WO2008062748A1 - Dispositif de traitement de signal et procédé de traitement de signal - Google Patents

Dispositif de traitement de signal et procédé de traitement de signal Download PDF

Info

Publication number
WO2008062748A1
WO2008062748A1 PCT/JP2007/072368 JP2007072368W WO2008062748A1 WO 2008062748 A1 WO2008062748 A1 WO 2008062748A1 JP 2007072368 W JP2007072368 W JP 2007072368W WO 2008062748 A1 WO2008062748 A1 WO 2008062748A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
impedance
load
characteristic
signal processing
Prior art date
Application number
PCT/JP2007/072368
Other languages
English (en)
French (fr)
Inventor
Kazuya Iwata
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/515,362 priority Critical patent/US8428917B2/en
Priority to JP2008545392A priority patent/JP5049292B2/ja
Priority to GB0908607A priority patent/GB2456963B/en
Publication of WO2008062748A1 publication Critical patent/WO2008062748A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/02Manually-operated control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to a signal processing apparatus and a signal processing method for reproducing the sound quality feature of an analog audio device, particularly a vacuum tube amplifier, with a digital audio device.
  • Patent Document 1 discloses a signal processing device for the purpose of producing a feature of the tone color of a vacuum tube type guitar amplifier, particularly the tone color change when an excessive input is given, in an instrument effector.
  • Figure 18 shows the configuration of the signal processor.
  • the signal processing device shown in FIG. 18 includes an Ig signal, an lock 301 and 302, an Ip / Eg signal, an lock 305 and 306, a lever detection 308, a multiplier 309, and a calo calculator 303, 304, 307, and 310.
  • Ig blocks 301, 302 simulate filter characteristics connected to a grid of a vacuum tube power amplifier according to an input signal.
  • the output signal of the Ig block 301, 302 is supplied to the Ip / Eg block 305, 306.
  • the Ip / Eg blocks 305, 306 simulate plate current in response to changes in grid voltage in tube power amplification.
  • the blocking characteristics of the Ig blocks 301 and 302 increase as the input voltage increases.
  • the level detector 308 detects the level of the addition output of the Ip / Eg block 305 obtained from the adder 307 and the Ip / Eg block 306. As this level increases, the operation of the vacuum tube amplifier is simulated by deepening the bias of the Ip / Eg blocks 305, 306 using the multiplier 309 and the calo calculators 310, 303, 304. .
  • Patent Document 1 simulates the filter characteristic connected to the grid of the vacuum tube power amplifier according to the input signal, the static characteristic of the plate current, and the output signal level. To change the filter characteristics and the bias applied to the input signal. As a result, the characteristics of the vacuum tube amplifier can be simulated, and the tone of the vacuum tube type guitar amplifier, in particular, the characteristics of the tone change when an excessive input is given can be reproduced.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-86840
  • An object of the present invention is to reproduce the tone of a vacuum tube type guitar amplifier, in particular, the feature of tone change when an excessive input is given, to the above-mentioned conventional signal processing apparatus. For this reason, the effect can not be obtained for the normal amplitude signal (signal amplitude that can be practically operated without distortion), and it is not suitable for audio applications that handle normal amplitude signals.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to reproduce the sound quality characteristics possessed by analog audio equipment, particularly vacuum tube amplifiers, with digital audio equipment, and It is an object of the present invention to provide a signal processing device and method capable of reproducing sound quality such as that having a medium to low range, a smooth sound, and a sense of stability and security that can be perceived from the reproduced sound of an audio device.
  • a signal processing apparatus simulates a transfer characteristic of a transformer whose frequency characteristic changes according to a connected load, and processes and outputs an input signal according to the transfer characteristic, and And load impedance simulation means for simulating a predetermined load impedance characteristic and outputting the impedance characteristic.
  • the transformer simulation means simulates the transfer characteristics of the transformer in a state in which a load having a load impedance simulated by the load impedance simulation means is connected.
  • the signal processing method according to the present invention simulates the impedance characteristic of a predetermined load.
  • the output audio signal is processed by processing the input audio signal with the transfer characteristic in the state where the load having the predetermined characteristic is connected to the transformer having the predetermined characteristic. It is generated.
  • the output audio signal is generated by processing the input audio signal with the entire transfer characteristics including the transfer characteristics of the output transformer and the impedance characteristics of the speaker connected thereto.
  • FIG. 1 A block diagram of a signal processing apparatus according to an embodiment of the present invention
  • FIG. 5 A diagram showing an example of the impedance characteristic of the speaker system
  • FIG. 6 A diagram showing the frequency characteristics of the output signal of the output transformer when the speaker system having the impedance characteristic shown in FIG. 5 is connected.
  • FIG. 7 A diagram showing a configuration example of a circuit used when simulating a speaker impedance in the speaker impedance simulation unit.
  • FIG. 10 A diagram showing the phase characteristics and amplitude characteristics of the output transformer with a pure resistor connected as the load.
  • Figure 11 The phase characteristics of the output signal of the output transformer with a sealed 2-way speaker system connected as the load. And amplitude characteristics
  • FIG. 12 A diagram showing the phase characteristics and amplitude characteristics of the output signal of the output transformer to which a closed type full-range speaker system is connected as a load.
  • FIG. 14 A diagram showing the output signal characteristics of the output transformer as the impedance characteristics shown in FIG. 13 change.
  • FIG. 15 A diagram showing the impedance characteristic of a bass reflex type 3-way speaker system obtained by changing control parameters.
  • FIG. 16 A diagram showing an output signal characteristic of the output transformer to which the load of the impedance characteristic shown in FIG. 15 is connected.
  • Figure 17 A diagram showing the change of the output signal characteristics of the output transformer when the next inductance is changed
  • FIG. 18 A block diagram showing the configuration of a conventional audio signal reproduction apparatus
  • FIG. 1 is a block diagram of a signal processing apparatus according to a first embodiment of the present invention.
  • a signal processing apparatus 100 outputs an output transformer simulation unit 101, a speaker impedance simulation unit 102, an input terminal T1 for inputting a digital audio signal, and a digital audio signal subjected to predetermined signal processing.
  • the signal processing apparatus 100 further includes a control terminal T11 for changing the setting regarding simulation in the output transformer simulation unit 101, and a control terminal T12 for changing the setting regarding simulation in the speaker impedance simulation unit 102.
  • the signal processing apparatus 100 of the present embodiment is an audio power amplifier using a vacuum tube (hereinafter referred to as “ It is called a vacuum tube amplifier. It has a filter function that simulates the output characteristics (transfer characteristics) of), adds the simulated output characteristics to the input signal, and outputs the result.
  • a vacuum tube amplifier has a filter function that simulates the output characteristics (transfer characteristics) of), adds the simulated output characteristics to the input signal, and outputs the result.
  • the inventor of the present invention focused on the output transformer used in the vacuum tube amplifier as an element that greatly affects the sound quality of the vacuum tube amplifier, and obtained it by simulating the output characteristics of the output transformer. It has been discovered that it is possible to reproduce sound quality features that are
  • the output characteristics of the output transformer depend on the impedance of a load (for example, a speaker) connected thereto. Therefore, the output transformer simulation unit 101 simulates the output characteristics of the output transformer used for vacuum tube amplification, and the speaker impedance simulation unit 102 simulates the load impedance of the speaker connected to the output transformer.
