WO2022107757A1 - Stainless steel bar material and electromagnetic component - Google Patents

Stainless steel bar material and electromagnetic component Download PDF

Info

Publication number
WO2022107757A1
WO2022107757A1 PCT/JP2021/042062 JP2021042062W WO2022107757A1 WO 2022107757 A1 WO2022107757 A1 WO 2022107757A1 JP 2021042062 W JP2021042062 W JP 2021042062W WO 2022107757 A1 WO2022107757 A1 WO 2022107757A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
amount
steel
rod
Prior art date
Application number
PCT/JP2021/042062
Other languages
French (fr)
Japanese (ja)
Inventor
祥太 山先
光司 高野
幸寛 西田
規介 田中
雅之 東城
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to US18/037,694 priority Critical patent/US20240011137A1/en
Priority to CN202180077648.7A priority patent/CN116438321A/en
Priority to MX2023005833A priority patent/MX2023005833A/en
Priority to EP21894631.7A priority patent/EP4249612A1/en
Priority to KR1020237016897A priority patent/KR20230088905A/en
Priority to JP2022563763A priority patent/JPWO2022107757A1/ja
Publication of WO2022107757A1 publication Critical patent/WO2022107757A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to electromagnetic stainless steel, particularly stainless steel rod-shaped steel having excellent high-speed cold forging property, machinability, and soft magnetic properties, and electromagnetic parts using the same.
  • Japanese Unexamined Patent Publication No. 6-49606 Japanese Unexamined Patent Publication No. 6-49605 Japanese Unexamined Patent Publication No. 3-44448
  • the present invention has been made to solve the above problems, and the gist of the present invention is the following stainless steel rod-shaped steel materials and electromagnetic parts.
  • the chemical composition is mass%. C: 0.001 to 0.030%, Si: 0.01 to 4.00%, Mn: 0.01 to 2.00%, Ni: 0.01 to 4.00%, Cr: 8.0 to Contains 35.0%, Mo: 0.01 to 5.00%, Cu: 0.01 to 2.00%, N: 0.001 to 0.030%, Al: 7,000% or less. moreover, Ti: 0 to 2.00%, Nb: 0 to 2.00%, B: 0 to 0.1000%, and so on.
  • a stainless rod-shaped steel material having an average particle size of a nitride of 10 ⁇ m or less and a solid solution N content in steel of 0.020% by mass or less.
  • the chemical composition is mass%.
  • C 0.001 to 0.030%, Si: 0.01 to 4.00%, Mn: 0.01 to 2.00%, Ni: 0.01 to 4.00%, Cr: 8.0 to Contains 35.0%, Mo: 0.01 to 5.00%, Cu: 0.01 to 2.00%, N: 0.001 to 0.030%, Al: 7,000% or less.
  • Ti 0 to 2.00%, Nb: 0 to 2.00%, B: 0 to 0.1000%, and so on. It contains one or more selected from Ti: 0.001% or more, Nb: 0.001% or more, and B: 0.0001% or more.
  • Group 3 Pb 0.0001 to 0.30%
  • Se 0.0001 to 0.80%
  • Te 0.0001 to 0.30%
  • Bi 0.0001 to 0.50%
  • S 0
  • the present inventors conducted various studies in order to obtain stainless steel rod-shaped steel materials and electromagnetic parts having excellent high-speed cold forging properties, machinability, and soft magnetic properties. As a result, the following findings (a) to (c) were obtained.
  • a combination of ferritic stainless steel whose composition is adjusted with one or more of B, Ti, and Nb and a hot rolling process (finish rolling inlet temperature, finish rolling roll diameter, heat treatment temperature) to obtain the average grain size of nitrides.
  • the amount of solid melt N and the amount of solid melt B in steel can be reduced.
  • the high-speed cold forging property has a compression rate of 70%, the unbreakable strain rate is 0.1 / s or more, the machinability has a cutting resistance of 50 mm or more, and the soft magnetic property is maintained.
  • the present invention was made based on the above findings. In addition, a preferred embodiment of the present invention will be described in detail. In the following description, a preferred embodiment of the present invention will be described as the present invention. Hereinafter, each requirement of the present invention will be described in detail.
  • the "bar-shaped steel material” includes “bar steel”, “wire rod”, “steel wire”, “deformed wire”, “deformed bar steel” and the like.
  • the average particle size of the nitride is controlled. Specifically, the average particle size of the nitride is 10 ⁇ m or less. This is because when the average particle size of the nitride exceeds 10 ⁇ m, the high-speed cold forging property is deteriorated by the coarse nitride.
  • the average particle size of the nitride is more preferably 7 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the average particle size of the nitride is preferably 0.01 ⁇ m or more.
  • the nitride includes carbonitride.
  • the average particle diameter of the nitride is the surface layer portion, the central portion, and the 1/4 depth position portion existing between the surface layer portion and the central portion in the L cross section of the rod-shaped steel material (cross section including the center line of the rod-shaped steel material).
  • the amount of solid solution N in steel is 0.020% by mass or less, or the amount of solid solution B is 0.015% by mass or less.
  • the soft magnetic properties and high-speed cold forging property are improved.
  • an invention having a suitable component composition described later and an average particle size of the above-mentioned nitride and defining the amount of solid-dissolved N in steel to be 0.020% by mass or less will be referred to as "Invention 1".
  • an invention having a suitable component composition of the present invention and the average particle size of the above-mentioned nitride and defining the amount of solid solution B in steel to be 0.015% by mass or less is referred to as "the present invention 2".
  • Amount of solid solution N in steel In the rod-shaped steel material according to the present invention 1, the amount of solid solution N in steel is controlled. Specifically, the amount of solid solution N in the steel is 0.020% by mass or less. This is because when the amount of solid solution N in the steel exceeds 0.020% by mass, the soft magnetic properties and high-speed cold forging property are deteriorated due to the lattice strain due to the solid solution N.
  • the amount of solid solution N in the steel is more preferably 0.015% by mass or less, and further preferably 0.01% by mass or less.
  • the amount of solid solution N in the steel is preferably 0.00001% by mass or more. Since the crystal structure of the steel of the present invention is ferritic steel, the amount of solid solution N in the steel corresponds to the amount of solid solution N in the ferrite phase.
  • the problem of the present invention can be solved by controlling the amount of solid solution B in the steel.
  • the amount of solid solution B in the steel is 0.015% by mass or less. This is because when the amount of the solid solution B in the steel exceeds 0.015% by mass, the soft magnetic properties and the high-speed cold forging property are deteriorated due to the lattice strain due to the solid solution B.
  • the amount of solid solution B in the steel is more preferably 0.010% by mass or less, and further preferably 0.005% by mass or less.
  • the amount of solid solution B in the steel is preferably 0.00001% by mass or more. Since the crystal structure of the steel of the present invention is ferritic steel, the amount of solid solution B in the steel corresponds to the amount of solid solution B in the ferrite phase.
  • C 0.001 to 0.030% C enhances the strength and machinability of the steel material. Therefore, the C content is set to 0.001% or more. However, if C is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability deteriorate. Therefore, the C content is set to 0.030% or less.
  • the C content is preferably 0.020% or less, more preferably 0.015% or less.
  • Si 0.01-4.00% Si is contained as a deoxidizing element to improve soft magnetic properties and machinability. Therefore, the Si content is preferably 0.01% or more, preferably 0.10% or more. However, if Si is excessively contained, high-speed cold forging property, soft magnetic property, and machinability are deteriorated. Therefore, the Si content is set to 4.00% or less. The Si content is preferably 3.00% or less, more preferably 1.50% or less.
  • Mn 0.01-2.00% Mn improves the strength, soft magnetic properties, and machinability of steel materials. Therefore, the Mn content is preferably 0.01% or more, preferably 0.05% or more. However, if Mn is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. In addition, corrosion resistance may decrease. Therefore, the Mn content is set to 2.00% or less. The Mn content is preferably 1.00% or less, and more preferably 0.50% or less.
  • Ni 0.01-4.00% Ni improves the toughness and soft magnetic properties of steel materials, high-speed cold forging, and machinability. Therefore, the Ni content is preferably 0.01% or more, preferably 0.05% or more. However, if Ni is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. Therefore, the Ni content is set to 4.00% or less. The Ni content is preferably 3.00% or less, more preferably 1.00% or less, and even more preferably 0.50% or less.
  • Cr 8.0 to 35.0% Cr improves corrosion resistance, soft magnetic properties, high-speed cold forging, and machinability. Therefore, the Cr content is set to 8.0% or more. The Cr content is preferably 10.0% or more. However, if Cr is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. The Cr content should be 35.0% or less. The Cr content is preferably 21.0% or less, more preferably 20.0% or less.
  • Mo 0.01-5.00% Mo improves corrosion resistance, soft magnetic properties, high-speed cold forging, and machinability. Therefore, the Mo content is 0.01% or more. However, if Mo is excessively contained, high-speed cold forging property, soft magnetic property, and machinability are deteriorated. Therefore, the Mo content is set to 5.00% or less.
  • the Mo content is preferably 3.00% or less, more preferably 2.00% or less, and even more preferably 1.50% or less.
  • Cu 0.01-2.00%
  • the Cu content is preferably 0.01% or more, preferably 0.05% or more.
  • the Cu content is set to 2.00% or less.
  • the Cu content is preferably 1.00% or less, more preferably 0.80% or less, still more preferably 0.40% or less.
  • N 0.001 to 0.030% N improves the strength and machinability of the steel material. It is also an element that forms a nitride. Therefore, the N content is preferably 0.001% or more, preferably 0.002% or more. However, if N is excessively contained, the soft magnetic properties, machinability, and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes large, and the amount of solid solution N increases. Therefore, the N content is set to 0.030% or less. The N content is preferably 0.025% or less, more preferably 0.020% or less.
  • Al 7,000% or less
  • Al has the effect of promoting deoxidation and improving the cleanliness level of inclusions.
  • the addition of Al enhances soft magnetic properties, high-speed cold forging, and machinability.
  • the Al content is set to 7,000% or less.
  • the Al content is preferably 3.000% or less, more preferably 0.100% or less, and even more preferably 0.020% or less.
  • the Al content is preferably 0.001% or more.
  • the rod-shaped steel material according to the present invention contains one or more elements selected from Ti: 0.001% or more, Nb: 0.001% or more, and B: 0.0001% or more within the following component range. Incorporate in. These elements are the main elements constituting the nitride and need to be controlled because they are related to the average particle size of the nitride and the amount of solid solution N. Of Ti, Nb, and B, the element not selected above may not be contained or may be contained within the following component range.
  • Ti 0 to 2.00% Ti has the effects of enhancing the strength, soft magnetic properties, high-speed cold forging property, and machinability of steel materials. Further, Ti forms a nitride and is related to the amount of solid solution N. Further, since carbonitride is formed, the formation of Cr carbide is suppressed and the formation of a Cr-deficient layer is suppressed. As a result, it has the effect of preventing intergranular corrosion. Therefore, the Ti content is set to 0.001% or more. However, if Ti is excessively contained, the soft magnetic properties, machinability, and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes large. Therefore, the Ti content is set to 2.00% or less.
  • the Ti content is preferably 1.00% or less, more preferably 0.50% or less, further preferably 0.50% or less, and even more preferably 0.25% or less. In addition, it is preferably contained in an amount of 0.01% or more in order to exhibit the effect. More preferably, 0.05% or more. It may be 0.10% or more.
  • Nb 0 to 2.00%
  • Nb has the effect of enhancing the strength, soft magnetic properties, high-speed cold forging property, and machinability of the steel material. Further, Nb forms a nitride and is related to the amount of solid solution N. Further, since carbonitride is formed, the formation of Cr carbide is suppressed and the formation of a Cr-deficient layer is suppressed. As a result, it has the effect of preventing intergranular corrosion. Therefore, the Nb content is set to 0.001% or more. However, if Nb is excessively contained, the soft magnetic properties, machinability, and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes large.
  • the Nb content is set to 2.00% or less.
  • the Nb content is preferably 1.00% or less, more preferably 0.80% or less, and even more preferably 0.60% or less.
  • it is preferably contained in an amount of 0.02% or more in order to exhibit the effect. More preferably, 0.05% or more. It may be 0.10% or more.
  • B 0 to 0.1000%
  • B has the effect of enhancing the soft magnetic properties, high-speed cold forging property, and machinability of the steel material. Further, B forms a boron nitride such as BN, and is related to the amount of solid solution N and the amount of solid solution B. In particular, BN contributes to the improvement of machinability. Therefore, the B content is set to 0.0001% or more. However, if B is excessively contained, the soft magnetic properties, machinability, and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes large. Therefore, the B content is set to 0.1000% or less. The B content is preferably 0.0200% or less, more preferably 0.0100% or less. Further, in order to exhibit the effect, it is preferably contained in an amount of 0.0005% or more. 0.0010% or more is more preferable. It may be 0.0020% or more.
  • the rod-shaped steel material according to the present invention contains, if necessary, one or more elements selected from Sn, V, W, Ga, Co, Sb and Ta as the elements of the first group. May be good.
  • Sn 0 to 2.50% Sn may be contained as necessary because it has the effects of improving corrosion resistance, soft magnetic properties, high-speed cold forging property, and machinability. However, if Sn is contained in an excessive amount, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. In addition, the toughness decreases due to the grain boundary segregation of Sn. Therefore, the Sn content is set to 2.50% or less.
  • the Sn content is more preferably 1.00% or less, and further preferably 0.20% or less.
  • the Sn content is preferably 0.0001% or more, and more preferably 0.05% or more.
  • V 0-2.0% Since V has an effect of improving soft magnetic properties, high-speed cold forging property, and machinability, it may be contained as necessary. However, if V is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. In addition, the toughness is reduced by the coarse carbonitride. Therefore, the V content is set to 2.0% or less. The V content is preferably 1.0% or less, more preferably 0.5% or less, and even more preferably 0.1% or less. On the other hand, in order to obtain the above effect, the V content is preferably 0.001% or more.
  • W 0 to 3.00% Since W has an effect of improving corrosion resistance, it may be contained if necessary. However, if W is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. In addition, the toughness is reduced by the coarse carbonitride. Therefore, the W content is set to 3.00% or less.
