WO2008062775A1 - Composition de résine pour un article antibactérien et désodorisant et fibre et tissu non tissé antibactériens et désodorisants obtenus à partir de celle-ci - Google Patents

Composition de résine pour un article antibactérien et désodorisant et fibre et tissu non tissé antibactériens et désodorisants obtenus à partir de celle-ci Download PDF

Info

Publication number
WO2008062775A1
WO2008062775A1 PCT/JP2007/072431 JP2007072431W WO2008062775A1 WO 2008062775 A1 WO2008062775 A1 WO 2008062775A1 JP 2007072431 W JP2007072431 W JP 2007072431W WO 2008062775 A1 WO2008062775 A1 WO 2008062775A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
resin composition
deodorant
aminopolysaccharide
biodegradable polyester
Prior art date
Application number
PCT/JP2007/072431
Other languages
English (en)
French (fr)
Inventor
Yasuo Imashiro
Naokazu Sasaki
Yukiko Ogushi
Mami Iizuka
Original Assignee
Nisshinbo Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries, Inc. filed Critical Nisshinbo Industries, Inc.
Publication of WO2008062775A1 publication Critical patent/WO2008062775A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to a resin composition for an antibacterial / deodorant article containing a biodegradable polyester and an aminopolysaccharide, and an antibacterial / deodorant fiber and a nonwoven fabric obtained therefrom.
  • the antibacterial substances used in this antibacterial processing include inorganic antibacterial agents that have metal ions such as copper, silver, and zinc; organic antibacterial agents such as benzalkonium chloride, organic silicon, and quaternary ammonium salts; chitosan, etc. Natural polysaccharide antibacterial agents are known.
  • organic antibacterial agents When an inorganic antibacterial agent is used by being added to a synthetic resin, there is a problem that the product value is remarkably lowered due to deformation due to heat during molding or irradiation light. In addition, organic antibacterial agents have a problem of high weather resistance and poor acute chemical toxicity.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2-41473 discloses an antibacterial material in which a cotton yarn surface-treated with chitosan acetate is further treated with an isocyanate crosslinking agent, and the cotton yarn and chitosan are crosslinked with a polyurethane bond.
  • a fiber is disclosed.
  • the fiber and chitosan as the antibacterial agent are tightly bonded, so that the chitosan can be prevented from falling off the fiber, and good antibacterial properties can be demonstrated over a long period of time. .
  • Patent Document 1 requires a drying process after the chitosan treatment and also requires that the cotton yarn after the chitosan treatment is again crosslinked using a polyisocyanate compound. There is a problem that it becomes complicated.
  • biodegradable fibers such as biodegradable polyester
  • crosslinking treatment is performed on the biodegradable fiber, the inherent biodegradability of the fiber is sufficiently exhibited. There is a fear of not being.
  • Patent Document 2 Japanese Patent Laid-Open No. 7-42076 discloses a coating solution prepared by dissolving a chitosan-containing synthetic resin prepared by salting out a synthetic resin emulsion with an aqueous chitosanoic acid solution in an organic solvent. An adhesive agent and a fiber fabric coated with the additive agent are disclosed. According to this technique, a solution-like coating agent in which chitosan is uniformly dispersed is obtained, and by using this, a coating layer in which chitosan is uniformly dispersed can be formed on the fiber surface.
  • Patent Document 2 also requires a salting-out process using a chitosan acid aqueous solution, which makes the process complicated. Moreover, since it is a method of coating chitosan, a drying process is required, and chitosan is likely to be exposed on the fiber surface, resulting in easy removal and antibacterial properties decreasing over time. There's a problem.
  • the method of coating a biodegradable polymer fiber with a natural antibacterial agent such as chitosan is suitable as an antibacterial process in terms of the complexity of the treatment process and the decrease in biodegradability. That's not true.
  • Patent Document 3 International Publication No. 2004/089433 Pamphlet
  • Patent Document 4 JP-A-2005-2005). 290610).
  • Patent Document 3 discloses a technique for producing a fiber structure made of a biodegradable absorbable polymer having an average fiber diameter of 0.05 to 50 111 by an electrospinning method.
  • the polymer include polylactic acid and chitosan.
  • polylactic acid nanofibers are specifically produced.
  • Patent Document 4 discloses a nanofiber made by chitosan having a diameter of 500 nm or less and a non-woven fabric obtained therefrom produced by an electrospinning method.
  • polylactic acid can be used as an additive. Is disclosed.
  • Patent Documents 3 and 4 can produce nanofibers by using polylactic acid and chitosan together.
  • both of them No nanofiber containing is manufactured, and it has been clarified how to mix and spin polylactic acid and chitosan!
  • chitosan does not dissolve in the polylactic acid solution for spinning.
  • the chitosan solution is usually an acetic acid aqueous solution as in Patent Documents 1, 2, and 4, it is not possible to mix this with a polylactic acid methylene chloride solution to prepare a solution in which both are dissolved. Can not. Therefore, it is difficult to produce a polymer blend of polylactic acid and chitosan in the technique of Patent Document 3.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-41473
  • Patent Document 2 JP-A-7-42076
  • Patent Document 3 International Publication No. 2004/089433 Pamphlet
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-290610
  • the present invention has been made in view of such circumstances, and a resin composition for an antibacterial / deodorant article containing a biodegradable polyester and an aminopolysaccharide, and the antibacterial / antibacterial effect obtained thereby.
  • the object is to provide odorous fibers and nonwoven fabrics.
  • the inventors of the present invention have developed an organic biodegradable polyester that heat-kneads a solid biodegradable polyester and a solid aminopolysaccharide.
  • Biodegradability can be achieved by mixing the solvent solution with the organic acid solution of the aminopolysaccharide, or by dissolving the biodegradable polyester and aminopolysaccharide in an organic solvent such as formic acid that has the ability to dissolve both.
  • a composition in which polyester and aminopolysaccharide are uniformly mixed, or a composition in which biodegradable polyester and aminopolysaccharide are uniformly dispersed in a solution is obtained.
  • the inventors have found that (nano) fibers and nonwoven fabrics having excellent antibacterial and biodegradability can be obtained by electrospinning the latter composition and completed the present invention.
  • a resin composition for an antibacterial / deodorant article comprising 100 parts by weight of a biodegradable polyester and 0.0 to 50 parts by weight of an amino polysaccharide;
  • the resin composition for an antibacterial / deodorant article 1 prepared by mixing the biodegradable polyester and the aminopolysaccharide in a solid state, followed by heating and kneading,
  • the antibacterial / deodorizing article resin composition according to any one of 1 to 3, comprising only the biodegradable polyester and the aminopolysaccharide;
  • a resin composition for an antibacterial / deodorant article comprising an acid amide solvent and an organic acid solvent
  • a biodegradable polyester-containing solution obtained by dissolving the biodegradable polyester in an acid amide solvent and an aminopolysaccharide-containing solution obtained by dissolving the aminopolysaccharide in the organic acid solvent are mixed.