  • the audio digital signal passes through the signal processing device 100 of the present embodiment, to which the characteristic of the sound quality obtained from the vacuum tube amplifier and the speaker to be simulated is added. Smooth, stable and secure sound quality can be obtained.
  • the signal processing device 100 is formed of a semiconductor integrated circuit, and has a function of simulating the transfer characteristic of the output transformer and the impedance characteristic of the speaker.
  • the signal processing apparatus 100 is configured by a DSP (Digital Signal Processor: digital 'signal' processor) that executes a signal processing program that realizes the following functions.
  • DSP Digital Signal Processor: digital 'signal' processor
  • optical power amplifier vacuum tube amplifier
  • output transformer simulation unit 101 an optical power amplifier (vacuum tube amplifier) including an output transformer simulated by the output transformer simulation unit 101 will be described.
  • FIG. 2 shows the configuration of an audio power amplifier (vacuum tube amplifier) using one triode vacuum tube.
  • the vacuum tube amplifier comprises a vacuum tube device 201 for amplifying an audio signal, a resistor 202 for providing a bias for determining an operating point of the vacuum tube device 201, an output transformer 203, and a DC power supply 204.
  • the vacuum tube amplifier receives an analog audio signal from the input terminal T3 and outputs the amplified audio signal to the speaker 205, which is a load, via the output transformer 203.
  • the audio signal input from the input terminal T 3 is supplied to the vacuum tube device 201.
  • the working point of the tube device 201 is the resistor 202, It is determined by the power transformer 203 and the DC power supply 204.
  • the vacuum tube device 201 amplifies the input audio signal, and supplies power to the speaker 205 which is a load through the output transformer 203.
  • the output resistance of the vacuum tube device 201 is generally large, and the impedance of the speaker 205 is as small as 4 8 ⁇ ! /, So the impedance matching is performed using the output transformer 203.
  • an output transformer has a band pass characteristic, and its transfer characteristic is known to be affected by a load connected to the output transformer.
  • the inventor of the present application has noted that the characteristics of such an output transformer affect the transfer characteristics of the vacuum tube amplifier and affect the sound quality of the vacuum tube amplifier. That is, the transfer characteristic of the output transformer when the speaker is connected as a load is simulated, and the input audio signal is processed by the transfer characteristic to generate an audio signal including the sound quality feature of the vacuum tube amplifier. .
  • the output transformer simulation unit 101 simulates the characteristics of the audio output transformer.
  • an audio output transformer is generally inserted to obtain impedance matching between a speaker having a low (4 to 16 ⁇ ) load impedance and a tube amplifier.
  • the characteristics of the audio output transformer are as shown in the following table, for example.
  • the output transformer simulation unit 101 simulates the transfer characteristic of the output transformer 203 included in the vacuum tube amplifier shown in FIG.
  • the speaker impedance simulation unit 102 simulates the impedance characteristic of the speaker 205 which is a load of the output transformer 203 shown in FIG.
  • An output transformer simulation unit 101 receives an audio signal from an input terminal T1, processes the input audio signal based on the transfer characteristic of the output transformer 203, and outputs the processed audio signal from an output terminal T2. At this time, the output transformer simulation unit 101 uses the transfer characteristic of the output transformer 203 when the speaker having the impedance impedance simulated by the speaker impedance simulation unit 102 is connected as a load.
  • FIG. 3 (a) the equivalent circuit of the output transformer in FIG. 3 (a) is as shown in FIG. 3 (b).
  • Fig. 4 shows the frequency characteristics of the audio band (20 Hz to 20 kHz) when the audio output transformer is adapted to the equivalent circuit of Fig. 3 (b) and a pure 6 ⁇ load is used.
  • Figure 4 shows flat characteristics in the low and mid ranges, and shows monotonically decreasing characteristics in the high range.
  • Fig. 5 shows an example of impedance characteristics of the speaker system.
  • the figure shows the characteristics of a two-way loudspeaker system consisting of a closed cabinet. Referring to FIG. 5, it can be seen that the lowest resonance frequency of the present speaker system is 50 Hz, and the lowest resonance frequency of the high-frequency reproduction speaker unit (tweeter) is 5 kHz.
  • FIG. 6 is a diagram showing the frequency characteristic of the output signal of the output transformer when the speaker unit having the characteristic of FIG. 5 is connected to the output transformer having the characteristic of FIG. Comparing the characteristics of Fig. 4 and Fig. 6, Fig. 4 shows the characteristic that the high frequency region monotonously attenuates, but Fig. 6 shows one of the low and high frequency regions under the influence of the impedance of the speaker system. It shows the raised frequency characteristics in the department. It is considered that such changes in frequency characteristics due to differences in loads connected to the output transformer affect the sound quality and form the sound quality unique to vacuum tube amplifiers.
  • the signal processing circuit 100 has an output when the speaker impedance simulated by the speaker impedance simulation unit 102 is used as a load. Based on the transfer characteristics of the transformer simulation unit 101, the input audio signal is processed to generate an output signal having a frequency characteristic as shown in FIG.
  • the characteristics of the speaker impedance simulation unit 102 can be determined as follows. For example, the impedance characteristic of an actual speaker system (including a single unit) is measured, and the impedance characteristic is determined based on the measured value.
  • the speaker impedance simulation unit 102 holds information of measured values of impedance characteristics as a table.
  • FIG. 7 is a diagram showing a configuration example of a circuit used by the speaker impedance simulation unit 102 to simulate impedance characteristics.
  • the circuit shown in FIG. 7 (a) can be used to simulate a loudspeaker system having one LCR parallel resonant circuit, for example, having one resonance point.
  • the circuit shown in FIG. 7 (b) includes a two-stage LCR parallel resonant circuit and can be used, for example, to simulate a speaker system having two resonance points.
  • the speaker impedance simulation unit 102 can obtain the impedance characteristic of the speaker system to be simulated using, for example, the impedance characteristic given by the circuits shown in FIGS. 7 (a) and 7 (b).
  • the values of L, C, R, the number of stages of the resonant circuit, and the configuration of the resonant circuit are determined according to the impedance characteristics of the speaker system to be simulated.
  • the values of L, C, and R in FIG. 7 (b) can take independent values depending on the impedance characteristics to be simulated.
  • the impedance characteristics of the speaker may be simulated by using the parallel resonant circuit of L, C, and R shown in FIG. 7 (a) or (b).
  • the impedance of the speaker to be simulated is given by the circuit shown in Fig. 8 (a).
  • the impedance Z of the speaker is given by the following equation.
  • the resonance frequency f is given by the following equation.
  • the height of the resonance peak (see FIG. 8 (b)) is given by R, and the sharpness Q (Quality factor) is It is given by a formula.
  • the impedance and other characteristics of the speaker can be set arbitrarily.
  • the transfer characteristics of the actual output transformer may be similarly measured in the output transformer simulation unit 101, and the frequency characteristics of the output transformer simulation unit 101 may be determined based on the measured values.
  • the transfer characteristics can be determined using the equivalent circuit shown in FIG. 3 (b), and the characteristics of the output transformer simulation unit 101 can be determined based on the transfer characteristics and the measured values.
  • the transfer characteristics of the output transformer will be described.
  • the output resistance R is the resistance of the vacuum tube device 201.
  • V / V ⁇ (sCR + 1) (R + sL) + R ⁇ [(sL + R)
  • R is the secondary winding resistance
  • C is the secondary winding stray capacitance
  • n is the turns ratio of the output transformer.