  • the W content is preferably 2.00% or less, more preferably 1.50% or less.
  • the W content is preferably 0.05% or more, and more preferably 0.10% or more.
  • Ga 0-0.05% Since Ga has an effect of improving corrosion resistance, it may be contained if necessary. However, if Ga is excessively contained, the hot workability is deteriorated. Therefore, the Ga content is set to 0.05% or less. On the other hand, in order to obtain the above effect, the Ga content is preferably 0.0004% or more.
  • Co 0-2.50% Since Co has the effects of improving the strength, soft magnetic properties, high-speed cold forging property, and machinability of the steel material, it may be contained as necessary. In addition, the addition of an appropriate amount of Co increases the saturation magnetic flux density, and thus enhances the soft magnetic characteristics. However, if Co is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. Therefore, the Co content is 2.50% or less.
  • the Co content is preferably 1.00% or less, and more preferably 0.80% or less.
  • the Co content is preferably 0.05% or more, more preferably 0.10% or more.
  • Sb 0 to 2.50% Since Sb has an effect of improving corrosion resistance, it may be contained if necessary. However, if Sb is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. Therefore, the Sb content is set to 2.50% or less.
  • the Sb content is more preferably 1.00% or less, and further preferably 0.20% or less.
  • the Sb content is preferably 0.01% or more, and more preferably 0.05% or more.
  • Ta 0-2.50% Since Ta has an effect of improving corrosion resistance, it may be contained if necessary. However, if Ta is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. Therefore, the Ta content is 2.50% or less. The Ta content is preferably 1.50% or less, more preferably 0.90% or less. On the other hand, in order to obtain the above effect, the Ta content is preferably 0.01% or more, more preferably 0.04% or more, and further preferably 0.08% or more.
  • the rod-shaped steel material according to the present invention may contain one or more elements selected from Ca, Mg, Zr, and REM as the second group element, if necessary.
  • Ca, Mg, Zr, and REM may be contained, if necessary, for deoxidation.
  • the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated.
  • the toughness is reduced by the coarse inclusions. Therefore, Ca: 0.05% or less, Mg: 0.012% or less, Zr: 0.012% or less, REM: 0.05% or less.
  • the Ca content is preferably 0.010% or less, more preferably 0.005% or less.
  • the Mg content is preferably 0.010% or less, more preferably 0.005% or less.
  • Zr is preferably 0.010% or less, and more preferably 0.005% or less.
  • the REM is preferably 0.010% or less.
  • the Ca content is more preferably 0.0004% or more, and even more preferably 0.001% or more.
  • the Mg content is preferably 0.0004% or more, and more preferably 0.001% or more.
  • the Zr content is more preferably 0.0004% or more, and even more preferably 0.001% or more.
  • the REM content is more preferably 0.0004% or more, and even more preferably 0.001% or more.
  • REM is a general term for 17 elements including 15 elements of lanthanoids, Y and Sc. One or more of these 17 elements can be contained in steel, and the REM content means the total content of these elements.
  • the rod-shaped steel material according to the present invention may contain one or more elements selected from Pb, Se, Te, Bi, S and P as the elements of the third group, if necessary. .. Pb: 0 to 0.30%, Se: 0 to 0.80%, Te: 0 to 0.30%, Bi: 0 to 0.50%, S: 0 to 0.50%, P: 0 to 0.30%, Pb, Se, Te, Bi, S and P may be contained if necessary because of machinability. However, if each of these elements is excessively contained, the soft magnetic properties and the high-speed cold forging property are deteriorated. It also reduces toughness.
  • Pb 0.30% or less
  • Se 0.80% or less
  • Te 0.30% or less
  • Bi 0.50% or less
  • S 0.50 or less
  • the Pb content is preferably 0.1% or less, more preferably 0.05% or less.
  • the Se content is preferably 0.1% or less, and more preferably 0.05% or less.
  • the Te content is preferably 0.1% or less, more preferably 0.05% or less.
  • the Bi content is preferably 0.1% or less, and more preferably 0.05% or less.
  • the S content is preferably 0.1% or less, and more preferably 0.05% or less.
  • the P content is preferably 0.1% or less, and more preferably 0.05% or less.
  • Pb 0.0001% or more
  • Se 0.0001% or more
  • Te 0.0001% or more
  • Bi 0.0001% or more
  • S 0.0001% or more
  • the Pb content is more preferably 0.0004% or more, and further preferably 0.001% or more.
  • the Se content is more preferably 0.0004% or more, and further preferably 0.001% or more.
  • the Te content is more preferably 0.0004% or more, and even more preferably 0.001% or more.
  • the Bi content is more preferably 0.0004% or more, and further preferably 0.001% or more.
  • the S content is more preferably 0.0001% or more, and further preferably 0.0002% or more.
  • the P content is more preferably 0.0004% or more, and further preferably 0.001% or more.
  • the balance is Fe and impurities.
  • impurity is a component mixed with raw materials such as ore and scrap, and various factors in the manufacturing process when the steel sheet is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
  • impurities examples include O, Zn, H and the like. Impurities are preferably reduced, but when they are contained, O, Zn and H are preferably 0.01% or less.
  • the stainless steel rod-shaped steel material according to the present invention can obtain the effect as long as it has the above-mentioned configuration regardless of the manufacturing method.
  • the stainless steel rod-shaped steel material according to the present invention can be obtained by the following manufacturing method. It can be obtained stably.
  • a steel having the above chemical composition is melted, a slab having a predetermined diameter is cast, and then hot or hot rod wire rolling is rough-rolled, intermediate-rolled, and finish-rolled. And heat-treat the rod-shaped steel material. It is preferable to perform inclined rolling before rough rolling. Then, if necessary, pickling or the like is performed as appropriate.
  • Finish rolling inlet temperature In hot rolling of rod-shaped steel, it is preferable to control the inlet temperature of finish rolling.
  • the temperature at the finish rolling inlet side of the bar-shaped steel material changes the average particle size of the nitride and also changes the solid solution fraction of N and B contained in the steel. Therefore, the finish rolling inlet temperature affects the soft magnetic properties, high-speed cold forging property, and machinability.
  • the temperature on the finish rolling inlet side of the bar-shaped steel material exceeds 1200 ° C., the nitride is easily melted, and the amount of solid solution N and the amount of solid solution B increase. As a result, the soft magnetic properties and high-speed cold forging property are deteriorated.
  • the finish rolling inlet temperature is preferably 1200 ° C. or lower, preferably 1100 ° C. or lower, and even more preferably 1050 ° C. or lower.
  • the temperature on the finishing rolling inlet side is less than 600 ° C.
  • the amount of solid solution N becomes too small, so that the machinability deteriorates.
  • the presence of the unsolid solution nitride increases the average particle size of the nitride, which reduces the high-speed cold forging property. Therefore, the temperature on the entry side of the finish rolling is set to 600 ° C. or higher.
  • the finish rolling inlet temperature is preferably 700 ° C. or higher, more preferably 800 ° C.
  • the roll diameter of finish rolling affects the strain distribution and amount of bar-shaped steel, and is related to the average particle size of nitrides and the amount of solid melt N in steel. , It affects machinability and needs to be controlled.
  • the diameter of the finished rolled roll is less than 50 mm, strain is not introduced into the center of the rod-shaped steel material, formation of fine nitrides on the dislocations is not promoted, and the average particle diameter of the nitrides becomes large.
  • the amount of solid solution N increases. As a result, the soft magnetic properties and high-speed cold forging property are deteriorated.
  • the diameter of the finished rolled roll is preferably 50 mm or more, preferably 80 mm or more, and more preferably 100 mm or more.
  • the diameter of the finished rolled roll exceeds 500 mm, the nitride becomes too fine and the amount of solid solution N and the amount of solid solution B also increase, resulting in deterioration of machinability and magnetic properties. It is preferable, and 300 mm or less is more preferable.
  • Heat treatment temperature of rod-shaped steel material It is preferable that the hot-rolled rod-shaped steel material is heat-treated.
  • the heat treatment temperature of the bar steel changes the average particle size of the nitride and the solid solution fraction in the steel. Therefore, the heat treatment temperature of the rod-shaped steel material affects the soft magnetic properties, high-speed cold forging property, and machinability.
  • the heat treatment temperature of the rod-shaped steel material exceeds 1300 ° C., the nitride is easily melted, and the amount of solid solution N and the amount of solid solution B increase. As a result, the soft magnetic properties and high-speed cold forging property are deteriorated.
  • the average particle size of the nitride becomes too small, which reduces machinability.
  • the heat treatment temperature is set to 1300 ° C. or lower, preferably 1200 ° C. or lower, and more preferably 1100 ° C. or lower.
  • the heat treatment temperature of the rod-shaped steel material is less than 500 ° C., the amount of solid solution N becomes too small, and the machinability deteriorates.
  • the presence of the unsolid solution nitride increases the average particle size of the nitride, which reduces the high-speed cold forging property. Therefore, the heat treatment temperature is set to 500 ° C. or higher.
  • the heat treatment temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher.
  • the stainless steel rod of the present invention has a compressibility of 70% and a strain rate without cracks of 0.1 / s or more, and can realize excellent high-speed cold forging property.
  • the stainless steel rod-shaped steel material of the present invention has a hole depth (tool life) of 50 mm or more due to drilling, and can realize excellent machinability.
  • the stainless steel rod-shaped steel material of the present invention has a coercive force of 5.0 A / m or less, and can realize excellent soft magnetic properties.
  • Electromagnetic parts are, for example, cores and connectors such as injectors and solenoid valves, and since the rod-shaped steel material used as the material has excellent soft magnetic properties, "magnetic attraction” It can produce effects such as “improvement”, “reducing the diameter of parts”, and “improvement of responsiveness”. In addition, since the rod-shaped steel used as the material has excellent high-speed cold forging and machinability, it is possible to manufacture the part at high production and low cost, and it is also possible to make a near net shape by cold forging. To.
  • the conditions are described below. Specifically, the cast slab is heated, and after inclined rolling, rough rolling, and intermediate rolling, No. Finish rolling was performed at a finish rolling temperature of 1180 ° C. and a finish rolling roll diameter of 480 mm under the conditions of 123, and then No. 1 in Table 6 was performed. Heat treatment was performed at a temperature of 1290 ° C. under the condition of 123 to prepare a bar wire (bar-shaped steel material) having a diameter of 20.0 mm.
  • the obtained bar wire (bar-shaped steel material) was evaluated for the average particle size of the nitride, the amount of solid melt N in the steel, the amount of solid melt B, high-speed cold forging property, soft magnetic properties, and machinability.
  • Table 3 and 4 are examples of the present invention and comparative examples corresponding to the present invention 1, and the amount of solid solution N in the steel is shown in the table.
  • Table 5 shows an example of the present invention and a comparative example corresponding to the present invention 2, and the actual results of the amount of solid solution B in the steel are shown in the table.
  • the average particle size of the nitride is the surface layer portion, the central portion, and the 1/4 depth position portion existing between the surface layer portion and the central portion in the L cross section of the rod-shaped steel material (cross section including the center line of the rod-shaped steel material).
  • one or more visual fields were measured with a visual field of 400 times. Then, the nitride in the observation field of view was identified using FE-SEM / ESD, and the average value of the equivalent circle diameters of the nitride in the same field of view was calculated.
  • the average particle size of the nitride is 0.01 to 5 ⁇ m, it is “A”, if it is 5 to 7 ⁇ m, it is “B”, if it is 7 to 10 ⁇ m, it is “C”, and if it exceeds 10 ⁇ m, it is “D”.
  • the steel bar of the present invention was used, it was "A”, “B”, and “C”, and the average particle size of the nitride was excellent.
  • the nitride includes carbonitride.
  • the high-speed cold forging property was judged from the presence or absence of cracks in the end face by a compression test.
  • a test piece of ⁇ 10 ⁇ 15 mm is prepared, the strain rate is changed under the condition of a compression rate of 70% at room temperature, the test piece is compressed, the side surface of the test piece after the test is observed, the presence or absence of cracks is judged, and high-speed cooling is performed.
  • the forgeability was evaluated. "A” if the compression rate is 70% and the strain rate without cracking is 10 / s or more, "B” if it is 1 / s or more, "C” if it is 0.1 / s or more, and less than 0.1 / s. If so, it was set as "D". When the steel bar of the present invention was used, it was "A”, “B”, and “C”, and was excellent in high-speed cold forging property.
  • the coercive force (A / m) was measured.
  • a ring-shaped test piece having a thickness of 3 mm, an outer diameter of 10 mm, and an inner diameter of 8 mm was prepared, and after being heat-treated at 950 ° C. ⁇ 2 hr, the coercive force was measured. If the coercive force is 2.0 A / m or less, it is "A”, if it is 3.5 A / m or less, it is "B”, if it is 5.0 A / m or less, it is "C”, and if it is over 5.0 A / m. For example, “D” was used. When the steel bar of the present invention was used, it was “A”, “B", and “C”, and had excellent soft magnetic properties.
  • the machinability was evaluated by the tool life.
  • a hole of ⁇ 15 ⁇ 30 mm is prepared and drilled in the longitudinal direction (dry type, drill diameter: ⁇ 4 mm, cutting speed: 25 m / min, feed: 0.1 mm / rev, tool: SKH9) to make the hole uncut.
  • the depth was measured and the machinability was evaluated. If the hole depth (tool life) is 130 mm or more, it is set as "A”, if it is 100 mm or more, it is set as "B”, if it is 50 mm or more, it is set as "C”, and if it is less than 50 mm, it is set as "D”. When the steel bar of the present invention was used, it was "A”, “B", and “C”, and the machinability was excellent.
  • Table 6 shows an example of the present invention and a comparative example corresponding to the present invention 1, and the amount of solid solution N in the steel is shown in the table.
  • Table 7 shows an example of the present invention and a comparative example corresponding to the present invention 2, and the actual results of the amount of solid solution B in the steel are shown in the table.
  • a rod-shaped steel material having excellent soft magnetic properties can be obtained, which is extremely useful in industry.