  • the aminopolysaccharide is a D-darcosamine unit or an N-acetylethyl D-darcosamine unit, 1 to 8! /, Any antibacterial / deodorizing article resin composition,
  • Antibacterial ⁇ Deodorant nonwoven fabric consisting of 11 antibacterial and deodorant fibers
  • Antimicrobial 'deodorant formed by molding a resin composition for antibacterial' deodorant article ' Jusei Finorem,
  • a method for producing an antibacterial and deodorant nonwoven fabric comprising spinning a resin composition comprising a biodegradable polyester and an aminopolysaccharide by an electrostatic spinning method,
  • the antibacterial / deodorant fiber and non-woven fabric of the present invention obtained from this composition are not coated with an aminopolysaccharide, so the aminopolysaccharide is hardly exposed on the surface and is difficult to fall off. Excellent in biodegradability and biodegradability.
  • the biodegradable polyester is dissolved in an organic solvent such as an acid amide solvent, the aminopolysaccharide is dissolved in an organic acid such as formic acid, and these are mixed to form a solution. Therefore, the biodegradable polyester and formic acid can be easily mixed at the molecular level. Further, by carrying out electrostatic spinning using this solution, a (nano) fiber having a thinner fiber diameter can be easily and efficiently produced.
  • FIG. 1 is an electron micrograph of an antibacterial nonwoven fabric obtained in Example 3.
  • FIG. 2 is an electron micrograph of the antibacterial nonwoven fabric obtained in Example 4.
  • FIG. 3 is an electron micrograph of the antibacterial nonwoven fabric obtained in Example 5.
  • FIG. 4 is an electron micrograph of the antibacterial nonwoven fabric obtained in Example 7.
  • FIG. 5 is an electron micrograph of the antibacterial nonwoven fabric obtained in Example 8.
  • FIG. 6 is an electron micrograph of the antibacterial nonwoven fabric obtained in Example 9.
  • FIG. 7 is an electron micrograph of the antibacterial nonwoven fabric obtained in Example 10.
  • FIG. 8 shows an electron micrograph of the antibacterial nonwoven fabric obtained in Example 11.
  • FIG. 9 is an electron micrograph of the antibacterial nonwoven fabric obtained in Example 12.
  • the resin composition for an antibacterial / deodorant article according to the present invention contains a biodegradable polyester and an aminopolysaccharide.
  • examples of the biodegradable polyester include aliphatic polyesters such as polylactic acid aliphatic polyesters, polycaprolatatone aliphatic polyesters, microorganism-produced aliphatic polyesters, polyhydroxyalkanoates, and polybutylene succinates. And so on, and so-called biodegradable plastics.
  • polylactic acid-based aliphatic polyesters include polymers of oxyacids such as lactic acid, malic acid and glycolic acid, and polylactides such as copolymers thereof. Specific examples include polylactic acid, Examples thereof include poly ( ⁇ -malic acid), polydaricholic acid, glycolic acid and lactic acid copolymer, and hydroxycarboxylic acid-based aliphatic polyesters represented by polylactic acid are particularly suitable.
  • Poly-strength prolatatone-based aliphatic polyester can be obtained by ring-opening polymerization of ⁇ -strength prolatatone, and is a water-insoluble polymer, but can be decomposed by many bacteria.
  • CH 3 CO An aliphatic polyester represented by one.
  • the microorganism-produced aliphatic polyester is a thermoplastic polymer having a melting point derived from a living body.
  • specific examples include polyhydroxybutyrate (PHB), poly (hydroxybutyric acid-hydroxypropionic acid) copolymer, poly (hydroxybutyric acid-hydroxyvaleric acid) copolymer, and the like.
  • biodegradable polyurethane in addition to biodegradable polyester, biodegradable polyurethane, polyacryl, polypropylene, non-biodegradable polyester, nylon, or the like may be mixed.
  • Polyesters that are not biodegradable include, for example, polyethylene terephthalate, polyester.
  • Aromatic polyesters such as reethylene naphthalate and polybutylene terephthalate are listed.
  • the aminopolysaccharide is not particularly limited, and an aminopolysaccharide having a D-darcosamine unit or an N-acetylethyl D-darcosamine unit is preferable. Specific examples include natural amino polysaccharides such as chitin and chitosan.
  • the blending ratio of the biodegradable polyester and the aminopolysaccharide is preferably such that the biodegradable polyester is excessive (greater than 50% by mass).
  • the biodegradable polyester is excessive (greater than 50% by mass).
  • 0.01 to 50 parts by mass of the amino polysaccharide is preferred 0.0;! To 30 parts by mass is more preferred 0.0;! To 5 parts by mass Department is even more preferred.
  • the moldability of the composition is lowered, and the resulting molded product or the texture of the nonwoven fabric may become hard and brittle.
  • the aminopolysaccharide is in the range of 0.0;! To 30 parts by mass, especially 0.0;! To 5 parts by mass, the antibacterial and deodorizing properties are well exhibited and the biodegradable polyester is mechanical. Since the mechanical strength of the resin composition can be maintained to the same extent as the strength, the molded article can impart antibacterial / deodorant properties and mechanical strength to the nonwoven fabric in a well-balanced manner.
  • the resin composition for an antibacterial / deodorant article of the present invention is obtained by mixing a biodegradable polyester and an aminopolysaccharide.
  • a method of mixing these (1) a method in which aminopolysaccharide is kneaded and mixed in biodegradable polyester, and (2) each of biodegradable polyester and aminopolysaccharide is dissolved in an organic solvent.
  • the powdered aminopolysaccharide can be mechanically pulverized by various types of pulverizers such as impact type, compression type, shear type, air jet type, and freeze pulverization type, or organic acids such as formic acid, acetic acid, lactic acid, and kenic acid. It is obtained by dissolving it in an aqueous solution of an acid or an inorganic acid such as hydrochloric acid or nitric acid, and then dispersing it in an alkaline solution such as ammonia for regeneration, or spray drying by spray drying for regeneration. Touch with force S.
  • pulverizers such as impact type, compression type, shear type, air jet type, and freeze pulverization type
  • organic acids such as formic acid, acetic acid, lactic acid, and kenic acid. It is obtained by dissolving it in an aqueous solution of an acid or an inorganic acid such as hydrochloric acid or nitric acid, and then dispersing it in an alkaline solution such
  • Average particle size of aminopolysaccharide (between 0.2 and 400 ⁇ 111 particles, 0 ⁇ 20 ⁇ ; 100 ⁇ m force S. Average particle size is a light scattering particle size distribution measuring device. It is a measured value by.
  • the kneading method of the biodegradable polyester and aminopolysaccharide is not particularly limited, and may be kneaded using a single-screw kneading extruder, a twin-screw kneading extruder, a batch kneader, a continuous extrusion kneader or the like.
  • the heating temperature is more preferably 100 to 250 ° C, more preferably 100 to 200 ° C force S, considering that aminopolysaccharides are more uniformly dispersed.
  • the resin composition for antibacterial and deodorant articles obtained by kneading as described above is obtained by extrusion molding, injection molding, stretched film molding, blow molding, etc. in the same manner as general thermoplastics. It can be set as a molded article of various shapes.
  • the organic solvent for dissolving the biodegradable polyester includes an acid amide solvent, chlorine Examples thereof include organic solvents, hydrocarbon solvents, and organic solvents such as formic acid.