  • Each value of L, C and R in the equation (2) is based on the measured value of the transfer characteristic of the output transformer.
  • V then determined, but may be determined as appropriate to obtain the desired characteristics! /.
  • Load impedance Z is generally given by the following equation (2.1). For example, in the case of simulating impedance characteristics using an equivalent circuit shown in FIG.
  • An output signal is generated by convoluting the transfer characteristic obtained as described above into an input signal. I can do it. Furthermore, the output characteristics of the output transformer in the case of using the speaker impedance simulated by the speaker impedance simulation unit 102 as a load can not be determined individually for the transmission characteristics, and transmission can be performed with the speaker system connected to the output transformer. May be calculated.
  • FIGS. 10 to 12 are diagrams showing frequency characteristics (characteristics of phase and amplitude) of the signal processing device according to the present embodiment.
  • Figure 10 shows the frequency characteristics of the output signal of the output transformer when a pure resistor is connected as the load.
  • Figure 11 shows the frequency characteristics of the output signal of the output transformer when a closed 2-way speaker with a resonance frequency of 50 Hz is connected as a load.
  • Fig. 12 shows the frequency characteristics of the output signal of the output transformer when a closed full-range speaker with a resonance frequency of 50 Hz is connected as a load.
  • the phase also has frequency characteristics. The point force thus having phase characteristics is different from the signal processing device of the present embodiment from a graphic equalizer whose sound quality can be adjusted by increasing or decreasing the level for each band.
  • the sound quality characteristics of analog audio devices can be reproduced by digital audio devices, and smooth sound quality and stability, a sense of security, etc. can be felt from the reproduced sound of analog audio devices. Can provide sound quality.
  • the signal processing apparatus 100 can externally change control parameters for the output transformer simulation unit 101 and the speaker impedance simulation unit 102 via the control terminals T11 and T12.
  • the speaker impedance simulation unit 102 can change the speaker impedance characteristics by externally inputting control parameters via the control terminal T12. For example, in the case where the speaker impedance simulation unit 102 simulates the impedance characteristic using the circuit shown in FIG. 8A, the control parameter for setting the resonance frequency becomes L from equation (1.1). The control parameter for setting the sharpness Q is from equation (1.2)
  • FIG. 13 shows a control parameter in the case of simulating the impedance characteristic of the speaker using the circuit shown in the speaker impedance simulation unit 102 force S and FIG. 7 (b). It is the figure which showed the example which changed the impedance characteristic by changing a meter.
  • the solid line shows the characteristics before the change, and the broken line shows the characteristics after the change.
  • FIG. 13 shows the impedance characteristics of a two-way speaker system with a closed cabinet.
  • the first factor is the resonant frequency, which shifts the lower resonant frequency to higher frequencies (from 50 Hz to 100 Hz).
  • the second factor is the size of the impedance at the lower resonance frequency, which is smaller.
  • the third factor is the sharpness factor Q (Quality factor), which increases the impedance sharpness factor Q at the lower resonance frequency (5 kHz) of the tuner.
  • the characteristic characteristic of the speaker impedance is controlled and / or the transmission characteristics of a plurality of speaker impedances are held in the speaker impedance simulation unit 102 as a tape notch.
  • any one of the transfer characteristics may be selected and used according to the control parameter.
  • the impedance characteristics of the enclosed two-way speaker system as shown in FIG. 13 and the impedance characteristics of the bass reflex three-way speaker system as shown in FIG. You can also select the characteristics of ⁇ by control parameters!
  • the frequency characteristic of the output signal by the transsimulation unit 101 is as shown in FIG.
  • the sound quality control of the reproduction sound can be performed from the outside. It becomes.
  • the impedance characteristic of the speaker force can be easily changed simply by changing the control parameter, the characteristics of a plurality of speaker systems can be easily obtained, and the sound quality when various speakers are used is easily made. It can be reproduced.
  • the low resonance frequency of the speaker impedance is set low by the control parameter. Also, by setting the impedance value at the low frequency resonance frequency to a large value, the low frequency reproduction ability is low, and the frequency response in the low frequency direction is narrow. Improve sound quality (low frequency reproduction ability).
  • the transformer simulation unit 101 can change the characteristics of the output transformer to be simulated by externally inputting control parameters via the control terminal Tl 1.
  • the transfer characteristics calculated from a plurality of output transformers are stored as a table, and either force or one transfer characteristic is selected according to the control parameter.
  • the parameters (values of L, C, R) that affect the sound quality can be switched stepwise or continuously according to the control parameters. Sound quality control may be performed.
  • the 17 inductance L is changed (for example, reduced)
  • the low frequency characteristic of the output signal of the output transformer changes as shown in FIG.
  • the sound quality features of analog audio devices are reproduced by digital audio devices, and smooth sound and stability can be felt from the reproduced sound of analog audio devices.
  • controlling the simulation characteristics from the outside makes it possible to control the obtained sound quality.
  • the application of the idea of the present invention is not limited to this, in which the signal processing apparatus 100 is configured with a digital signal processing circuit of hardware.
  • the configuration of FIG. 1 may be realized by a signal processing program (software), and the signal processing program may be executed by a DSP (Digital Signal Processor: digital 'signal' processor).
  • DSP Digital Signal Processor: digital 'signal' processor
  • the output characteristics of the output transformer included in the vacuum tube amplifier are simulated, but the invention is not limited to the vacuum tube amplifier.
  • the output characteristics of the output transformer included in other analog audio devices may be simulated. If the output transformer included in an analog audio device greatly affects the characteristics of the analog audio device, simulating the output characteristics of the output transformer allows the analog audio The sound quality by the device can be reproduced.
  • the input audio signal is processed by the transfer characteristic in the state where the load having the predetermined characteristic is connected to the transformer having the predetermined characteristic. , Is producing an output audio signal.
  • the output audio signal is generated by processing the input audio signal with the entire transfer characteristics including the transfer characteristics of the output transformer and the impedance characteristics of the speaker connected thereto.
  • the transformer can be used as an output transformer for an audio vacuum tube amplifier and the load can be used as an audio speaker, so that the sound quality of the state where the vacuum tube amplifier is driving the speaker can be reproduced.
  • the low resonance frequency of the impedance of the speaker serving as the load and the magnitude thereof are appropriately adjusted.
  • the low frequency resonance frequency of the speaker impedance is set before and after the low frequency reproduction limit of the reproduction device, or at a frequency at which the sound quality control is desired, or by changing the size of the impedance. Adjust the frequency characteristics near the selected frequency. As a result, it is possible to control the low frequency characteristics of the reproduction device, and in particular to improve the low frequency characteristics of the reproduction device using a small speaker.
  • the signal processing device reproduces the sound quality characteristics of analog audio devices, particularly vacuum tube amplifiers, with digital audio devices, and can be perceived as smooth sound, stability, and a sense of security from the reproduced sound of analog audio devices. It is useful for improving the sound quality of audio equipment, such as playing sound quality such as