Abstract

A stainless steel bar material which has a chemical composition that contains, in mass%, from 0.001% to 0.030% of C, from 0.01% to 4.00% of Si, from 0.01% to 2.00% of Mn, from 0.01% to 4.00% of Ni, from 8.0% to 35.0% of Cr, from 0.01% to 5.00% of Mo, from 0.01% to 2.00% of Cu, from 0.001% to 0.030% of N, 7.000% or less of Al, from 0% to 2.00% of Ti, from 0% to 2.00% of Nb and from 0% to 0.1% of B, with the balance being made up of Fe and impurities. With respect to this stainless steel bar material, the chemical composition additionally contains, in mass%, one or more elements selected from among 0.001% or more of Ti, 0.001% or more of Nb and 0.0001% or more of B; the average particle diameter of nitrides is 10 μm or less; and the amount of N solid-solved in the steel is 0.020% by mass or less.

Description

ステンレス棒状鋼材及び電磁部品Stainless steel rods and electromagnetic parts
 本発明は、電磁ステンレス鋼、特に高速冷間鍛造性と切削性、軟磁気特性に優れるステンレス棒状鋼材及びそれを用いた電磁部品に関する。 The present invention relates to electromagnetic stainless steel, particularly stainless steel rod-shaped steel having excellent high-speed cold forging property, machinability, and soft magnetic properties, and electromagnetic parts using the same.
 従来、インジェクタや電磁弁などに代表されるような、電磁ステンレス製品は、SUS430、SUS410Lなどを代表とするフェライト系ステンレス鋼線材、鋼線を素材として加工・成型・熱処理され製造されてきた。しかしながら、上記のようなフェライト系ステンレス鋼線材から加工、製造されたステンレス製品の軟磁気特性は、高精度・高出力な部品に十分対応できていない。また、それら製品は、冷間鍛造性や切削性が部品製造の高生産へ対応できず、用途の制限を受ける欠点があった。上記課題に対して、軟磁気特性や冷間鍛造性、切削性の向上として、合金元素の最適化による技術が検討されている(例えば、特許文献1~3)。しかし、成分とプロセスの組合せによる組織制御を活用することにより、フェライト系ステンレス棒線の軟磁気特性、高速冷間鍛造性、切削性の向上を実現できることに着目した発明はない。 Conventionally, electromagnetic stainless steel products such as injectors and solenoid valves have been manufactured by processing, molding, and heat-treating using ferrite-based stainless steel wires and steel wires such as SUS430 and SUS410L as materials. However, the soft magnetic properties of stainless steel products processed and manufactured from the above-mentioned ferritic stainless steel wire rods are not sufficiently compatible with high-precision and high-output parts. In addition, these products have the drawback that their cold forgeability and machinability cannot cope with the high production of parts manufacturing, and their applications are limited. To solve the above problems, techniques for optimizing alloying elements have been studied for improving soft magnetic properties, cold forging properties, and machinability (for example, Patent Documents 1 to 3). However, there is no invention focusing on the fact that the soft magnetic characteristics, high-speed cold forging property, and machinability of ferritic stainless steel rods can be improved by utilizing the structure control by the combination of components and processes.
特開平6-49606号公報Japanese Unexamined Patent Publication No. 6-49606 特開平6-49605号公報Japanese Unexamined Patent Publication No. 6-49605 特開平3-44448号公報Japanese Unexamined Patent Publication No. 3-44448
 以上を踏まえ、本発明は、上記課題を解決し、高速冷間鍛造性と切削性、軟磁気特性に優れる電磁ステンレス鋼、特にステンレス棒状鋼材及びそれを用いた電磁部品を提供することを目的とする。 Based on the above, it is an object of the present invention to solve the above problems and to provide electromagnetic stainless steel having excellent high-speed cold forging property, machinability, and soft magnetic property, particularly stainless rod-shaped steel material and electromagnetic parts using the same. do.
 本発明は、上記の課題を解決するためになされたものであり、下記のステンレス棒状鋼材及び電磁部品を要旨とする。
[1]化学組成が、質量%で、
 C:0.001~0.030%、Si:0.01~4.00%、Mn:0.01~2.00%、Ni:0.01~4.00%、Cr:8.0~35.0%、Mo:0.01~5.00%、Cu:0.01~2.00%、N:0.001~0.030%、Al:7.000%以下を含有し、
 さらに、
 Ti:0~2.00%、Nb:0~2.00%、B:0~0.1000%であり、
 Ti:0.001%以上、Nb:0.001%以上、B:0.0001%以上から選択される一種以上を含有し、
 Sn:0~2.50%、V:0~2.0%、W:0~3.00%、Ga:0~0.05%、Co:0~2.50%、Sb:0~2.50%、Ta:0~2.50%、Ca:0~0.05%、Mg:0~0.012%、Zr:0~0.012%、REM:0~0.05%、Pb:0~0.30%、Se:0~0.80%、Te:0~0.30%、Bi:0~0.50%、S:0~0.50%、P:0~0.30%であり、
 残部:Feおよび不純物であり、
窒化物の平均粒子径が10μm以下であり、鋼中の固溶N量が0.020質量%以下であるステンレス棒状鋼材。
The present invention has been made to solve the above problems, and the gist of the present invention is the following stainless steel rod-shaped steel materials and electromagnetic parts.
[1] The chemical composition is mass%.
C: 0.001 to 0.030%, Si: 0.01 to 4.00%, Mn: 0.01 to 2.00%, Ni: 0.01 to 4.00%, Cr: 8.0 to Contains 35.0%, Mo: 0.01 to 5.00%, Cu: 0.01 to 2.00%, N: 0.001 to 0.030%, Al: 7,000% or less.
moreover,
Ti: 0 to 2.00%, Nb: 0 to 2.00%, B: 0 to 0.1000%, and so on.
It contains one or more selected from Ti: 0.001% or more, Nb: 0.001% or more, and B: 0.0001% or more.
Sn: 0 to 2.50%, V: 0 to 2.0%, W: 0 to 3.00%, Ga: 0 to 0.05%, Co: 0 to 2.50%, Sb: 0 to 2 .50%, Ta: 0 to 2.50%, Ca: 0 to 0.05%, Mg: 0 to 0.012%, Zr: 0 to 0.012%, REM: 0 to 0.05%, Pb : 0 to 0.30%, Se: 0 to 0.80%, Te: 0 to 0.30%, Bi: 0 to 0.50%, S: 0 to 0.50%, P: 0 to 0. 30%
Remaining: Fe and impurities,
A stainless rod-shaped steel material having an average particle size of a nitride of 10 μm or less and a solid solution N content in steel of 0.020% by mass or less.
[2]化学組成が、質量%で、
 C:0.001~0.030%、Si:0.01~4.00%、Mn:0.01~2.00%、Ni:0.01~4.00%、Cr:8.0~35.0%、Mo:0.01~5.00%、Cu:0.01~2.00%、N:0.001~0.030%、Al:7.000%以下を含有し、
 さらに、
 Ti:0~2.00%、Nb:0~2.00%、B:0~0.1000%であり、
 Ti:0.001%以上、Nb:0.001%以上、B:0.0001%以上から選択される一種以上を含有し、
 Sn:0~2.50%、V:0~2.0%、W:0~3.00%、Ga:0~0.05%、Co:0~2.50%、Sb:0~2.50%、Ta:0~2.50%、Ca:0~0.05%、Mg:0~0.012%、Zr:0~0.012%、REM:0~0.05%、Pb:0~0.30%、Se:0~0.80%、Te:0~0.30%、Bi:0~0.50%、S:0~0.50%、P:0~0.30%であり、
 残部:Feおよび不純物であり、
窒化物の平均粒子径が10μm以下であり、鋼中の固溶B量が0.015質量%以下であるステンレス棒状鋼材。
[2] The chemical composition is mass%.
C: 0.001 to 0.030%, Si: 0.01 to 4.00%, Mn: 0.01 to 2.00%, Ni: 0.01 to 4.00%, Cr: 8.0 to Contains 35.0%, Mo: 0.01 to 5.00%, Cu: 0.01 to 2.00%, N: 0.001 to 0.030%, Al: 7,000% or less.
moreover,
Ti: 0 to 2.00%, Nb: 0 to 2.00%, B: 0 to 0.1000%, and so on.
It contains one or more selected from Ti: 0.001% or more, Nb: 0.001% or more, and B: 0.0001% or more.
Sn: 0 to 2.50%, V: 0 to 2.0%, W: 0 to 3.00%, Ga: 0 to 0.05%, Co: 0 to 2.50%, Sb: 0 to 2 .50%, Ta: 0 to 2.50%, Ca: 0 to 0.05%, Mg: 0 to 0.012%, Zr: 0 to 0.012%, REM: 0 to 0.05%, Pb : 0 to 0.30%, Se: 0 to 0.80%, Te: 0 to 0.30%, Bi: 0 to 0.50%, S: 0 to 0.50%, P: 0 to 0. 30%
Remaining: Fe and impurities,
A stainless rod-shaped steel material having an average particle size of a nitride of 10 μm or less and a solid solution B amount in steel of 0.015% by mass or less.
[3]前記化学組成が、質量%でさらに、下記第1群~第3群から選択される1群以上を含有する、[1]または[2]に記載のステンレス棒状鋼材。
第1群 
 Sn:0.0001~2.5%、V:0.001~2.0%W:0.05~3.0%、Ga:0.0004~0.05%、Co:0.05~2.5%、Sb:0.01~2.5%、およびTa:0.01~2.5%から選択される一種以上。
第2群
 Ca:0.0002~0.05%、Mg:0.0002~0.012%、Zr:0.0002~0.012%、およびREM:0.0002~0.05%から選択される一種以上。
第3群
 Pb:0.0001~0.30%、Se:0.0001~0.80%、Te:0.0001~0.30%、Bi:0.0001~0.50%、S:0.0001~0.50%、P:0.0001~0.30%から選択される一種以上。
[3] The stainless steel rod-shaped steel material according to [1] or [2], wherein the chemical composition further contains one or more groups selected from the following groups 1 to 3 in mass%.
Group 1
Sn: 0.0001 to 2.5%, V: 0.001 to 2.0% W: 0.05 to 3.0%, Ga: 0.0004 to 0.05%, Co: 0.05 to 2 One or more selected from .5%, Sb: 0.01 to 2.5%, and Ta: 0.01 to 2.5%.
Group 2 Ca: 0.0002 to 0.05%, Mg: 0.0002 to 0.012%, Zr: 0.0002 to 0.012%, and REM: 0.0002 to 0.05% More than one kind.
Group 3 Pb: 0.0001 to 0.30%, Se: 0.0001 to 0.80%, Te: 0.0001 to 0.30%, Bi: 0.0001 to 0.50%, S: 0 One or more selected from .0001 to 0.50% and P: 0.0001 to 0.30%.
[4]圧縮率70%で割れなきひずみ速度が0.1/s以上である、[1]~[3]のいずれか1つに記載のステンレス棒状鋼材。
[5]ドリル加工による穴深さ(工具寿命)が50mm以上である、[1]~[4]のいずれか1つに記載のステンレス棒状鋼材。
[6]保磁力が5.0A/m以下である、[1]~[5]のいずれか1つに記載のステンレス棒状鋼材。
[4] The stainless steel rod-shaped steel material according to any one of [1] to [3], which has a compressibility of 70% and a strain rate without cracking of 0.1 / s or more.
[5] The stainless steel rod-shaped steel material according to any one of [1] to [4], wherein the hole depth (tool life) by drilling is 50 mm or more.
[6] The stainless steel rod-shaped steel material according to any one of [1] to [5], which has a coercive force of 5.0 A / m or less.
[7][1]~[6]のいずれか1つに記載のステンレス棒状鋼材を用いた電磁部品。 [7] An electromagnetic component using the stainless rod-shaped steel material according to any one of [1] to [6].
 本発明によれば、高速冷間鍛造性と切削性、軟磁気特性に優れるステンレス棒状鋼材及び電磁部品を得ることができる。 According to the present invention, it is possible to obtain stainless steel rod-shaped steel materials and electromagnetic parts having excellent high-speed cold forging properties, machinability, and soft magnetic properties.
 本発明者らは高速冷間鍛造性と切削性、軟磁気特性に優れるステンレス棒状鋼材及び電磁部品を得るために、種々の検討を行なった。その結果、以下の(a)~(c)の知見を得た。 The present inventors conducted various studies in order to obtain stainless steel rod-shaped steel materials and electromagnetic parts having excellent high-speed cold forging properties, machinability, and soft magnetic properties. As a result, the following findings (a) to (c) were obtained.
 (a)B,Ti,Nbの一種以上で成分調整されたフェライト系ステンレス鋼と熱延プロセス(仕上圧延入側温度、仕上げ圧延のロール径、熱処理温度)の組み合わせで、窒化物平均粒子径と鋼中の固溶N量、固溶B量を小さくすることができる。 (A) A combination of ferritic stainless steel whose composition is adjusted with one or more of B, Ti, and Nb and a hot rolling process (finish rolling inlet temperature, finish rolling roll diameter, heat treatment temperature) to obtain the average grain size of nitrides. The amount of solid melt N and the amount of solid melt B in steel can be reduced.
 (b)その結果、高速冷間鍛造性については圧縮率70%で割れなきひずみ速度が0.1/s以上であり、切削性については切削抵抗が50mm以上であり、軟磁気特性については保磁力が5.0A/m以下となり、高速冷間鍛造性と切削性、軟磁気特性の特性をいずれも向上することのできる新しい手法を見出した。 (B) As a result, the high-speed cold forging property has a compression rate of 70%, the unbreakable strain rate is 0.1 / s or more, the machinability has a cutting resistance of 50 mm or more, and the soft magnetic property is maintained. We have found a new method that can improve the characteristics of high-speed cold forging, machinability, and soft magnetic properties by reducing the magnetic force to 5.0 A / m or less.
 本発明は上記の知見に基づいてなされたものである。また、本発明の好ましい一実施形態を詳細に説明する。以降の説明では、本発明の好ましい一実施形態を本発明として記載する。以下、本発明の各要件について詳しく説明する。本発明の棒状の鋼材において、「棒状鋼材」は「棒鋼」、「線材」、「鋼線」、「異形線」、「異形棒鋼」などを含む。 The present invention was made based on the above findings. In addition, a preferred embodiment of the present invention will be described in detail. In the following description, a preferred embodiment of the present invention will be described as the present invention. Hereinafter, each requirement of the present invention will be described in detail. In the bar-shaped steel material of the present invention, the "bar-shaped steel material" includes "bar steel", "wire rod", "steel wire", "deformed wire", "deformed bar steel" and the like.
 1.窒化物の平均粒子径
 本発明に係る棒状鋼材では、窒化物の平均粒子径を制御する。具体的には、窒化物の平均粒子径を10μm以下とする。窒化物の平均粒子径が10μm超となると、粗大窒化物によって高速冷間鍛造性が低下するためである。窒化物の平均粒子径は7μm以下とするのがより好ましく、5μm以下とするのがさらに好ましくい。一方、窒化物の平均粒子径が小さくなりすぎると、軟磁気特性や切削性が劣化するため、窒化物の平均粒子径は0.01μm以上が好ましい。なお、窒化物には炭窒化物を含む。
1. 1. Average particle size of nitride In the rod-shaped steel material according to the present invention, the average particle size of the nitride is controlled. Specifically, the average particle size of the nitride is 10 μm or less. This is because when the average particle size of the nitride exceeds 10 μm, the high-speed cold forging property is deteriorated by the coarse nitride. The average particle size of the nitride is more preferably 7 μm or less, and even more preferably 5 μm or less. On the other hand, if the average particle size of the nitride becomes too small, the soft magnetic properties and machinability deteriorate. Therefore, the average particle size of the nitride is preferably 0.01 μm or more. The nitride includes carbonitride.
 窒化物の平均粒子径は、棒状鋼材のL断面(棒状鋼材の中心線を含む断面)において、表層部、中心部、および表層部と中心部との間に存在する1/4深さ位置部において、400倍の視野で、1視野以上測定を行い、観察視野における窒化物を、FE-SEM/ESDを用いて同定し、同視野の窒化物の円相当径の平均値を算出することによって求めることができる。 The average particle diameter of the nitride is the surface layer portion, the central portion, and the 1/4 depth position portion existing between the surface layer portion and the central portion in the L cross section of the rod-shaped steel material (cross section including the center line of the rod-shaped steel material). By measuring one or more fields in a 400-fold field, identifying the nitrides in the observation field using FE-SEM / ESD, and calculating the average value of the equivalent circle diameters of the nitrides in the same field. You can ask.
 2.鋼中の固溶N量と固溶B量
 本発明に係る棒状鋼材では、鋼中の固溶N量を0.020質量%以下とする、あるいは固溶B量を0.015質量%以下とすることにより、軟磁気特性と高速冷間鍛造性を改善する。以下、本発明の後述する好適な成分組成と上記窒化物の平均粒子径を具備するとともに鋼中の固溶N量を0.020質量%以下と規定する発明を「本発明1」と称する。また、本発明の好適な成分組成と上記窒化物の平均粒子径を具備するとともに鋼中の固溶B量を0.015質量%以下と規定する発明を「本発明2」と称する。
2. 2. Amount of solid solution N and amount of solid solution B in steel In the rod-shaped steel material according to the present invention, the amount of solid solution N in steel is 0.020% by mass or less, or the amount of solid solution B is 0.015% by mass or less. By doing so, the soft magnetic properties and high-speed cold forging property are improved. Hereinafter, an invention having a suitable component composition described later and an average particle size of the above-mentioned nitride and defining the amount of solid-dissolved N in steel to be 0.020% by mass or less will be referred to as "Invention 1". Further, an invention having a suitable component composition of the present invention and the average particle size of the above-mentioned nitride and defining the amount of solid solution B in steel to be 0.015% by mass or less is referred to as "the present invention 2".
 2-1.鋼中の固溶N量
 本発明1に係る棒状鋼材では、鋼中の固溶N量を制御する。具体的には、鋼中の固溶N量を0.020質量%以下とする。鋼中の固溶N量が0.020質量%超となると、固溶Nによる格子ひずみによって軟磁気特性と高速冷間鍛造性が低下するためである。鋼中の固溶N量は0.015質量%以下とするのがより好ましく、0.01質量%以下とするのがさらに好ましい。一方、鋼中の固溶N量が小さくなりすぎると、切削性が劣化するため、好ましくは鋼中の固溶N量を0.00001質量%以上とする。なお、本発明鋼において、結晶組織はフェライト鋼であるため、鋼中の固溶N量はフェライト相中の固溶N量に相当する。
2-1. Amount of solid solution N in steel In the rod-shaped steel material according to the present invention 1, the amount of solid solution N in steel is controlled. Specifically, the amount of solid solution N in the steel is 0.020% by mass or less. This is because when the amount of solid solution N in the steel exceeds 0.020% by mass, the soft magnetic properties and high-speed cold forging property are deteriorated due to the lattice strain due to the solid solution N. The amount of solid solution N in the steel is more preferably 0.015% by mass or less, and further preferably 0.01% by mass or less. On the other hand, if the amount of solid solution N in the steel becomes too small, the machinability deteriorates, so the amount of solid solution N in the steel is preferably 0.00001% by mass or more. Since the crystal structure of the steel of the present invention is ferritic steel, the amount of solid solution N in the steel corresponds to the amount of solid solution N in the ferrite phase.
