide containing coarse MnS as a main component is generated, and the hot deformation characteristics are deteriorated. Therefore, the S content is 0.01 to 0.7%. When considering the balance between machinability and manufacturability such as rolling, the preferable lower limit of the S content is higher than 0.01%, more preferably 0.05%, and further preferably 0.15%. is there. The upper limit with preferable S content is less than 0.7%, More preferably, it is 0.5%, More preferably, it is 0.4%. In the case where machinability is given priority over mechanical identification other than machinability while maintaining the quality stability of the steel at the time of production, the preferable S content is 0.28% or more.
 Pb:0.03~0.5%
 鉛(Pb)はマトリクスのFeにほぼ固溶せず、軟質のPb介在物を形成する。Pbはさらに、MnS周辺に隣接し、Pb-MnS介在物を形成する。Pbはさらに、マトリクス中に微細Pb介在物として存在し、鋼の被削性を高める。Pb含有量が低すぎれば、上記効果が得られない。一方、Pb含有量が高すぎれば、鉛快削鋼を安定して製造するのが困難になる。したがって、Pb含有量は0.03~0.5%である。Pb含有量の好ましい下限は0.03%よりも高く、さらに好ましくは0.1%であり、さらに好ましくは0.15%である。Pb含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%であり、さらに好ましくは0.35%である。
Pb: 0.03 to 0.5%
Lead (Pb) hardly dissolves in Fe of the matrix and forms soft Pb inclusions. Further, Pb is adjacent to the periphery of MnS and forms Pb—MnS inclusions. Furthermore, Pb exists as fine Pb inclusions in the matrix, and enhances the machinability of steel. If the Pb content is too low, the above effect cannot be obtained. On the other hand, if the Pb content is too high, it becomes difficult to stably produce lead free-cutting steel. Therefore, the Pb content is 0.03 to 0.5%. The minimum with preferable Pb content is higher than 0.03%, More preferably, it is 0.1%, More preferably, it is 0.15%. The upper limit with preferable Pb content is less than 0.5%, More preferably, it is 0.4%, More preferably, it is 0.35%.
 N:0.004~0.02%
 窒素(N)は被削性及び切削後の表面粗さに影響を与える。N含有量が低すぎれば、切削時の鋼中の転位が動きやすい。そのため、マトリクスの延性が高くなり過ぎる。この場合、切削むしれが生じやすくなり、良好な表面粗さが得られない。一方、N含有量が高すぎれば、転位が動きにくくなる。この場合、鋼が脆化し、伸線や冷間鍛造等の切削以外の冷間加工時に鋼が割れやすくなる。したがって、N含有量は0.004~0.02%である。N含有量の好ましい下限は0.004%よりも高く、さらに好ましくは0.006%であり、さらに好ましくは0.008%である。N含有量の好ましい上限は0.02%未満であり、さらに好ましくは0.018%であり、さらに好ましくは0.015%である。
N: 0.004 to 0.02%
Nitrogen (N) affects the machinability and the surface roughness after cutting. If the N content is too low, dislocations in the steel at the time of cutting tend to move. Therefore, the ductility of the matrix becomes too high. In this case, cutting flaking easily occurs and good surface roughness cannot be obtained. On the other hand, if the N content is too high, dislocations are difficult to move. In this case, the steel becomes brittle, and the steel is easily cracked during cold working other than cutting such as wire drawing or cold forging. Therefore, the N content is 0.004 to 0.02%. The minimum with preferable N content is higher than 0.004%, More preferably, it is 0.006%, More preferably, it is 0.008%. The upper limit with preferable N content is less than 0.02%, More preferably, it is 0.018%, More preferably, it is 0.015%.
 O:0.003~0.03%
 酸素(O)は、MnSの形状に影響を与える。O含有量が低すぎる場合、MnS中の酸素量も低減する。そのため、MnSの延伸性が高まる。圧延等により鋼を加工した場合、所定の方向(たとえば圧延方向)にMnSが延伸しやすくなり、鋼に異方性が生じやすくなる。この場合、切削時に構成刃先が大型化したり、切削された鋼部分の不規則な脱落が生じる。そのため、鋼の表面が粗くなったり、工具が劣化したりする。本実施形態では特に、MnSの形状はPbの分散に影響する。そのため、アスペクト比の高い(つまり、延伸した)MnSは好ましくない。一方、O含有量が高すぎる場合、鋼中で過剰な硬質酸化物が形成され、鋼の被削性が低下する。したがって、O含有量は0.003~0.03%である。O含有量の好ましい下限は0.003%よりも高く、さらに好ましくは0.005%であり、さらに好ましくは0.008%であり、さらに好ましくは0.012%である。O含有量の好ましい上限は0.03%未満であり、さらに好ましくは0.025%であり、さらに好ましくは0.022%である。耐火物の溶損等を考慮した場合、O含有量のさらに好ましい上限は0.018%である。
O: 0.003-0.03%
Oxygen (O) affects the shape of MnS. If the O content is too low, the amount of oxygen in MnS is also reduced. Therefore, the stretchability of MnS increases. When steel is processed by rolling or the like, MnS is easily stretched in a predetermined direction (for example, the rolling direction), and anisotropy is easily generated in the steel. In this case, the cutting edge of the component becomes large during cutting, or irregular dropping of the cut steel portion occurs. Therefore, the steel surface becomes rough and the tool deteriorates. Particularly in the present embodiment, the shape of MnS affects the dispersion of Pb. Therefore, a high aspect ratio (that is, stretched) MnS is not preferable. On the other hand, when the O content is too high, excessive hard oxide is formed in the steel, and the machinability of the steel is reduced. Accordingly, the O content is 0.003 to 0.03%. The minimum with preferable O content is higher than 0.003%, More preferably, it is 0.005%, More preferably, it is 0.008%, More preferably, it is 0.012%. The upper limit with preferable O content is less than 0.03%, More preferably, it is 0.025%, More preferably, it is 0.022%. When considering the refractory erosion and the like, a more preferable upper limit of the O content is 0.018%.
 本実施の形態による鉛快削鋼の残部は鉄(Fe)及び不純物からなる。ここでいう不純物は、鋼の原料として利用される鉱石やスクラップ、又は製造過程の環境等から混入される元素をいう。 The remainder of the lead free cutting steel according to the present embodiment is made of iron (Fe) and impurities. The impurities referred to here are ores and scraps used as raw materials for steel, or elements mixed in from the environment of the manufacturing process.
 [微細Pb介在物について]
 本実施形態による快削鋼では、鋼材の延伸方向の断面における円相当径が0.01~0.5μmのPb介在物(微細Pb介在物)数NPbが10000個/mm以上である。上述のとおり、微細Pb介在物がマトリクス中に多数分散することにより、マトリクスが脆化する。そのため、切削時において、微細な構成刃先が頻繁に生成及び脱落する。その結果、被削性が高まる。微細Pb介在物数NPbが10000個/mm未満である場合、マトリクスが十分に脆化しない。そのため、構成刃先の生成及び離脱が粗大快削介在物の形状に起因しやすくなる。鋼中にアスペクト比が大きい(つまり、延伸した)粗大快削介在物が存在する場合、粗大介在物を含む鋼部分の材質が不均一になる。そのため、構成刃先の付着、生成及び成長も切削刃先の幅方向に不均一に生じやすくなる。この場合、構成刃先は凹凸が大きく、かつ、粗大になりやすい。その結果、離脱する構成刃先の脱落片の形状がイレギュラーかつ大きくなり、工具損傷の原因になったり表面粗さを劣化させたりする。つまり、被削性が低下する。
[About fine Pb inclusions]
The free-cutting steel according to the present embodiment, Pb inclusions circle equivalent diameter in the stretching direction of the cross section of the steel material is 0.01 ~ 0.5 [mu] m (fine Pb inclusions) number N Pb is 10000 / mm 2 or more. As described above, the matrix becomes brittle when a large number of fine Pb inclusions are dispersed in the matrix. Therefore, fine cutting edges are frequently generated and dropped during cutting. As a result, machinability is increased. When the number of fine Pb inclusions NPb is less than 10,000 / mm 2 , the matrix is not sufficiently brittle. For this reason, the generation and separation of the constituent cutting edges are easily caused by the shape of the coarse free-cutting inclusion. When coarse free-cutting inclusions having a large aspect ratio (that is, stretched) are present in the steel, the material of the steel portion including the coarse inclusions is not uniform. For this reason, the attachment, generation and growth of the constituent cutting edges are also likely to occur non-uniformly in the width direction of the cutting edge. In this case, the constituent cutting edge has large irregularities and tends to be coarse. As a result, the shape of the detaching piece of the component cutting edge to be detached becomes irregular and large, causing damage to the tool or deteriorating the surface roughness. That is, machinability is reduced.
