WO2008059749A1 - Composting treatment method and compost produced by using the same - Google Patents
Composting treatment method and compost produced by using the same Download PDFInfo
- Publication number
- WO2008059749A1 WO2008059749A1 PCT/JP2007/071712 JP2007071712W WO2008059749A1 WO 2008059749 A1 WO2008059749 A1 WO 2008059749A1 JP 2007071712 W JP2007071712 W JP 2007071712W WO 2008059749 A1 WO2008059749 A1 WO 2008059749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composting
- compost
- water
- raw material
- polysaccharide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F3/00—Fertilisers from human or animal excrements, e.g. manure
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F17/00—Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
- C05F17/20—Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation using specific microorganisms or substances, e.g. enzymes, for activating or stimulating the treatment
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F9/00—Fertilisers from household or town refuse
- C05F9/04—Biological compost
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/20—Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Definitions
- the present invention relates to a composting method and compost produced using the composting method. More specifically, the present invention promotes composting by reducing the moisture content of the compost raw material itself while preventing the increase in the bulk of the compost raw material by blending the water absorbent polymer, and is derived from the water absorbent polymer in the compost.
- the present invention relates to a composting method that suppresses residual impurities and compost produced using the method.
- biomass for example, livestock excrement, sewage surplus sludge, and food waste are known as materials composed of organic resources derived from biological sources.
- Sewage surplus sludge is sludge obtained by biological treatment of organic waste containing nitrogen discharged from households as sewage.
- Biomass is attracting attention because it contains elements such as nitrogen, phosphorus, and strong rhodium necessary for plant growth and can be reused as compost.
- the biomass cannot be used as compost as it is, and it is necessary to apply some treatment to the biomass.
- waste such as livestock excrement and sewage surplus sludge cannot be disposed of as it is or reused as compost, for example.
- Patent Document 1 composting is performed by mixing a cross-linked poly (sodium acrylate), which is a highly water-absorbing resin having high! / Water absorption capacity, with livestock excrement.
- Patent Document 2 discloses a method for promoting composting using poly-7-glutamic acid, which is a water-absorbing polymer having an extremely high water absorption capacity, as a composting aid.
- Patent Document 3 discloses a method for promoting composting of a highly hydrous raw material using a polysaccharide, for example, cellulose, which is a gelling material or a solidifying material. The method for treating compost raw materials disclosed in Patent Documents !! to 3 uses a water-absorbing polymer, for example, while suppressing an increase in the volume of the compost raw materials that are generated when sawdust is used. It is possible to improve the breathability of the composting process.
- Patent Document 1 JP-A-8-208362
- Patent Document 2 JP 2001-261475 A
- Patent Document 3 Japanese Unexamined Patent Publication No. 2003-342093
- the present invention can reduce residual water-absorbing polymer after compost treatment by using a water-absorbing polymer comprising a polysaccharide or the like and a polysaccharide-degrading enzyme. Moreover, it was made by finding that moisture adjustment and composting can be performed in a short time.
- the object of the present invention is to reduce the residual amount of water-absorbing polymer after composting in a processing method for composting organic waste by fermentation treatment, and to adjust the moisture in a short time.
- An object is to provide a composting method capable of performing composting and a compost produced using the composting method.
- a composting method for composting a compost raw material with an aerobic microorganism comprises the step of composting a compost raw material by blending the compost raw material with a polysaccharide-degrading enzyme and at least one water-absorbing polymer selected from polysaccharides and derivatives thereof.
- Fig. 1 is a graph showing the relationship between temperature and time during composting in Example 1 and each comparative example.
- the composting treatment method according to the present embodiment is a processing method for composting compost raw materials by high-temperature decomposition treatment by mixing a water-absorbing polymer and a polysaccharide-degrading enzyme with compost raw materials.
- Specific examples of the compost raw material used in the present embodiment are not particularly limited as long as they are organic raw materials. Examples of such compost raw materials include excrement of livestock such as cattle, pigs, sheep, horses, and chickens (sewage), and sewage. Examples include treated sludge and food waste such as food waste.
- the water content is sufficient using a large amount of natural water-absorbing fibrous material such as conventional sawdust. Even if it is a highly hydrous compost raw material that needs to absorb water, it can be used with the power S suitably.