 鋼中の固溶N量は、棒状鋼材に対し電解抽出残渣を行い、窒化物を抽出させ、窒化物のN量(Npre)を測定し、鋼中全N量(N)との差分から、鋼中の固溶N量(=N-Npre)を測定することができる。 The amount of solid-melted N in the steel is the difference from the total amount of N in the steel (N 0 ) by measuring the N amount (N pre ) of the nitride by performing electrolytic extraction residue on the rod-shaped steel material and extracting the nitride. Therefore, the amount of solid melt N (= N 0 −N pre ) in the steel can be measured.
 2-2.鋼中の固溶B量
 本発明2に係る棒状鋼材では、鋼中の固溶B量を制御することで本発明の課題を解決することもできる。具体的には、鋼中の固溶B量を0.015質量%以下とする。鋼中の固溶B量が0.015質量%超となると、固溶Bによる格子ひずみによって軟磁気特性と高速冷間鍛造性が低下するためである。鋼中の固溶B量は0.010質量%以下とするのがより好ましく、0.005質量%以下とするのがさらに好ましい。一方、鋼中の固溶B量が小さくなりすぎると、切削性が劣化するため、好ましくは鋼中の固溶B量を0.00001質量%以上とする。なお、本発明鋼において、結晶組織はフェライト鋼であるため、鋼中の固溶B量はフェライト相中の固溶B量に相当する。
2-2. Amount of solid solution B in steel In the rod-shaped steel material according to the present invention 2, the problem of the present invention can be solved by controlling the amount of solid solution B in the steel. Specifically, the amount of solid solution B in the steel is 0.015% by mass or less. This is because when the amount of the solid solution B in the steel exceeds 0.015% by mass, the soft magnetic properties and the high-speed cold forging property are deteriorated due to the lattice strain due to the solid solution B. The amount of solid solution B in the steel is more preferably 0.010% by mass or less, and further preferably 0.005% by mass or less. On the other hand, if the amount of solid solution B in the steel becomes too small, the machinability deteriorates, so the amount of solid solution B in the steel is preferably 0.00001% by mass or more. Since the crystal structure of the steel of the present invention is ferritic steel, the amount of solid solution B in the steel corresponds to the amount of solid solution B in the ferrite phase.
 鋼中の固溶B量は、棒状鋼材に対し電解抽出残渣を行い、窒化物を抽出させ、窒化物のB量(Bpre)を測定し、鋼中全B量(B)との差分から、鋼中の固溶B量(=B-Bpre)を測定することができる。 The amount of solid B in the steel is the difference from the total amount of B in the steel (B 0 ) after electrolytic extraction residue is applied to the rod-shaped steel to extract the nitride and the amount of B of the nitride (B pre ) is measured. Therefore, the amount of solid melt B (= B 0 −B pre ) in the steel can be measured.
 3.化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
3. 3. The reasons for limiting the chemical composition of each element are as follows. In the following description, "%" for the content means "mass%".
 C:0.001~0.030%
 Cは、鋼材の強度、切削性を高める。このため、C含有量は、0.001%以上とする。しかしながら、Cを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が劣化する。このため、C含有量は0.030%以下とする。C含有量は0.020%以下とするのが好ましく、0.015%以下とするのがより好ましい。
C: 0.001 to 0.030%
C enhances the strength and machinability of the steel material. Therefore, the C content is set to 0.001% or more. However, if C is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability deteriorate. Therefore, the C content is set to 0.030% or less. The C content is preferably 0.020% or less, more preferably 0.015% or less.
 Si:0.01~4.00%
 Siは、脱酸元素として含有させ、軟磁気特性、切削性を向上させる。このため、Si含有量は0.01%以上とし、0.10%以上とするのが好ましい。しかしながら、Siを過剰に含有させると、高速冷間鍛造性と軟磁気特性、切削性が劣化する。このため、Si含有量は4.00%以下とする。Si含有量は3.00%以下とするのが好ましく、1.50%以下とするのがより好ましい。
Si: 0.01-4.00%
Si is contained as a deoxidizing element to improve soft magnetic properties and machinability. Therefore, the Si content is preferably 0.01% or more, preferably 0.10% or more. However, if Si is excessively contained, high-speed cold forging property, soft magnetic property, and machinability are deteriorated. Therefore, the Si content is set to 4.00% or less. The Si content is preferably 3.00% or less, more preferably 1.50% or less.
 Mn:0.01~2.00%
 Mnは、鋼材の強度と軟磁気特性、切削性を向上させる。このため、Mn含有量は、0.01%以上とし、0.05%以上とするのが好ましい。しかしながら、Mnを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。また、耐食性が低下する場合もある。このため、Mn含有量は2.00%以下とする。Mn含有量は1.00%以下とするのが好ましく、0.50%以下とするのがより好ましい。
Mn: 0.01-2.00%
Mn improves the strength, soft magnetic properties, and machinability of steel materials. Therefore, the Mn content is preferably 0.01% or more, preferably 0.05% or more. However, if Mn is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. In addition, corrosion resistance may decrease. Therefore, the Mn content is set to 2.00% or less. The Mn content is preferably 1.00% or less, and more preferably 0.50% or less.
 Ni:0.01~4.00%
 Niは、鋼材の靭性と軟磁気特性、高速冷間鍛造性、切削性を向上させる。このため、Ni含有量は0.01%以上とし、0.05%以上とするのが好ましい。しかしながら、Niを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。このため、Ni含有量は4.00%以下とする。Ni含有量は3.00%以下とするのが好ましく、1.00%以下とするのがより好ましく、0.50%以下とするのがさらに好ましい。
Ni: 0.01-4.00%
Ni improves the toughness and soft magnetic properties of steel materials, high-speed cold forging, and machinability. Therefore, the Ni content is preferably 0.01% or more, preferably 0.05% or more. However, if Ni is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. Therefore, the Ni content is set to 4.00% or less. The Ni content is preferably 3.00% or less, more preferably 1.00% or less, and even more preferably 0.50% or less.
 Cr:8.0~35.0%
 Crは、耐食性と軟磁気特性、高速冷間鍛造性、切削性を向上させる。このため、Cr含有量は、8.0%以上とする。Cr含有量は10.0%以上とするのが好ましい。しかしながら、Crを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。Cr含有量は35.0%以下にする。Cr含有量は21.0%以下とするのが好ましく、20.0%以下とするのがより好ましい。
Cr: 8.0 to 35.0%
Cr improves corrosion resistance, soft magnetic properties, high-speed cold forging, and machinability. Therefore, the Cr content is set to 8.0% or more. The Cr content is preferably 10.0% or more. However, if Cr is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. The Cr content should be 35.0% or less. The Cr content is preferably 21.0% or less, more preferably 20.0% or less.
 Mo:0.01~5.00%
 Moは、耐食性と軟磁気特性、高速冷間鍛造性、切削性を向上させる。このため、Mo含有量は0.01%以上とする。しかしながら、Moを過剰に含有させると、高速冷間鍛造性、軟磁気特性、切削性が低下する。このため、Mo含有量は5.00%以下とする。Mo含有量は3.00%以下とするのが好ましく、2.00%以下とするのがより好ましく、1.50%以下とするのがさらに好ましい。
Mo: 0.01-5.00%
Mo improves corrosion resistance, soft magnetic properties, high-speed cold forging, and machinability. Therefore, the Mo content is 0.01% or more. However, if Mo is excessively contained, high-speed cold forging property, soft magnetic property, and machinability are deteriorated. Therefore, the Mo content is set to 5.00% or less. The Mo content is preferably 3.00% or less, more preferably 2.00% or less, and even more preferably 1.50% or less.
 Cu:0.01~2.00%
 Cuは、耐食性と軟磁気特性、高速冷間鍛造性、切削性を向上させる。このため、Cu含有量は0.01%以上とし、0.05%以上とするのが好ましい。しかしながら、Cuを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。このため、Cu含有量は2.00%以下とする。Cu含有量は1.00%以下とするのが好ましく、0.80%以下とするのがより好ましく、0.40%以下とするのがさらに好ましい。
Cu: 0.01-2.00%
Cu improves corrosion resistance, soft magnetic properties, high-speed cold forging, and machinability. Therefore, the Cu content is preferably 0.01% or more, preferably 0.05% or more. However, if Cu is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. Therefore, the Cu content is set to 2.00% or less. The Cu content is preferably 1.00% or less, more preferably 0.80% or less, still more preferably 0.40% or less.
 N:0.001~0.030%
 Nは、鋼材の強度、切削性を向上させる。また、窒化物を形成させる元素である。このため、N含有量は0.001%以上とし、0.002%以上とするのが好ましい。しかしながら、Nを過剰に含有させると、軟磁気特性、切削性、高速冷間鍛造性が低下する。また、窒化物の平均粒子径が大きくなり、固溶N量が多くなる。このため、N含有量は0.030%以下とする。N含有量は0.025%以下とするのが好ましく、0.020%以下とするのがより好ましい。
N: 0.001 to 0.030%
N improves the strength and machinability of the steel material. It is also an element that forms a nitride. Therefore, the N content is preferably 0.001% or more, preferably 0.002% or more. However, if N is excessively contained, the soft magnetic properties, machinability, and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes large, and the amount of solid solution N increases. Therefore, the N content is set to 0.030% or less. The N content is preferably 0.025% or less, more preferably 0.020% or less.
 Al:7.000%以下
 Alは、脱酸を促進させ、介在物清浄度レベルを向上させる効果を有する。また、Alの添加は軟磁気特性、高速冷間鍛造性、切削性を高める。しかしながら、Alを過剰に含有させると、その効果は飽和し、軟磁気特性、高速冷間鍛造性、切削性が低下する。また、粗大介在物によって靭性が低下する。このため、Al含有量は7.000%以下とする。Al含有量は3.000%以下とするのが好ましく、0.100%以下とするのがより好ましく、0.020%以下とするのがさらに好ましい。一方、前記効果を得るためには、Al含有量は0.001%以上とするのが好ましい。
Al: 7,000% or less Al has the effect of promoting deoxidation and improving the cleanliness level of inclusions. In addition, the addition of Al enhances soft magnetic properties, high-speed cold forging, and machinability. However, if Al is excessively contained, the effect is saturated, and the soft magnetic property, high-speed cold forging property, and machinability are deteriorated. In addition, the toughness is reduced by the coarse inclusions. Therefore, the Al content is set to 7,000% or less. The Al content is preferably 3.000% or less, more preferably 0.100% or less, and even more preferably 0.020% or less. On the other hand, in order to obtain the above effect, the Al content is preferably 0.001% or more.
 本発明に係る棒状鋼材は、上記元素に加え、Ti:0.001%以上、Nb:0.001%以上、B:0.0001%以上から選択される一種以上の元素を、下記成分範囲内で含有させる。これらの元素は窒化物を構成する主要元素であり、窒化物の平均粒子径や固溶N量に関係するため制御する必要がある。Ti、Nb、Bのうち、上記選択されなかった元素については、含有しないか、下記成分範囲内で含有させることができる。 In addition to the above elements, the rod-shaped steel material according to the present invention contains one or more elements selected from Ti: 0.001% or more, Nb: 0.001% or more, and B: 0.0001% or more within the following component range. Incorporate in. These elements are the main elements constituting the nitride and need to be controlled because they are related to the average particle size of the nitride and the amount of solid solution N. Of Ti, Nb, and B, the element not selected above may not be contained or may be contained within the following component range.
 Ti:0~2.00%
 Tiは、鋼材の強度、軟磁気特性、高速冷間鍛造性、切削性を高める効果を有する。また、Tiは窒化物を形成し、固溶N量に関係する。更に炭窒化物を形成するので、Cr炭化物の生成を抑制し、Cr欠乏層の生成を抑制する。この結果、粒界腐食を防止する効果を有する。このため、Ti含有量は0.001%以上とする。しかしながら、Tiを過剰に含有させると、軟磁気特性、切削性、高速冷間鍛造性が低下する。また、窒化物の平均粒子径が大きくなる。このため、Ti含有量は2.00%以下とする。Ti含有量は1.00%以下とするのが好ましく、0.50%以下とするのがより好ましく、0.50%以下とすることがさらに好ましく、0.25%以下とすると一層好ましい。また、効果発現のために、0.01%以上含有するのが好ましい。0.05%以上がさらに好ましい。0.10%以上であってもよい。
Ti: 0 to 2.00%
Ti has the effects of enhancing the strength, soft magnetic properties, high-speed cold forging property, and machinability of steel materials. Further, Ti forms a nitride and is related to the amount of solid solution N. Further, since carbonitride is formed, the formation of Cr carbide is suppressed and the formation of a Cr-deficient layer is suppressed. As a result, it has the effect of preventing intergranular corrosion. Therefore, the Ti content is set to 0.001% or more. However, if Ti is excessively contained, the soft magnetic properties, machinability, and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes large. Therefore, the Ti content is set to 2.00% or less. The Ti content is preferably 1.00% or less, more preferably 0.50% or less, further preferably 0.50% or less, and even more preferably 0.25% or less. In addition, it is preferably contained in an amount of 0.01% or more in order to exhibit the effect. More preferably, 0.05% or more. It may be 0.10% or more.
 Nb:0~2.00%
 Nbは、鋼材の強度、軟磁気特性、高速冷間鍛造性、切削性を高める効果を有する。また、Nbは窒化物を形成し、固溶N量に関係する。更に炭窒化物を形成するので、Cr炭化物の生成を抑制し、Cr欠乏層の生成を抑制する。この結果、粒界腐食を防止する効果を有する。このため、Nb含有量は0.001%以上とする。しかしながら、Nbを過剰に含有させると、軟磁気特性、切削性、高速冷間鍛造性が低下する。また、窒化物の平均粒子径が大きくなる。このため、Nb含有量は2.00%以下とする。Nb含有量は1.00%以下とするのが好ましく、0.80%以下とするのがより好ましく、0.60%以下とすることがさらに好ましい。また、効果発現のために、0.02%以上含有するのが好ましい。0.05%以上がさらに好ましい。0.10%以上であってもよい。
Nb: 0 to 2.00%
Nb has the effect of enhancing the strength, soft magnetic properties, high-speed cold forging property, and machinability of the steel material. Further, Nb forms a nitride and is related to the amount of solid solution N. Further, since carbonitride is formed, the formation of Cr carbide is suppressed and the formation of a Cr-deficient layer is suppressed. As a result, it has the effect of preventing intergranular corrosion. Therefore, the Nb content is set to 0.001% or more. However, if Nb is excessively contained, the soft magnetic properties, machinability, and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes large. Therefore, the Nb content is set to 2.00% or less. The Nb content is preferably 1.00% or less, more preferably 0.80% or less, and even more preferably 0.60% or less. In addition, it is preferably contained in an amount of 0.02% or more in order to exhibit the effect. More preferably, 0.05% or more. It may be 0.10% or more.
 B:0~0.1000%
 Bは、鋼材の軟磁気特性、高速冷間鍛造性、切削性を高める効果を有する。また、BはBNなどのボロン窒化物を形成し、固溶N量、固溶B量に関係する。特にBNは切削性の向上に寄与する。このため、B含有量は0.0001%以上とする。しかしながら、Bを過剰に含有させると、軟磁気特性、切削性、高速冷間鍛造性が低下する。また、窒化物の平均粒子径が大きくなる。このため、B含有量は0.1000%以下とする。B含有量は0.0200%以下とするのが好ましく、0.0100%以下とするのがより好ましい。また、効果発現のために、0.0005%以上含有するのが好ましい。0.0010%以上がさらに好ましい。0.0020%以上であってもよい。
B: 0 to 0.1000%
B has the effect of enhancing the soft magnetic properties, high-speed cold forging property, and machinability of the steel material. Further, B forms a boron nitride such as BN, and is related to the amount of solid solution N and the amount of solid solution B. In particular, BN contributes to the improvement of machinability. Therefore, the B content is set to 0.0001% or more. However, if B is excessively contained, the soft magnetic properties, machinability, and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes large. Therefore, the B content is set to 0.1000% or less. The B content is preferably 0.0200% or less, more preferably 0.0100% or less. Further, in order to exhibit the effect, it is preferably contained in an amount of 0.0005% or more. 0.0010% or more is more preferable. It may be 0.0020% or more.
 本発明に係る棒状鋼材は、上記元素に加え、必要に応じて、第1群の元素として、Sn、V、W、Ga、Co、SbおよびTaから選択される一種以上の元素を含有させてもよい。 In addition to the above elements, the rod-shaped steel material according to the present invention contains, if necessary, one or more elements selected from Sn, V, W, Ga, Co, Sb and Ta as the elements of the first group. May be good.
 Sn:0~2.50%
 Snは、耐食性、軟磁気特性、高速冷間鍛造性、切削性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Snを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。また、Snの粒界偏析によって靭性が低下する。このため、Sn含有量は2.50%以下とする。Sn含有量は1.00%以下とするのがより好ましく、0.20%以下とするのがさらに好ましい。一方、上記効果を得るためには、Sn含有量は0.0001%以上とするのが好ましく、0.05%以上とするのがより好ましい。
Sn: 0 to 2.50%
Sn may be contained as necessary because it has the effects of improving corrosion resistance, soft magnetic properties, high-speed cold forging property, and machinability. However, if Sn is contained in an excessive amount, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. In addition, the toughness decreases due to the grain boundary segregation of Sn. Therefore, the Sn content is set to 2.50% or less. The Sn content is more preferably 1.00% or less, and further preferably 0.20% or less. On the other hand, in order to obtain the above effect, the Sn content is preferably 0.0001% or more, and more preferably 0.05% or more.