 微細Pb介在物数NPbは好ましくは15000個/mm以上であり、さらに好ましくは20000個/mm以上である。微細Pb介在物数NPbの上限は特に限定されない。微細Pb介在物数NPbの上限はたとえば100万個/mmである。 The number of fine Pb inclusions NPb is preferably 15000 pieces / mm 2 or more, more preferably 20000 pieces / mm 2 or more. The upper limit of the number of fine Pb inclusions NPb is not particularly limited. The upper limit of the number of fine Pb inclusions NPb is, for example, 1 million pieces / mm 2 .
 [微細MnS介在物について]
 好ましくはさらに、鋼材の延伸方向の断面において、上記微細Pb介在物数と、0.01~0.5μmの円相当径を有するMnS介在物(微細MnS介在物)数の総数(以下、微細快削介在物総数TNという)が、15000個/mm以上である。微細MnS介在物は、微細Pb介在物よりも効果は小さいものの、マトリクスを脆化する。したがって、微細快削介在物総数TNが15000個/mm以上である場合、マトリクスはさらに脆化し、被削性がさらに高まる。
[About fine MnS inclusions]
Preferably, in the cross section in the drawing direction of the steel material, the total number of the fine Pb inclusions and the number of MnS inclusions (fine MnS inclusions) having a circle-equivalent diameter of 0.01 to 0.5 μm (hereinafter referred to as fine rebound). The total number of cutting inclusions TN) is 15000 pieces / mm 2 or more. Although the fine MnS inclusion is less effective than the fine Pb inclusion, the matrix becomes brittle. Therefore, when the total number TN of fine free-cutting inclusions is 15000 pieces / mm 2 or more, the matrix is further embrittled and the machinability is further improved.
 微細快削介在物総数TNは好ましくは20000個/mm以上であり、さらに好ましくは25000個/mm以上である。微細快削介在物総数TNの上限は特に限定されない。微細快削介在物総数TNの上限はたとえば、100万個/mmである。 The total number TN of fine free-cutting inclusions is preferably 20000 pieces / mm 2 or more, more preferably 25000 pieces / mm 2 or more. The upper limit of the total number TN of fine free-cutting inclusions is not particularly limited. The upper limit of the total number TN of fine free-cutting inclusions is, for example, 1 million pieces / mm 2 .
 [微細Pb介在物数NPb及び微細快削介在物総数TNの測定方法]
 微細Pb介在物数NPb及び微細快削介在物総数TNは、次の測定方法で求められる。鉛快削鋼材(たとえば、棒鋼、線材等)の延伸方向(たとえば圧延方向)に平行であり、鉛快削鋼材の中心線を含む断面(以下、主面という)を研磨する。主面において、鉛快削鋼材の表面から径方向に向かって半径の1/2深さの位置(いわゆるR/2位置)部分から試験片を採取する。試験片の主面から、抽出レプリカ法に基づいて、サンプルを作成する。透過電子顕微鏡(TEM)を用いて、サンプル表面のうち任意の10視野のTEM画像を得る。TEMの倍率は20000倍とする。各視野の面積は50μm(10μm×5μm、つまり、5×10-4mm)とする。
[Measuring method of the number of fine Pb inclusions NPb and the number of fine free-cutting inclusions TN]
The fine Pb inclusion number NPb and the fine free-cutting inclusion total number TN are obtained by the following measuring method. A cross section (hereinafter referred to as a main surface) that is parallel to the drawing direction (for example, rolling direction) of the lead free-cutting steel material (for example, bar steel, wire rod, etc.) and includes the center line of the lead-free-cutting steel material is polished. On the main surface, a test piece is taken from a position (so-called R / 2 position) at a half depth of the radius in the radial direction from the surface of the lead free cutting steel material. A sample is prepared from the main surface of the test piece based on the extraction replica method. Using a transmission electron microscope (TEM), TEM images of any 10 fields of the sample surface are obtained. The magnification of TEM shall be 20000 times. The area of each visual field is 50 μm 2 (10 μm × 5 μm, that is, 5 × 10 −4 mm 2 ).
 各視野において、介在物を同定する。具体的には、EPMA(電子線マイクロアナライザ)又はEDS(エネルギ分散型X線マイクロアナライザ)により、介在物を同定する。これにより、Pb介在物及びMnS介在物を特定できる。 Identifies inclusions in each field of view. Specifically, inclusions are identified by EPMA (electron beam microanalyzer) or EDS (energy dispersive X-ray microanalyzer). Thereby, Pb inclusion and MnS inclusion can be specified.
 さらに、各視野の各介在物の円相当径を求める。円相当径とは、介在物の面積を同じ面積の円に換算した場合の円の直径を意味する。円相当径は、TEM画像を用いて周知の粒度分布測定ソフトウェアを用いて測定できる。 Furthermore, obtain the equivalent circle diameter of each inclusion in each field of view. The equivalent circle diameter means the diameter of a circle when the area of inclusions is converted into a circle having the same area. The equivalent circle diameter can be measured using a known particle size distribution measurement software using a TEM image.
 以上の測定により、10視野中の円相当径0.01~0.5μmのPb介在物(微細Pb介在物)の総数N1(個)及び10視野中の円相当径0.01~0.5μmのMnS介在物(微細MnS介在物)の総数N2(個)を求める。そして、次の式(1)及び式(2)により、微細Pb介在物数NPb(個/mm)と、微細快削介在物総数TN(個/mm)とを求める。
 NPb=N1/TA (1)
 TN=(N1+N2)/TA (2)
 ここで、TA(mm)は、10視野の総面積である。上記条件において、TA=5×10-4(mm)である。
Based on the above measurement, the total number N1 of Pb inclusions (fine Pb inclusions) having an equivalent circle diameter of 0.01 to 0.5 μm in 10 fields of view and the equivalent circle diameter in 10 fields of view of 0.01 to 0.5 μm. The total number N2 (pieces) of MnS inclusions (fine MnS inclusions) is determined. Then, the number of fine Pb inclusions NPb (pieces / mm 2 ) and the total number of fine free-cutting inclusions TN (pieces / mm 2 ) are obtained by the following formulas (1) and (2).
N Pb = N1 / TA (1)
TN = (N1 + N2) / TA (2)
Here, TA (mm 2 ) is the total area of 10 fields of view. Under the above conditions, TA = 5 × 10 −4 (mm 2 ).
 [選択元素について]
 本実施の形態による鉛快削鋼はさらに、Feの一部に代えて、Cu、Ni及びSnからなる群から選択される1種又は2種以上を含有してもよい。これらの選択元素は耐食性を高める。
[Selected elements]
The lead free-cutting steel according to the present embodiment may further contain one or more selected from the group consisting of Cu, Ni and Sn instead of a part of Fe. These selective elements increase the corrosion resistance.
 Cu:0.5%以下
 銅(Cu)は選択元素である。Cuは鋼の耐食性を高める。Cuはさらに、鋼の被削性を高める。一方、Cu含有量が高すぎれば、鋼の熱間延性が低下する。したがって、Cu含有量は0.5%以下である。Cu含有量が0.05%以上であれば、上記効果が顕著に得られる。Cu含有量のさらに好ましい下限は、0.07%であり、さらに好ましくは0.15%である。Cu含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%であり、さらに好ましくは0.3%である。
Cu: 0.5% or less Copper (Cu) is a selective element. Cu increases the corrosion resistance of steel. Cu further increases the machinability of the steel. On the other hand, if the Cu content is too high, the hot ductility of the steel decreases. Therefore, the Cu content is 0.5% or less. If the Cu content is 0.05% or more, the above-described effect is remarkably obtained. The more preferable lower limit of the Cu content is 0.07%, and more preferably 0.15%. The upper limit with preferable Cu content is less than 0.5%, More preferably, it is 0.4%, More preferably, it is 0.3%.