  • examples of the organic solvent for dissolving the aminopolysaccharide include an organic acid solvent that is liquid at room temperature and an organic solvent such as an acid amide solvent in which a solid organic acid is dissolved at room temperature.
  • Examples of acid amide solvents used for the preparation of organic solvent solutions of biodegradable polyester include N, N-dimethylformamide (hereinafter referred to as DMF) and N, N-dimethylacetamide (hereinafter referred to as DMAc). Examples thereof include N-substituted amides which are liquid at room temperature. Further, compounds such as N-methyl-2-pyrrolidone, in which a part forms a ring and a carbonyl carbon is adjacent to a hetero atom, may be used.
  • chlorinated solvent examples include methylene chloride and chloroform
  • hydrocarbon solvent examples include toluene, benzene, acetone, hexane, cyclohexane, methanol, ethanol, propanol, isopropanol, and tetrahydrofuran. Can be mentioned.
  • acid-amide solvents are preferred as solvents for preparing organic solvent solutions of biodegradable polyester (solutions containing biodegradable polyesters).
  • N-substituted amides such as DMF and DMAc are optimal. It is.
  • formic acid can also be suitably used.
  • Examples of the organic acid solvent that is liquid at room temperature used for the preparation of the aminopolysaccharide organic solvent solution include acetic acid, lactic acid, and the like, in addition to formic acid that dissolves the above-described biodegradable polyester.
  • Examples of the acid amide solvent in which a solid organic acid is dissolved at room temperature include acid amide solvents in which citrate, malic acid, tartaric acid and the like are dissolved. The acid amide solvent is as described above.
  • formic acid is suitable as a solvent used for preparing an organic solvent solution of aminopolysaccharides (an aminopolysaccharide-containing solution) because it is easy to prepare a uniform solution that is difficult to gel.
  • formic acid is also used as a solvent for preparing the biodegradable polyester-containing solution, in addition to the method (2), both the biodegradable polyester and aminopolysaccharide are added in small amounts in an organic solvent (formic acid). Adopting the method of (3) above, adding and dissolving and mixing.
  • the formic acid solution of the amino polysaccharide and the acid amide solvent of the biodegradable polyester are used.
  • a mixed solution with good compatibility does not undergo genorization for more than 10 days at room temperature, and since it has good storage stability as a raw material solution for electrospinning, these combinations are optimal.
  • the biodegradable polyester-containing solution can be prepared by mixing the biodegradable polyester and an organic solvent such as an acid amide solvent by any method and heating as necessary. Addition The temperature for heating is preferably about 25 to 150 ° C. depending on the boiling point of the solvent used. If it is lower than 25 ° C, it takes time to dissolve the biodegradable polyester until it becomes a homogeneous solution, although it depends on the type of solvent used. This is not preferable because hydrolysis of the biodegradable polyester is likely to occur.
  • the concentration of the biodegradable polyester in the solution is preferably about 2 to 50% by mass, and more preferably about 5 to 40% by mass.
  • the aminopolysaccharide-containing solution can be prepared by mixing an aminopolysaccharide and an organic acid solvent or an organic acid-containing acid amide solvent by any method and heating as necessary.
  • the heating temperature is preferably below the boiling point of the solvent used.
  • the concentration of the aminopolysaccharide in the solution is preferably about 0.;! To about 20% by mass, and more preferably about 0.5 to about 10% by mass.
  • the biodegradable polyester-containing solution prepared as described above and the aminopolysaccharide-containing solution are mixed to obtain a liquid resin composition.
  • the aminopolysaccharide-containing solution may be added to the biodegradable polyester-containing solution, or vice versa.
  • the obtained resin composition is a uniformly transparent liquid.
  • a solvent may be further added to the solution in order to adjust the viscosity or resin concentration of the solution in accordance with the molding method.
  • concentration of the biodegradable polyester and aminopolysaccharide in the solution is preferably about 2.5 to 40% by mass, more preferably about 3.5 to 30% by mass. 2. If it is less than 5% by mass, the viscosity will be low and molding and spinning may be difficult. If it exceeds 40% by mass, the viscosity will be high, and in this case, molding and spinning will be difficult. There is.
  • aminopolysaccharides such as chitosan are conventionally used as an acid aqueous solution, they cannot be mixed with an organic solvent solution of a resin.
  • amino acid is used using an organic acid solvent or an organic solvent containing an organic acid. In order to prepare a polysaccharide solution, it can be easily mixed with an organic solvent solution of biodegradable polyester.
  • the obtained liquid resin composition is formed into a thin film by a casting method, an extrusion molding method, a spray method, a roll coating method, a dating method or the like, and then the solvent is vacuum dried.
  • the film can be formed by dipping in water and wet coagulating to gel the resin solution and then drying.
  • the resin composition can be made into (nano) fibers by spinning by an electrostatic spinning method, a spunbond method, a melt blow method, a flash spinning method, or the like.
  • electrostatic spinning method the less affected by heat, the electrostatic spinning method is preferred!
  • the basic configuration of an apparatus for performing electrospinning also serves as a nozzle that discharges the resin composition, and includes one electrode that applies a high voltage to the resin composition and the other electrode that faces the electrode.
  • the resin composition discharged or shaken from one electrode becomes an extremely fine fibrous material made of the resin composition in an electric field between two opposing electrodes, and is deposited on the surface of the other electrode.
  • the biodegradable polyester-containing solution and the aminopolysaccharide-containing solution are mixed, pressed from the die, and a high voltage of about several thousand to 50,000 volts is applied to the mixed solution (resin composition), and the mixed solution (Nano) fiber fibers and nonwoven fabrics are obtained by bending and expansion of the high-speed jet and subsequent jet.
  • the fiber diameter of the obtained (nano) fiber can be reduced.
  • the acid component in the resin composition is preferably 0.;! To 90% by mass, more preferably 0.5 to 85% by mass, and still more preferably 0.5 to 75% by mass. Less than 0.1% by mass does not affect the fineness of the fiber diameter, and if it exceeds 90% by mass, there is a possibility that spinning cannot be stably performed.
  • the average fiber diameter is relatively in the range of lnm to 10 m including the nanofiber region, preferably 1 to 1000 nm which is the nanofiber region. The diameter can be adjusted.
  • the liquid resin composition of the present invention is formed into a film, (nano) fiber, or non-woven fabric.
  • the molded product is not limited to these methods.
  • a liquid resin composition is formed into droplets and vacuum-dried solvent, or is immersed in water to wet-solidify and gel, and then dried into pellets.
  • various molded products can be formed using molding methods such as extrusion molding, injection molding, stretched film molding, and blow molding.
  • the various antibacterial / deodorant article resin compositions described above have, as other additives, antistatic agents, foaming agents, and heat-resistant stabilizers as long as the effects of the present invention are exhibited.