 V:0~2.0%
 Vは、軟磁気特性、高速冷間鍛造性、切削性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Vを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、V含有量は2.0%以下とする。V含有量は1.0%以下とするのが好ましく、0.5%以下とするのがより好ましく、0.1%以下とするのがさらに好ましい。一方、上記効果を得るためには、V含有量は0.001%以上とするのが好ましい。
V: 0-2.0%
Since V has an effect of improving soft magnetic properties, high-speed cold forging property, and machinability, it may be contained as necessary. However, if V is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. In addition, the toughness is reduced by the coarse carbonitride. Therefore, the V content is set to 2.0% or less. The V content is preferably 1.0% or less, more preferably 0.5% or less, and even more preferably 0.1% or less. On the other hand, in order to obtain the above effect, the V content is preferably 0.001% or more.
 W:0~3.00%
 Wは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Wを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、W含有量は3.00%以下とする。W含有量は2.00%以下とするのが好ましく、1.50%以下とするのがより好ましい。一方、上記効果を得るためには、W含有量は0.05%以上とするのが好ましく、0.10%以上とするのがより好ましい。
W: 0 to 3.00%
Since W has an effect of improving corrosion resistance, it may be contained if necessary. However, if W is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. In addition, the toughness is reduced by the coarse carbonitride. Therefore, the W content is set to 3.00% or less. The W content is preferably 2.00% or less, more preferably 1.50% or less. On the other hand, in order to obtain the above effect, the W content is preferably 0.05% or more, and more preferably 0.10% or more.
 Ga:0~0.05%
 Gaは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Gaを過剰に含有させると、熱間加工性が低下する。このため、Ga含有量は0.05%以下とする。一方、上記効果を得るためには、Ga含有量は0.0004%以上とするのが好ましい。
Ga: 0-0.05%
Since Ga has an effect of improving corrosion resistance, it may be contained if necessary. However, if Ga is excessively contained, the hot workability is deteriorated. Therefore, the Ga content is set to 0.05% or less. On the other hand, in order to obtain the above effect, the Ga content is preferably 0.0004% or more.
 Co:0~2.50%
 Coは、鋼材の強度、軟磁気特性、高速冷間鍛造性、切削性を向上させる効果を有するため、必要に応じて含有させてもよい。また、適量のCo添加は飽和磁束密度を高めるため、軟磁気特性を高める。しかしながら、Coを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。このため、Co含有量は2.50%以下とする。Co含有量は1.00%以下とするのが好ましく、0.80%以下とするのがより好ましい。一方、上記効果を得るためには、Co含有量は0.05%以上とするのが好ましく、0.10%以上とするのがより好ましい。
Co: 0-2.50%
Since Co has the effects of improving the strength, soft magnetic properties, high-speed cold forging property, and machinability of the steel material, it may be contained as necessary. In addition, the addition of an appropriate amount of Co increases the saturation magnetic flux density, and thus enhances the soft magnetic characteristics. However, if Co is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. Therefore, the Co content is 2.50% or less. The Co content is preferably 1.00% or less, and more preferably 0.80% or less. On the other hand, in order to obtain the above effect, the Co content is preferably 0.05% or more, more preferably 0.10% or more.
 Sb:0~2.50%
 Sbは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Sbを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。このため、Sb含有量は2.50%以下とする。Sb含有量は1.00%以下とするのがより好ましく、0.20%以下とするのがさらに好ましい。一方、上記効果を得るためには、Sb含有量は0.01%以上とするのが好ましく、0.05%以上とするのがより好ましい。
Sb: 0 to 2.50%
Since Sb has an effect of improving corrosion resistance, it may be contained if necessary. However, if Sb is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. Therefore, the Sb content is set to 2.50% or less. The Sb content is more preferably 1.00% or less, and further preferably 0.20% or less. On the other hand, in order to obtain the above effect, the Sb content is preferably 0.01% or more, and more preferably 0.05% or more.
 Ta:0~2.50%
 Taは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Taを過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。このため、Ta含有量は2.50%以下とする。Ta含有量は1.50%以下とするのが好ましく、0.90%以下とするのがより好ましい。一方、上記効果を得るためには、Ta含有量は0.01%以上とするのが好ましく、0.04%以上とするのがより好ましく、0.08%以上とするのがさらに好ましい。
Ta: 0-2.50%
Since Ta has an effect of improving corrosion resistance, it may be contained if necessary. However, if Ta is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. Therefore, the Ta content is 2.50% or less. The Ta content is preferably 1.50% or less, more preferably 0.90% or less. On the other hand, in order to obtain the above effect, the Ta content is preferably 0.01% or more, more preferably 0.04% or more, and further preferably 0.08% or more.
 本発明に係る棒状鋼材は、上記元素に加え、必要に応じて、第2群の元素として、Ca、Mg、Zr、およびREMから選択される一種以上の元素を含有させてもよい。
 Ca:0~0.05%
 Mg:0~0.012%
 Zr:0~0.012%
 REM:0~0.05%
 Ca、Mg、Zr、およびREMは、脱酸のため、必要に応じて、含有させてもよい。しかしながら、これら各元素を過剰に含有させると、軟磁気特性、高速冷間鍛造性、切削性が低下する。また、粗大介在物によって靭性が低下する。このため、Ca:0.05%以下、Mg:0.012%以下、Zr:0.012%以下、REM:0.05%以下とする。Ca含有量は、0.010%以下とするのが好ましく、0.005%以下とするのがより好ましい。Mgは、0.010%以下とするのが好ましく、0.005%以下とするのがより好ましい。Zrは、0.010%以下とするのが好ましく、0.005%以下とするのがより好ましい。REMは、0.010%以下とするのが好ましい。
 一方、上記効果を得るためには、Ca:0.0002%以上、Mg:0.0002%以上、Zr:0.0002%以上、REM:0.0002%以上とするのが好ましい。Ca含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Mg含有量は、0.0004%以上とするのが好ましく、0.001%以上とするのがさらに好ましい。Zr含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。REM含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。
 なお、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素の総称である。これらの17元素のうちの1種以上を鋼に含有させることができ、REM含有量は、これらの元素の合計含有量を意味する。
In addition to the above elements, the rod-shaped steel material according to the present invention may contain one or more elements selected from Ca, Mg, Zr, and REM as the second group element, if necessary.
Ca: 0-0.05%
Mg: 0 to 0.012%
Zr: 0 to 0.012%
REM: 0-0.05%
Ca, Mg, Zr, and REM may be contained, if necessary, for deoxidation. However, if each of these elements is excessively contained, the soft magnetic properties, high-speed cold forging property, and machinability are deteriorated. In addition, the toughness is reduced by the coarse inclusions. Therefore, Ca: 0.05% or less, Mg: 0.012% or less, Zr: 0.012% or less, REM: 0.05% or less. The Ca content is preferably 0.010% or less, more preferably 0.005% or less. The Mg content is preferably 0.010% or less, more preferably 0.005% or less. Zr is preferably 0.010% or less, and more preferably 0.005% or less. The REM is preferably 0.010% or less.
On the other hand, in order to obtain the above effects, it is preferable that Ca: 0.0002% or more, Mg: 0.0002% or more, Zr: 0.0002% or more, and REM: 0.0002% or more. The Ca content is more preferably 0.0004% or more, and even more preferably 0.001% or more. The Mg content is preferably 0.0004% or more, and more preferably 0.001% or more. The Zr content is more preferably 0.0004% or more, and even more preferably 0.001% or more. The REM content is more preferably 0.0004% or more, and even more preferably 0.001% or more.
REM is a general term for 17 elements including 15 elements of lanthanoids, Y and Sc. One or more of these 17 elements can be contained in steel, and the REM content means the total content of these elements.
 本発明に係る棒状鋼材は、上記元素に加え、必要に応じて、第3群の元素として、Pb、Se、Te、Bi、SおよびPから選択される一種以上の元素を含有させてもよい。
 Pb:0~0.30%、
 Se:0~0.80%、
 Te:0~0.30%、
 Bi:0~0.50%、
 S:0~0.50%、
 P:0~0.30%、
 Pb、Se、Te、Bi、SおよびPは、切削性のため、必要に応じて、含有させてもよい。しかしながら、これら各元素を過剰に含有させると、軟磁気特性、高速冷間鍛造性が低下する。また、靭性が低下する。このため、Pb:0.30%以下、Se:0.80%以下、Te:0.30%以下、Bi:0.50%以下、S:0.50以下、P:0.30以下とする。Pb含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。Se含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。Te含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。Bi含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。S含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。P含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。
 一方、上記効果を得るためには、Pb:0.0001%以上、Se:0.0001%以上、Te:0.0001%以上、Bi:0.0001%以上、S:0.0001%以上、P:0.0001%以上とするのが好ましい。Pb含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Se含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Te含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Bi含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。S含有量は、0.0001%以上とするのがより好ましく、0.0002%以上とするのがさらに好ましい。P含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。
In addition to the above elements, the rod-shaped steel material according to the present invention may contain one or more elements selected from Pb, Se, Te, Bi, S and P as the elements of the third group, if necessary. ..
Pb: 0 to 0.30%,
Se: 0 to 0.80%,
Te: 0 to 0.30%,
Bi: 0 to 0.50%,
S: 0 to 0.50%,
P: 0 to 0.30%,
Pb, Se, Te, Bi, S and P may be contained if necessary because of machinability. However, if each of these elements is excessively contained, the soft magnetic properties and the high-speed cold forging property are deteriorated. It also reduces toughness. Therefore, Pb: 0.30% or less, Se: 0.80% or less, Te: 0.30% or less, Bi: 0.50% or less, S: 0.50 or less, P: 0.30 or less. .. The Pb content is preferably 0.1% or less, more preferably 0.05% or less. The Se content is preferably 0.1% or less, and more preferably 0.05% or less. The Te content is preferably 0.1% or less, more preferably 0.05% or less. The Bi content is preferably 0.1% or less, and more preferably 0.05% or less. The S content is preferably 0.1% or less, and more preferably 0.05% or less. The P content is preferably 0.1% or less, and more preferably 0.05% or less.
On the other hand, in order to obtain the above effects, Pb: 0.0001% or more, Se: 0.0001% or more, Te: 0.0001% or more, Bi: 0.0001% or more, S: 0.0001% or more, P: It is preferably 0.0001% or more. The Pb content is more preferably 0.0004% or more, and further preferably 0.001% or more. The Se content is more preferably 0.0004% or more, and further preferably 0.001% or more. The Te content is more preferably 0.0004% or more, and even more preferably 0.001% or more. The Bi content is more preferably 0.0004% or more, and further preferably 0.001% or more. The S content is more preferably 0.0001% or more, and further preferably 0.0002% or more. The P content is more preferably 0.0004% or more, and further preferably 0.001% or more.
 本発明の鋼板の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 In the chemical composition of the steel sheet of the present invention, the balance is Fe and impurities. Here, the "impurity" is a component mixed with raw materials such as ore and scrap, and various factors in the manufacturing process when the steel sheet is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
 なお、不純物としては、例えば、O、Zn、H等が例示される。不純物は低減されることが好ましいが、含有される場合は、O,ZnおよびHは0.01%以下とするのが望ましい。 Examples of impurities include O, Zn, H and the like. Impurities are preferably reduced, but when they are contained, O, Zn and H are preferably 0.01% or less.
 4.製造方法
 本発明に係る電磁ステンレス鋼(ステンレス棒状鋼材)の好ましい製造方法を説明する。本発明に係るステンレス棒状鋼材は、製造方法によらず、上述の構成を有していれば、その効果を得られるが、例えば、以下のような製造方法により、本発明に係るステンレス棒状鋼材を安定して得ることができる。
4. Manufacturing Method A preferred manufacturing method for the electromagnetic stainless steel (stainless steel rod-shaped steel material) according to the present invention will be described. The stainless steel rod-shaped steel material according to the present invention can obtain the effect as long as it has the above-mentioned configuration regardless of the manufacturing method. For example, the stainless steel rod-shaped steel material according to the present invention can be obtained by the following manufacturing method. It can be obtained stably.
 本発明に係るステンレス棒状鋼材では、上記化学組成を有する鋼を溶製し、所定の径を有する鋳片を鋳造した後、熱間または温間の棒線圧延を粗圧延、中間圧延、仕上圧延にて行い、棒状鋼材の熱処理を行う。粗圧延の前に傾斜圧延を行うと好ましい。その後、必要に応じて、適宜、酸洗などを行う。 In the stainless steel rod-shaped steel material according to the present invention, a steel having the above chemical composition is melted, a slab having a predetermined diameter is cast, and then hot or hot rod wire rolling is rough-rolled, intermediate-rolled, and finish-rolled. And heat-treat the rod-shaped steel material. It is preferable to perform inclined rolling before rough rolling. Then, if necessary, pickling or the like is performed as appropriate.
 4-1.仕上圧延入側温度
 棒状鋼材の熱間圧延は仕上圧延の入側温度を制御するのが好ましい。棒状鋼材の仕上圧延入側温度は、窒化物の平均粒子径を変化させるとともに、鋼中に含まれるN、Bの固溶量分率を変化させる。このため、仕上圧延入側温度は軟磁気特性、高速冷間鍛造性、切削性に影響を与える。棒状鋼材の仕上圧延入側温度を1200℃超とすると、窒化物が溶解しやすくなり、固溶N量、固溶B量が増加する。この結果、軟磁気特性、高速冷間鍛造性が低下する。また、窒化物の平均粒子径が小さくなりすぎるため、切削性が低下する。そのため、仕上圧延入側温度は1200℃以下とし、1100℃以下が好ましく、1050℃以下が更に好ましい。一方で仕上圧延入側温度が600℃未満となると、固溶N量が少なりなりすぎるため、切削性が低下する。また、未固溶窒化物の存在によって窒化物の平均粒子径が大きくなるため、高速冷間鍛造性が低下する。そのため、仕上圧延入側温度は600℃以上とする。仕上圧延入側温度は700℃以上で好ましく、800℃で更に好ましい。
4-1. Finish rolling inlet temperature In hot rolling of rod-shaped steel, it is preferable to control the inlet temperature of finish rolling. The temperature at the finish rolling inlet side of the bar-shaped steel material changes the average particle size of the nitride and also changes the solid solution fraction of N and B contained in the steel. Therefore, the finish rolling inlet temperature affects the soft magnetic properties, high-speed cold forging property, and machinability. When the temperature on the finish rolling inlet side of the bar-shaped steel material exceeds 1200 ° C., the nitride is easily melted, and the amount of solid solution N and the amount of solid solution B increase. As a result, the soft magnetic properties and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes too small, which reduces machinability. Therefore, the finish rolling inlet temperature is preferably 1200 ° C. or lower, preferably 1100 ° C. or lower, and even more preferably 1050 ° C. or lower. On the other hand, when the temperature on the finishing rolling inlet side is less than 600 ° C., the amount of solid solution N becomes too small, so that the machinability deteriorates. In addition, the presence of the unsolid solution nitride increases the average particle size of the nitride, which reduces the high-speed cold forging property. Therefore, the temperature on the entry side of the finish rolling is set to 600 ° C. or higher. The finish rolling inlet temperature is preferably 700 ° C. or higher, more preferably 800 ° C.
 4-2.仕上圧延のロール径
 仕上圧延のロール径は棒状鋼材のひずみ分布と量に影響を与え、窒化物の平均粒子径と鋼中の固溶N量に関係し、軟磁気特性、高速冷間鍛造性、切削性に影響を与えるため、制御する必要がある。仕上圧延ロール径が50mm未満となると、棒状鋼材中心部へひずみが導入されず、転位上への微細窒化物の形成が促進されず、窒化物の平均粒子径が大きくなる。また、固溶N量は多くなる。この結果、軟磁気特性、高速冷間鍛造性が低下する。なお、前記の仕上圧延ロール径の鋼中の固溶N量に及ぼす作用は、固溶Bの場合も同様であり、仕上圧延ロール径が50mm未満となると固溶B量が多くなる。このため、仕上圧延ロール径は50mm以上とし、80mm以上が好ましく、100mm以上が更に好ましい。一方で仕上圧延ロール径が500mm超となると、窒化物が微細になりすぎ、固溶N量、固溶B量も多くなるため、切削性と磁気特性が低下するため、500mm以下とし、400mm以下で好ましく、300mm以下で更に好ましい。