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

明 細 書
信号処理装置及び信号処理方法
技術分野
[0001] 本発明は、アナログオーディオ機器、特に真空管増幅器の持つ音質特徴をデジタ ノレオーディオ機器にて再現するための信号処理装置及び信号処理方法に関する。 背景技術
[0002] 楽器用エフェクターに於いて、真空管式ギターアンプの音色、特に過大入力を与え た場合の音色変化の特徴を出すことを目的とした信号処理装置が、特許文献 1にお いて開示されている。図 18にその信号処理装置の構成を示す。図 18に示す信号処 理装置は、 Igフ、、ロック 301、 302と、 Ip/Egフ、、ロック 305、 306と、レべノレ検出き 308 と、乗算器 309と、カロ算器 303、 304、 307、 310とを備免る。
[0003] Igブロック 301、 302は、入力信号に応じて、真空管式電力増幅器のグリッドに接続 されたフィルタ特性をシミュレートする。 Igブロック 301、 302の出力信号は Ip/Egブ ロック 305、 306に供給される。 Ip/Egブロック 305、 306は、真空管式電力増幅に おけるグリッド電圧の変化に応じたプレート電流をシミュレートする。
[0004] Igブロック 301、 302は、入力電圧が大きくなるにしたがって、その遮断特性が高く なる。レベル検出器 308は、加算器 307から得られる Ip/Egブロック 305と Ip/Egブ ロック 306の加算出力のレベルを検出する。このレベルが大きくなるに連れて、乗算 器 309、カロ算器 310、 303、 304を用いて、 Ip/Egブロック 305、 306のノ ィァスを深 くすることで、真空管増幅器の動作をシミュレートする。
[0005] 以上説明したように、特許文献 1では、入力信号に応じて真空管式電力増幅器の グリッドに接続されたフィルタ特性、プレート電流の静特性をシミュレートし、且つ、出 力信号レベルに応じて、フィルタ特性及び入力信号に付加するバイアスを変化させ る。これにより、真空管増幅器の特性を模擬し、真空管式ギターアンプの音色、特に 過大入力を与えた場合の音色変化の特徴を再現できる。
[0006] 特許文献 1 :特開平 7— 86840号公報
発明の開示 発明が解決しょうとする課題
[0007] 上述の従来の信号処理装置におレ、ては、真空管式ギターアンプの音色、特に過大 入力を与えた場合の音色変化の特徴を再現することを目的としている。このため、通 常振幅信号 (実用上無歪状態で動作可能な信号振幅)に対しては効果が得られず、 通常振幅信号を扱うオーディオ用途としては不適である。
[0008] 本発明は上記の課題を解決するためになされたものであり、その目的とするところ は、アナログオーディオ機器、特に真空管増幅器の持つ音質特徴をデジタルオーデ ィォ機器にて再現し、アナログオーディオ機器の再生音から感じ取れる、中低域に厚 みのある、滑らかな音、安定感安心感のある等の音質を再生可能とする信号処理装 置及び方法を提供することにある。
課題を解決するための手段
[0009] 本発明に係る信号処理装置は、接続される負荷に応じて周波数特性が変化するト ランスの伝達特性をシミュレートし、入力信号を伝達特性で処理して出力するトランス シミュレート手段と、所定の負荷のインピーダンス特性をシミュレートし、インピーダン ス特性を出力する負荷インピーダンスシミュレート手段とを備える。トランスシミュレート 手段は、負荷インピーダンスシユミレート手段によってシミュレートされた負荷インピー ダンスを持つ負荷が接続された状態でトランスの伝達特性をシミュレートする。
[0010] 本発明に係る信号処理方法は、所定の負荷のインピーダンス特性をシミュレートし
、インピーダンス特性を出力するステップと、接続される負荷に応じて周波数特性が 変化するトランスに前記シミュレートされたインピーダンス特性の負荷が接続された状 態で、トランスの伝達特性をシミュレートするステップと、入力信号を、シミュレートされ た伝達特性を用いて処理し、出力信号を生成するステップとを含む。
発明の効果
[0011] 本発明によれば、所定の特性を有するトランスに所定の特性を有した負荷を接続し た状態での伝達特性で、入力されたオーディオ信号を処理することで、出力オーディ ォ信号を生成している。特に、出力トランスの伝達特性とそれに接続されるスピーカ のインピーダンス特性とを含めた全体の伝達特性で、入力されたオーディオ信号を 処理することにより、出力オーディオ信号を生成している。これにより、例えば、トラン スをオーディオ真空管増幅器用出力トランスとし、負荷をオーディオ用スピーカとする ことで、真空管増幅器でスピーカを駆動したときに得られる音質を再現できる。
図面の簡単な説明
[図 1]本発明の実施の形態における信号処理装置の構成図
[図 2]3極管真空管を用いたシングル構成のオーディオ電力増幅器 (真空管増幅器) の構成図
[図 3] (a)出力トランスの回路図及び (b)出力トランスの等価回路図
[図 4]負荷として純抵抗を接続したときの出力トランスの出力信号の周波数特性の一 例を示す図
[図 5]スピーカシステムのインピーダンス特性の一例を示す図
[図 6]図 5に示すインピーダンス特性を有するスピーカシステムを接続した場合の出 カトランスの出力信号の周波数特性を示す図
[図 7]スピーカインピーダンスシミュレーション部において、スピーカインピーダンスを シミュレートする際に使用する回路の構成例を示した図
[図 8]スピーカインピーダンスをシミュレートする際に使用する等価回路の回路図 [図 9]シミュレーション対象の真空管増幅器の出力部の等価回路図
[図 10]負荷として純抵抗が接続された出力トランスの位相特性と振幅特性を示す図 [図 11]負荷として密閉型の 2ウェイ型スピーカシステムが接続された出力トランスの出 力信号の位相特性と振幅特性を示す図
[図 12]負荷として密閉型のフルレンジ型スピーカシステムが接続された出力トランス の出力信号の位相特性と振幅特性を示す図
[図 13]制御パラメータを変更することによるインピーダンス特性の変化を示す図
[図 14]図 13に示すインピーダンス特性の変化に伴う出力トランスの出力信号特性を 示す図
[図 15]制御パラメータを変更することにより得られる、バスレフ型の 3ウェイスピーカシ ステムのインピーダンス特生を示す図
[図 16]図 15に示すインピーダンス特性の負荷が接続された出力トランスの出力信号 特性を示す図 [図 17]—次インダクタンスを変化させた場合の出力トランスの出力信号特性の変化を 示す図
[図 18]従来のオーディオ信号再生装置の構成を示すブロック図
符号の説明
[0013] 101 出力トランスシミュレーション部
102 スピーカインピーダンスシミュレーション部
201 真空管デバイス
202 抵抗器
203 出力トランス
204 直流電源
205 スピーカ
T1 入力端子
T2 出力端子
T3 入力端子
Ti l , T12 制御端子
発明を実施するための最良の形態
[0014] 以下、本発明を実施するための最良の形態について図面を参照しながら説明する
[0015] 1. 信 処理装置の構成
図 1は、本発明の実施の形態 1における信号処理装置の構成図である。図 1におい て、信号処理装置 100は、出力トランスシミュレーション部 101と、スピーカインピーダ ンスシミュレーション部 102と、デジタルオーディオ信号を入力する入力端子 T1と、 所定の信号処理がなされたデジタルオーディオ信号を出力する出力端子 T2とを含 む。さらに信号処理装置 100は、出力トランスシミュレーション部 101におけるシミュレ ーシヨンに関する設定を変更するための制御端子 T11と、スピーカインピーダンスシ ミュレーシヨン部 102におけるシミュレーションに関する設定を変更するための制御端 子 T12とを備える。
[0016] 本実施形態の信号処理装置 100は真空管を用いたオーディオ電力増幅器 (以下「 真空管増幅器」という。)の出力特性 (伝達特性)をシミュレートし、入力した信号に対 してそのシミュレートした出力特性を付加して出力するフィルタ機能を有する。特に、 本願発明の発明者は、真空管増幅器の持つ音質に多大な影響を与える要素として 、真空管増幅器内に用いられる出力トランスに着目し、出力トランスの出力特性をシミ ュレートすることにより真空管増幅器により得られる音質特徴を再現できることを発見 した。
[0017] ここで、出力トランスの出力特性は、それに接続される負荷 (例えば、スピーカ)のィ ンピーダンスに左右される。このため、出力トランスシミュレーション部 101は、真空管 増幅に使用される出力トランスの出力特性をシミュレートし、スピーカインピーダンス シミュレーション部 102は、出力トランスに接続されるスピーカの負荷インピーダンスを シミュレートする。この構成によって、オーディオデジタル信号は、本実施形態の信号 処理装置 100を通過することで、シミュレーション対象の真空管増幅器とスピーカか ら得られる音質の特性が付加され、これにより、真空管増幅器で再現したような滑ら で安定感、安心感のある音質が得られる。
[0018] なお、信号処理装置 100は半導体集積回路で構成され、出力トランスの伝達特性 及びスピーカのインピーダンス特性をシミュレートする機能を有する。具体的には、信 号処理装置 100は以下の機能を実現する信号処理プログラムを実行する DSP (Digi tal Signal Processor:デジタル 'シグナル 'プロセッサ)で構成される。
[0019] ここで、出力トランスシミュレーション部 101がシミュレートする出力トランスを含むォ 一ディォ電力増幅器 (真空管増幅器)について説明する。