- the water-absorbing polymer blended in the compost raw material is a polymer composed of at least one selected from polysaccharides and derivatives thereof.
- the water-absorbing polymer will eventually biodegrade even if it remains after composting.
- polysaccharides include starch, cellulose, hemicellulose, xylose, pectin, chitin, and chitosan.
- polysaccharide derivatives include starch derivatives, crosslinked starch derivatives, cellulose derivatives, crosslinked cellulose derivatives, hemicellulose derivatives, and crosslinked hemicellulose derivatives. More specifically, examples of the cellulose derivative and the crosslinked cellulose derivative include force carboxymethyl cellulose (CMC) and a crosslinked product thereof.
- CMC carboxymethyl cellulose
- Starch derivatives and cross-linked starch derivatives include carboxymethyl starch (CMS), acetylated adipic acid cross-linked starch, acetylated phosphoric acid cross-linked starch, hydroxypropylated phosphoric acid cross-linked starch, phosphoric acid monoesterified phosphoric acid cross-linked starch, phosphorus
- Examples include acid-crosslinked starch, sodium starch phosphate, and cross-linked products thereof.
- the water-absorbing polymer is easily available and has excellent biodegradability, starch, starch derivative, crosslinked starch derivative, cellulose, cellulose derivative, crosslinked cellulose derivative, hemicellulose, hemicellulose derivative, And at least one selected from crosslinked hemicellulose derivatives.
- cross-linked CMC and phosphoric acid cross-linked starch are preferred because they remain less in the soil after composting.
- CMC having a high water absorption is used.
- These water-absorbing polymers can be blended alone in compost raw materials, or two or more can be combined in compost raw materials!
- the polysaccharide can be crosslinked by a known method, for example, radiation treatment or a crosslinking agent.
- the cross-linking agent include polyhydric alcohols, polyamines, metaphosphates, phosphorus oxychloride, adipic anhydride, and epichlorohydrin.
- the polyhydric alcohol include polyethylene glycol, ethylene glycol diglycidyl ether, glycerin, and propylene glycol.
- the polyvalent amine include 1,4-diaminobutane.
- a polysaccharide-degrading enzyme is a polysaccharide or a derivative thereof blended as a water-absorbing polymer. Eventually, it decomposes and disappears in compost or is easily biodegraded by microorganisms.
- Examples of polysaccharide-degrading enzymes include amylase (starch-degrading enzyme) that hydrolyzes starch or its derivatives, cellulase (cellulose-degrading enzyme) that hydrolyzes cellulose or its derivatives, and hemicellulose or its derivatives.
- Hemicellulase hemicellulose-degrading enzyme
- xylanase hydrolyzing xylose or its derivative xylose-degrading enzyme
- pectinase hydrolyzing pectin or its derivative pectin-degrading enzyme
- chitin or A chitinase chitin degrading enzyme that hydrolyzes the derivative is mentioned.
- the polysaccharide degrading enzyme an enzyme capable of degrading the water-absorbing polymer compounded in the compost raw material is selected and applied.
- Compost raw materials usually contain cellulose or its derivatives, or hemicellulose or its derivatives.
- the polysaccharide degrading enzyme is at least one selected from cellulase and hemicellulase.
- the polysaccharide-degrading enzyme can promote the composting treatment of the compost raw material by decomposing, for example, cellulose in the compost raw material.
- exo-type degrading enzyme that cleaves a specific number of sugar units from the end of the sugar chain or an endo-type degrading enzyme with a random cleavage mode force may be used.
- exo-type degrading enzymes include / 3-amylase and cellobiohydrolase.
- endo-type degrading enzymes include ⁇ -amylase and endoglucanase.
- exo-type degrading enzymes are preferred for the following reasons.
- the exo-type decomposing enzyme has a high effect of suppressing excessive decomposition of the water-absorbing polymer during composting and preventing an excessive amount of water in the compost raw material during compost processing. Furthermore, the exo-type decomposition enzyme can rapidly decompose the water-absorbing polymer or promote decomposition by microorganisms during and after the composting process. Composting with microorganisms is usually performed in the basic region due to the presence of basic substances such as ammonia in the compost raw material. Therefore, preferably, a degrading enzyme having activity in at least the neutral region to the basic region is used as the polysaccharide degrading enzyme.