  • An agent, a light stabilizer, a weather stabilizer, a moist heat stabilizer, a lubricant, a release agent, an inorganic filler, a pigment dispersant, a pigment, a dye, and the like can be appropriately added.
  • Various molded products such as keno) fibers, non-woven fabrics, and films obtained from the resin composition for antibacterial and deodorant articles of the present invention include, for example, wiping sheets, masks, filters, filter media, and hazardous substances. Products for removal, gloves, rags, wipers, mats, car seats, ceiling materials, wallpaper, omu, hospital gowns, clothes for medical staff, sheets, packaging materials, interlining, seedling pots, seedling mats, civil construction materials, etc. Can be suitably used.
  • Staphylococcus aureus was used as a test cell, and this was cultured in a normal bouillon medium in advance to a concentration of 106 to 107 cells / ml to prepare a test cell suspension.
  • 0.2 ml of this suspension is uniformly inoculated into 0.4 g of a sterilized screw-equipped vial, statically cultured at 36-38 ° C for 18 hours, and then sterilized buffered saline in the container Add 20 ml of the solution, shake vigorously by hand 30-30 times with an amplitude of 30 cm, disperse the viable bacteria under test in the solution, make an appropriate dilution series with sterile buffered saline, and dilute each stage.
  • bacteriostatic activity value S and the bactericidal activity value L were determined by the following formula.
  • Polylactic acid resin (LACEA H400, manufactured by Mitsui Chemicals Co., Ltd.) 100 parts by mass and chitosan powder (manufactured by Kimiki Co., Ltd., average particle size of about 1 to 5 111) 2.5 parts by mass in a biaxial extruder , Kneaded and mixed at 220 ° C to produce a resin composition for antibacterial and deodorized articles, and then extruded the resin composition from a T die die at a temperature of 210 ° C while measuring with a gear pump. . Then, it cooled to 20 degreeC and obtained the antibacterial film of thickness 100m.
  • LACEA H400 manufactured by Mitsui Chemicals Co., Ltd.
  • chitosan powder manufactured by Kimiki Co., Ltd., average particle size of about 1 to 5 11
  • a polylactic acid-containing solution was prepared by mixing 100 parts by mass of polylactic acid resin (LACEA H280, manufactured by Mitsui Chemicals) and 300 parts by mass of dimethylacetamide and dissolving polylactic acid at 60 ° C.
  • polylactic acid resin LACEA H280, manufactured by Mitsui Chemicals
  • chitosan manufactured by Kimiki Co., Ltd., 75-85% deacetylated
  • formic acid 2.5 parts by mass and 164 parts by mass of formic acid were mixed at room temperature to dissolve chitosan to prepare a chitosan-containing solution. This was added to the previously prepared polylactic acid-containing solution and mixed at room temperature to prepare a uniform transparent liquid antibacterial and deodorant article resin composition.
  • the obtained resin composition was cast on a glass plate with a knife coater and dried for 10 hours with a 60 ° C. vacuum dryer to obtain an antibacterial film having a thickness of 100 m.
  • a polylactic acid-containing solution was prepared by mixing 100 parts by mass of polylactic acid resin (LACEA H280, manufactured by Mitsui Chemicals) and 570 parts by mass of dimethylformamide and dissolving polylactic acid at 60 ° C.
  • polylactic acid resin LACEA H280, manufactured by Mitsui Chemicals
  • chitosan manufactured by Kimiki Co., Ltd., 75-85% deacetylated
  • formic acid were mixed at room temperature to prepare chitosan-containing solution by dissolving chitosan . This was added to the previously prepared polylactic acid-containing solution and mixed at room temperature to prepare a uniform transparent liquid antibacterial and deodorant article resin composition.
  • This resin composition (spinning solution) is put into a syringe, the discharge tip inner diameter is 0.4 mm, the applied voltage is 25 KV (at room temperature, atmospheric pressure), and the distance from the discharge tip inner diameter to the fibrous material collecting electrode is 15 cm. Electrospinning was performed to obtain an antibacterial nonwoven fabric.
  • the obtained nonwoven fabric had an average fiber diameter of 1 ⁇ m, fibers having a fiber diameter of 10 m or more were not observed, and the fibers constituting the nonwoven fabric contained nanofiber regions.
  • the nonwoven fabric had a thickness of 150 111 and a basis weight of 30 g / m 2 .
  • Fig. 1 shows an electron micrograph of the obtained antibacterial nonwoven fabric.
  • a uniform transparent liquid antibacterial / deodorant article resin composition was prepared in the same manner as in Example 3 except that 0.5 parts by mass of chitosan and 33 parts by mass of formic acid were used. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • a uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 1.0 part by weight of chitosan and 66 parts by weight of formic acid were used. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • the obtained nonwoven fabric had an average fiber diameter of 0.3 m, fibers having a fiber diameter of 0.5 m or more were not observed, and the fibers constituting the nonwoven fabric were in the nanofiber region. Further, nonwoven fabric thickness was 50 H m, and the basis weight was 6 g / m 2.
  • Fig. 3 shows an electron micrograph of the antibacterial nonwoven fabric obtained.
  • a uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 2.5 parts by mass of chitosan and 164 parts by mass of formic acid were used.
  • This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • the average fiber diameter was 0.3 m
  • fibers having a fiber diameter of 0.5 m or more were not observed, and the fibers constituting the nonwoven fabric were It was the nanofiber area.
  • the nonwoven fabric had a thickness of 50 m and a basis weight of 5.5 gZm.
  • a uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 5.0 parts by mass of chitosan and 330 parts by mass of formic acid were used. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • the obtained nonwoven fabric had an average fiber diameter of 0.3 m, fibers having a fiber diameter of 0.5 m or more were not observed, and the fibers constituting the nonwoven fabric were in the nanofiber region.
  • the nonwoven fabric had a thickness of 35 m and a basis weight of 2.5 g / m 2 .
  • Fig. 4 shows an electron micrograph of the antibacterial nonwoven fabric obtained.
  • a uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 30 parts by mass of chitosan and 1980 parts by mass of formic acid were used. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • the obtained nonwoven fabric had an average fiber diameter of 0.3 m, fibers having a fiber diameter of 0.5 m or more were not observed, and the fibers constituting the nonwoven fabric were in the nanofiber region.
  • the nonwoven fabric had a thickness of 35 m and a basis weight of 2.5 g / m 2 .
  • Fig. 5 shows an electron micrograph of the antibacterial nonwoven fabric obtained.
  • a uniform transparent liquid antibacterial-deodorant resin composition was prepared in the same manner as in Example 3 except that 0.5 parts by mass of chitosan, 33 parts by mass of formic acid, and dimethylformamide were replaced with dimethylacetamide. did.
  • This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • the obtained nonwoven fabric had an average fiber diameter of 0 ⁇ 4 H m, fibers having a fiber diameter of 0 ⁇ 8 H m or more were not observed, and the fibers constituting the nonwoven fabric were in the nanofiber region. Further, nonwoven fabric thickness was Loo rn, and the basis weight was 10 g / m 2. Electron microscope of the obtained antibacterial nonwoven fabric A mirror photograph is shown in Fig. 6.