[0020] 図 2に、 1つの 3極管真空管を用いたオーディオ電力増幅器 (真空管増幅器)の構 成を示す。真空管増幅器は、オーディオ信号を増幅する真空管デバイス 201と、真 空管デバイス 201の動作点を決定するバイアスを与える抵抗器 202と、出力トランス 2 03と、直流電源 204とを備える。真空管増幅器は、入力端子 T3からアナログオーデ ィォ信号を入力し、出力トランス 203を介して負荷であるスピーカ 205に増幅したォー ディォ信号を出力する。
[0021] オーディオ電力増幅器において、入力端子 T3から入力されたオーディオ信号は真 空管デバイス 201に供給される。真空管デバイス 201の動作点は、抵抗器 202、出 力トランス 203及び直流電源 204により決定される。真空管デバイス 201は入力され たオーディオ信号を増幅し、出力トランス 203を介して、負荷であるスピーカ 205に電 力を供給する。真空管デバイス 201の出力抵抗は一般に数 と大きぐスピーカ 20 5のインピーダンスは 4 8 Ω程度と小さ!/、ため、出力トランス 203を用いてインピーダ ンス整合を行っている。
[0022] 一般的に出力トランスは、バンドパス特性を有し、その伝達特性は、出力トランスに 接続する負荷に影響されることが知られている。本願の発明者は、そのような出力トラ ンスの特性が真空管増幅器の伝達特性に影響を与え、真空管増幅器の音質を左右 していることに着目した。すなわち、負荷としてスピーカが接続された場合の出力トラ ンスの伝達特性をシミュレートし、その伝達特性によって、入力されるオーディオ信号 を処理することにより、真空管増幅器の音質特徴を含むオーディオ信号を生成する。
[0023] なお、本実施形態では、出力トランスシミュレーション部 101はオーディオ用出力ト ランスの特性をシミュレーションしている。ここで、オーディオ用出力トランスは、一般 に低い(4〜; 16 Ω )負荷インピーダンスを持つスピーカと真空管増幅器との間のイン ピーダンス整合をとるために挿入されるものである。オーディオ用出力トランスの特性 は例えば以下の表に示すようなものとなる。
[表 1]
Figure imgf000008_0001
[0024] 2.信 ^処理装置の動作 本実施形態の信号処理装置 100の動作を説明する。出力トランスシミュレーション 部 101は、図 2に示した真空管増幅器に含まれる出力トランス 203の伝達特性をシミ ュレートする。スピーカインピーダンスシミュレーション部 102は、図 2に示す、出力トラ ンス 203の負荷であるスピーカ 205のインピーダンス特性をシミュレートする。
[0025] 出力トランスシミュレーション部 101はオーディオ信号を入力端子 T1から入力し、出 力トランス 203の伝達特性に基づいて、入力したオーディオ信号を処理し、処理した オーディオ信号を出力端子 T2から出力する。このとき、出力トランスシミュレーション 部 101は、スピーカインピーダンスシミュレーション部 102によりシミュレートされたスピ 一力インピーダンスを持つスピーカを負荷として接続した場合の出力トランス 203の 伝達特性を用いる。
[0026] ここで、一般的なトランスの等価回路について説明する。一般的にトランスの等価回 路は図 3に示す回路であることが知られている。すなわち、図 3 (a)の出力トランスの 等価回路は図 3 (b)に示すとおりとなる。図 4に、オーディオ用出力トランスを図 3 (b) の等価回路に適合させて、 6 Ωの純抵抗を負荷にした場合のオーディオ帯域(20Hz 〜20kHz)の周波数特性を示す。図 4は低域、中域においてフラットな特性を示し、 高域にお!/、て単調減少する特性を示して!/、る。
[0027] 図 5に、スピーカシステムのインピーダンス特性例を示す。同図は、密閉型キャビネ ットで構成される 2ウェイ型のスピーカシステムの特性を示している。図 5を参照すると 、本スピーカシステムの最低共振周波数が 50Hzで、高域再生スピーカユニット(ツイ ータ)の最低共振周波数が、 5kHzであることがわかる。
[0028] 図 6は、図 5の特性を持つスピーカユニットを図 4の特性を持つ出力トランスに接続 した場合の出力トランスの出力信号の周波数特性は示した図である。図 4と図 6の特 性を比較すると、図 4は、高域が単調に減衰する特性を示すが、図 6は、スピーカシス テムのインピーダンスの影響を受けて、低域と高域の一部で盛り上がった周波数特 性を示している。このような、出力トランスに接続する負荷の違いによる周波数特性の 変化が、音質に影響し、真空管増幅器特有の音質を形成していると考えられる。
[0029] 以上のように、本実施形態の信号処理回路 100は、スピーカインピーダンスシミュレ ーシヨン部 102でシミュレートされるスピーカインピーダンスを負荷にした場合の出力 トランスシミュレーション部 101の伝達特性をもとに、入力されたオーディオ信号を処 理することで、図 6のような周波数特性を持つ出力信号を生成する。
[0030] スピーカインピーダンスシミュレーション部 102の特性は以下のようにして決定でき る。例えば、実際のスピーカシステム(ユニット単体を含む)のインピーダンス特性を測 定して、その測定値に基づきインピーダンス特性を決定する。スピーカインピーダンス シミュレーション部 102は、インピーダンス特性の測定値の情報をテーブルとして保 持する。
[0031] または、 L, C , Rの共振回路を用いてスピーカのインピーダンス特性をシミュレート し、それからインピーダンス特性を求めても良い。図 7は、スピーカインピーダンスシミ ユレーシヨン部 102がインピーダンス特性をシミュレートするために用いる回路の構成 例を示した図である。図 7 (a)に示す回路は、一段の LCR並列共振回路を含み、例 えば 1つの共振点を有するスピーカシステムをシミュレートする場合に使用できる。図 7 (b)に示す回路は二段の LCR並列共振回路を含み、例えば 2つの共振点を有する スピーカシステムをシミュレートする場合に使用できる。スピーカインピーダンスシミュ レーシヨン部 102は、例えば図 7 (a)、 (b)に示す回路が与えるインピーダンス特性を 用いて、シミュレーション対象とするスピーカシステムのインピーダンス特性を得ること ができる。 L、 C、 Rの値、共振回路の段数及び共振回路の構成は、シミュレートした いスピーカシステムのインピーダンス特性に応じて決定される。図 7 (b)における各 L 、 C、 Rの値は、シミュレートするインピーダンス特性に応じて互いに独立な値を取り得
[0032] 図 7 (a)または (b)に示す L, C , Rの並列共振回路を用いてスピーカのインピーダン ス特性を模擬し、それからインピーダンス特性を求めても良い。例えば、シミュレート するスピーカのインピーダンスが図 8 (a)に示す回路で与えられる場合を考える。同 図の回路の場合、スピーカのインピーダンス Zは次式で与えられる。
0
Z =R + sL R / (s2L C R + sL +R ) ( 1 )
0 4 5 5 5 5 5 5 5
[0033] さらに共振周波数 f は次式で与えられる。
Figure imgf000010_0001
[0034] また、共振峰の高さ(図 8 (b)参照)は Rで与えられ、先鋭度 Q (Quality factor)は次 式で与えられる。
Q = l/[2{l + L/(4CR i 7 ] (1. 2)
5 5 5
[0035] よって、図 8 (a)に示す回路の各素子の直 R、 L、 C、 Rを適宜設定することにより
4 5 5 5
、共振周波数、共振峰の高さ、先鋭度を任意の値に設定できることから、スピーカの インピーダンスお )特性を任意に設定できる。
0
[0036] 一方、出力トランスシミュレーション部 101についても同様に、実際の出力トランスの 伝達特性を測定し、その測定値に基づき、出力トランスシミュレーション部 101の周波 数特性を決定してもよい。例えば、図 3(b)に示した等価回路を用いて伝達特性を決 定し、その伝達特性と測定値に基づき、出力トランスシミュレーション部 101の特性を 決定すること力 Sできる。以下、出力トランスの伝達特性について説明する。
[0037] 以下では、図 9に示すように真空管増幅器の出力抵抗 Rをも考慮したときの出力ト
A
ランスの伝達特性を検討する。なお、出力抵抗 Rは真空管デバイス 201の抵抗であ
A
る。入力電圧と出力電圧をそれぞれ V、 Vとすると、伝達特性は次式で与えられる。
V/V ={(sCR +1)(R +sL) + R }[(sL +R )
i o 1 A 1 1 A 3 3
{ (n2R +sn2L )(sC Z +1) +nZ } +
2 2 2 o o
sL R (sC Z + l)]/sn2L RZ +sLR (sC R +1)
3 3 2 o 3 3 o 3 3 1 A
{ (R +sn2L ) (sC Z + l) + n2Z }/sL R nZ (2)
2 2 2 o o 3 3 o
ここで、 Zは負荷インピーダンス、 Cは一次巻線浮遊容量、 Rは一次巻線抵抗、 L
1 1 1 は一次巻線漏れインダクタンス、 Rは鉄損、 Lは一次インダクタンス、 Lは二次巻線
3 3 2
漏れインダクタンス、 Rは二次巻線抵抗、 Cは二次巻線浮遊容量、 nは出力トランス の巻数比である。
[0038] なお、式(2)における L、 C、 Rの各値は、出力トランスの伝達特性の測定値に基づ
V、て決定するが、所望の特性が得られるよう適宜決定されてもよ!/、。
[0039] 負荷インピーダンス Zは、一般に次式(2. 1)で与えられるが、例えば、図 8 (a)に示 す等価回路を用いてインピーダンス特性をシミュレートする場合、負荷インピーダンス
Zは式(1)で与えられる。
Z =(a +a s + --- + a sn)/(b +b s+---+b s") (2. 1)
o 0 1 n 0 1 n