 Ni:0.5%以下
 ニッケル(Ni)は選択元素である。Niは鋼の耐食性を高める。Niはさらに、鋼の延性を高める。鉛快削鋼がCuを含有する場合は、Niは鉛快削鋼の脆化を抑制し、鋼の製造安定性を高める。一方、Ni含有量が高すぎれば、延性が高くなりすぎ、被削性が低下する。したがって、Ni含有量は0.5%以下である。Ni含有量が0.05%以上であれば、上記効果が顕著に得られる。Ni含有量のさらに好ましい下限は、0.1%である。Ni含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%であり、さらに好ましくは0.3%である。
Ni: 0.5% or less Nickel (Ni) is a selective element. Ni increases the corrosion resistance of steel. Ni further increases the ductility of the steel. When the lead free-cutting steel contains Cu, Ni suppresses embrittlement of the lead free-cutting steel and improves the production stability of the steel. On the other hand, if Ni content is too high, ductility will become high too much and machinability will fall. Therefore, the Ni content is 0.5% or less. If the Ni content is 0.05% or more, the above effects are remarkably obtained. A more preferred lower limit of the Ni content is 0.1%. The upper limit with preferable Ni content is less than 0.5%, More preferably, it is 0.4%, More preferably, it is 0.3%.
 Sn:0.5%以下
 錫(Sn)は選択元素である。Snは鋼の耐食性を高める。Snはさらに、鋼の被削性を高める。一方、Sn含有量が高すぎれば、鋼の熱間延性が低下する。したがって、Sn含有量は0.5%以下である。Sn含有量が0.05%以上であれば、上記効果が顕著に得られる。Sn含有量のさらに好ましい下限は0.1%であり、さらに好ましくは0.2%である。Sn含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%であり、さらに好ましくは0.3%である。
Sn: 0.5% or less Tin (Sn) is a selective element. Sn increases the corrosion resistance of steel. Sn further increases the machinability of the steel. On the other hand, if the Sn content is too high, the hot ductility of the steel decreases. Therefore, the Sn content is 0.5% or less. If the Sn content is 0.05% or more, the above-described effect is remarkably obtained. The more preferable lower limit of the Sn content is 0.1%, and more preferably 0.2%. The upper limit with preferable Sn content is less than 0.5%, More preferably, it is 0.4%, More preferably, it is 0.3%.
 本実施形態による鉛快削鋼はさらに、Feの一部に代えて、Te及びBiからなる群から選択される1種以上を含有してもよい。これらの元素は選択元素であり、鋼の被削性を高める。 The lead free-cutting steel according to the present embodiment may further contain one or more selected from the group consisting of Te and Bi instead of a part of Fe. These elements are selective elements and enhance the machinability of the steel.
 Te:0.2%以下
 テルル(Te)は選択元素である。Teは鋼の被削性を高める。Teは特に、快削介在物の形状制御に有効であり、具体的には、MnS介在物、Pb-MnS介在物のアスペクト比を小さくする。一方、Te含有量が高すぎれば、鋼の熱間延性が低下する。したがって、Te含有量は0.2%以下である。Te含有量が0.0003%以上であれば、上記効果が顕著に得られる。Te含有量のさらに好ましい下限は0.0008%であり、さらに好ましくは0.01%である。Te含有量の好ましい上限は0.2%未満であり、さらに好ましくは0.1%であり、さらに好ましくは0.05%である。
Te: 0.2% or less Tellurium (Te) is a selective element. Te increases the machinability of the steel. Te is particularly effective in controlling the shape of free-cutting inclusions. Specifically, the aspect ratio of MnS inclusions and Pb—MnS inclusions is reduced. On the other hand, if the Te content is too high, the hot ductility of the steel decreases. Therefore, the Te content is 0.2% or less. If the Te content is 0.0003% or more, the above-described effect is remarkably obtained. The more preferable lower limit of the Te content is 0.0008%, and more preferably 0.01%. The upper limit with preferable Te content is less than 0.2%, More preferably, it is 0.1%, More preferably, it is 0.05%.
 Bi:0.5%以下
 ビスマス(Bi)は選択元素である。Biは鋼の被削性を高める。一方、Bi含有量が高すぎれば、鋼の熱間延性が低下する。したがって、Bi含有量は0.5%以下である。Bi含有量が0.005%以上であれば、上記効果が顕著に得られる。Bi含有量のさらに好ましい下限は0.008%であり、さらに好ましくは0.01%である。Bi含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.1%であり、さらに好ましくは0.05%である。
Bi: 0.5% or less Bismuth (Bi) is a selective element. Bi increases the machinability of steel. On the other hand, if the Bi content is too high, the hot ductility of the steel decreases. Therefore, the Bi content is 0.5% or less. If the Bi content is 0.005% or more, the above-described effect is remarkably obtained. The more preferable lower limit of the Bi content is 0.008%, and more preferably 0.01%. The upper limit with preferable Bi content is less than 0.5%, More preferably, it is 0.1%, More preferably, it is 0.05%.
 本実施の形態による鉛快削鋼はさらに、Feの一部に代えて、Cr及びMoからなる群から選択される1種以上を含有してもよい。これらの選択元素は圧延後の鋼の硬さを高める。 The lead free-cutting steel according to the present embodiment may further contain one or more selected from the group consisting of Cr and Mo instead of part of Fe. These selective elements increase the hardness of the steel after rolling.
 Cr、Moは焼き入れ性を高める。そのため、本実施形態の鉛快削鋼のような低炭素鋼においても、圧延後の素材の強度を調整するために有効な場合がある。本実施形態の鉛快削鋼は、伸線されて加工硬化した材料を削る場合が多い。一般に鋼は硬い方が表面粗さに優れるものの、工具摩耗が促進される。そのため、鋼の硬さは寸法精度に影響する。精密部品において、伸線による加工硬化後の鋼の硬さを150~250HV程度に制御することが好ましく、さらに、加工する形状や切削量によって最適な硬さに調整することが好ましい。 Cr and Mo improve hardenability. Therefore, even in a low carbon steel such as the lead free cutting steel of this embodiment, it may be effective for adjusting the strength of the material after rolling. The lead free-cutting steel of this embodiment often cuts a material that has been drawn and work-hardened. Generally, the harder the steel, the better the surface roughness, but the tool wear is promoted. Therefore, the hardness of the steel affects the dimensional accuracy. In precision parts, it is preferable to control the hardness of steel after work hardening by wire drawing to about 150 to 250 HV, and it is preferable to adjust the hardness to the optimum depending on the shape to be processed and the amount of cutting.
 伸線による加工硬化後の鋼の硬さは圧延後の鋼の硬さ、加工硬化特性及び加工量で決定づけられる。加工量(たとえば伸線減面率)が小さい場合、加工後の硬さは大きくなりにくい。そのため、あらかじめ圧延後の鋼の硬さを高めておくことが有効である。そのためにはCr及び/又はMoのような焼き入れ性を向上する元素が有効である。 The hardness of steel after work hardening by wire drawing is determined by the hardness of the steel after rolling, work hardening characteristics, and the amount of work. When the processing amount (for example, the wire drawing area reduction ratio) is small, the hardness after processing is not easily increased. Therefore, it is effective to increase the hardness of the steel after rolling in advance. For this purpose, elements that improve the hardenability such as Cr and / or Mo are effective.
 Cr:0.5%以下
 クロム(Cr)は選択元素である。Crは圧延後の鋼の硬さを高める。Cr含有量が高すぎれば、鋼が硬くなりすぎたり、快削鋼としての被削性が得られにくくなる。したがって、Cr含有量は0.5%以下である。Cr含有量が0.05%以上であれば、上記効果が顕著に得られる。Cr含有量の好ましい下限は0.08%であり、さらに好ましくは0.1%である。Cr含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.3%であり、さらに好ましくは0.2%である。
Cr: 0.5% or less Chromium (Cr) is a selective element. Cr increases the hardness of the steel after rolling. If the Cr content is too high, the steel becomes too hard or it becomes difficult to obtain machinability as free-cutting steel. Therefore, the Cr content is 0.5% or less. If the Cr content is 0.05% or more, the above effects are remarkably obtained. The minimum with preferable Cr content is 0.08%, More preferably, it is 0.1%. The upper limit with preferable Cr content is less than 0.5%, More preferably, it is 0.3%, More preferably, it is 0.2%.