  • a resin composition was prepared. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • the obtained nonwoven fabric had an average fiber diameter of 2 ⁇ m, fibers having a fiber diameter of 10 m or more were not observed, and the fibers constituting the nonwoven fabric contained nanofiber regions.
  • the nonwoven fabric had a thickness of 200 ⁇ m and a basis weight of 35 g / m 2 .
  • Fig. 7 shows an electron micrograph of the antibacterial nonwoven fabric obtained.
  • a composition was prepared. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • the obtained nonwoven fabric had an average fiber diameter of 2 ⁇ m, fibers having a fiber diameter of 10 m or more were not observed, and the fibers constituting the nonwoven fabric contained nanofiber regions.
  • the nonwoven fabric had a thickness of 200 ⁇ m and a basis weight of 35 g / m 2 .
  • Fig. 8 shows an electron micrograph of the antibacterial nonwoven fabric obtained.
  • Polylactic acid resin (LACEA H280, manufactured by Mitsui Chemicals Co., Ltd.) 100 parts by mass and chitosan (manufactured by Kimi Tsuki Co., Ltd., deacetylated 75-85%)
  • chitosan manufactured by Kimi Tsuki Co., Ltd., deacetylated 75-85%
  • polylactic acid and chitosan were dissolved to prepare a resin composition for antibacterial and deodorant articles of uniform transparent liquid.
  • This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • the obtained nonwoven fabric had an average fiber diameter of 0 ⁇ 4 H m, fibers having a fiber diameter of 0 ⁇ 8 H m or more were not observed, and the fibers constituting the nonwoven fabric were in the nanofiber region. Further, nonwoven fabric thickness was Loo rn, and the basis weight was 10 g / m 2. Electron microscope of the obtained antibacterial nonwoven fabric A mirror photo is shown in Fig. 9.
  • a polylactic acid solution was prepared by mixing 100 parts by mass of polylactic acid resin (LACEA H280, manufactured by Mitsui Chemicals) and 300 parts by mass of dimethylacetamide and dissolving polylactic acid at 60 ° C.
  • the obtained polylactic acid solution was cast on a glass plate with a knife coater and dried for 10 hours with a 60 ° C. vacuum dryer to obtain a film having a thickness of 100 m.
  • Chitosan (manufactured by Kimiki Co., Ltd., deacetylated 75 to 85%) 100 parts by weight, 200 parts by weight formic acid and 19700 parts by weight distilled water were mixed and stirred at room temperature for 10 hours or more to dissolve chitosan
  • a commercially available polylactic acid non-woven fabric (manufactured by Terramac Tunica) was immersed in the obtained 0.5 mass% chitosan acid aqueous solution and dried at room temperature. After drying, heat treatment was performed at 70 ° C for 30 minutes to obtain an antibacterial nonwoven fabric. The dry adhesion amount of chitosan determined from the weight difference before and after the coating treatment was about 1.5% by mass.
  • An antibacterial nonwoven fabric was obtained in the same manner as in Comparative Example 2 except that a commercially available polypropylene nonwoven fabric (Stratec, Idemitsu Tech Co., Ltd., average fiber type 4 111) was used.
  • the dry adhesion amount of chitosan determined from the weight difference before and after the coating treatment was about 1.5% by mass.
  • a uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that chitosan was 55 parts by mass and formic acid was 3630 parts by mass. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
  • the average fiber diameter of the obtained nonwoven fabric was 0.2 m, and fibers having a fiber diameter of 0.5 m or more were not observed, and the fibers constituting the nonwoven fabric were in the nanofiber region.
  • the nonwoven fabric had a thickness of 35 m and a basis weight of 1 ⁇ 5 g / m 2 .
  • Table 1 shows the results of the above-described antibacterial performance measurement test for the films and nonwoven fabrics obtained in Examples 1 to 12 and Comparative Examples 1 to 4. [table 1]
  • Nonwoven fabric 100 0.5
  • the antibacterial film and non-woven fabric of the present invention obtained in Examples 1 to 12 were prepared by adding chitosan to a film made only of polylactic acid of Comparative Examples 1 to 3 and a commercially available polylactic acid nonwoven fabric. It can be seen that the antibacterial performance is remarkably superior to the coated one.
  • the antibacterial film and the nonwoven fabric of the present invention obtained in Examples 1 to 12 show good biodegradability.
  • the antibacterial nonwoven fabrics of Examples 3 to 12 are remarkably superior in biodegradability compared to the commercially available polylactic acid nonwoven fabric of Comparative Example 2 coated with chitosan.
  • the non-woven fabrics of the present invention obtained in Examples 3 to 12 have the same or higher texture than the non-woven fabric of the comparative example. It can be seen that when it is 5% by mass or less and an acid amide solvent is used as the solvent of the polylactic acid solution, it is remarkably excellent. In addition, when an acid amide solvent was used as the solvent for the polylactic acid solution, the spinnability in the electrospinning method was good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書
抗菌 ·消臭物品用樹脂組成物、並びにこれから得られる抗菌 ·消臭性ファ ィバーおよび不織布
技術分野
[0001] 本発明は、生分解性ポリエステルとアミノ多糖類とを含む抗菌 ·消臭物品用樹脂組 成物、並びにこれから得られる抗菌 ·消臭性ファイバーおよび不織布に関する。
背景技術
[0002] 近年、抗菌加工を施した繊維製品や樹脂成形品などが注目され、例えば、抗菌性 を付与した衣類、医療用品、 日用品などが市販されている。
この抗菌加工に用いられる抗菌物質としては、従来、銅、銀、亜鉛等の金属イオン を有する無機系抗菌剤;塩化ベンザルコニゥム、有機シリコン系、第 4級アンモニゥム 塩等の有機系抗菌剤;キトサン等の天然多糖類系抗菌剤が知られている。
無機系抗菌剤は、合成樹脂に添加して用いる場合に、成形時の熱や照射される光 の影響で変形し、製品価値が著しく低下するという問題がある。また、有機系抗菌剤 は、耐候性 '耐薬品性が悪ぐ急性経口毒性が高いという問題がある。
このため、安全性に優れたキトサン等の天然多糖類系抗菌剤を用いる試みがなさ れている。
[0003] 例えば、特許文献 1 (特開平 2— 41473号公報)には、キトサン酢酸塩で表面処理 した綿糸を、さらにイソシァネート架橋剤で処理し、綿糸とキトサンとをポリウレタン結 合で架橋した抗菌繊維が開示されている。この手法で得られた抗菌繊維では、繊維 と抗菌剤であるキトサンとが強固に結合しているため、繊維からのキトサンの脱落を防 止でき、良好な抗菌性が長期に亘つて発揮される。
しかし、この特許文献 1の技術では、キトサン処理後の乾燥工程が必須であるうえに 、キトサン処理後の綿糸を、再度ポリイソシァネート化合物を用いて架橋処理する必 要があるため、工程が煩雑になるという問題がある。
しかも、生分解性ポリエステルなどの生分解性繊維を処理する場合、生分解性繊 維に対し、上記架橋処理を行ってしまうと、繊維本来の生分解性が十分に発揮され ない虞が生じる。
[0004] また、特許文献 2 (特開平 7— 42076号公報)には、合成樹脂ェマルジヨンをキトサ ン酸水溶液で塩析して調製したキトサン含有合成樹脂を、有機溶剤に溶解してなる コーティング加ェ剤、およびこの加ェ剤によりコーティング処理された繊維布帛が開 示されている。この手法によれば、キトサンが均一に分散した溶液状のコーティング 剤が得られ、これを用いることで、繊維表面にキトサンが均一に分散したコーティング 層を形成することが可能となる。
しかし、この特許文献 2の技術でも、キトサン酸水溶液を用いた塩析工程が必要で あるため、工程が煩雑になる。しかも、キトサンをコーティング処理する方法であるた め、乾燥工程が必要となるうえに、キトサンが、繊維表面に露出し易くなる結果、脱落 し易くなり、抗菌性が経時的に低下してしまうという問題がある。
また、生分解性繊維を処理する場合、繊維表面をアクリル樹脂で被覆してしまうた めに、繊維本来の生分解性が十分に発揮されない虞が生じる。
[0005] 以上のように、生分解性ポリマー繊維にキトサン等の天然抗菌剤をコーティングす る手法は、処理工程の煩雑さや、生分解性の低下という点から、抗菌加工として適し たものであるとは言えなレ、。
[0006] ところで最近、静電紡糸法により、ポリ乳酸や、キトサンのナノファイバーを製造する 技術が開示されている(特許文献 3 :国際公開 2004/089433号パンフレット、特許 文献 4 :特開 2005— 290610号公報参照)。
例えば、特許文献 3には、平均繊維径が 0. 05〜50 111の生体内分解吸収性ポリ マーからなる繊維構造体を静電紡糸法により作製する手法が開示され、この生体内 分解吸収性ポリマーとして、ポリ乳酸、キトサンが例示され、実施例ではポリ乳酸ナノ ファイバーが具体的に製造されている。
また、特許文献 4には、静電紡糸法により作製された、直径 500nm以下のキトサン を主原料とするナノファイバーおよびこれから得られる不織布が開示され、この場合 に添加剤としてポリ乳酸を用い得ることが開示されている。
[0007] このように、特許文献 3, 4のいずれにも、ポリ乳酸とキトサンとを併用してナノフアイ バーを製造し得ることが示唆されている。し力もながら、実施例において、それら両者 を含むナノファイバ一は製造されておらず、ポリ乳酸とキトサンとをどのようにして混合 し、紡糸するかにつ!/、ては明らかにされて!/ヽなレ、。
すなわち、特許文献 3の技術では、紡糸用のポリ乳酸溶液に、キトサンは溶解しな い。また、キトサンの溶液は、特許文献 1 , 2および 4のように酢酸水溶液とすることが 通常であるため、これをポリ乳酸の塩化メチレン溶液と混合して両者が溶解した溶液 を調製することはできない。したがって、特許文献 3の技術において、ポリ乳酸とキト サンとのポリマーブレンドを作製することは困難である。
一方、特許文献 4の技術でも、紡糸用のキトサン酸水溶液に、ポリ乳酸の有機溶媒 溶液を混合して、両者が溶解した溶液を調製することはできないため、両者のプレン ドを調製する場合は、ポリ乳酸を粉末でポリ乳酸の有機溶媒溶液に混合する以外に は方法がないが、ナノレベルのポリ乳酸粒子を調製することは非常に困難で、実用 的とは言えない。
[0008] 特許文献 1 :特開平 2— 41473号公報
特許文献 2:特開平 7— 42076号公報
特許文献 3:国際公開 2004/089433号パンフレット
特許文献 4 :特開 2005— 290610号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、このような事情に鑑みてなされたものであり、生分解性ポリエステルとアミ ノ多糖類とを含む抗菌 ·消臭物品用樹脂組成物、並びにこれ力 得られる抗菌 ·消臭 性ファイバーおよび不織布を提供することを目的とする。
課題を解決するための手段
[0010] 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、固体状の生分 解性ポリエステルと固体状のアミノ多糖類とを加熱混練する、生分解性ポリエステル の有機溶媒溶液とアミノ多糖類の有機酸溶液とを混合する、または生分解性ポリエス テルとアミノ多糖類とを、これら両者の溶解能を持つギ酸などの有機溶媒に溶解させ ることで、生分解性ポリエステルとアミノ多糖類とが均一に混合された組成物、または 溶液中に生分解性ポリエステルとアミノ多糖類とが均一に分散した組成物が得られる ことを見出すとともに、後者の組成物を静電紡糸することで、抗菌性および生分解性 に優れる(ナノ)ファイバーおよび不織布が得られることを見出し、本発明を完成した