[0040] 以上のように求めた伝達特性を入力信号に畳み込むことで、出力信号を生成する ことカできる。更に、スピーカインピーダンスシミュレーション部 102でシミュレートされ るスピーカインピーダンスを負荷にした場合の出力トランスの出力特性は、個別に伝 達特性を求めるのではなぐ出力トランスにスピーカシステムを接続した状態で伝達 特^を算出しても良い。
[0041] 図 10〜図 12は、本実施形態の信号処理装置の周波数特性 (位相及び振幅につ いての特性)を示した図である。図 10は、負荷として純抵抗を接続した場合の出力ト ランスの出力信号の周波数特性を示す。図 11は、 50Hzの共振周波数を持つ密閉 2 ウェイ型スピーカを負荷として接続した場合の出力トランスの出力信号の周波数特性 を示す。図 12は、 50Hzの共振周波数を持つ密閉フルレンジ型スピーカを負荷とし て接続した場合の出力トランスの出力信号の周波数特性を示す。これらの図に示す ように、本実施形態の信号処理装置によれば、位相についても周波数特性を持つ。 このように位相特性を有する点力 本実施形態の信号処理装置と、帯域ごとにレベル を増減させることで音質調整が可能なグラフィックイコライザ(graphic equalizer)と異 なる点である。
[0042] 以上のような構成で、アナログオーディオ機器、特に真空管増幅器の持つ音質特 徴をデジタルオーディオ機器にて再現でき、アナログオーディオ機器の再生音から 感じ取れる、滑らかな音質及び安定感、安心感等を与える音質を提供できる。
[0043] 本実施形態の信号処理装置 100は、制御端子 Tl l、 T12を介して出力トランスシミ ユレーシヨン部 101及びスピーカインピーダンスシミュレーション部 102それぞれに対 する制御パラメータを外部から変更できる。
[0044] スピーカインピーダンスシミュレーション部 102は、制御端子 T12を介して外部から 制御パラメータを入力することで、スピーカインピーダンス特性を変更できる。例えば 、スピーカインピーダンスシミュレーション部 102が図 8 (a)に示す回路を用いてインピ 一ダンス特性をシミュレーションする場合、共振周波数を設定する制御パラメータは 式(1. 1)から Lとじとなる。また先鋭度 Qを設定する制御パラメータは式(1. 2)から
L、 C、 Rとなる。
[0045] 図 13は、スピーカインピーダンスシミュレーション部 102力 S、図 7 (b)に示す回路を 用いてスピーカのインピーダンス特性をシミュレーションする場合において、制御パラ メータを変更することでインピーダンス特性を変化させた例を示した図である。図 13 において、実線は変更前の特性を示し、破線は変更後の特性を示す。また、図 13は 、キャビネットが密閉型で 2ウェイ型のスピーカシステムのインピーダンス特性を示す。
[0046] 図 13では、インピ-ダンス特性を制御するために 3つの要素を変更している。第 1の 要素は共振周波数であり、低域の共振周波数をより高域側に(50Hzから 100Hzへ) シフトしている。第 2の要素は、低域の共振周波数におけるインピーダンスの大きさで あり、小さくしている。第 3の要素は、尖鋭度 Q (Quality factor)であり、ツイ一タの低域 共振周波数(5kHz)におけるインピーダンスの尖鋭度 Qを大きくしている。このような スピーカインピーダンスを変化させると、それを負荷とする出力トランスの出力信号の 周波数特性は、図 14に示すように変化する。図 14において、実線は変更前の特性 を示し、破線は変更後の特性を示す。
[0047] 以上のようにスピーカのインピーダンス特性を制御することで、それを負荷とする出 力トランスの周波数特性の制御が可能となる。
[0048] 上記の制御では、スピーカインピーダンスの特徴となる特性を制御して!/、る力 実 際に複数のスピーカインピーダンスの伝達特十生をテープノレとしてスピーカインピーダ ンスシミュレーション部 102内に保持しておき、いずれか 1つの伝達特性を制御パラメ ータにより選択して用いるようにしても良い。例えば、図 13に示したような密閉型の 2 ウェイ型スピーカシステムのインピーダンス特性と、図 15に示すようなバスレフ型の 3 ウェイ型スピーカシステムのインピーダンス特性とをそれぞれ保持しておき、 V、ずれか の特性を制御パラメータにより選択できるようにしてもよ!/、。図 15に示すインピーダン ス特性を持つスピーカシステムに接続された出力トランスに対する、トランスシミュレ一 シヨン部 101による出力信号の周波数特性は図 16に示すような特性となる。
[0049] 以上のように、制御端子 Tl l、 T12を介して外部から制御パラメータをスピーカのィ ンピーダンス特性を制御できるように信号処理装置を構成することで、外部から再生 音の音質制御が可能となる。このように制御パラメータを変更するだけで容易にスピ 一力のインピーダンス特性を変更できることから、複数のスピーカシステムの特性を容 易に得ることができ、種々のスピーカを使用したときの音質を容易に再現することがで きる。また、制御パラメータにより、スピーカインピーダンスの低域共振周波数を低く設 定し、かつ、その低域共振周波数でのインピーダンス値を大きく設定することで、低 域再生能力の低レ、(低域方向の周波数特性が狭レ、)スピーカで再生した場合の聴感 上の音質 (低域再生能力)を向上させることができる。
[0050] トランスシミュレーション部 101は、制御端子 Tl 1を介して外部から制御パラメータを 入力することで、シミュレーションすべき出力トランスの特性を変更することができる。 具体的には、例えば、複数の出力トランスから算出した伝達特性をテーブルとして保 持しておき、制御パラメータにより、いずれ力、 1つの伝達特性を選択するようにする。 または、図 9に示した等価回路の伝達特性において、音質に影響を与えるパラメータ (L、 C、 Rの値)を、制御パラメータにより段階的にまたは連続的に切り替えられるよう にして、再生音の音質制御を行ってもよい。特に、 17火インダクタンス Lを変化させる( 例えば、小さくする)と、図 17に示すように出力トランスの出力信号の低域の特性が 変化する。
[0051] 以上のような構成で、アナログオーディオ機器、特に真空管増幅器の持つ音質特 徴を、デジタルオーディオ機器にて再現し、アナログオーディオ機器の再生音から感 じ取れる滑らかな音、安定感安心感のある等の音質を提供できる効果を有して!/、る。 また、外部からシミュレーション特性を制御することで、得られる音質の制御が可能と なる。
[0052] 3.
以上の実施の形態においては、信号処理装置 100を、ハードウェアのディジタノレ 信号処理回路で構成している力 本発明の思想の適用はこれに限られない。例えば 、図 1の構成を信号処理プログラム(ソフトウェア)で実現して、その信号処理プロダラ ムを DSP (Digital Signal Processor:デジタル 'シグナル 'プロセッサ)により実行しても よい。
[0053] また、以上の説明では、真空管増幅器に含まれる出力トランスの出力特性をシミュ レーシヨンしたが、真空管増幅器に限られない。他のアナログオーディオ機器に含ま れる出力トランスの出力特性をシミュレーションしてもよい。アナログオーディオ機器 に含まれる出力トランスがそのアナログオーディオ機器の特性に大いに影響を与える 場合は、出力トランスの出力特性をシミュレーションすることで、そのアナログオーディ ォ機器による音質を再現することができる。
[0054] 4.ま め
以上のように本実施形態の信号処理装置によれば、所定の特性を有するトランスに 所定の特性を有した負荷を接続した状態での伝達特性で、入力されたオーディオ信 号を処理することで、出力オーディオ信号を生成している。特に、出力トランスの伝達 特性とそれに接続されるスピーカのインピーダンス特性とを含めた全体の伝達特性で 、入力されたオーディオ信号を処理することにより、出力オーディオ信号を生成して いる。この構成により、トランスをオーディオ真空管増幅器用出力トランスとし、負荷を オーディオ用スピーカとすることで、真空管増幅器でスピーカを駆動している状態の 音質を再現できる効果を奏する。
[0055] さらに、スピーカのインピーダンスの周波数特性を外部から制御することで、インピ 一ダンス特性の共振特性を変化させること、また、トランスの 1次インダクタンスを含む 特性を外部から制御することにより、様々な出力トランス及びスピーカを組み合わせ たとき(著名なオーディオ機器での組合せ例も含む)のオーディオ信号を生成できる という効果を奏する。
[0056] さらに、本実施形態では、負荷となるスピーカのインピーダンスの低域共振周波数 とその大きさを適宜調整する。具体的には、スピーカのインピーダンスの低域共振周 波数を再生装置の低域再生限界の前後に、または、音質制御したい周波数に設定 したり、インピーダンスの大きさを変化させるたりすることで、設定した周波数付近に おける周波数特性を調整する。これにより、再生装置の低域特性の制御、特に小型 スピーカを使用した再生装置の低域特性の改善ができる。
産業上の利用可能性
[0057] 本発明にかかる信号処理装置は、アナログオーディオ機器、特に真空管増幅器の 持つ音質特徴を、デジタルオーディオ機器にて再現し、アナログオーディオ機器の 再生音から感じ取れる滑らかな音、安定感、安心感のある等の音質を再生する等の オーディオ機器の音質改善として有用である。
[0058] 本発明は、特定の実施形態について説明されてきたが、当業者にとっては他の多 くの変形例、修正、他の利用が明らかである。それゆえ、本発明は、ここでの特定の 開示に限定されず、添付の請求の範囲によってのみ限定され得る。なお、本出願は 日本国特許出願、特願 2006— 312595号(2006年 11月 20日提出)に関連し、そ れらの内容は参照することにより本文中に組み入れられる。