 Mo:0.5%以下
 モリブデン(Mo)は選択元素である。Moは圧延後の鋼の硬さを高める。Mo含有量が高すぎれば、鋼が硬くなりすぎたり、快削鋼としての被削性が得られにくくなる。したがって、Mo含有量は0.5%以下である。Mo含有量が0.02%以上であれば、上記効果が顕著に得られる。Mo含有量の好ましい下限は0.03%である。Mo含有量の好ましい上限は0.2%未満であり、さらに好ましくは0.1%である。
Mo: 0.5% or less Molybdenum (Mo) is a selective element. Mo increases the hardness of the steel after rolling. If the Mo content is too high, the steel becomes too hard or it becomes difficult to obtain machinability as free-cutting steel. Therefore, the Mo content is 0.5% or less. If the Mo content is 0.02% or more, the above-described effects can be obtained remarkably. A preferable lower limit of the Mo content is 0.03%. The upper limit with preferable Mo content is less than 0.2%, More preferably, it is 0.1%.
 [製造方法]
 上述の鉛快削鋼の製造方法の一例を次に説明する。
[Production method]
Next, an example of the manufacturing method of the above-mentioned lead free cutting steel will be described.
 初めに、上述の化学組成を満たす溶鋼を連続鋳造法により鋳片にする。又は、溶鋼を造塊法によりインゴットにする。(鋳造工程)。そして、鋳片又はインゴットを熱間加工して鉛快削鋼材を製造する(熱間加工工程)。以下、それぞれの工程について詳述する。 First, molten steel satisfying the above chemical composition is made into a slab by a continuous casting method. Alternatively, the molten steel is made into an ingot by the ingot-making method. (Casting process). And a slab or an ingot is hot-worked and a lead free-cutting steel material is manufactured (hot work process). Hereinafter, each process is explained in full detail.
 [鋳造工程]
 鋳造工程では、溶鋼を鋳造して鋳片を製造する。鋳片の横断面積はたとえば、350mm×560mm、220mm×220mm及び150mm×150mmのいずれかである。その素材の断面積及び凝固過程での冷却条件により、溶鋼の冷却速度RCが制御される。Pbは溶鋼への溶解度がほとんどなく、溶鋼中で液滴として分散する。凝固時において、PbはMnS介在物と凝集して粗大快削介在物(Pb-MnS介在物)を形成したり、Pb粒同士で凝集して粗大なPb介在物を生成したりする。Pbはさらに、微細Pb介在物も生成する。溶鋼を十分に攪拌し、かつ、凝固時における冷却速度RCを制御することにより、微細Pb介在物が鋼中で多数分散する。
[Casting process]
In the casting process, molten steel is cast to produce a slab. The cross-sectional area of the slab is, for example, any of 350 mm × 560 mm, 220 mm × 220 mm, and 150 mm × 150 mm. The cooling rate RC of the molten steel is controlled by the cross-sectional area of the material and the cooling conditions during the solidification process. Pb has almost no solubility in molten steel and is dispersed as droplets in the molten steel. During solidification, Pb aggregates with MnS inclusions to form coarse free-cutting inclusions (Pb—MnS inclusions), or Pb grains aggregate to form coarse Pb inclusions. Pb also produces fine Pb inclusions. By sufficiently stirring the molten steel and controlling the cooling rate RC during solidification, many fine Pb inclusions are dispersed in the steel.
 図4は、鋳造された鋳片の横断面図である。厚さW(mm)の鋳片のうち、表面から素材中心に向かってW/4の位置の地点P1において、液相線温度から固相線温度までの冷却速度を、鋳造工程S1における冷却速度RC(℃/min)と定義する。冷却速度RCが15~30℃/minであれば、微細Pb介在物が鋼中に多数分散する。 FIG. 4 is a cross-sectional view of the cast slab. Among the slabs of thickness W (mm), the cooling rate from the liquidus temperature to the solidus temperature at the point P1 at the position W / 4 from the surface toward the material center is the cooling rate in the casting step S1. It is defined as RC (° C./min). When the cooling rate RC is 15 to 30 ° C./min, many fine Pb inclusions are dispersed in the steel.
 冷却速度RCが15℃/min未満である場合、凝固が遅すぎるため、Pbが沈降したり、MnS介在物周辺に凝集して粗大なPb-MnS介在物を生成したりする。そのため、微細Pb介在物数NPbが10000個/mm未満になる。 When the cooling rate RC is less than 15 ° C./min, solidification is too slow, so that Pb settles or aggregates around the MnS inclusions to generate coarse Pb—MnS inclusions. Therefore, the number of fine Pb inclusions NPb is less than 10,000 / mm 2 .
 一方、冷却速度RCが30℃/minを超えれば、固溶Sが過剰に増大する。その結果、鋼の熱間延性が低下する。そのため、連続鋳造法により素材(鋳片)を製造する場合、ブレークアウトが発生する場合がある。また、熱間加工中に素材が割れたり、割れに起因する疵が発生したりする場合がある。 On the other hand, if the cooling rate RC exceeds 30 ° C./min, the solid solution S increases excessively. As a result, the hot ductility of the steel is reduced. Therefore, when producing a raw material (slab) by a continuous casting method, breakout may occur. In addition, the material may crack during hot working, or wrinkles due to the crack may occur.
 冷却速度RCは次の方法で求めることができる。凝固後の素材を横断方向に切断する。素材の横断面のうち、地点P1での凝固組織の厚み方向の2次デンドライトアーム間隔λ2(μm)を測定する。測定値λ2を用いて、次の式(3)に基づいて冷却速度RC(℃/min)を求める。
 RC=(λ2/770)-(1/0.41) (3)
The cooling rate RC can be obtained by the following method. Cut the solidified material in the transverse direction. Of the cross section of the material, the secondary dendrite arm interval λ2 (μm) in the thickness direction of the solidified tissue at the point P1 is measured. Using the measured value λ2, the cooling rate RC (° C./min) is obtained based on the following equation (3).
RC = (λ2 / 770) − (1 / 0.41) (3)
 2次デンドライトアーム間隔λ2は冷却速度に依存する。したがって、2次デンドライトアーム間隔λ2を測定することにより冷却速度RCを求めることができる。 The secondary dendrite arm interval λ2 depends on the cooling rate. Therefore, the cooling rate RC can be obtained by measuring the secondary dendrite arm interval λ2.
 さらに、連続鋳造時において、溶鋼を十分に攪拌する。具体的には、連続鋳造時にモールド内の溶鋼を攪拌して、溶鋼流速VEを10~40cm/sにする。 Furthermore, the molten steel is sufficiently stirred during continuous casting. Specifically, the molten steel in the mold is stirred during continuous casting so that the molten steel flow velocity VE is 10 to 40 cm / s.
 溶鋼流速VEが10cm/s未満であれば、攪拌が不十分である。そのため、微細Pb介在物が生成、均一に分散しにくく、微細Pb介在物数NPbが10000個/mm未満になる。一方、溶鋼流速VEが40cm/sを超えると、湯面の変動が大きくなり過ぎ、連続鋳造が困難になる。 If the molten steel flow velocity VE is less than 10 cm / s, stirring is insufficient. Therefore, fine Pb inclusions are difficult to be generated and uniformly dispersed, and the number of fine Pb inclusions NPb is less than 10,000 / mm 2 . On the other hand, when the molten steel flow velocity VE exceeds 40 cm / s, the fluctuation of the molten metal surface becomes too large and continuous casting becomes difficult.
 以上のとおり、溶鋼流速VEと、冷却速度RCとを制御することにより、微細Pb介在物数NPbを10000個/mm以上とすることができる。 As described above, the molten steel flow speed VE, by controlling the cooling rate RC, may be 10,000 / mm 2 or more fine Pb inclusions number N Pb.