4-2. Roll diameter of finish rolling The roll diameter of finish rolling affects the strain distribution and amount of bar-shaped steel, and is related to the average particle size of nitrides and the amount of solid melt N in steel. , It affects machinability and needs to be controlled. When the diameter of the finished rolled roll is less than 50 mm, strain is not introduced into the center of the rod-shaped steel material, formation of fine nitrides on the dislocations is not promoted, and the average particle diameter of the nitrides becomes large. In addition, the amount of solid solution N increases. As a result, the soft magnetic properties and high-speed cold forging property are deteriorated. The effect of the finished rolling roll diameter on the solid solution N amount in the steel is the same in the case of the solid solution B, and when the finished rolling roll diameter is less than 50 mm, the solid solution B amount increases. Therefore, the diameter of the finished rolled roll is preferably 50 mm or more, preferably 80 mm or more, and more preferably 100 mm or more. On the other hand, if the diameter of the finished rolled roll exceeds 500 mm, the nitride becomes too fine and the amount of solid solution N and the amount of solid solution B also increase, resulting in deterioration of machinability and magnetic properties. It is preferable, and 300 mm or less is more preferable.
 4-3.棒状鋼材の熱処理温度
 熱間圧延された棒状鋼材は熱処理されるのが好ましい。棒状鋼材の熱処理温度は、窒化物の平均粒子径と鋼中の固溶量分率を変化させる。このため、棒状鋼材の熱処理温度は軟磁気特性、高速冷間鍛造性、切削性に影響を与える。棒状鋼材の熱処理温度を1300℃超とすると、窒化物が溶解しやすくなり、固溶N量、固溶B量が増加する。この結果、軟磁気特性、高速冷間鍛造性が低下する。また、窒化物の平均粒子径が小さくなりすぎるため、切削性が低下する。そのため、熱処理温度は1300℃以下とし、1200℃以下が好ましく、1100℃以下が更に好ましい。一方で棒状鋼材の熱処理温度が500℃未満となると、固溶N量が少なくなりすぎるため、切削性が低下する。また、未固溶窒化物の存在によって窒化物の平均粒子径が大きくなるため、高速冷間鍛造性が低下する。そのため、熱処理温度は500℃以上とする。熱処理温度は600℃以上で好ましく、700℃で更に好ましい。
4-3. Heat treatment temperature of rod-shaped steel material It is preferable that the hot-rolled rod-shaped steel material is heat-treated. The heat treatment temperature of the bar steel changes the average particle size of the nitride and the solid solution fraction in the steel. Therefore, the heat treatment temperature of the rod-shaped steel material affects the soft magnetic properties, high-speed cold forging property, and machinability. When the heat treatment temperature of the rod-shaped steel material exceeds 1300 ° C., the nitride is easily melted, and the amount of solid solution N and the amount of solid solution B increase. As a result, the soft magnetic properties and high-speed cold forging property are deteriorated. In addition, the average particle size of the nitride becomes too small, which reduces machinability. Therefore, the heat treatment temperature is set to 1300 ° C. or lower, preferably 1200 ° C. or lower, and more preferably 1100 ° C. or lower. On the other hand, when the heat treatment temperature of the rod-shaped steel material is less than 500 ° C., the amount of solid solution N becomes too small, and the machinability deteriorates. In addition, the presence of the unsolid solution nitride increases the average particle size of the nitride, which reduces the high-speed cold forging property. Therefore, the heat treatment temperature is set to 500 ° C. or higher. The heat treatment temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher.
 5.ステンレス棒状鋼材の品質
 本発明のステンレス棒状鋼材は、圧縮率70%で割れなきひずみ速度が0.1/s以上となり、優れた高速冷間鍛造性を実現することができる。
 本発明のステンレス棒状鋼材は、ドリル加工による穴深さ(工具寿命)が50mm以上となり、優れた切削性を実現することができる。
 本発明のステンレス棒状鋼材は、保磁力が5.0A/m以下となり、優れた軟磁気特性を実現することができる。
5. Quality of Stainless Steel Rod The stainless steel rod of the present invention has a compressibility of 70% and a strain rate without cracks of 0.1 / s or more, and can realize excellent high-speed cold forging property.
The stainless steel rod-shaped steel material of the present invention has a hole depth (tool life) of 50 mm or more due to drilling, and can realize excellent machinability.
The stainless steel rod-shaped steel material of the present invention has a coercive force of 5.0 A / m or less, and can realize excellent soft magnetic properties.
 6.電磁部品
 本発明のステンレス棒状鋼材を用いた電磁部品は、例えばインジェクタや電磁弁などのコアやコネクタなどであり、素材とする棒状鋼材が優れた軟磁気特性を有することから、“磁気吸引力の向上”や“部品の細径化”、“応答性の向上”などという効果を奏することができる。また、素材とする棒状鋼材が優れた高速冷間鍛造性と切削性を有することから、当該部品を高生産・低コストで製造することが可能となり、冷間鍛造でのニアネットシェイプ化も可能にする。
6. Electromagnetic parts The electromagnetic parts using the stainless steel rod-shaped steel material of the present invention are, for example, cores and connectors such as injectors and solenoid valves, and since the rod-shaped steel material used as the material has excellent soft magnetic properties, "magnetic attraction" It can produce effects such as "improvement", "reducing the diameter of parts", and "improvement of responsiveness". In addition, since the rod-shaped steel used as the material has excellent high-speed cold forging and machinability, it is possible to manufacture the part at high production and low cost, and it is also possible to make a near net shape by cold forging. To.
 以下、実施例によって本発明をより具体的に説明するが、本発明は例示でありこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is an example and is not limited to these examples.
 表1、2に記載の化学組成を有する鋼を溶製した。鋼の溶製の際には、ステンレス鋼の安価な溶製プロセスであるAOD溶製を想定し、100kgの真空溶解炉にて溶解し、直径180mmの鋳片に鋳造した。その後、下記の製造条件により直径20.0mmのステンレス棒線とした。 Steels having the chemical compositions shown in Tables 1 and 2 were melted. At the time of melting the steel, AOD melting, which is an inexpensive melting process of stainless steel, was assumed, and the steel was melted in a 100 kg vacuum melting furnace and cast into a slab having a diameter of 180 mm. Then, according to the following manufacturing conditions, a stainless steel rod having a diameter of 20.0 mm was obtained.
 以下に条件を記載する。具体的には、鋳造した鋳片を加熱し、傾斜圧延、粗圧延、中間圧延の後、表6のNo.123の条件の仕上圧延温度1180℃、仕上圧延ロール径480mmで仕上圧延を行い、その後表6のNo.123の条件の温度1290℃で熱処理を施し、直径20.0mmの棒線(棒状鋼材)を作製した。 The conditions are described below. Specifically, the cast slab is heated, and after inclined rolling, rough rolling, and intermediate rolling, No. Finish rolling was performed at a finish rolling temperature of 1180 ° C. and a finish rolling roll diameter of 480 mm under the conditions of 123, and then No. 1 in Table 6 was performed. Heat treatment was performed at a temperature of 1290 ° C. under the condition of 123 to prepare a bar wire (bar-shaped steel material) having a diameter of 20.0 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた棒線(棒状鋼材)について、窒化物の平均粒子径および鋼中の固溶N量、固溶B量、高速冷間鍛造性、軟磁気特性、切削性を評価した。以下、表3、表4および表5にまとめて結果を示す。表3、表4は本発明1に対応する本発明例及び比較例であり、表中に鋼中の固溶N量を記載している。表5は本発明2に対応する本発明例及び比較例であり、表中には鋼中の固溶B量の実績を記載している。なお、これらの測定は以下の手順に従い、測定を行った。 The obtained bar wire (bar-shaped steel material) was evaluated for the average particle size of the nitride, the amount of solid melt N in the steel, the amount of solid melt B, high-speed cold forging property, soft magnetic properties, and machinability. Below, the results are summarized in Table 3, Table 4 and Table 5. Tables 3 and 4 are examples of the present invention and comparative examples corresponding to the present invention 1, and the amount of solid solution N in the steel is shown in the table. Table 5 shows an example of the present invention and a comparative example corresponding to the present invention 2, and the actual results of the amount of solid solution B in the steel are shown in the table. These measurements were performed according to the following procedure.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 窒化物の平均粒子径は、棒状鋼材のL断面(棒状鋼材の中心線を含む断面)において、表層部、中心部、および表層部と中心部との間に存在する1/4深さ位置部において、400倍の視野で、1視野以上測定を行った。そして、観察視野における窒化物を、FE-SEM/ESDを用いて同定し、同視野の窒化物の円相当径の平均値を算出した。窒化物の平均粒子径が0.01~5μmであれば「A」、5~7μmであれば「B」、7~10μmであれば「C」、10μm超であれば「D」とした。本発明の棒鋼鋼材を使用した場合、「A」および「B」、「C」であり、窒化物の平均粒子径に優れていた。なお、窒化物には炭窒化物を含む。 The average particle size of the nitride is the surface layer portion, the central portion, and the 1/4 depth position portion existing between the surface layer portion and the central portion in the L cross section of the rod-shaped steel material (cross section including the center line of the rod-shaped steel material). In, one or more visual fields were measured with a visual field of 400 times. Then, the nitride in the observation field of view was identified using FE-SEM / ESD, and the average value of the equivalent circle diameters of the nitride in the same field of view was calculated. If the average particle size of the nitride is 0.01 to 5 μm, it is “A”, if it is 5 to 7 μm, it is “B”, if it is 7 to 10 μm, it is “C”, and if it exceeds 10 μm, it is “D”. When the steel bar of the present invention was used, it was "A", "B", and "C", and the average particle size of the nitride was excellent. The nitride includes carbonitride.
 鋼中の固溶N量は、棒状鋼材に対し電解抽出残渣を行い、窒化物を抽出させ、窒化物のN量(Npre)を測定し、鋼中全N量(N)との差分から、鋼中の固溶N量(=N-Npre)を測定した。鋼中の固溶N量が0.00001~0.01質量%であれば「A」、0.01~0.015質量%であれば「B」、0.015~0.020質量%であれば「C」、0.020質量%超であれば「D」とした。本発明の棒鋼鋼材を使用した場合、表3に示すとおり、「A」および「B」、「C」であり、鋼中の固溶N量に優れていた。 The amount of solid-melted N in the steel is the difference from the total amount of N in the steel (N 0 ) after electrolytic extraction residue is applied to the rod-shaped steel to extract the nitride and the amount of N of the nitride (N pre ) is measured. From the above, the amount of solid melt N (= N 0 −N pre ) in the steel was measured. If the amount of solid melt N in the steel is 0.00001 to 0.01% by mass, it is "A", if it is 0.01 to 0.015% by mass, it is "B", and if it is 0.015 to 0.020% by mass. If there is, it is given as "C", and if it exceeds 0.020% by mass, it is given as "D". When the steel bar of the present invention was used, it was "A", "B", and "C" as shown in Table 3, and the amount of solid solution N in the steel was excellent.
 鋼中の固溶B量は、棒状鋼材に対し電解抽出残渣を行い、窒化物を抽出させ、窒化物のB量(Bpre)を測定し、鋼中全B量(B)との差分から、鋼中の固溶B量(=B-Bpre)を測定した。鋼中の固溶B量が0.01質量%以下であれば「B」、0.01~0.015質量%であれば「C」、0.015質量%超であれば「D」とした。本発明の棒鋼鋼材を使用した場合、表5に示すとおり、「B」および「C」であり、鋼中の固溶B量に優れていた。 The amount of solid B in the steel is the difference from the total amount of B in the steel (B 0 ) after electrolytic extraction residue is applied to the rod-shaped steel to extract the nitride and the amount of B of the nitride (B pre ) is measured. From the above, the amount of solid melt B (= B 0 −B pre ) in the steel was measured. If the amount of solid solution B in the steel is 0.01% by mass or less, it is "B", if it is 0.01 to 0.015% by mass, it is "C", and if it is more than 0.015% by mass, it is "D". did. When the steel bar of the present invention was used, it was "B" and "C" as shown in Table 5, and the amount of solid solution B in the steel was excellent.
 高速冷間鍛造性は圧縮試験によって端面の割れ有無から判定した。φ10×15mmの試験片を作製し、常温で圧縮率70%の条件でひずみ速度を変化させ、試験片を圧縮させ、試験後の試験片側面を観察し、割れの有無を判定し、高速冷間鍛造性を評価した。圧縮率70%で割れなきひずみ速度10/s以上であれば「A」、1/s以上であれば「B」、0.1/s以上であれば「C」、0.1/s未満であれば「D」とした。本発明の棒鋼鋼材を使用した場合、「A」および、「B」、「C」であり、高速冷間鍛造性に優れていた。 The high-speed cold forging property was judged from the presence or absence of cracks in the end face by a compression test. A test piece of φ10 × 15 mm is prepared, the strain rate is changed under the condition of a compression rate of 70% at room temperature, the test piece is compressed, the side surface of the test piece after the test is observed, the presence or absence of cracks is judged, and high-speed cooling is performed. The forgeability was evaluated. "A" if the compression rate is 70% and the strain rate without cracking is 10 / s or more, "B" if it is 1 / s or more, "C" if it is 0.1 / s or more, and less than 0.1 / s. If so, it was set as "D". When the steel bar of the present invention was used, it was "A", "B", and "C", and was excellent in high-speed cold forging property.
 軟磁気特性は、保磁力(A/m)を測定した。厚さ3mm×外径10mm×内径8mmのリング状試験片を作製し、950℃×2hrの熱処理を施した後に保磁力を測定した。保磁力が2.0A/m以下であれば「A」、3.5A/m以下であれば「B」、5.0A/m以下であれば「C」、5.0A/m超であれば「D」とした。本発明の棒鋼鋼材を使用した場合、「A」および「B」、「C」であり、軟磁気特性に優れていた。 For the soft magnetic property, the coercive force (A / m) was measured. A ring-shaped test piece having a thickness of 3 mm, an outer diameter of 10 mm, and an inner diameter of 8 mm was prepared, and after being heat-treated at 950 ° C. × 2 hr, the coercive force was measured. If the coercive force is 2.0 A / m or less, it is "A", if it is 3.5 A / m or less, it is "B", if it is 5.0 A / m or less, it is "C", and if it is over 5.0 A / m. For example, "D" was used. When the steel bar of the present invention was used, it was "A", "B", and "C", and had excellent soft magnetic properties.
 切削性は、工具寿命によって評価した。φ15×30mmの試験片を作製し、長手方向へドリル加工(乾式、ドリル径:φ4mm、切削速度:25m/min、送り:0.1mm/rev、工具:SKH9)を行い、切削不能となる穴深さを測定し、切削性を評価した。穴深さ(工具寿命)が130mm以上であれば「A」、100mm以上であれば「B」、50mm以上であれば「C」、50mm未満であれば「D」とした。本発明の棒鋼鋼材を使用した場合、「A」および「B」、「C」であり、切削性に優れていた。 The machinability was evaluated by the tool life. A hole of φ15 × 30 mm is prepared and drilled in the longitudinal direction (dry type, drill diameter: φ4 mm, cutting speed: 25 m / min, feed: 0.1 mm / rev, tool: SKH9) to make the hole uncut. The depth was measured and the machinability was evaluated. If the hole depth (tool life) is 130 mm or more, it is set as "A", if it is 100 mm or more, it is set as "B", if it is 50 mm or more, it is set as "C", and if it is less than 50 mm, it is set as "D". When the steel bar of the present invention was used, it was "A", "B", and "C", and the machinability was excellent.
 続いて表1に示す鋼種Pを用いて、表6、表7に記載の条件により、直径15mmの棒状鋼材を作製した。なお、仕上圧延入側温度、仕上圧延ロール径、熱処理温度以外の履歴は前記実施例1と同様とした。作製した棒線(棒状鋼材)について、窒化物の平均粒子径および鋼中の固溶N量、固溶B量、高速冷間鍛造性、軟磁気特性、切削性を、上述の方法で測定した。以下、結果をまとめて、表6、表7に示す。表6は本発明1に対応する本発明例及び比較例であり、表中に鋼中の固溶N量を記載している。表7は本発明2に対応する本発明例及び比較例であり、表中には鋼中の固溶B量の実績を記載している。 Subsequently, using the steel grade P shown in Table 1, a rod-shaped steel material having a diameter of 15 mm was produced under the conditions shown in Tables 6 and 7. The history other than the finish rolling inlet temperature, the finish rolling roll diameter, and the heat treatment temperature was the same as in Example 1. The average particle size of the nitride, the amount of solid melt N in the steel, the amount of solid melt B, the high-speed cold forging property, the soft magnetic property, and the machinability were measured for the produced bar wire (bar-shaped steel material) by the above-mentioned method. .. The results are summarized below and are shown in Tables 6 and 7. Table 6 shows an example of the present invention and a comparative example corresponding to the present invention 1, and the amount of solid solution N in the steel is shown in the table. Table 7 shows an example of the present invention and a comparative example corresponding to the present invention 2, and the actual results of the amount of solid solution B in the steel are shown in the table.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明によれば、軟磁気特性に優れる棒状鋼材を得ることができ、産業上極めて有用である。 According to the present invention, a rod-shaped steel material having excellent soft magnetic properties can be obtained, which is extremely useful in industry.