Claims

請求の範囲
[1] 接続される負荷に応じて周波数特性が変化するトランスの伝達特性をシミュレートし
、入力信号を前記伝達特性で処理して出力するトランスシミュレート手段と、
所定の負荷のインピーダンス特性をシミュレートし、前記インピーダンス特性を出力 する負荷インピーダンスシミュレート手段とを備え、
前記トランスシミュレート手段は、前記負荷インピーダンスシユミレート手段によって シミュレートされた負荷インピーダンスを持つ負荷が接続された状態で前記トランスの 伝達特性をシミュレートする、ことを特徴とする信号処理装置。
[2] 前記トランスシミュレート手段がシミュレートするトランスは、オーディオ真空管増幅 器に用いられる出力トランスである、ことを特徴とする請求項 1記載の信号処理装置。
[3] 前記負荷インピーダンスシミュレート手段がシミュレートする負荷は、オーディオ用ス ピー力であることを特徴とする請求項 1記載の信号処理装置。
[4] 前記トランスシミュレート手段は、シミュレートするトランスの巻線比を有する理想トラ ンスと、前記シミュレートするトランスの持つ固有パラメータである鉄損と、 1次インダク タンスと、 1次巻線漏洩インダクタンスと、 1次巻線抵抗と、 1次巻線浮遊容量と、 2次 巻線漏洩インダクタンスと、 2次巻線抵抗と、 2次巻線浮遊容量とから構成される等価 回路の伝達特性をシミュレートし、
前記等価回路は、前記理想トランスの 1次側に前記鉄損と前記 1次インダクタンスが 並列接続され、 1次巻線漏洩インダクタンスと 1次巻線抵抗と 1次巻線浮遊容量とから なる直列回路が前記鉄損に並列接続され、前記 1次巻線浮遊容量の両端に前記入 力信号が入力され、前記理想トランスの 2次側に 2次巻線漏洩インダクタンスと 2次巻 線抵抗と 2次巻線浮遊容量とが直列に接続され、前記 2次巻線浮遊容量の両端に前 記負荷が接続される、ことを特徴とする請求項 1記載の信号処理装置。
[5] 前記負荷インピーダンスシミュレート手段は、オーディオスピーカのインピーダンス の直流抵抗値を形成する抵抗器と、抵抗器、キャパシタ及びインダクタンスで構成さ れる少なくとも 1つの共振回路とを直列接続してなる回路のインピーダンス特性を用 V、て、前記オーディオスピーカのインピーダンス特性をシミュレートすることを特徴と する請求項 1記載の信号処理装置。
[6] 前記負荷インピーダンスシミュレート手段でシミュレートする負荷のインピーダンス特 性を外部から制御するための制御端子を備えたことを特徴とする請求項 1記載の信 号処理装置。
[7] 前記トランスシミュレート手段でシミュレートするトランスの 1次インダクタンス特性を 外部から制御するための制御端子を備えたことを特徴とする請求項 1記載の信号処 理装置。
[8] 所定の負荷のインピーダンス特性をシミュレートし、前記インピーダンス特性を出力 接続される負荷に応じて周波数特性が変化するトランスに前記シミュレートされたィ ンピーダンスインピーダンス特性の負荷が接続された状態で、前記トランスの伝達特 性をシミュレートするステップと、
入力信号を、前記シミュレートされた伝達特性を用いて処理し、出力信号を生成す を含む信号処理方法。
[9] 前記トランスは、オーディオ真空管増幅器に用いられる出力トランスであることを特 徴とする請求項 8記載の信号処理方法。
[10] 前記負荷はオーディオ用スピーカであることを特徴とする請求項 8記載の信号処理 方法。
[11] 前記負荷のインピーダンス特性を制御するための制御情報を受け付けるステップを さらに含むことを特徴とする請求項 8記載の信号処理方法。
[12] 前記トランスの 1次インダクタンス特性を制御するための制御情報を受け付けるステ ップをさらに含むことを特徴とする請求項 8記載の信号処理方法。
PCT/JP2007/072368 2006-11-20 2007-11-19 Dispositif de traitement de signal et procédé de traitement de signal WO2008062748A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/515,362 US8428917B2 (en) 2006-11-20 2007-11-19 Signal processing device and signal processing method
JP2008545392A JP5049292B2 (ja) 2006-11-20 2007-11-19 信号処理装置及び信号処理方法
GB0908607A GB2456963B (en) 2006-11-20 2007-11-19 Signal processing device and signal processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-312595 2006-11-20
JP2006312595 2006-11-20