 上述の鋳造工程では、連続鋳造による製造を説明した。しかしながら、造塊法によりインゴットを製造してもよい。この場合、断面積が40000mm以下(たとえば、200mm×200mm)の鋳型を用いて上注ぎによる造塊を実施する。この場合、10~40cm/sの溶鋼流速VEに相当する速度で溶鋼が攪拌され、冷却速度RCも15~30℃/minとなる。 In the above casting process, the production by continuous casting has been described. However, you may manufacture an ingot by an ingot-making method. In this case, the ingot is formed by top pouring using a mold having a cross-sectional area of 40000 mm 2 or less (for example, 200 mm × 200 mm). In this case, the molten steel is stirred at a speed corresponding to the molten steel flow velocity VE of 10 to 40 cm / s, and the cooling rate RC is also 15 to 30 ° C./min.
 [熱間加工工程]
 熱間加工工程では、初めに、素材を加熱する。そして、加熱された素材を熱間加工して鉛快削鋼材を製造する。鉛快削鋼材はたとえば、棒鋼や線材、ビレット等である。熱間加工はたとえば、分塊圧延、V-Hスタンドによる連続圧延、熱間鍛造等である。
[Hot working process]
In the hot working process, the material is first heated. The heated material is hot worked to produce a lead free cutting steel material. Lead free-cutting steel materials are, for example, steel bars, wire rods, billets and the like. Hot working includes, for example, block rolling, continuous rolling with a VH stand, hot forging, and the like.
 熱間加工工程では、熱間加工開始時の素材の表面温度(以下、加工開始温度という)を1000℃以上とする。加工開始温度が低い場合、微細Pb介在物が偏在し、均一に分散しないため、微細Pb介在物数NPbが10000個/mm以上とならない。 In the hot processing step, the surface temperature of the material at the start of hot processing (hereinafter referred to as processing start temperature) is set to 1000 ° C. or higher. If the machining start temperature is low, the fine Pb inclusions are unevenly distributed, because they do not uniformly dispersed, not a fine Pb inclusions number N Pb is 10000 / mm 2 or more.
 さらに、微細MnS介在物は、熱間加工時に多数生成する。加工開始温度が1000℃未満である場合、微細MnS介在物が十分に生成されない場合がある。この場合、微細快削介在物総数TNが15000個/mm未満となる場合がある。 Furthermore, many fine MnS inclusions are generated during hot working. When the processing start temperature is less than 1000 ° C., fine MnS inclusions may not be sufficiently generated. In this case, the total number TN of fine free-cutting inclusions may be less than 15000 / mm 2 .
 熱間加工工程において熱間加工が複数回実施される場合もあり得る。たとえば、素材を加熱して分塊圧延を実施し(第1回目の熱間加工)、次いで、分塊圧延された素材を再度加熱して製品圧延して棒鋼を製造する(第2回目の熱間加工)等の場合である。この場合、少なくとも1回の熱間加工時(第1回目の熱間加工時)の加工開始温度を1000℃以上にすれば、微細Pb介在物数NPbは10000個/mm以上になる。 In the hot working process, the hot working may be performed a plurality of times. For example, the material is heated and subjected to ingot rolling (first hot working), and then the ingot rolled material is heated again to produce a steel bar (second heat). This is a case of (intermediate machining). In this case, if the processing start temperature during at least one hot processing (at the first hot processing) is set to 1000 ° C. or higher, the number of fine Pb inclusions NPb becomes 10,000 / mm 2 or higher.
 Pb含有量が0.15%未満である場合、好ましい冷却速度RCは20℃/min以上であり、好ましい溶鋼流速VEは20cm/s以上である。Pb含有量が0.15%未満である場合、微細Pb介在物数NPbが10000個/mm以上となるものの、15000個/mm未満となる場合が多い。この場合、微細快削介在物総数TNが15000個/mm以上となるためには、微細MnS介在物が多数生成される方が好ましい。冷却速度RCが20℃/min以上であり、かつ、溶鋼流速VEが20cm/s以上であれば、熱間加工時において微細MnS介在物が多数生成する。そのため、微細快削介在物総数TNが15000個/mm以上になり、さらに優れた被削性が得られる。 When the Pb content is less than 0.15%, the preferable cooling rate RC is 20 ° C./min or more, and the preferable molten steel flow velocity VE is 20 cm / s or more. When the Pb content is less than 0.15%, the number of fine Pb inclusions NPb is 10000 / mm 2 or more, but is often less than 15000 / mm 2 . In this case, in order for the total number TN of fine free-cutting inclusions to be 15000 pieces / mm 2 or more, it is preferable that many fine MnS inclusions are generated. If the cooling rate RC is 20 ° C./min or more and the molten steel flow velocity VE is 20 cm / s or more, many fine MnS inclusions are generated during hot working. Therefore, the total number TN of fine free-cutting inclusions is 15000 pieces / mm 2 or more, and further excellent machinability is obtained.
 なお、加工開始温度が1000℃以上であれば、熱間加工中の粗大快削介在物の延伸も抑制される。 In addition, if the processing start temperature is 1000 ° C. or higher, stretching of coarse free-cutting inclusions during hot processing is also suppressed.
 加工開始温度は、たとえば、熱間加工装置(分塊圧延機、連続圧延機、熱間鍛造機等)の入側に配置された放射温度計により測定可能である。 The processing start temperature can be measured by, for example, a radiation thermometer arranged on the entry side of a hot working apparatus (a lump rolling mill, a continuous rolling mill, a hot forging machine, etc.).
 種々の化学組成及び製造条件で鉛快削鋼を製造し、被削性を評価した。 Lead free cutting steel was manufactured with various chemical compositions and manufacturing conditions, and machinability was evaluated.
 [試験方法]
 表1に示す化学組成を有する試験番号1~25の溶鋼を製造した。
[Test method]
Molten steels having test numbers 1 to 25 having the chemical compositions shown in Table 1 were produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 溶鋼を用いて連続鋳造法により、素材(鋳片断面220×220mm)を製造した。各試験番号の鋼を鋳造するときの冷却速度RC(℃/min)は表1に示すとおりであった。各試験番号の冷却速度RCは、2次デンドライトアーム間隔を測定して、上述の式(3)に基づき計算によって求めた。また、連続鋳造時において、モールド内の溶鋼に対して、電磁攪拌を実施した。電磁攪拌時の各試験番号の溶鋼流速VE(cm/s)は表1に示すとおりであった。 The raw material (slab section 220 × 220 mm) was manufactured by continuous casting using molten steel. The cooling rate RC (° C./min) when casting the steel of each test number was as shown in Table 1. The cooling rate RC of each test number was obtained by calculation based on the above formula (3) by measuring the secondary dendrite arm interval. Moreover, the electromagnetic stirring was implemented with respect to the molten steel in a mold at the time of continuous casting. The molten steel flow velocity VE (cm / s) of each test number during electromagnetic stirring was as shown in Table 1.
 各試験番号の素材に対して、熱間加工を実施して50mmの外径を有する丸棒材を製造した。各熱間加工では、分塊圧延、延伸圧延及び熱間鍛造のいずれかを実施した。各試験番号の最初の熱間加工において、加工開始温度T(℃)を測定した。各試験番号での加工開始温度Tを表1に示す。 A round bar material having an outer diameter of 50 mm was manufactured by performing hot working on the material of each test number. In each hot working, any one of a block rolling, a drawing rolling and a hot forging was performed. In the first hot working of each test number, the working start temperature T (° C.) was measured. Table 1 shows the processing start temperature T for each test number.
 各試験番号において、各熱間加工を実施するごとに、熱間加工後の素材の表面を観察し、割れの有無を確認した。割れが発生している場合、その試験番号の試験を中止した。 In each test number, each time hot working was performed, the surface of the material after hot working was observed to check for cracks. When cracking occurred, the test of that test number was stopped.
 [快削介在物観察試験]
 各試験番号の丸棒材から、組織観察用の試験片を採取した。試験片の表面のうち、丸棒材の長手方向(つまり、圧延方向又は延伸方向)と平行であり、かつ、丸棒材の中心線を含む断面を検鏡面と定義した。上述の方法に基づいて、検鏡面において、微細Pb介在物数NPb(個/mm)及び微細快削介在物総数TN(個/mm)を求めた。表1に、各試験番号の微細Pb介在物数NPb及び微細快削介在物総数TNを示す。
[Free-cutting inclusion observation test]
A test piece for observing the structure was taken from the round bar of each test number. Of the surface of the test piece, a cross section that is parallel to the longitudinal direction of the round bar (that is, the rolling direction or the stretching direction) and includes the center line of the round bar is defined as a specular surface. Based on the above-described method, the number of fine Pb inclusions NPb (pieces / mm 2 ) and the total number of fine free-cutting inclusions TN (pieces / mm 2 ) were determined on the microscopic surface. Table 1 shows the number of fine Pb inclusions NPb and the total number of fine free-cutting inclusions TN for each test number.