Claims (7)

  1.  化学組成が、質量%で、
     C:0.001~0.030%、
     Si:0.01~4.00%、
     Mn:0.01~2.00%、
     Ni:0.01~4.00%、
     Cr:8.0~35.0%、
     Mo:0.01~5.00%、
     Cu:0.01~2.00%、
     N:0.001~0.030%、
     Al:7.000%以下を含有し、
     さらに、
     Ti:0~2.00%、
     Nb:0~2.00%、
     B:0~0.1000%であり、
     Ti:0.001%以上、Nb:0.001%以上、B:0.0001%以上から選択される一種以上を含有し、
     Sn:0~2.50%、
     V:0~2.0%、
     W:0~3.00%、
     Ga:0~0.05%、
     Co:0~2.50%、
     Sb:0~2.50%、
     Ta:0~2.50%、
     Ca:0~0.05%、
     Mg:0~0.012%、
     Zr:0~0.012%、
     REM:0~0.05%、
     Pb:0~0.30%、
     Se:0~0.80%、
     Te:0~0.30%、
     Bi:0~0.50%、
     S:0~0.50%、
     P:0~0.30%であり、
     残部:Feおよび不純物であり、
    窒化物の平均粒子径が10μm以下であり、鋼中の固溶N量が0.020質量%以下であるステンレス棒状鋼材。
    The chemical composition is by mass%,
    C: 0.001 to 0.030%,
    Si: 0.01-4.00%,
    Mn: 0.01-2.00%,
    Ni: 0.01-4.00%,
    Cr: 8.0 to 35.0%,
    Mo: 0.01-5.00%,
    Cu: 0.01-2.00%,
    N: 0.001 to 0.030%,
    Al: Contains 7,000% or less,
    moreover,
    Ti: 0 to 2.00%,
    Nb: 0 to 2.00%,
    B: 0 to 0.1000%,
    It contains one or more selected from Ti: 0.001% or more, Nb: 0.001% or more, and B: 0.0001% or more.
    Sn: 0 to 2.50%,
    V: 0-2.0%,
    W: 0 to 3.00%,
    Ga: 0-0.05%,
    Co: 0-2.50%,
    Sb: 0 to 2.50%,
    Ta: 0-2.50%,
    Ca: 0-0.05%,
    Mg: 0 to 0.012%,
    Zr: 0 to 0.012%,
    REM: 0-0.05%,
    Pb: 0 to 0.30%,
    Se: 0 to 0.80%,
    Te: 0 to 0.30%,
    Bi: 0 to 0.50%,
    S: 0 to 0.50%,
    P: 0 to 0.30%,
    Remaining: Fe and impurities,
    A stainless rod-shaped steel material having an average particle size of a nitride of 10 μm or less and a solid solution N content in steel of 0.020% by mass or less.
  2.  化学組成が、質量%で、
     C:0.001~0.030%、
     Si:0.01~4.00%、
     Mn:0.01~2.00%、
     Ni:0.01~4.00%、
     Cr:8.0~35.0%、
     Mo:0.01~5.00%、
     Cu:0.01~2.00%、
     N:0.001~0.030%、
     Al:7.000%以下を含有し、
     さらに、
     Ti:0~2.00%、
     Nb:0~2.00%、
     B:0~0.1000%であり、
     Ti:0.001%以上、Nb:0.001%以上、B:0.0001%以上から選択される一種以上を含有し、
     Sn:0~2.50%、
     V:0~2.0%、
     W:0~3.00%、
     Ga:0~0.05%、
     Co:0~2.50%、
     Sb:0~2.50%、
     Ta:0~2.50%、
     Ca:0~0.05%、
     Mg:0~0.012%、
     Zr:0~0.012%、
     REM:0~0.05%、
     Pb:0~0.30%、
     Se:0~0.80%、
     Te:0~0.30%、
     Bi:0~0.50%、
     S:0~0.50%、
     P:0~0.30%であり、
     残部:Feおよび不純物であり、
    窒化物の平均粒子径が10μm以下であり、鋼中の固溶B量が0.015質量%以下であるステンレス棒状鋼材。
    The chemical composition is by mass%,
    C: 0.001 to 0.030%,
    Si: 0.01-4.00%,
    Mn: 0.01-2.00%,
    Ni: 0.01-4.00%,
    Cr: 8.0 to 35.0%,
    Mo: 0.01-5.00%,
    Cu: 0.01-2.00%,
    N: 0.001 to 0.030%,
    Al: Contains 7,000% or less,
    moreover,
    Ti: 0 to 2.00%,
    Nb: 0 to 2.00%,
    B: 0 to 0.1000%,
    It contains one or more selected from Ti: 0.001% or more, Nb: 0.001% or more, and B: 0.0001% or more.
    Sn: 0 to 2.50%,
    V: 0-2.0%,
    W: 0 to 3.00%,
    Ga: 0-0.05%,
    Co: 0-2.50%,
    Sb: 0 to 2.50%,
    Ta: 0-2.50%,
    Ca: 0-0.05%,
    Mg: 0 to 0.012%,
    Zr: 0 to 0.012%,
    REM: 0-0.05%,
    Pb: 0 to 0.30%,
    Se: 0 to 0.80%,
    Te: 0 to 0.30%,
    Bi: 0 to 0.50%,
    S: 0 to 0.50%,
    P: 0 to 0.30%,
    Remaining: Fe and impurities,
    A stainless rod-shaped steel material having an average particle size of a nitride of 10 μm or less and a solid solution B amount in steel of 0.015% by mass or less.
  3.  前記化学組成が、質量%でさらに、下記第1群~第3群から選択される1群以上を含有する、請求項1または請求項2に記載のステンレス棒状鋼材。
    第1群 
     Sn:0.0001~2.5%、
     V:0.001~2.0%
     W:0.05~3.0%、
     Ga:0.0004~0.05%、
     Co:0.05~2.5%、
     Sb:0.01~2.5%、および
     Ta:0.01~2.5%、
     から選択される一種以上。
    第2群
     Ca:0.0002~0.05%、
     Mg:0.0002~0.012%、
     Zr:0.0002~0.012%、および
     REM:0.0002~0.05%、
     から選択される一種以上。
    第3群
     Pb:0.0001~0.30%、
     Se:0.0001~0.80%、
     Te:0.0001~0.30%、
     Bi:0.0001~0.50%、
     S:0.0001~0.50%、
     P:0.0001~0.30%、
     から選択される一種以上。
    The stainless steel rod-shaped steel material according to claim 1 or 2, wherein the chemical composition further contains one or more groups selected from the following groups 1 to 3 in mass%.
    Group 1
    Sn: 0.0001 to 2.5%,
    V: 0.001 to 2.0%
    W: 0.05-3.0%,
    Ga: 0.0004-0.05%,
    Co: 0.05-2.5%,
    Sb: 0.01-2.5%, and Ta: 0.01-2.5%,
    One or more selected from.
    Group 2 Ca: 0.0002-0.05%,
    Mg: 0.0002 to 0.012%,
    Zr: 0.0002 to 0.012%, and REM: 0.0002 to 0.05%,
    One or more selected from.
    Group 3 Pb: 0.0001 to 0.30%,
    Se: 0.0001 to 0.80%,
    Te: 0.0001 to 0.30%,
    Bi: 0.0001 to 0.50%,
    S: 0.0001 to 0.50%,
    P: 0.0001 to 0.30%,
    One or more selected from.
  4.  圧縮率70%で割れなきひずみ速度が0.1/s以上である、請求項1~請求項3のいずれか1項に記載のステンレス棒状鋼材。 The stainless steel rod-shaped steel material according to any one of claims 1 to 3, wherein the compression rate is 70% and the strain rate without cracking is 0.1 / s or more.
  5.  ドリル加工による穴深さ(工具寿命)が50mm以上である、請求項1~請求項4のいずれか1項に記載のステンレス棒状鋼材。 The stainless steel rod-shaped steel material according to any one of claims 1 to 4, wherein the hole depth (tool life) by drilling is 50 mm or more.
  6.  保磁力が5.0A/m以下である、請求項1~請求項5のいずれか1項に記載のステンレス棒状鋼材。 The stainless steel rod-shaped steel material according to any one of claims 1 to 5, wherein the coercive force is 5.0 A / m or less.
  7.  請求項1~請求項6のいずれか一項に記載のステンレス棒状鋼材を用いた電磁部品。 An electromagnetic component using the stainless rod-shaped steel material according to any one of claims 1 to 6.
PCT/JP2021/042062 2020-11-19 2021-11-16 Stainless steel bar material and electromagnetic component WO2022107757A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/037,694 US20240011137A1 (en) 2020-11-19 2021-11-16 Stainless steel bar material and electromagnetic component
CN202180077648.7A CN116438321A (en) 2020-11-19 2021-11-16 Stainless steel bar and electromagnetic component
MX2023005833A MX2023005833A (en) 2020-11-19 2021-11-16 Stainless steel bar material and electromagnetic component.
EP21894631.7A EP4249612A1 (en) 2020-11-19 2021-11-16 Stainless steel bar material and electromagnetic component
KR1020237016897A KR20230088905A (en) 2020-11-19 2021-11-16 Stainless steel bar and electronic parts
JP2022563763A JPWO2022107757A1 (en) 2020-11-19 2021-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-192251 2020-11-19
JP2020192251 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022107757A1 true WO2022107757A1 (en) 2022-05-27