Publications (1)

Publication Number Publication Date
WO2008062748A1 true WO2008062748A1 (fr) 2008-05-29

Family

ID=39429680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072368 WO2008062748A1 (fr) 2006-11-20 2007-11-19 Dispositif de traitement de signal et procédé de traitement de signal

Country Status (4)

Country Link
US (1) US8428917B2 (ja)
JP (1) JP5049292B2 (ja)
GB (1) GB2456963B (ja)
WO (1) WO2008062748A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050006A (ja) * 2012-09-03 2014-03-17 Korg Inc ヘッドホン
JP2016171559A (ja) * 2015-03-13 2016-09-23 ヤマハ株式会社 電力増幅器
CN110208602A (zh) * 2019-06-06 2019-09-06 福州大学 一种利于变压器超高次谐波传递特性计算电路及其计算方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498649B (en) * 2011-08-03 2014-03-26 Blackstar Amplification Ltd Solid state audio power amplifier
JP6658869B2 (ja) * 2016-03-25 2020-03-04 ヤマハ株式会社 スピーカ動作確認装置及び方法
GB2603116B (en) * 2021-01-15 2023-06-21 Marshall Amplification Plc Reactive Attenuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342287A (ja) * 1993-06-02 1994-12-13 Yamaha Corp 効果装置
JP2000031754A (ja) * 1998-07-14 2000-01-28 Korg Inc 真空管アンプの出力信号増幅装置
JP2002135893A (ja) * 2000-10-24 2002-05-10 Matsushita Electric Ind Co Ltd 圧電スピーカ及びその駆動回路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5636284A (en) * 1987-03-23 1997-06-03 Pritchard; Eric K. Solid state emulation of vacuum tube audio power amplifiers
US5734725A (en) * 1987-03-23 1998-03-31 Pritchard; Eric K. Tube emulator amplifier system
JP3336089B2 (ja) 1993-09-16 2002-10-21 ローランド株式会社 信号処理装置
US5761316A (en) * 1996-02-27 1998-06-02 Pritchard; Eric K. Variable and reactive audio power amplifier
US5761317A (en) * 1996-03-04 1998-06-02 Pritchard; Eric K. Tube amplifier fat emulation structure
US6175271B1 (en) * 1997-12-04 2001-01-16 Korg Inc. Output signal converter for tube amplifiers
JP2002125893A (ja) * 2000-10-27 2002-05-08 Dainippon Jochugiku Co Ltd 網戸用清拭具
WO2002078177A1 (de) * 2001-03-26 2002-10-03 Georg Neumann Gmbh Verstärkerschaltung
JP4657541B2 (ja) 2001-09-28 2011-03-23 ローランド株式会社 効果装置
DE10237920B3 (de) * 2002-08-14 2004-02-19 Siemens Ag Verfahren und Schaltungsanordnung zur Strommessung
JP4111492B2 (ja) 2002-08-26 2008-07-02 株式会社コルグ バーチャルトランスおよびこれを用いた楽音信号処理装置
SE0301790L (sv) 2003-06-23 2005-02-01 Softube Ab Ett system och en metod för simulering av olinjär audioutrustning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342287A (ja) * 1993-06-02 1994-12-13 Yamaha Corp 効果装置
JP2000031754A (ja) * 1998-07-14 2000-01-28 Korg Inc 真空管アンプの出力信号増幅装置
JP2002135893A (ja) * 2000-10-24 2002-05-10 Matsushita Electric Ind Co Ltd 圧電スピーカ及びその駆動回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050006A (ja) * 2012-09-03 2014-03-17 Korg Inc ヘッドホン
JP2016171559A (ja) * 2015-03-13 2016-09-23 ヤマハ株式会社 電力増幅器
CN110208602A (zh) * 2019-06-06 2019-09-06 福州大学 一种利于变压器超高次谐波传递特性计算电路及其计算方法

Also Published As

Publication number Publication date
JP5049292B2 (ja) 2012-10-17
US8428917B2 (en) 2013-04-23
JPWO2008062748A1 (ja) 2010-03-04
GB2456963A (en) 2009-08-05
US20100070058A1 (en) 2010-03-18
GB0908607D0 (en) 2009-06-24
GB2456963B (en) 2011-07-13

Similar Documents

Publication Publication Date Title
KR100788670B1 (ko) 헤드폰에 최적화된 디지털 앰프의 출력 파워 제어 방법 및장치
RU2568314C2 (ru) Усилитель и способ коррекции амплитудно-частотной характеристики
JP2005333601A (ja) スピーカー・ユニット駆動負帰還増幅器
JPH01272298A (ja) 駆動装置
US9319789B1 (en) Bass enhancement
WO2008062748A1 (fr) Dispositif de traitement de signal et procédé de traitement de signal
JPH04129309A (ja) 増幅回路
US10701487B1 (en) Crossover for multi-driver loudspeakers
Self The Design of Active Crossovers
CN111448756B (zh) 双路径脉宽调制系统的校准
TWI657435B (zh) 音訊處理裝置及方法
EP2590434A1 (en) Filter circuit
US20070154021A1 (en) Digital feedback to improve the sound reproduction of an electro-dynamic loudspeaker
JP4786605B2 (ja) 信号増幅回路およびそれを用いたオーディオシステム
US7206419B1 (en) Guitar preamlifier system with controllable distortion
US20070079694A1 (en) Procedure and device for linearizing the characteristic curve of a vibration signal transducer such as a microphone
Scott The amplifier and its place in the high-fidelity system
KR101121265B1 (ko) 증폭기 장치 및 증폭 방법
JP3179498U (ja) 増幅及びノイズ除去可能なオーディオケーブル
JPH0984173A (ja) 音響再生装置
KR101094004B1 (ko) 스피커 전류 부궤환이 있는 디지털 오디오 앰프
JP2007503778A (ja) 高調波発生器
JPH0833093A (ja) マルチウエイスピーカ装置
LU100989B1 (en) Method for improving sound reproduction of low frequencies and apparatus therefore
JPH0477094A (ja) 車載用音響再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12515362

Country of ref document: US

ENP Entry into the national phase

Ref document number: 0908607

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20071119

WWE Wipo information: entry into national phase

Ref document number: 0908607.5

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2008545392

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832098

Country of ref document: EP

Kind code of ref document: A1