- the amount of the water-absorbing polymer and polysaccharide-degrading enzyme to be added to the compost raw material is appropriately determined depending on, for example, the type of the compound, the enzyme titer, and the compost raw material component and the water content Set to Preferably, the mixing ratio of the water-absorbing polymer and the polysaccharide-degrading enzyme is equal to the ratio of rapidly decomposing the water-absorbing polymer after composting treatment while suppressing excessive polymer degradation during composting treatment! /, .
- the compost raw material may be further mixed with back compost or inoculum material in order to mix microorganisms (inoculum) necessary for composting the compost raw material with the compost raw material.
- the back compost and the inoculum material contain at least one of a thermophilic aerobic bacterium and a mesophilic aerobic bacterium.
- thermophilic aerobic bacteria Known bacteria existing in nature are used as thermophilic aerobic bacteria and mesophilic aerobic bacteria.
- a mesophilic aerobic bacterium that is, a mesophilic bacterium, in order to guide the compost raw material from the normal temperature (20 ° C.) to the intermediate temperature range (45 to 55 ° C. temperature range), 20 ° C. to 55 ° C.
- thermophilic aerobic bacterium that is, a thermophilic bacterium, in order to guide the compost raw material from the middle temperature range to the high temperature range (temperature range of about 60 to 95 ° C), the temperature is about 55 ° C or higher.
- At least proliferating bacteria are preferred.
- mesophilic and thermophilic bacteria include, for example, Bacillus alvei, Bacillus amylolyticus, B. azotofixans, B. circula ns. ), Bacillus. Glucanolyticus (B. glucanolyticus), Notinoles. Labee (B. larvae), Bacillus. Lotus (B.
- amyloliquefaciens B. at rophaeus, B. at rophaeus, Rickinoles. Caroterum ( ⁇ carotarum, Rickinoles. firmus), B. flexus, B. laterosporus, B. lentus, B. licheniformis, B. megaterium , B. mycoides, B. nia cini, B. pantothenticus, B. pumilus, B. simplex, B. subtilis (B. subtilis) B. subtilis), Notils B. thuringiensis B. sphaericus B. sphaericus, Geobacillus thermodenitrificans, Geobacillus stearothermophilus, D.
- the compost raw material may further contain a water-absorbing fibrous material in order to promote fermentation and growth of microorganisms within a range not impairing the effects of the present invention.
- a water-absorbing fibrous material preferably, a natural organic material that is readily available and biodegradable after composting is used as the water-absorbing fibrous material.
- water-absorbing fibrous materials include organic wastes such as panolep, cotton lita, bark, sawdust, rice husk, rice straw, corn straw, bagasse, soybean meal, bran, rapeseed meal, and rice bran. Growth of mesophilic bacteria is promoted by using these organic materials as feed. These organic materials may be blended alone in compost raw materials, or two or more types may be combined in compost raw materials!
- the amount of water in the compost raw material at the start of composting according to the present invention is not particularly limited, but is preferably 30 to 90% by mass, and more preferably 40 to 85% by mass.
- the water content is 30% by mass or less, there is a possibility that microorganisms such as mesophilic bacteria do not grow sufficiently.
- the compost raw material can be gelled or solidified by blending the water-absorbing polymer. This increases the air permeability of the highly hydrous compost material and maintains or improves the aerobic metabolism of microorganisms.
- organic waste or porous mineral may be blended with the compost raw material in order to ensure the breathability of the compost raw material.
- organic waste include rice husk and buckwheat husk.
- porous minerals include pearlite.
- aerobic fermentation is induced by, for example, agitation or aeration work by mixing with a blower to positively mix air with livestock excrement.
- the aeration operation is continuously repeated until the processing is completed.
- Treatment at high temperatures can reduce water content, reduce the molecular weight of organic matter, decompose odorous compounds such as amines, suppress the generation of methane gas due to aerobic fermentation, and polymer fibers, proteins, etc. Reduction of molecular weight is performed.
- high-temperature treatment kills plant seeds and pathogenic bacteria derived from livestock excreta. Examples of pathogenic bacteria include coliform bacteria and Staphylococcus aureus known as cattle mastitis-causing bacteria.