すなわち、本発明は、
1. 生分解性ポリエステル 100質量部と、アミノ多糖類 0. 0;!〜 50質量部とを含むこ とを特徴とする抗菌 ·消臭物品用樹脂組成物、
2. 前記生分解性ポリエステルと前記アミノ多糖類とをそれぞれ固体状態で混合し た後、加熱、混練して調製された 1の抗菌 ·消臭物品用樹脂組成物、
3. 前記生分解性ポリエステル中に、前記アミノ多糖類が均一に分散している 1また は 2の抗菌 ·消臭物品用樹脂組成物、
4. 前記生分解性ポリエステルと前記アミノ多糖類のみからなる 1〜3のいずれかの 抗菌 ·消臭物品用樹脂組成物、
5. さらに、酸アミド系溶媒と、有機酸溶媒とを含む 1の抗菌 ·消臭物品用樹脂組成 物、
6. 前記生分解性ポリエステルを酸アミド系溶媒に溶解してなる生分解性ポリエステ ノレ含有溶液と、前記アミノ多糖類を前記有機酸溶媒に溶解してなるアミノ多糖類含有 溶液とを混合して調製された 5の抗菌 ·消臭物品用樹脂組成物、
7. さらにギ酸を含み、前記生分解性ポリエステルと前記アミノ多糖類とがギ酸に溶 解してなる 1の抗菌 ·消臭物品用樹脂組成物、
8. 均一透明である 5〜7のいずれかの抗菌'消臭物品用樹脂組成物、
9. 前記アミノ多糖類が、 D—ダルコサミン単位または N—ァセチルー D—ダルコサ ミン単位を有する 1〜8の!/、ずれかの抗菌 ·消臭物品用樹脂組成物、
10. 前記生分解性ポリエステル力 ポリ乳酸である 1〜9のいずれかの抗菌'消臭 物品用樹脂組成物、
11. ;!〜 10の!/、ずれかの抗菌 ·消臭物品用樹脂組成物を紡糸してなる平均繊維径 lnm〜; 10 μ mの抗菌.消臭性ファイバー、
12. 11の抗菌 ·消臭性ファイバーからなる抗菌 ·消臭性不織布、
13. ;!〜 10のいずれかの抗菌'消臭物品用樹脂組成物を成形してなる抗菌'消臭 十生フイノレム、
14. 生分解性ポリエステルとアミノ多糖類とを含む樹脂組成物を静電紡糸法により 紡糸することを特徴とする抗菌 '消臭性不織布の製造方法、
15. 前記樹脂組成物が、生分解性ポリエステルを酸アミド系溶媒に溶力、した生分 解性ポリエステル含有溶液と、前記アミノ多糖類を有機酸に溶力、したアミノ多糖類含 有溶液とを混合して調製された 14の抗菌'消臭性不織布の製造方法、
16. 前記樹脂組成物が、前記生分解性ポリエステルと前記アミノ多糖類とをギ酸に 溶かして調製された 14の抗菌'消臭性不織布の製造方法
を提供する。
発明の効果
[0012] 本発明によれば、生分解性ポリエステルとアミノ多糖類とが分子レベルで混合され た組成物を容易に得ること力 Sできる。
また、この組成物から得られる本発明の抗菌 ·消臭性ファイバーおよび不織布は、 アミノ多糖類をコーティング加工したものではないため、アミノ多糖類が表面に露出し にくぐこれが脱落しにくいため、抗菌性および生分解性に優れる。
さらに、本発明では、生分解性ポリエステルを、酸アミド溶媒などの有機溶媒に溶か し、アミノ多糖類をギ酸などの有機酸に溶かし、これらを混合して溶液する、または両 者を、これらの溶解能を有するギ酸などの有機溶媒に溶解して溶液としてレ、るため、 生分解性ポリエステルとギ酸とを分子レベルで容易に混合することができる。また、こ の溶液を用いて静電紡糸することで、繊維径のより細い(ナノ)ファイバーを、簡便か つ効率的に製造することができる。
図面の簡単な説明
[0013] [図 1]実施例 3で得られた抗菌不織布の電子顕微鏡写真を示す図である。
[図 2]実施例 4で得られた抗菌不織布の電子顕微鏡写真を示す図である。
[図 3]実施例 5で得られた抗菌不織布の電子顕微鏡写真を示す図である。
[図 4]実施例 7で得られた抗菌不織布の電子顕微鏡写真を示す図である。
[図 5]実施例 8で得られた抗菌不織布の電子顕微鏡写真を示す図である。
[図 6]実施例 9で得られた抗菌不織布の電子顕微鏡写真を示す図である。 [図 7]実施例 10で得られた抗菌不織布の電子顕微鏡写真を示す図である。
[図 8]実施例 11で得られた抗菌不織布の電子顕微鏡写真を示す図である。
[図 9]実施例 12で得られた抗菌不織布の電子顕微鏡写真を示す図である。
発明を実施するための最良の形態
[0014] 以下、本発明についてさらに詳しく説明する。
本発明に係る抗菌 ·消臭物品用樹脂組成物は、生分解性ポリエステルとアミノ多糖 類とを含むものである。
ここで、生分解性ポリエステルとしては、例えば、ポリ乳酸系脂肪族ポリエステル、ポ リカプロラタトン系脂肪族ポリエステル、微生物産生脂肪族系ポリエステル、ポリヒドロ キシアルカノエイト、ポリブチレンサクシネートなどの脂肪族系ポリエステルとレ、つた、 いわゆる生分解性プラスチックと一般に呼ばれるものが挙げられる。
[0015] ポリ乳酸系脂肪族ポリエステルとしては、乳酸、リンゴ酸、グリコール酸等のォキシ 酸の重合体、およびこれらの共重合体などのボリラクチド類が挙げられ、具体例とし ては、ポリ乳酸、ポリ( α リンゴ酸)、ポリダリコール酸、グリコール酸 乳酸共重合 体などが挙げられ、特に、ポリ乳酸に代表されるヒドロキシカルボン酸系脂肪族ポリエ ステルが好適である。
ポリ力プロラタトン系脂肪族ポリエステルは、 ε—力プロラタトンの開環重合により得 ること力 Sでき、水不溶性高分子でありながら、多くの菌により分解されるものであって、 一般式: (〇(CH ) CO) 一で表される脂肪族ポリエステルである。このようなポリ力
2 5 n
プロラタトン系脂肪族ポリエステルの市販品としては、例えば、 日本ュニカー株式会 社販売の「トーン」(商品名)がある。
[0016] 微生物産生脂肪族系ポリエステルは、生体由来の融点をもつ熱可塑性ポリマーで ある。具体的には、ポリヒドロキシブチレート(PHB)、ポリ(ヒドロキシ酪酸ーヒドロキシ プロピオン酸)共重合体、ポリ(ヒドロキシ酪酸ーヒドロキシ吉草酸)共重合体などが挙 げられる。
なお、本発明では、生分解性ポリエステル以外に、生分解性のポリウレタン、ポリア クリル、ポリプロピレンや、生分解性ではないポリエステル、ナイロン等を混合してもよ い。生分解性ではないポリエステルとしては、例えば、ポリエチレンテレフタレート、ポ リエチレンナフタレート、ポリブチレンテレフタレートなどの芳香族系ポリエステルが挙 げられる。
[0017] アミノ多糖類は、特に限定されるものではないが、 D—ダルコサミン単位または N— ァセチルー D—ダルコサミン単位を有するアミノ多糖類が好適である。具体例として は、キチン、キトサン等の天然アミノ多糖類が挙げられる。
[0018] 本発明の抗菌 ·消臭物品用樹脂組成物において、生分解性ポリエステルとアミノ多 糖類との配合割合は、生分解性ポリエステルが過剰(50質量%超)であることが好適 であり、特に、生分解性ポリエステル 100質量部に対して、アミノ多糖類 0. 01 -50 質量部が好ましぐ 0. 0;!〜 30質量部がより好ましぐ 0. 0;!〜 5質量部がより一層好 ましい。
アミノ多糖類が 50質量部を超えると、組成物の成形性が低下し、得られる成形品や 、不織布の風合いが固ぐ脆くなる虞がある。アミノ多糖類が 0. 0;!〜 30質量部、特 に 0. 0;!〜 5質量部の範囲であると、抗菌 ·消臭性が良好に発揮され、かつ生分解性 ポリエステルの機械的強度と同程度に樹脂組成物の機械的強度を保てるので、成形 品ゃ不織布に抗菌 ·消臭性と機械的強度をバランスよく付与することができる。
[0019] 本発明の抗菌 ·消臭物品用樹脂組成物は、生分解性ポリエステルとアミノ多糖類と を混合して得られる。これらを混合する手法としては、(1)生分解性ポリエステルにァ ミノ多糖類を練り込み混合する方法、 (2)生分解性ポリエステルとアミノ多糖類とのそ れぞれを有機溶媒で溶解させた溶液を調製し、これら溶液を混合する方法、(3)生 分解性ポリエステルとアミノ多糖類との両方を溶解させる有機溶媒に溶解混合する方 法がある。
これらの 3通りの方法を用いることで、生分解性ポリエステル中にアミノ多糖類をより 均一に分散させること力 Sできる。中でも両者を分子レベルで混合し得ることから、 (2) 生分解性ポリエステルとアミノ多糖類とのそれぞれを有機溶媒で溶解させた溶液を調 製し、これらを混合する方法、(3)生分解性ポリエステルとアミノ多糖類との両方を溶 解させる有機溶媒に溶解混合する方法が好ましい。
[0020] 上記(1)の生分解性ポリエステルにアミノ多糖類を練り込み混合する方法の場合、 例えば、生分解性ポリエステルとアミノ多糖類とをそれぞれ固体状態で混合した後、 加熱、混練して抗菌 ·消臭物品用樹脂組成物とすればよい。
この場合、アミノ多糖類は、粉末状のものを用いることが好ましい。この粉末状のアミ ノ多糖類は、衝撃式、圧縮式、剪断式、エアジェット式、冷凍粉砕式等の各種粉砕機 により機械的に粉砕したり、ギ酸、酢酸、乳酸、クェン酸等の有機酸もしくは塩酸、硝 酸等の無機酸の水溶液にこれを一旦溶解させた後、アンモニア等のアルカリ溶液に 分散して再生させたり、またはスプレードライにより噴霧乾燥して再生させたりして得 ること力 Sでさる。
アミノ多糖類の平均粒径 (ま、 0. 2〜400〃111カ 子ましく、 0· 20〜; 100〃 m力 Sより好 ましい。なお、平均粒径は、光散乱粒度分布測定装置による測定値である。
[0021] 生分解性ポリエステルとアミノ多糖類との混練法は特に限定はなぐ一軸混練押出 機、二軸混練押出機、バッチ式混練機、連続押出混練機等を用いて混練すればよ い。
加熱温度は、アミノ多糖類をより均一に分散させることを考慮すると、 100〜250°C が好ましぐ 100〜200°C力 Sより好ましい。
上記の混練により得られた抗菌 ·消臭物品用樹脂組成物 (樹脂混合ペレット)は、一 般的な熱可塑性プラスチックと同様に、押出成形、射出成形、延伸フィルム成形、ブ ロー成形などにより、種々の形状の成形品とすることができる。
[0022] 上記(2)および(3)の生分解性ポリエステルとアミノ多糖類とを有機溶媒中に溶解 する方法の場合、生分解性ポリエステルを溶解させる有機溶媒としては、酸アミド系 溶媒、塩素系溶媒、炭化水素系溶媒、およびギ酸等の有機溶媒を挙げることができ る。一方、アミノ多糖類を溶解させる有機溶媒としては、室温で液体の有機酸溶媒や 、室温で固体の有機酸を溶解した酸アミド系溶媒等の有機溶媒を挙げることができる
生分解性ポリエステルの有機溶媒溶液の調製に用いられる酸アミド系溶媒としては 、 N, N—ジメチルホルムアミド(以下、 DMFという)や N, N—ジメチルァセトアミド(以 下、 DMAcという)などの室温で液体の N—置換アミドが挙げられ、さらには N—メチ ルー 2—ピロリドンのような一部が環をなし、ヘテロ原子にカルボニル炭素が隣接した 化合物でもよい。 塩素系溶媒としては、塩化メチレン、クロ口ホルムなどが挙げられ、炭化水素系溶媒 としては、トノレェン、ベンゼン、アセトン、へキサン、シクロへキサン、メタノーノレ、ェタノ ール、プロパノール、イソプロパノール、テトラヒドロフランなどが挙げられる。
これらの有機溶媒の中でも、生分解性ポリエステルの有機溶媒溶液(生分解性ポリ エステル含有溶液)の調製に用いる溶媒としては酸アミド系溶媒が好ましぐ DMF、 DMAcなどの N—置換アミドが最適である。また、ギ酸も好適に用いることができる。
[0023] アミノ多糖類の有機溶媒溶液の調製に用いられる室温で液体の有機酸溶媒として は、上述の生分解性ポリエステルを溶解させるギ酸の他、酢酸、乳酸などが挙げられ る。また、室温で固体の有機酸を溶解した酸アミド系溶媒としては、クェン酸、リンゴ 酸、酒石酸などを溶解した酸アミド系溶媒が挙げられる。酸アミド系溶媒については 上述のとおりである。
これらの中でも、ゲル化しにくぐ均一な溶液を調製し易いという点から、アミノ多糖 類の有機溶媒溶液(ァミノ多糖類含有溶液)の調製に用いる溶媒としてはギ酸が好 適である。特に生分解性ポリエステル含有溶液の調製溶媒にもギ酸を用いる場合は 、上記(2)の方法に加え、生分解性ポリエステルとアミノ多糖類との両方を、有機溶 媒 (ギ酸)中に少量ずつ添加して溶解混合させるという、上記(3)の方法を採用する こと力 Sでさる。
[0024] 上記(2)の生分解性ポリエステルとアミノ多糖類との両方をそれぞれ有機溶媒で溶 解して混合する方法の場合、上述の有機溶媒を用いて生分解性ポリエステルとァミノ 多糖類とをそれぞれ別の溶液として調製し、これら溶液を混合して液体状の抗菌-消 臭物品用樹脂組成物とすればょレ、。
特に上記有機溶媒の中でも、生分解性ポリエステルの溶媒に酸アミド系溶媒を、ァ ミノ多糖類の溶媒にギ酸を用いる場合は、アミノ多糖類のギ酸溶液と生分解性ポリエ ステルの酸アミド系溶媒溶液とは、相溶性がよぐ混合溶液は室温で 10日以上ゲノレ 化もせず、静電紡糸の原料溶液として保存安定性が良いことから、これらの組み合わ せが最適である。
[0025] 生分解性ポリエステル含有溶液は、任意の手法で生分解性ポリエステルと、酸アミ ド系溶媒等の有機溶媒とを混合し、必要に応じて加熱して調製することができる。加 熱する場合の温度は、使用する溶媒の沸点にもよる力 25〜150°C程度が好適であ る。 25°C未満であると、使用する溶媒の種類にもよるが生分解性ポリエステルを均一 溶液になるまで溶解させるのに時間力かかり好ましくなぐ 150°Cを超えても溶媒中 に含まれる水分による生分解性ポリエステルの加水分解が起こり易くなるので好まし くない。
この場合、溶液中の生分解性ポリエステルの濃度は、 2〜50質量%程度が好ましく 、 5〜40質量%程度がより好ましい。
アミノ多糖類含有溶液は、任意の手法でアミノ多糖類と、有機酸溶媒または有機酸 含有酸アミド系溶媒とを混合し、必要に応じて加熱して調製することができる。加熱す る場合の温度は、使用する溶媒の沸点以下が好適である。
この場合、溶液中のアミノ多糖類の濃度は、 0. ;!〜 20質量%程度が好ましく 0. 5 〜; 10質量%程度がより好ましい。
[0026] 以上のようにして調製した生分解性ポリエステル含有溶液と、アミノ多糖類含有溶 液とを混合して液体状の樹脂組成物を得る。この際、生分解性ポリエステル含有溶 液にアミノ多糖類含有溶液を添加しても、その逆でもよい。得られた樹脂組成物は、 均一透明の液体である。
この液体状の樹脂組成物を固形状の樹脂組成物に成形するに先立ち、成形方法 に合わせて溶液の粘度や樹脂濃度を調整するなどのために、溶液にさらに溶媒を加 えてもよい。溶液中の、生分解性ポリエステルおよびアミノ多糖類の濃度は、 2. 5〜4 0質量%程度が好ましぐ 3. 5〜30質量%程度がより好ましい。 2. 5質量%未満で は、粘度が低くなるため成形や紡糸が困難になる場合があり、また、 40質量%超で は、粘度が高くなり、この場合も成形や紡糸が困難になる場合がある。
なお、キトサンなどのアミノ多糖類は、従来、酸水溶液として用いられるため、樹脂 の有機溶媒溶液とは混合できなかった力 本発明では、有機酸溶媒、または有機酸 を含む有機溶媒を用いてアミノ多糖類の溶液を調製して!/、るため、生分解性ポリエス テルの有機溶媒溶液と容易に混合することができる。
[0027] 得られた液体状の樹脂組成物は、流延法、押出成形法、スプレー法、ロールコーテ イング法、デイツビング法などの方法により、薄膜を形成し、次いで溶媒を真空乾燥す る力、、水中に浸漬して湿式凝固させて樹脂溶液をゲル化した後に乾燥することにより 、フィルムとすることができる。
また、この樹脂組成物は、静電紡糸法、スパンボンド法、メルトブロー法およびフラ ッシュ紡糸法等により紡糸することで、(ナノ)ファイバーとすることができる。これらの 紡糸法の中でも、熱の影響が少なレ、静電紡糸法が好まし!/、。
[0028] 静電紡糸法は、電界中で、帯電した樹脂組成物を曳糸しつつ、その電荷の反発力 により樹脂組成物を破裂させ、樹脂組成物からなる極微細な繊維状物を形成する方 法である。
静電紡糸を行う装置の基本的な構成は、樹脂組成物を排出するノズルを兼ね、樹 脂組成物に高電圧で印加する一方の電極と、その電極に対向する他方の電極とか らなる。一方の電極から吐出あるいは振出された樹脂組成物は、 2つの対向する電 極間の電界中で樹脂組成物からなる極微細な繊維状物になり、他方の電極表面上 に堆積する。
具体的には、生分解性ポリエステル含有溶液とアミノ多糖類含有溶液とを混合し、 口金から押して、混合溶液 (樹脂組成物)に数千から 5万ボルト程度の高電圧を印加 し、混合溶液の高速ジェットおよびそれに引き続くジェットの折れ曲がり、膨張によつ て(ナノ)ファイバー繊維および不織布が得られる。
[0029] 本発明では、樹脂組成物に酸成分が含まれているため、組成物 (溶液)に電圧を印 加する際に電荷がたまり易くなり、電界中に組成物をスプレーした際により細かく分裂 させること力 Sできる。樹脂組成物中の酸の濃度を高めることで、得られる(ナノ)フアイ バーの繊維径を細くすることができる。樹脂組成物中の酸成分は、 0. ;!〜 90質量% が好ましぐ 0. 5〜85質量%がより好ましぐ 0. 5〜75質量%がより一層好ましい。 0 . 1質量%未満では、繊維径の細さに影響せず、 90質量%超であると安定して紡糸 できなレ、虞があるため好ましくな!/、。
本発明の樹脂組成物を静電紡糸により紡糸することで、平均繊維径を、ナノフアイ バーの領域を含む lnm〜 10 m、好ましくはナノファイバーの領域である 1〜 1000 nmの範囲において、比較的そろった径に調整できる。
[0030] 以上に本発明の液状の樹脂組成物をフィルムや(ナノ)ファイバー、不織布に成形 する方法を述べたが、成形物はこれらに限られるものではない。例えば、液状の樹脂 組成物は、液滴化して溶媒を真空乾燥するか、水中に浸漬して湿式凝固させてゲル 化した後に、乾燥することでペレットとし、これを一般的な熱可塑性プラスチックと同様 に、押出成形、射出成形、延伸フィルム成形、ブロー成形などの成形方法を用いて 種々の成形物とすることもできる。