 [ドリル穿孔試験]
 各試験番号の鋼の被削性を、ドリル穿孔試験で評価した。ドリル穿孔試験では、各試験番号の丸棒材に対して、ドリルを用いて任意の切削速度で15mm深さの穴を複数回形成し続けた。そして、累計の穴深さが1000mmとなるまで切削可能(つまり、15mm深さの穴が67個以上穿孔可能)であった最高の切削速度VL1000(m/min)を求めた。
[Drill drilling test]
The machinability of the steel of each test number was evaluated by a drill drilling test. In the drill drilling test, a 15 mm deep hole was continuously formed a plurality of times at an arbitrary cutting speed using a drill on the round bar material of each test number. Then, the maximum cutting speed VL1000 (m / min) that was capable of being cut until the cumulative hole depth reached 1000 mm (that is, 67 or more holes with a depth of 15 mm could be drilled) was obtained.
 具体的には、NACHI(商標)製の直径5mmのドリルを用いた。ドリルの突出し量を60mm、送りを0.33mm/revとし、穿孔時には市販の水溶性切削油を用いた。穿孔方向は、丸棒材の長手方向と垂直な方向(横断方向)とした。ドリルが溶損又は折損するまで繰り返し穴開け加工を実施し、切削速度VL1000を求めた。切削速度VL1000が大きいほど、高速で多くの穴を穿孔可能なことを意味するため、工具寿命に優れ、被削性が高いと判断した。 Specifically, a drill with a diameter of 5 mm made by NACHI (trademark) was used. The projecting amount of the drill was 60 mm, the feed was 0.33 mm / rev, and a commercially available water-soluble cutting oil was used for drilling. The drilling direction was a direction (transverse direction) perpendicular to the longitudinal direction of the round bar. Drilling was repeatedly performed until the drill was melted or broken to obtain a cutting speed VL1000. The larger the cutting speed VL1000, the higher the number of holes that can be drilled. Therefore, it was determined that the tool life was excellent and the machinability was high.
 [プランジ切削試験]
 各試験番号の鋼の切削後の表面粗さを、図5A及び図5Bに示すプランジ切削試験で評価した。プランジ切削試験では、突切工具20を用いて、丸棒材30を軸周りに回転させながら丸棒材30の表面を切削して、図5Bに示すとおり、溝G1~G10を順次形成した。具体的には、突切工具20を丸棒材30の半径方向に前進して溝G1を形成した。その後、図5B中の矢印のとおり、突切工具20を丸棒材30の半径方向に後進し、その後、丸棒材の軸方向に所定距離移動した。そして、突切工具20を再び半径方向に前進して、溝G2を形成した。その後、同様に溝G3~溝G10を順次形成した。溝G10を形成後、突切工具20を再び溝G1の位置まで移動し、溝G1~溝G10に対して再び溝加工を繰り返した。200溝加工(各溝G1~G10ごとに20溝加工)実施した後、溝G10の底面の表面粗さを評価した。
[Plunge cutting test]
The surface roughness after cutting the steel of each test number was evaluated by the plunge cutting test shown in FIGS. 5A and 5B. In the plunge cutting test, the surface of the round bar 30 was cut using the parting tool 20 while rotating the round bar 30 around the axis, and grooves G1 to G10 were sequentially formed as shown in FIG. 5B. Specifically, the parting tool 20 was advanced in the radial direction of the round bar 30 to form the groove G1. Then, as shown by the arrow in FIG. 5B, the parting tool 20 was moved backward in the radial direction of the round bar 30 and then moved a predetermined distance in the axial direction of the round bar. Then, the parting tool 20 was advanced again in the radial direction to form the groove G2. Thereafter, the grooves G3 to G10 were sequentially formed in the same manner. After forming the groove G10, the parting tool 20 was moved again to the position of the groove G1, and the groove processing was repeated again for the grooves G1 to G10. After performing 200 groove processing (20 grooves for each of the grooves G1 to G10), the surface roughness of the bottom surface of the groove G10 was evaluated.
 突切工具20の素材はJIS規格のSHK57に相当し、すくい角は20°、逃げ角は6°であった。溝加工時の突切工具20の切削速度は80m/minであり、送りは0.05mm/revであった。切削時には市販の不水溶性切削油を使用した。 The material of the parting tool 20 corresponds to JIS standard SHK57, and the rake angle was 20 ° and the clearance angle was 6 °. The cutting speed of the parting tool 20 during grooving was 80 m / min, and the feed was 0.05 mm / rev. A commercially available water-insoluble cutting oil was used for cutting.
 表面粗さは、次の方法で測定した。200溝加工後の溝G10の底面において、触針式表面粗さ計を用いて、JIS B0601(1972)に準拠して最高高さRmax(μm)を測定した。最高高さRmaxが小さいほど、切削性に優れると評価した。 The surface roughness was measured by the following method. The maximum height Rmax (μm) was measured according to JIS B0601 (1972) using a stylus type surface roughness meter on the bottom surface of the groove G10 after the 200-groove processing. It was evaluated that the smaller the maximum height Rmax, the better the machinability.
 [試験結果]
 試験結果を表1に示す。表1中の「加工割れ」欄の「有」は、熱間加工後に割れが確認されたことを意味する。「無」は、割れが確認されなかったことを意味する。「NPb」欄には、各試験番号の微細Pb介在物数NPb(個/mm)が記載されている。「TN」欄には各試験番号の微細快削介在物総数TN(個/mm)が記載されている。「VL1000」欄には、ドリル穿孔試験で得られた各試験番号の切削速度(m/min)が記載されている。「Rmax」欄には、プランジ切削試験で得られた各試験番号の表面の最大高さRmax(μm)が記載されている。
[Test results]
The test results are shown in Table 1. “Yes” in the “work crack” column in Table 1 means that a crack was confirmed after hot working. “None” means that no cracks were observed. In the “N Pb ” column, the number of fine Pb inclusions NPb (pieces / mm 2 ) of each test number is described. In the “TN” column, the total number of fine free-cutting inclusions TN (pieces / mm 2 ) of each test number is described. In the “VL1000” column, the cutting speed (m / min) of each test number obtained in the drill drilling test is described. In the “Rmax” column, the maximum height Rmax (μm) of the surface of each test number obtained in the plunge cutting test is described.
 表1を参照して、試験番号1~15では、化学組成が適切であり、鋳造工程における冷却速度RC(℃/min)、溶鋼流速VE(cm/s)、熱間加工工程における加工開始温度T(℃)も適切であった。そのため、鋼中の微細Pb介在物数NPb(個/mm)が10000個/mm以上であり、微細快削介在物総数TN(個/mm)が15000個/mm以上であった。そのため、試験番号1~15の切削速度VL1000はいずれも高く、130m/min以上であった。さらに、試験番号1~15の最大高さRmaxもいずれも小さく、14.5μm以下であった。 Referring to Table 1, in test numbers 1 to 15, the chemical composition is appropriate, the cooling rate RC (° C./min) in the casting process, the molten steel flow rate VE (cm / s), the processing start temperature in the hot working process. T (° C.) was also appropriate. Therefore, the number of fine Pb inclusions NPb (pieces / mm 2 ) in the steel is 10000 pieces / mm 2 or more, and the total number of fine free-cutting inclusions TN (pieces / mm 2 ) is 15000 pieces / mm 2 or more. It was. Therefore, the cutting speeds VL1000 of test numbers 1 to 15 were all high and were 130 m / min or higher. Further, the maximum heights Rmax of test numbers 1 to 15 were all small and 14.5 μm or less.