- CMC is gradually degraded by microorganisms as the water content decreases.
- Composting of compost raw materials is, for example, a force S that depends on the air supply amount, outside temperature, or moisture content in the compost raw materials, usually 2 to 3 months. It will be completed in about 6 months. Completion of the treatment is accompanied by a decrease in temperature due to the lower molecular weight of the macromolecular organic matter in the compost and the reduction of the water content. Malodorous components and moisture in compost produced after processing Has decreased significantly. CMC is reduced in molecular weight by the action of exo-type cellulase and microorganisms at the completion of compost treatment, so it is easily and quickly decomposed and disappeared by microorganisms in the compost after treatment or microorganisms in the soil. .
- a composting process is performed by mixing a water-absorbing polymer with a compost raw material. Therefore, when the amount of water in the compost raw material is excessively high for composting, natural water-absorbing fibrous materials such as bark, shredded waste, and rice husk are not included in the compost raw material, or the normal amount Even if a smaller amount of water-absorbing fibrous material is added, composting can be performed. Therefore, the increase in the bulk of the entire compost raw material can be significantly suppressed. In addition, the water balance in the compost raw material can be easily adjusted, and the power S can reduce the composting time.
- a biodegradable polysaccharide such as cellulose or starch or a derivative thereof is used as the water-absorbing polymer.
- the water-absorbing polymer can be decomposed by microorganisms in the soil or compost to reduce the residue of the water-absorbing polymer.
- the polysaccharide-degrading enzyme is blended in the compost material together with at least one water-absorbing polymer selected from polysaccharides and derivatives thereof. Therefore, the water-absorbing polymer is reduced in molecular weight to some extent during the composting process and is easily degraded by microorganisms after the composting process. As a result, the residue of the water-absorbing polymer can be extremely reduced in a short period of time.
- an exo-type decomposing enzyme that cleaves a specific number of sugar units from the end of the sugar chain is preferably used as the polysaccharide degrading enzyme.
- exo-type degrading enzymes When exo-type degrading enzymes are used, the rapid decrease in the molecular weight of the polysaccharide as a water-absorbing polymer is suppressed, so there is a risk that the amount of water in the composting material will become excessive during composting. Absent.
- the water-absorbing polymer is decomposed to some extent, it is easily decomposed by microorganisms after composting treatment.
- crosslinked CMC is used as the water-absorbing polymer.
- cellobiohydrolase is used as a polysaccharide-degrading enzyme.
- the rack Since the bridge CMC has higher water absorption and the cross-linked CMC is biodegraded after composting, composting can be completed in a short period of time. Furthermore, the rapid depolymerization of polysaccharides is suppressed, there is no risk of excessive water content in the composting material during the composting process, and the water-absorbing polymer is decomposed to some extent after the composting process. Therefore, it is easily decomposed by microorganisms.
- back compost or inoculum material containing at least one of thermophilic aerobic bacteria and mesophilic aerobic bacteria is further blended in the compost raw material.
- thermophilic aerobic bacteria and mesophilic aerobic bacteria is further blended in the compost raw material.
- the composting process of the present embodiment is a decomposition and fermentation process using microorganisms, it is compared with a physical or chemical processing method such as a combustion method, a purification method, or an adsorption method. In addition, it does not require complicated equipment and a large amount of water, and requires a small amount of secondary processing products that require further processing, that is, by-products, and can reduce energy consumption of fossil fuels and the like.
- the compost obtained by the composting treatment of the present embodiment has a higher calorific value than the conventional compost obtained from the same compost raw material as the compost. See Examples and Comparative Examples). Therefore, when the compost according to the present embodiment is combusted, the amount of fuel required for compost combustion can be reduced as compared with the conventional compost.
- the composting method is applied as a method for producing compost.
- the present invention is applied as a method for treating wastes such as livestock excrement and sewage treatment sludge that are simply discarded as they do not deteriorate the environment. May be. In this case, it becomes easy to appropriately dispose of the processed material processed in the present embodiment.
- compost produced by using the composting method may be applied to livestock bedding as back compost.