[0031] なお、以上で説明した各種抗菌 ·消臭物品用樹脂組成物には、その他の添加剤と して、本発明の効果が発揮される範囲で、帯電防止剤、発泡剤、耐熱安定剤、耐光 安定剤、耐候安定剤、耐湿熱安定化剤、滑剤、離型剤、無機充填剤、顔料分散剤、 顔料、染料などを適宜添加することができる。
[0032] 本発明の抗菌 ·消臭物品用樹脂組成物から得られた、けノ)ファイバー、不織布、 フィルム等の各種成形品は、例えば、払拭シート、マスク、フィルタ、濾過材、有害物 質除去製品、手袋、雑巾、ワイパ、マット、カーシート、天井材、壁紙、ォムッ、病院用 ガウン、医療従事者用衣服、シーツ、包装材、芯地、育苗ポット、育苗マット、土木建 築材などに好適に使用できる。
実施例
[0033] 以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明 は、下記の実施例に限定されるものではない。なお、以下の各実施例、比較例にお ける評価項目は下記手法にて実施した。
[0034] [1]平均繊維径
試料表面を走査型電子顕微鏡((株)日立ハイテクノロジーズ製「S— 48001」)によ り撮影倍率 5000倍で撮影して得た写真から、無作為に 20箇所を選んで繊維径を測 定した。全ての繊維径の平均値 (n = 20)を求めて平均繊維径とした。
[2]不織布の厚み
デジタルシックネスゲージ((株)テクロック製「SMD— 565」)を用いて、測定力 1 · 5 Nにより無作為に 5箇所を選んで厚みを測定した。全ての厚みの平均値 (n= 5)を求 めて、不織布の厚みとした。
[3]不織布の目付
試料の質量を測定し、平方メートル当たりに換算した。 [4]抗菌性能測定試験 (菌数測定法)
繊維製品衛生加工協議会が策定した抗菌防臭加工製品の加工効果評価試験マ ニュアルに記載された以下の菌数測定法を採用した。
黄色ぶどう球菌を試験菌体とし、これを予め普通ブイヨン培地で 106〜; 107個/ ml になるように培養調整し、試験菌懸濁液とした。この懸濁液 0. 2mlを減菌処理したネ ジ付きバイアル瓶中の試料 0. 4gに均一に接種し、 36〜38°Cで 18時間静置培養後 、容器内に減菌緩衝生理食塩液を 20ml加え、振幅 30cmで手により 25〜30回強く 振とうして試験中の生菌を液中に分散させた後、滅菌緩衝生理食塩液で適当な希釈 系列を作り、各段階の希釈液 lmlをシャーレ 2枚に入れ、さらに標準寒天培地約 15 ml入れた。これを 36〜38°Cで 24〜48時間培養した後、生育コロニー数を計測し、 その希釈倍率に応じて試料中の生菌数を算出した。そしてその効果の判定は、増殖 値が 1. 5を超える場合、試験成立を判定した。また、下記式により静菌活性値 Sおよ び殺菌活性値 Lを求めた。
静菌活性値 S = B— C
殺菌活性値 L=A— C
A:標準布の試験菌接触直後の 3検体の生菌数の常用対数値の平均値
B :標準布の 18時間培養後の 3検体の生菌数の常用対数値の平均値
C :抗菌加工試料の 18時間培養後の 3検体の生菌数の常用対数値の平均値
[5]生分解性能測定試験
畑土壌中に埋設して 3力月後および 5力月経過後の試料(5cm X 5cm)の分解状況 を肉眼判定した。
[6]紡糸性
吐出先端内孔径 0. 4mm、印加電圧 25KV、室温、大気圧下の条件で液状の樹 脂組成物を静電紡糸した際の吐出状態を目視観察し、以下の基準で評価した。
〇:安定的に吐出可能
△:中断しながら吐出可能
X:吐出不可能
[7]風合い 得られた不織布を手で握り、その時の触感を判断した。官能評価を以下の基準で 行った。
◎:より柔軟
〇:柔軟
△:普通
X:硬ぃ
[0035] [1]フィルムの作製
[実施例 1]
ポリ乳酸樹脂 (LACEA H400、三井化学 (株)製) 100質量部とキトサン粉末((株 )キミ力製、平均粒子径約1〜5 111) 2. 5質量部とを、二軸ェクストルダ一中、 220°C で練り込み混合して抗菌 ·消臭物品用樹脂組成物を製造し、引き続いてギヤポンプ にて計量しながら温度 210°Cの Tダイ口金からこの樹脂組成物をシート状に押し出し た。その後、 20°Cまで冷却し、厚み 100 mの抗菌フィルムを得た。
[0036] [実施例 2]
ポリ乳酸樹脂(LACEA H280、三井化学 (株)製) 100質量部とジメチルァセトァ ミド 300質量部とを混合し、 60°Cでポリ乳酸を溶解させてポリ乳酸含有溶液を調製し た。一方、キトサン((株)キミ力製、脱ァセチノレ化 75〜85%) 2. 5質量部とギ酸 164 質量部とを室温にて混合し、キトサンを溶解させてキトサン含有溶液を調製した。これ を、先に調製したポリ乳酸含有溶液に室温で添加して混合し、均一透明液状の抗菌 •消臭物品用樹脂組成物を調製した。
得られた樹脂組成物を、ガラス板上にナイフコータにてキャストし、 60°Cの真空乾 燥機にて 10時間乾燥を行い、厚み 100 mの抗菌フィルムを得た。
[0037] [2]不織布の作製
[実施例 3]
ポリ乳酸樹脂(LACEA H280、三井化学 (株)製) 100質量部とジメチルホルムァ ミド 570質量部とを混合し、 60°Cでポリ乳酸を溶解させてポリ乳酸含有溶液を調製し た。一方、キトサン((株)キミ力製、脱ァセチノレ化 75〜85%) 0. 1質量部とギ酸 6· 6 質量部とを室温にて混合し、キトサンを溶解させてキトサン含有溶液を調製した。これ を、先に調製したポリ乳酸含有溶液に室温で添加して混合し、均一透明液状の抗菌 •消臭物品用樹脂組成物を調製した。
この樹脂組成物(紡糸溶液)をシリンジに入れ、吐出先端内口径が 0. 4mm、印加 電圧 25KV (室温下、大気圧)、吐出先端内口径から繊維状物質捕集電極までの距 離 15cmで静電紡糸を行い、抗菌不織布を得た。得られた不織布の平均繊維径は 1 〃 mであり、繊維径 10 m以上の繊維は観察されず、不織布を構成する繊維はナノ ファイバーの領域を含むものであった。また、不織布の厚みは 150 111であり、 目付 は 30g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図 1に示す。
[0038] [実施例 4]
キトサンを 0. 5質量部とし、ギ酸を 33質量部とした以外は、実施例 3と同様にして均 一透明液状の抗菌 ·消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例 3 と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は 0. 5 mであり、繊維径 1 μ m以上の繊維は観察 されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の厚 みは 100 H mであり、 目付は 10g/m2であった。得られた抗菌不織布の電子顕微鏡 写真を図 2に示す。
[0039] [実施例 5]
キトサンを 1. 0質量部とし、ギ酸を 66質量部とした以外は、実施例 3と同様にして均 一透明液状の抗菌 ·消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例 3 と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は 0. 3 mであり、繊維径 0. 5 m以上の繊維は観 察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の 厚みは 50 H mであり、 目付は 6g/m2であった。得られた抗菌不織布の電子顕微鏡 写真を図 3に示す。
[0040] [実施例 6]
キトサンを 2. 5質量部とし、ギ酸を 164質量部とした以外は、実施例 3と同様にして 均一透明液状の抗菌 ·消臭物品用樹脂組成物を調製した。この樹脂組成物を実施 例 3と同様にして静電紡糸し、抗菌不織布を得た。 得られた不織布を電子顕微鏡で観察したところ、図 3とほぼ同様で、平均繊維径は 0. 3 mであり、繊維径 0· 5 m以上の繊維は観察されず、不織布を構成する繊維 はナノファイバーの領域であった。また、不織布の厚みは 50 mであり、 目付は 5. 5 gZ mであった。
[0041] [実施例 7]
キトサンを 5. 0質量部とし、ギ酸を 330質量部とした以外は、実施例 3と同様にして 均一透明液状の抗菌 ·消臭物品用樹脂組成物を調製した。この樹脂組成物を実施 例 3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は 0. 3 mであり、繊維径 0. 5 m以上の繊維は観 察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の 厚みは 35 mであり、 目付は 2. 5g/m2であった。得られた抗菌不織布の電子顕微 鏡写真を図 4に示す。
[0042] [実施例 8]
キトサンを 30質量部とし、ギ酸を 1980質量部とした以外は、実施例 3と同様にして 均一透明液状の抗菌 ·消臭物品用樹脂組成物を調製した。この樹脂組成物を実施 例 3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は 0. 3 mであり、繊維径 0. 5 m以上の繊維は観 察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の 厚みは 35 mであり、 目付は 2. 5g/m2であった。得られた抗菌不織布の電子顕微 鏡写真を図 5に示す。
[0043] [実施例 9]
キトサンを 0. 5質量部とし、ギ酸を 33質量部とし、さらにジメチルホルムアミドをジメ チルァセトアミドに置き換えた以外は、実施例 3と同様にして均一透明液状の抗菌- 消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例 3と同様にして静電紡 糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は 0· 4 H mであり、繊維径 0· 8 H m以上の繊維は観 察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の 厚みは lOO rnであり、 目付は 10g/m2であった。得られた抗菌不織布の電子顕微 鏡写真を図 6に示す。
[0044] [実施例 10]
キトサンを 0. 5質量部とし、ギ酸を 33質量部とし、さらにジメチルホルムアミドをクロ 口ホルム 900質量部に置き換えた以外は、実施例 3と同様にして均一透明液状の抗 菌'消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例 3と同様にして静 電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は 2 μ mであり、繊維径 10 m以上の繊維は観察さ れず、不織布を構成する繊維はナノファイバーの領域を含むものであった。また、不 織布の厚みは 200 μ mであり、 目付は 35g/m2であった。得られた抗菌不織布の電 子顕微鏡写真を図 7に示す。
[0045] [実施例 11 ]
キトサンを 0. 5質量部とし、ギ酸を 33質量部とし、さらにジメチルホルムアミドを塩化 メチレン 900質量部に置き換えた以外は、実施例 3と同様にして均一透明液状の抗 菌'消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例 3と同様にして静 電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は 2 μ mであり、繊維径 10 m以上の繊維は観察さ れず、不織布を構成する繊維はナノファイバーの領域を含むものであった。また、不 織布の厚みは 200 μ mであり、 目付は 35g/m2であった。得られた抗菌不織布の電 子顕微鏡写真を図 8に示す。
[0046] [実施例 12]
ポリ乳酸樹脂 (LACEA H280、三井化学 (株)製) 100質量部とキトサン((株)キミ 力製、脱ァセチノレイ匕 75〜85%) 0· 5質量咅とを、 60°Cにカロ温下、 600質量咅のギ 酸中に加え、ポリ乳酸とキトサンとを溶解させて均一透明液状の抗菌 ·消臭物品用樹 脂組成物を調製した。この樹脂組成物を実施例 3と同様にして静電紡糸し、抗菌不 織布を得た。
得られた不織布の平均繊維径は 0· 4 H mであり、繊維径 0· 8 H m以上の繊維は観 察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の 厚みは lOO rnであり、 目付は 10g/m2であった。得られた抗菌不織布の電子顕微 鏡写真を図 9に示す。
[0047] [比較例 1]
ポリ乳酸樹脂(LACEA H280、三井化学 (株)製) 100質量部とジメチルァセトァ ミド 300質量部とを混合し、 60°Cでポリ乳酸を溶解させてポリ乳酸溶液を調製した。 得られたポリ乳酸溶液を、ガラス板上にナイフコータにてキャストし、 60°Cの真空乾 燥機にて 10時間乾燥を行い、厚み 100 mのフィルムを得た。
[0048] [比較例 2]
キトサン((株)キミ力製、脱ァセチル化 75〜85%) 100質量部とギ酸 200質量部と 蒸留水 19700質量部とを混合し、室温で 10時間以上攪拌してキトサンを溶解させた
得られた 0. 5質量%キトサン酸水溶液に、市販のポリ乳酸不織布(テラマックュニ チカ社製)を浸し、室温で乾燥させた。乾燥後、 70°Cで 30分間の熱処理を施し、抗 菌不織布を得た。コーティング処理を行う前後での重量差から求めたキトサンの乾燥 付着量は、約 1. 5質量%であった。
[0049] [比較例 3]
市販のポリプロピレン不織布 (ストラテック、出光テック (株)製、平均繊維系 4 111) を用いた以外は、比較例 2と同様な方法でコーティング処理を行い、抗菌不織布を得 た。コーティング処理を行う前後での重量差から求めたキトサンの乾燥付着量は、約 1. 5質量%であった。
[0050] [比較例 4]
キトサンを 55質量部とし、ギ酸を 3630質量部とした以外は、実施例 3と同様にして 、均一透明液状の抗菌 ·消臭物品用樹脂組成物を調製した。この樹脂組成物を実施 例 3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は 0. 2 mであり、繊維径 0. 5 m以上の繊維は観 察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の 厚みは 35 mであり、 目付は 1 · 5g/m2であった。
[0051] 上記実施例 1〜; 12および比較例 1〜4で得られたフィルム、不織布について、上述 の抗菌性能測定試験を行った結果を表 1に示す。 [表 1]
Figure imgf000021_0001
*抗菌性試験
標準白布 (綿) 接種直後: ι.9Χ 10 4
18時間培養後: 7.9 Χ 1ο6 次に、上記実施例 1〜; 12および比較例 1〜4で得られたフィルム、不織布について 、上述の生分解性能測定試験を行った結果を表 2に示す。 [0054] [表 2] 実施例較例比 配合,基材
土壌での分 伏態
(質量部)
形状
ポリ乳酸 キトサン 3ヶ月後 5ヶ月後
完全に分解され痕跡もな
1 フイノレム 100 2.5 形状を保っていた
かった 完全に分解され痕跡もな
2 フィルム 100 2.5 形状を保っていた
力 た 完全こ分解されて痕跡もな
3 不織布 100 0.1
力 た
完全こ分解されて痕跡もな
4 不織布 100 0.5
かつ —
完全こ分解されて痕跡もな
5 不織布 100 1.0
かった
完全こ分解されて痕跡もな
6 不織布 100 2.5
かつ —
完全こ分解されて痕跡もな
7 不織布 100 5.0
力 た
完全こ分解されて痕跡もな
8 不織布 100 30
力 た
完全こ分解されて痕跡もな
9 不織布 100 0.5
力つた
完全こ分解されて痕跡もな
10 不織布 100 0.5
力 た
完全こ分解されて痕跡もな
11 不織布 100 0.5
かつ —
完全こ分解されて痕跡もな
12 不織布 100 0.5
かつ ft
完全に分解され痕跡もな
1 フイノレム 100 0 形状を保っていた
かった 不織布、 完全に分解され痕跡もな
2 100 1.5 形状を保っていた
コート 力 た 不織布、 [PP] 形状を保ってレ、たがキトサン
3 1.5 形状を保っていた
コート 100 層は消失していた 完全こ分解されて痕跡もな
4 不織布 100 55
力 た
[0055] また、上記実施例 3〜; 12および比較例 2〜4で得られた不織布について上述の風 合いを、上記実施例 3〜; 12および比較例 4で得られた不織布について上述の紡糸 性をそれぞれ評価した結果を表 3に示す。
[0056] [表 3]
Figure imgf000023_0001
DMF : ジメチルホルムアミド
DMAc : ジメチノレアセトアミド
表 1に示されるように、実施例 1〜; 12で得られた本発明の抗菌フィルムおよび不織 布は、比較例 1〜3のポリ乳酸のみからなるフィルムおよび市販のポリ乳酸不織布に キトサンを被覆したものと比べ、抗菌性能に格段に優れていることがわかる。
表 2に示されるように、実施例 1〜; 12で得られた本発明の抗菌フィルムおよび不織 布は、良好な生分解性を示すことがわかる。特に実施例 3〜; 12の抗菌不織布は、比 較例 2の市販のポリ乳酸不織布にキトサンを被覆したものと比べても生分解性に格段 に優れていることがわかる。 表 3に示されるように、実施例 3〜; 12で得られた本発明の不織布は、比較例の不織 布に比べて風合いが同等以上であり、特にキトサンがポリ乳酸に対して 0. 5質量% 以下で、かつポリ乳酸溶液の溶媒に酸アミド系溶媒を用いた場合に格段に優れたも のになることがわかる。また、ポリ乳酸溶液の溶媒に酸アミド系溶媒を用いた場合に は、静電紡糸法における紡糸性も良好であった。