Family

ID=81707995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042062 WO2022107757A1 (en) 2020-11-19 2021-11-16 Stainless steel bar material and electromagnetic component

Country Status (8)

Country Link
US (1) US20240011137A1 (en)
EP (1) EP4249612A1 (en)
JP (1) JPWO2022107757A1 (en)
KR (1) KR20230088905A (en)
CN (1) CN116438321A (en)
MX (1) MX2023005833A (en)
TW (1) TWI773591B (en)
WO (1) WO2022107757A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232258A (en) * 1983-06-14 1984-12-27 Sanyo Tokushu Seikou Kk Free-cutting, corrosion resistant and soft magnetic steel for bar or pipe with superior toughness
JPH0344448A (en) 1989-07-11 1991-02-26 Daido Steel Co Ltd Stainless steel excellent in corrosion resistance
JPH0649606A (en) 1992-08-04 1994-02-22 Daido Steel Co Ltd Magnetic stainless steel
JPH0649605A (en) 1992-08-04 1994-02-22 Daido Steel Co Ltd Magnetic stainless steel
JP2000160302A (en) * 1998-11-19 2000-06-13 Sanyo Special Steel Co Ltd Electromagnetic stainless steel excellent in cold forgeability
US20030086810A1 (en) * 2001-09-04 2003-05-08 Gunter Schnabel Cold-workable corrosion-resistant chromium steel
JP2006016665A (en) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp Inexpensive stainless steel wire rod or steel wire having excellent corrosion resistance, cold workability and toughness and having magnetism
US20070166183A1 (en) * 2006-01-18 2007-07-19 Crs Holdings Inc. Corrosion-Resistant, Free-Machining, Magnetic Stainless Steel
KR20090025728A (en) * 2007-09-07 2009-03-11 하미란 Manufacturing method for steel articles having soft magnetic property by hot forging and housing and core manufactured by the method
JP2020063472A (en) * 2018-10-16 2020-04-23 日鉄ステンレス株式会社 Ferritic stainless steel having excellent magnetic properties

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385571B (en) * 2018-10-11 2020-05-12 中国航发成都发动机有限公司 Heat-resistant stainless steel material and preparation method thereof
CN109182673B (en) * 2018-11-20 2020-07-10 太原科技大学 Low-cost high-strength wear-resistant stainless steel and production method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232258A (en) * 1983-06-14 1984-12-27 Sanyo Tokushu Seikou Kk Free-cutting, corrosion resistant and soft magnetic steel for bar or pipe with superior toughness
JPH0344448A (en) 1989-07-11 1991-02-26 Daido Steel Co Ltd Stainless steel excellent in corrosion resistance
JPH0649606A (en) 1992-08-04 1994-02-22 Daido Steel Co Ltd Magnetic stainless steel
JPH0649605A (en) 1992-08-04 1994-02-22 Daido Steel Co Ltd Magnetic stainless steel
JP2000160302A (en) * 1998-11-19 2000-06-13 Sanyo Special Steel Co Ltd Electromagnetic stainless steel excellent in cold forgeability
US20030086810A1 (en) * 2001-09-04 2003-05-08 Gunter Schnabel Cold-workable corrosion-resistant chromium steel
JP2006016665A (en) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp Inexpensive stainless steel wire rod or steel wire having excellent corrosion resistance, cold workability and toughness and having magnetism
US20070166183A1 (en) * 2006-01-18 2007-07-19 Crs Holdings Inc. Corrosion-Resistant, Free-Machining, Magnetic Stainless Steel
KR20090025728A (en) * 2007-09-07 2009-03-11 하미란 Manufacturing method for steel articles having soft magnetic property by hot forging and housing and core manufactured by the method
JP2020063472A (en) * 2018-10-16 2020-04-23 日鉄ステンレス株式会社 Ferritic stainless steel having excellent magnetic properties

Also Published As

Publication number Publication date
TW202221147A (en) 2022-06-01
TWI773591B (en) 2022-08-01
JPWO2022107757A1 (en) 2022-05-27
KR20230088905A (en) 2023-06-20
EP4249612A1 (en) 2023-09-27
US20240011137A1 (en) 2024-01-11
CN116438321A (en) 2023-07-14
MX2023005833A (en) 2023-06-02

Similar Documents

Publication Publication Date Title
JP4424503B2 (en) Steel bar and wire rod
JP6384629B2 (en) Induction hardening steel
JP5858204B2 (en) Steel material for hot forging, method for producing the same, and method for producing hot forged raw material using the steel material
WO2012011469A1 (en) Rolled steel bar or wire for hot forging
CN109477179B (en) Steel for induction hardening
JP3614113B2 (en) Steel material for bearing element parts with excellent machinability
KR20190028781A (en) High frequency quenching steel
JP2013234354A (en) Hot-rolled steel bar or wire rod for cold forging
KR20220097991A (en) Martensitic stainless steel for high hardness and corrosion resistance with excellent cold workability and manufacturing method therefor
JP4793298B2 (en) Non-tempered steel and manufacturing method thereof
CN108138288B (en) Steel for hot forging and hot forged product
JP2017193767A (en) Steel for cold forging and manufacturing method therefor
JP6814655B2 (en) Ferritic free-cutting stainless steel wire
JP6652021B2 (en) Hot forging steel and hot forged products
JP6668741B2 (en) Hot rolled bar
JP6642236B2 (en) Cold forging steel
TWI776112B (en) Matian loose iron series stainless steel with excellent cold workability and high hardness and high corrosion resistance and its production method
TWI773591B (en) Stainless steel rods and electromagnetic parts
WO2021166797A1 (en) Rod-shaped electromagnetic stainless steel material
KR20170121267A (en) Hot rolled bar stock, manufacturing method of parts and hot rolled bar stock
JP6801717B2 (en) Cold forging steel and its manufacturing method
JP2022081452A (en) Electromagnetic stainless bar-like steel material for hot forging and electromagnetic component
JP6766531B2 (en) Cold forging steel and its manufacturing method
JP2023144727A (en) Martensitic stainless hot-rolled wire rod and method for manufacturing the same, and martensitic stainless annealed wire rod
JP2004300516A (en) Ferritic stainless steel stock having excellent magnetic property, cold forging, and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894631

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022563763

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237016897

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021894631

Country of ref document: EP

Effective date: 20230619