 試験番号16では化学組成が適切であり、冷却速度RCは15~30℃/minの範囲内であり、溶鋼流速VEは10~40cm/sであり、加工開始温度Tは1000℃以上であった。そのため、切削速度VL1000は130m/min以上であり、最大高さRmaxも14.5μm以下であった。しかしながら、Pb含有量が0.15%未満であり、冷却速度RCが20℃/min未満であった。そのため、試験番号16では、鋼中の微細Pb介在物数NPb(個/mm)が10000個/mm以上であったものの、微細快削介在物総数TN(個/mm)が15000個/mm未満となった。そのため、切削速度VL1000及び最大高さRmaxはいずれも、試験番号1~15よりも劣っていた。 In test number 16, the chemical composition was appropriate, the cooling rate RC was in the range of 15 to 30 ° C./min, the molten steel flow velocity VE was 10 to 40 cm / s, and the processing start temperature T was 1000 ° C. or higher. . Therefore, the cutting speed VL1000 was 130 m / min or more, and the maximum height Rmax was 14.5 μm or less. However, the Pb content was less than 0.15%, and the cooling rate RC was less than 20 ° C./min. Therefore, in test number 16, although the number of fine Pb inclusions NPb (pieces / mm 2 ) in steel was 10,000 pieces / mm 2 or more, the total number of fine free-cutting inclusions TN (pieces / mm 2 ) was 15000. The number was less than pieces / mm 2 . Therefore, both the cutting speed VL1000 and the maximum height Rmax were inferior to those of test numbers 1 to 15.
 一方、試験番号17では、化学組成が適切だったものの、鋳造工程での冷却速度RCが速すぎた。そのため、1回目の熱間加工後の素材に割れが確認された。 On the other hand, in the test number 17, although the chemical composition was appropriate, the cooling rate RC in the casting process was too fast. Therefore, cracks were confirmed in the material after the first hot working.
 試験番号18では、化学組成が適切だったものの、冷却速度RCが遅すぎた。また、溶鋼流速VEも遅すぎた。さらに、加工開始温度Tが1000℃未満であった。そのため、丸棒材中の微細Pb介在物数NPb(個/mm)及び微細快削介在物総数TN(個/mm)がいずれも少なすぎた。その結果、切削速度VL1000が小さすぎ、最大高さRmaxも高すぎた。 In test number 18, although the chemical composition was appropriate, the cooling rate RC was too slow. Moreover, the molten steel flow velocity VE was too slow. Furthermore, the processing start temperature T was less than 1000 ° C. Therefore, the number of fine Pb inclusions NPb (pieces / mm 2 ) and the total number of fine free-cutting inclusions TN (pieces / mm 2 ) in the round bar were too small. As a result, the cutting speed VL1000 was too small and the maximum height Rmax was too high.
 試験番号19では、化学組成が適切であったものの、溶鋼流速VEが遅すぎた。そのため、微細Pb介在物数NPb(個/mm)が少なすぎ、最大高さRmaxが高かった。 In test number 19, although the chemical composition was appropriate, the molten steel flow velocity VE was too slow. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, and the maximum height Rmax was high.
 試験番号20は、酸素含有量が低すぎた。さらに、溶鋼流速VEが遅すぎた。そのため、微細Pb介在物数NPb(個/mm)が少なすぎ、切削速度VL1000が小さく、最大高さRmaxも高かった。 Test number 20 was too low in oxygen content. Furthermore, the molten steel flow velocity VE was too slow. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, the cutting speed VL1000 was small, and the maximum height Rmax was also high.
 試験番号21では化学組成は適切であったものの、冷却速度RC及び溶鋼流速VEが遅すぎた。そのため、微細Pb介在物数NPb(個/mm)が少なすぎ、最大高さRmaxが高かった。 In Test No. 21, although the chemical composition was appropriate, the cooling rate RC and the molten steel flow rate VE were too slow. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, and the maximum height Rmax was high.
 試験番号22では、N含有量が低すぎた。そのため、最大高さRmaxが大きく、被削性が低かった。N含有量が低かったため、マトリクスの延性が高くなり過ぎたと考えられる。 In test number 22, the N content was too low. Therefore, the maximum height Rmax was large and the machinability was low. It is considered that the ductility of the matrix became too high because the N content was low.
 試験番号23では、化学組成が適切だったものの、冷却速度RC及び溶鋼流速VEが遅すぎた。そのため、微細Pb介在物数NPb(個/mm)が少なすぎ、切削速度VEが小さく、最大高さRmaxが高かった。 In test number 23, although the chemical composition was appropriate, the cooling rate RC and the molten steel flow rate VE were too slow. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, the cutting speed VE was small, and the maximum height Rmax was high.
 試験番号24では、化学組成、冷却速度RC及び溶鋼流速VEが適切であったものの、加工開始温度Tが1000℃未満であった。そのため、微細Pb介在物数NPb(個/mm)が少なすぎ、切削速度VEが小さく、最大高さRmaxが高かった。 In test number 24, the chemical composition, the cooling rate RC, and the molten steel flow rate VE were appropriate, but the processing start temperature T was less than 1000 ° C. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, the cutting speed VE was small, and the maximum height Rmax was high.
 試験番号25では、化学組成、溶鋼流速VE及び加工開始温度Tが適切であったものの、冷却速度RCが遅すぎた。そのため、微細Pb介在物数NPb(個/mm)が少なすぎ、切削速度VEが小さく、最大高さRmaxが高かった。 In test number 25, the chemical composition, the molten steel flow velocity VE, and the processing start temperature T were appropriate, but the cooling rate RC was too slow. Therefore, the number of fine Pb inclusions N Pb (pieces / mm 2 ) was too small, the cutting speed VE was small, and the maximum height Rmax was high.
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 As mentioned above, although embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

Claims (5)

  1.  質量%で、
     C:0.005~0.2%、
     Mn:0.3~2.0%、
     P:0.005~0.2%、
     S:0.01~0.7%、
     Pb:0.03~0.5%、
     N:0.004~0.02%、及び、
     O:0.003~0.03%、
     を含有し、残部はFe及び不純物からなり、
     鋼中の0.01~0.5μmの円相当径を有するPb介在物数が10000個/mm以上である、鉛快削鋼。
    % By mass
    C: 0.005 to 0.2%,
    Mn: 0.3 to 2.0%,
    P: 0.005 to 0.2%,
    S: 0.01 to 0.7%,
    Pb: 0.03 to 0.5%,
    N: 0.004 to 0.02%, and
    O: 0.003-0.03%,
    And the balance consists of Fe and impurities,
    Lead free-cutting steel in which the number of Pb inclusions having a circle-equivalent diameter of 0.01 to 0.5 μm in the steel is 10000 / mm 2 or more.
  2.  請求項1に記載の鉛快削鋼であってさらに、
     鋼中の0.01~0.5μmの円相当径を有するPb介在物数と、0.01~0.5μmの円相当径を有するMnS介在物数との総計が15000個/mm以上である、鉛快削鋼。
    The lead free-cutting steel according to claim 1, further comprising:
    The total number of Pb inclusions having an equivalent circle diameter of 0.01 to 0.5 μm and the number of MnS inclusions having an equivalent circle diameter of 0.01 to 0.5 μm in the steel is 15000 pieces / mm 2 or more. There is lead free cutting steel.