Claims

請求の範囲
[I] 生分解性ポリエステル 100質量部と、アミノ多糖類 0. 0;!〜 50質量部とを含むことを 特徴とする抗菌 ·消臭物品用樹脂組成物。
[2] 前記生分解性ポリエステルと前記アミノ多糖類とをそれぞれ固体状態で混合した後
、加熱、混練して調製された請求項 1記載の抗菌 ·消臭物品用樹脂組成物。
[3] 前記生分解性ポリエステル中に、前記アミノ多糖類が均一に分散している請求項 1 または 2記載の抗菌 ·消臭物品用樹脂組成物。
[4] 前記生分解性ポリエステルと前記アミノ多糖類とのみからなる請求項 1〜3のいずれ 力、 1項記載の抗菌 ·消臭物品用樹脂組成物。
[5] さらに、酸アミド系溶媒と、有機酸溶媒とを含む請求項 1記載の抗菌 ·消臭物品用 樹脂組成物。
[6] 前記生分解性ポリエステルを酸アミド系溶媒に溶解してなる生分解性ポリエステル 含有溶液と、前記アミノ多糖類を前記有機酸溶媒に溶解してなるアミノ多糖類含有溶 液とを混合して調製された請求項 5記載の抗菌 ·消臭物品用樹脂組成物。
[7] さらにギ酸を含み、前記生分解性ポリエステルと前記アミノ多糖類とがギ酸に溶解し てなる請求項 1記載の抗菌 ·消臭物品用樹脂組成物。
[8] 均一透明である請求項 5〜7のいずれか 1項記載の抗菌'消臭物品用樹脂組成物
[9] 前記アミノ多糖類が、 D—ダルコサミン単位または N—ァセチルー D—ダルコサミン 単位を有する請求項 1〜8のいずれ力、 1項記載の抗菌 ·消臭物品用樹脂組成物。
[10] 前記生分解性ポリエステルが、ポリ乳酸である請求項;!〜 9のいずれか 1項記載の 抗菌 ·消臭物品用樹脂組成物。
[I I] 請求項;!〜 10のいずれか 1項記載の抗菌'消臭物品用樹脂組成物を紡糸してなる 平均繊維径 lnm〜; 10 μ mの抗菌'消臭性ファイバー。
[12] 請求項 11記載の抗菌 ·消臭性ファイバーからなる抗菌 ·消臭性不織布。
[13] 請求項;!〜 10のいずれか 1項記載の抗菌'消臭物品用樹脂組成物を成形してなる 抗菌 ·消臭性フィルム。
[14] 生分解性ポリエステルとアミノ多糖類とを含む樹脂組成物を静電紡糸法により紡糸 することを特徴とする抗菌 ·消臭性不織布の製造方法。
[15] 前記樹脂組成物が、生分解性ポリエステルを酸アミド系溶媒に溶力、した生分解性 ポリエステル含有溶液と、前記アミノ多糖類を有機酸に溶力、したアミノ多糖類含有溶 液とを混合して調製された請求項 14記載の抗菌'消臭性不織布の製造方法。
[16] 前記樹脂組成物が、前記生分解性ポリエステルと前記アミノ多糖類とをギ酸に溶か して調製された請求項 14記載の抗菌 ·消臭性不織布の製造方法。
PCT/JP2007/072431 2006-11-22 2007-11-20 Composition de résine pour un article antibactérien et désodorisant et fibre et tissu non tissé antibactériens et désodorisants obtenus à partir de celle-ci WO2008062775A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006315713A JP2008127496A (ja) 2006-11-22 2006-11-22 抗菌・消臭性物品用樹脂組成物、並びにこれから得られる抗菌・消臭性ファイバーおよび不織布
JP2006-315713 2006-11-22

Publications (1)

Publication Number Publication Date
WO2008062775A1 true WO2008062775A1 (fr) 2008-05-29

Family

ID=39429705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072431 WO2008062775A1 (fr) 2006-11-22 2007-11-20 Composition de résine pour un article antibactérien et désodorisant et fibre et tissu non tissé antibactériens et désodorisants obtenus à partir de celle-ci

Country Status (2)

Country Link
JP (1) JP2008127496A (ja)
WO (1) WO2008062775A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517582A (zh) * 2018-04-10 2018-09-11 天津工业大学 一种可降解抗菌纳米纤维及其制备方法
JP2020500792A (ja) * 2016-12-09 2020-01-16 ナショナル ユニヴァーシティー オブ シンガポール 包装材料およびその調製方法
CN111364124A (zh) * 2018-12-25 2020-07-03 河北康鹤居安科技股份有限公司 一种具有杀菌和防水功能的医疗用纳米纤维生产工艺
CN111978614A (zh) * 2020-08-11 2020-11-24 青岛周氏塑料包装有限公司 一种垃圾桶用抗菌除臭塑料及其制备方法
CN113818093A (zh) * 2021-09-14 2021-12-21 海南大学 一种可生物降解抗菌聚乳酸纺粘无纺布切片及其制备方法
CN115262223A (zh) * 2022-08-23 2022-11-01 青岛大学 一种聚酯/壳聚糖凝胶复合纤维膜及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274512A (ja) 2007-04-03 2008-11-13 Nisshinbo Ind Inc 抗菌性ナノファイバー
EP2292530B1 (en) * 2008-07-03 2017-06-07 Nisshinbo Holdings, Inc. Preservative material and storage method for liquid
JP5219093B2 (ja) * 2009-11-14 2013-06-26 公益財団法人北九州産業学術推進機構 乳酸オリゴマーおよびその成形体
JP5400706B2 (ja) * 2010-05-24 2014-01-29 帝人株式会社 繊維成形体
KR101231003B1 (ko) 2010-11-09 2013-02-07 현대자동차주식회사 전기방사를 이용한 원적외선 방출, 항균 및 소취 특성을 갖는 나노섬유 부직포의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241009A (ja) * 1998-02-26 1999-09-07 Mitsui Chem Inc ポリ乳酸系樹脂組成物
JP2004010749A (ja) * 2002-06-06 2004-01-15 Unitika Ltd 生分解性組成物
JP2004067989A (ja) * 2002-06-14 2004-03-04 Kanebo Ltd 生分解性樹脂組成物、ポリ乳酸系樹脂組成物及びそれらの製造方法
WO2004088024A1 (ja) * 2003-03-31 2004-10-14 Teijin Limited 不織布およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241009A (ja) * 1998-02-26 1999-09-07 Mitsui Chem Inc ポリ乳酸系樹脂組成物
JP2004010749A (ja) * 2002-06-06 2004-01-15 Unitika Ltd 生分解性組成物
JP2004067989A (ja) * 2002-06-14 2004-03-04 Kanebo Ltd 生分解性樹脂組成物、ポリ乳酸系樹脂組成物及びそれらの製造方法
WO2004088024A1 (ja) * 2003-03-31 2004-10-14 Teijin Limited 不織布およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIHUA LI, SHAN DING, CHANGREN ZHOU: "Preparation and Degradation of PLA/Chitosan Composite Materials", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 91, 2004, pages 274 - 277 *
YING WAN ET AL.: "Biodegradable Polyactide/Chitosan Blend Membranes", BIOMACROMOLECULES, vol. 7, no. 4, 25 March 2006 (2006-03-25), pages 1362 - 1372 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500792A (ja) * 2016-12-09 2020-01-16 ナショナル ユニヴァーシティー オブ シンガポール 包装材料およびその調製方法
CN108517582A (zh) * 2018-04-10 2018-09-11 天津工业大学 一种可降解抗菌纳米纤维及其制备方法
CN111364124A (zh) * 2018-12-25 2020-07-03 河北康鹤居安科技股份有限公司 一种具有杀菌和防水功能的医疗用纳米纤维生产工艺
CN111978614A (zh) * 2020-08-11 2020-11-24 青岛周氏塑料包装有限公司 一种垃圾桶用抗菌除臭塑料及其制备方法
CN111978614B (zh) * 2020-08-11 2022-11-29 青岛周氏塑料包装有限公司 一种垃圾桶用抗菌除臭塑料及其制备方法
CN113818093A (zh) * 2021-09-14 2021-12-21 海南大学 一种可生物降解抗菌聚乳酸纺粘无纺布切片及其制备方法
CN115262223A (zh) * 2022-08-23 2022-11-01 青岛大学 一种聚酯/壳聚糖凝胶复合纤维膜及其制备方法
CN115262223B (zh) * 2022-08-23 2023-12-26 青岛大学 一种聚酯/壳聚糖凝胶复合纤维膜及其制备方法

Also Published As

Publication number Publication date
JP2008127496A (ja) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2008062775A1 (fr) Composition de résine pour un article antibactérien et désodorisant et fibre et tissu non tissé antibactériens et désodorisants obtenus à partir de celle-ci
Alharbi et al. Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering
EP2133451B1 (en) Antibacterial nanofiber
JP5470569B2 (ja) シルク複合ナノファイバー及びその製造方法
Hendrick et al. Increasing surface hydrophilicity in poly (lactic acid) electrospun fibers by addition of PLA-b-PEG co-polymers
Au et al. Fabrication of an antibacterial non-woven mat of a poly (lactic acid)/chitosan blend by electrospinning
Schiffman et al. A review: electrospinning of biopolymer nanofibers and their applications
Zhang et al. Mechanical property enhancement of polylactide nanofibers through optimization of molecular weight, electrospinning conditions, and stereocomplexation
KR100727086B1 (ko) 기능성 고분자 소재 및 이의 제조 방법
JP5614474B2 (ja) 繊維の抗菌性発現方法
Ohkawa et al. Preparation of pure cellulose nanofiber via electrospinning
Scaffaro et al. Properties-morphology relationships in electrospun mats based on polylactic acid and graphene nanoplatelets
Ranjbar-Mohammadi et al. Design and characterization of keratin/PVA-PLA nanofibers containing hybrids of nanofibrillated chitosan/ZnO nanoparticles
JP4883312B2 (ja) 樹脂製極細短繊維およびその製造方法
Liu et al. Electrospun antibacterial and antiviral poly (ε-caprolactone)/zein/Ag bead-on-string membranes and its application in air filtration
CN106757772B (zh) 一种聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法
Fattahi et al. Sustainable, renewable, and biodegradable poly (lactic acid) fibers and their latest developments in the last decade
Ceylan et al. Importance of electrospun chitosan-based nanoscale materials for seafood products safety
Rodríguez-Tobías et al. Electrospinning and electrospraying techniques for designing antimicrobial polymeric biocomposite mats
Bonakdar et al. Highly porous biobased membranes via electrospinning of PBS and CTAB
JP6161285B2 (ja) 抗菌性ナノファイバー・シート、その製造方法およびフィルター
Corradini et al. Preparation of polymeric mats through electrospinning for technological uses
Zhao et al. Enhanced thermal and antibacterial properties of stereo-complexed polylactide fibers doped with nano-silver
Sukthavorn et al. Enhanced antibacterial activity of composite fibers from polylactic acid and nanosilver‐coated ground tea leaves for sustainable green composite textiles
Blanes et al. Influence of glyoxal in the physical characterization of PVA nanofibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832161

Country of ref document: EP

Kind code of ref document: A1