- Example 1 temperature change in compost raw material, after composting treatment The presence or absence of the water-absorbing polymer residue and the calorific value of the compost were evaluated. As the temperature change, the temperature change 25 cm below the surface of the compost material was measured. The results are shown in Figure 1.
- the mixture was prepared by blending and mixing the following components with dairy cow dung as compost raw material. That is, 13 kg of the dairy cow dung (water content: 86.7%), 130 g of cross-linked CMC (manufactured by Thienke East Japan) as a water-absorbing polymer, and cellobiohydrolase which is an exo-type degrading enzyme as a polysaccharide degrading enzyme Enzyme material (Toyota Roof Garden Co., Ltd.) approx. 8g, Inoculum material (Menicon Co., Ltd. product name: Thermomaster) 65ml, Slag as a water-absorbing fiber material (sawdust) 3. 9L and rice husk 1 Formulated with 3L.
- the composting test apparatus (Fujidaira Kogyo Co., Ltd .: trade name Kaguyahime) was charged with 13 L of the mixture and subjected to a composting treatment.
- the composting process was performed in the same manner as in Example 1 except that the enzyme material and the inoculum material were omitted.
- Example 1 As shown in Fig. 1, in Example 1, the fermentation temperature reached the maximum temperature of 52.1 ° C in about 60 hours from the start of the treatment. Thereafter, the temperature dropped rapidly and returned to room temperature after about 90 hours (not shown). In Comparative Example 1, the fermentation temperature reached the maximum temperature of 45.3 ° C in about 60 hours from the start of the treatment. Thereafter, the temperature dropped rapidly and returned to room temperature after about 120 hours (not shown). In Comparative Example 2, the fermentation temperature reached the maximum temperature of 44.7 ° C in about 80 hours from the start of the treatment. The temperature then dropped rapidly and returned to room temperature after 120 hours (not shown).
- Example 1 the maximum temperature is higher than the maximum temperature of Comparative Examples 1 and 2, so that the macromolecular organic matter necessary for fermentation is quickly withered and the fermentation treatment is completed early. I understand.
- Comparative Example 1 the time to reach the maximum temperature was almost the same as in Example 1, but the maximum temperature itself was low and it took a long time to complete composting. From this result, it was found that composting is promoted by enzyme materials and inoculum materials.
- Comparative Example 2 a water-absorbing fibrous material having the same volume as the compost material is blended in the compost material. For this reason, the time to reach the maximum temperature was longer than in Example 1, and it took a long time to complete composting.
- the maximum fermentation temperature and the time required for composting in the composting process depend on, for example, the amount of composting material to be processed. Therefore, when composting a large amount of compost raw material compared to the compost raw material according to Example 1, the maximum fermentation temperature is higher than that of Example 1, and it takes a long time for composting. There is a possibility of doing.
- Example 1 As shown in Table 1, in Example 1, crosslinked CMC formulated as a water-absorbing polymer. The polymer residue resulting from was not confirmed after composting treatment. In Comparative Example 1 where no enzyme material was blended, the water-absorbing polymer was only slightly degraded after composting. In order to sufficiently decompose the water-absorbing polymer in Comparative Example 1, it is necessary to leave the mixture for a longer period. Further, the calorific value of the compost according to Example 1 was higher than the calorific value of the compost according to Comparative Example 2. From this result, it was found that when compost obtained by the composting method according to the present invention is combusted, the amount of fuel used for compost combustion can be reduced as compared with conventional compost.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Treatment Of Sludge (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
It is intended to provide a composting treatment method for converting an organic waste into a compost through a fermentation treatment, whereby the amount of a water-absorbing polymer remaining after the composting treatment can be reduced and moisture control and composting can be carried out within a short period of time, and a compost produced by using the same. In a composting method for converting a compost material (for example, livestock feces and urine) into a compost with the use of an aerobic microorganism, a polysaccharide digesting enzyme such as cellulase and a water-absorbing polymer comprising a polysaccharide such as cellulose or its derivative are added to the compost material as described above followed by the composting treatment.