  3.  請求項1又は請求項2に記載の鉛快削鋼であって、
     前記Feの一部に代えて、
     Cu:0.5%以下、
     Ni:0.5%以下、及び、
     Sn:0.5%以下、
     からなる群から選択される1種又は2種以上を含有する、鉛快削鋼。
    The lead free-cutting steel according to claim 1 or claim 2,
    Instead of a part of the Fe,
    Cu: 0.5% or less,
    Ni: 0.5% or less, and
    Sn: 0.5% or less,
    Lead free-cutting steel containing one or more selected from the group consisting of:
  4.  請求項1~請求項3のいずれか1項に記載の鉛快削鋼であって、
     前記Feの一部に代えて、
     Te:0.2%以下、及び、
     Bi:0.5%以下、
     からなる群から選択される1種以上を含有する、鉛快削鋼。
    The lead free-cutting steel according to any one of claims 1 to 3,
    Instead of a part of the Fe,
    Te: 0.2% or less, and
    Bi: 0.5% or less,
    Lead free-cutting steel containing one or more selected from the group consisting of:
  5.  請求項1~請求項4のいずれか1項に記載の鉛快削鋼であって、
     前記Feの一部に代えて、
     Cr:0.5%以下、及び、
     Mo:0.5%以下、
     からなる群から選択される1種以上を含有する、鉛快削鋼。
    The lead free-cutting steel according to any one of claims 1 to 4,
    Instead of a part of the Fe,
    Cr: 0.5% or less, and
    Mo: 0.5% or less,
    Lead free-cutting steel containing one or more selected from the group consisting of:
PCT/JP2014/000317 2013-02-18 2014-01-23 Lead-containing free-machining steel WO2014125770A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015500126A JP5954483B2 (en) 2013-02-18 2014-01-23 Lead free cutting steel
CN201480009269.4A CN104995324B (en) 2013-02-18 2014-01-23 Lead treated steel
KR1020157018484A KR101685863B1 (en) 2013-02-18 2014-01-23 Lead-containing free-machining steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013029261 2013-02-18
JP2013-029261 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014125770A1 true WO2014125770A1 (en) 2014-08-21

Family

ID=51353787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000317 WO2014125770A1 (en) 2013-02-18 2014-01-23 Lead-containing free-machining steel

Country Status (5)

Country Link
JP (1) JP5954483B2 (en)
KR (1) KR101685863B1 (en)
CN (1) CN104995324B (en)
TW (1) TWI510650B (en)
WO (1) WO2014125770A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199843A1 (en) * 2015-06-10 2016-12-15 新日鐵住金株式会社 Free-cutting steel
JPWO2018021452A1 (en) * 2016-07-27 2019-05-30 日本製鉄株式会社 Machine structural steel
WO2021132371A1 (en) * 2019-12-23 2021-07-01 Jfeスチール株式会社 Free cutting steel and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382727A (en) 2017-02-28 2019-10-25 杰富意钢铁株式会社 Machining wire rod
TWI717990B (en) * 2019-12-23 2021-02-01 日商杰富意鋼鐵股份有限公司 Free-cutting steel and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203763A (en) * 1977-12-21 1980-05-20 Scandinavian Lancers Aktiebolag Method of manufacturing a lead alloy steel and a steel made according to the method
JPS5585658A (en) * 1978-12-25 1980-06-27 Daido Steel Co Ltd Free cutting steel
JPS6223970A (en) * 1985-07-24 1987-01-31 Nippon Steel Corp Continuously cast low-carbon sulfur-lead free-cutting steel
EP1054074A2 (en) * 1999-05-21 2000-11-22 POHANG IRON & STEEL CO., LTD. A free machining steel bearing bismuth and sulfur with superior high temperature ductility, and manufacturing method therefor
JP2005307241A (en) * 2004-04-19 2005-11-04 Daido Steel Co Ltd High-sulfur free-cutting steel
WO2008066194A1 (en) * 2006-11-28 2008-06-05 Nippon Steel Corporation Free-cutting steel excellent in manufacturability
JP2009120955A (en) * 2008-12-19 2009-06-04 Nippon Steel Corp Steel excellent in machinability and production method therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806304A (en) * 1983-05-09 1989-02-21 Daido Tokushuko Kabushiki Kaisha Free cutting steel
JP3437079B2 (en) 1998-02-05 2003-08-18 株式会社神戸製鋼所 Machine structural steel with excellent chip control
JP2000119801A (en) * 1998-08-11 2000-04-25 Kobe Steel Ltd Graphitic steel excellent in machinability
JP2000319753A (en) * 1999-04-30 2000-11-21 Daido Steel Co Ltd Low carbon sulfur base free-cutting steel
EP1199375B1 (en) * 2000-03-24 2004-06-02 JFE Steel Corporation Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JP4323778B2 (en) * 2002-11-15 2009-09-02 新日本製鐵株式会社 Manufacturing method of steel with excellent machinability
JP4264247B2 (en) * 2002-11-15 2009-05-13 新日本製鐵株式会社 Steel with excellent machinability and method for producing the same
JP4264329B2 (en) 2002-11-15 2009-05-13 新日本製鐵株式会社 Steel with excellent machinability
JP4348163B2 (en) 2002-11-15 2009-10-21 新日本製鐵株式会社 Steel excellent in machinability and manufacturing method thereof
JP2005273000A (en) * 2004-02-26 2005-10-06 Sanyo Special Steel Co Ltd Steel for machine structural use having improved machinability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203763A (en) * 1977-12-21 1980-05-20 Scandinavian Lancers Aktiebolag Method of manufacturing a lead alloy steel and a steel made according to the method
JPS5585658A (en) * 1978-12-25 1980-06-27 Daido Steel Co Ltd Free cutting steel
JPS6223970A (en) * 1985-07-24 1987-01-31 Nippon Steel Corp Continuously cast low-carbon sulfur-lead free-cutting steel
EP1054074A2 (en) * 1999-05-21 2000-11-22 POHANG IRON & STEEL CO., LTD. A free machining steel bearing bismuth and sulfur with superior high temperature ductility, and manufacturing method therefor
JP2005307241A (en) * 2004-04-19 2005-11-04 Daido Steel Co Ltd High-sulfur free-cutting steel
WO2008066194A1 (en) * 2006-11-28 2008-06-05 Nippon Steel Corporation Free-cutting steel excellent in manufacturability
JP2009120955A (en) * 2008-12-19 2009-06-04 Nippon Steel Corp Steel excellent in machinability and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199843A1 (en) * 2015-06-10 2016-12-15 新日鐵住金株式会社 Free-cutting steel
JPWO2016199843A1 (en) * 2015-06-10 2018-04-12 新日鐵住金株式会社 Free-cutting steel
EP3309272A4 (en) * 2015-06-10 2018-10-24 Nippon Steel & Sumitomo Metal Corporation Free-cutting steel
JPWO2018021452A1 (en) * 2016-07-27 2019-05-30 日本製鉄株式会社 Machine structural steel
EP3492615A4 (en) * 2016-07-27 2019-12-25 Nippon Steel Corporation Steel for machine structures
WO2021132371A1 (en) * 2019-12-23 2021-07-01 Jfeスチール株式会社 Free cutting steel and method for manufacturing same
JP6927444B1 (en) * 2019-12-23 2021-09-01 Jfeスチール株式会社 Free-cutting steel and its manufacturing method
CN114829650A (en) * 2019-12-23 2022-07-29 杰富意钢铁株式会社 Free-cutting steel and method for producing same
CN114829650B (en) * 2019-12-23 2023-06-02 杰富意钢铁株式会社 Free-cutting steel and method for producing same

Also Published As

Publication number Publication date
JP5954483B2 (en) 2016-07-20
CN104995324A (en) 2015-10-21
TWI510650B (en) 2015-12-01
KR20150092321A (en) 2015-08-12
CN104995324B (en) 2016-08-24
TW201437390A (en) 2014-10-01
JPWO2014125770A1 (en) 2017-02-02
KR101685863B1 (en) 2016-12-12

Similar Documents

Publication Publication Date Title
JP4424503B2 (en) Steel bar and wire rod
JP5954483B2 (en) Lead free cutting steel
JP7417091B2 (en) steel material
JP5368830B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP2010070812A (en) Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
JP5092578B2 (en) Low carbon sulfur free cutting steel
JP2007239015A (en) Low carbon sulfur free-cutting steel product
KR101685864B1 (en) Free machining steel with lead
JP2017193767A (en) Steel for cold forging and manufacturing method therefor
TWI609092B (en) Quick cut steel
JP6055400B2 (en) Steel material and manufacturing method thereof
WO2017068935A1 (en) Steel for hot forging and hot forged product
JP2018035423A (en) Steel for carburization, carburization steel member and manufacturing method of carburization steel member
JP2004176175A (en) Steel superior in machinability and manufacturing method therefor
JP2018035420A (en) Steel for carburization, carburization steel member and manufacturing method of carburization steel member
JP2005307241A (en) High-sulfur free-cutting steel
JP2009120955A (en) Steel excellent in machinability and production method therefor
JP2017115190A (en) Hot rolled bar wire rod
JP7024921B1 (en) Free-cutting steel and its manufacturing method
JP7024922B1 (en) Free-cutting steel and its manufacturing method
WO2024019013A1 (en) Steel material
JP2024031698A (en) steel material
WO2022107757A1 (en) Stainless steel bar material and electromagnetic component
JP2006167726A (en) Outer layer material for rolling roll having excellent wear resistance and thermal crack resistance and rolling roll using the same
JP2018035411A (en) Steel for cold forging and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500126

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157018484

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751743

Country of ref document: EP

Kind code of ref document: A1