Description
明 細 書 Specification
堆肥化処理方法及びそれを用レ、て製造された堆肥 Composting method and compost manufactured using the method
技術分野 Technical field
[0001] 本発明は、堆肥化処理方法及びそれを用いて製造された堆肥に関する。さらに詳 しくは、本発明は、吸水性ポリマーの配合により堆肥原料の嵩の増加を防止しながら 堆肥原料そのものの水分率を低下させて堆肥化を促進させるとともに、堆肥中の吸 水性ポリマー由来の不純物の残留を抑制した堆肥化処理方法及びそれを用いて製 造された堆肥に関する。 [0001] The present invention relates to a composting method and compost produced using the composting method. More specifically, the present invention promotes composting by reducing the moisture content of the compost raw material itself while preventing the increase in the bulk of the compost raw material by blending the water absorbent polymer, and is derived from the water absorbent polymer in the compost. The present invention relates to a composting method that suppresses residual impurities and compost produced using the method.
背景技術 Background art
[0002] 一般に、生物起源由来の有機物資源からなる資材として、バイオマス、例えば家畜 の排泄物、下水余剰汚泥、及び食品廃棄物が知られている。下水余剰汚泥とは、下 水として例えば家庭から排出される、窒素を含む有機性廃棄物を生物処理すること により得られる汚泥のことである。バイオマスは植物の生長に必要な窒素、リン、力リウ ム等の元素を含有することから、特に堆肥として再利用を図ることができる点で注目さ れている。し力もながら、多くの場合、バイオマスをそのまま堆肥として利用することは できず、該バイオマスにいくつかの処理を施す必要がある。例えば、家畜の排泄物、 下水余剰汚泥等の廃棄物をそのまま廃棄したり、例えば堆肥として再利用したりする ことはできず、廃棄物からのアンモニア等の臭気成分の除去、廃棄物中における水 分含有量の低減等の処理が必要となる。また、例えば家畜の排泄物等の有機性廃 棄物を単に放置することにより、微生物による分解及び発酵処理を有機性廃棄物に 施す方法では、脂肪酸、ァミン等の悪臭成分がさらに発生することから、有機性廃棄 物の悪臭を低減させるための処理が必要である。放置等による微生物の分解及び発 酵処理には長期間を要することから、処理時間の短縮を図ることも必要である。 In general, biomass, for example, livestock excrement, sewage surplus sludge, and food waste are known as materials composed of organic resources derived from biological sources. Sewage surplus sludge is sludge obtained by biological treatment of organic waste containing nitrogen discharged from households as sewage. Biomass is attracting attention because it contains elements such as nitrogen, phosphorus, and strong rhodium necessary for plant growth and can be reused as compost. However, in many cases, the biomass cannot be used as compost as it is, and it is necessary to apply some treatment to the biomass. For example, waste such as livestock excrement and sewage surplus sludge cannot be disposed of as it is or reused as compost, for example. Removal of odorous components such as ammonia from waste, water in waste Treatment such as reduction of the content is required. In addition, when organic waste such as livestock excrement is simply left untreated, microorganisms are decomposed and fermented to organic waste, which further generates malodorous components such as fatty acids and amines. In order to reduce the odor of organic waste, treatment is necessary. Since it takes a long time to decompose microorganisms and leave them for fermentation, it is necessary to shorten the treatment time.
[0003] 一般に、高含水性廃棄物では、該高含水性廃棄物の運搬性及び通気性を向上さ せるために、バーク、才ガ屑、もみ殻等の天然の吸水性繊維質材料を高含水性廃棄 物に配合して該高含水性廃棄物の水分含有量を低下させた後に微生物により堆肥 化する方法が知られている。し力、しながら、ォガ屑等の天然の吸水性繊維質材料を
用いて水分を吸水させる方法は、水分を十分に吸収させるために高含水性廃棄物 の数倍量の吸水性繊維質材料を配合する必要があり、高含水性廃棄物全体の嵩の 増加を招いて堆肥化に時間を要するという問題があった。そこで従来、有機性の高 含水性廃棄物を発酵処理することにより堆肥化する生物学的処理法として、特許文 献 1〜3に記載されるような処理方法が知られている。 [0003] Generally, in a highly water-containing waste, in order to improve the transportability and breathability of the highly water-containing waste, natural water-absorbing fibrous materials such as bark, sardine waste, rice husk and the like are increased. A method of composting with microorganisms after reducing the water content of the highly hydrous waste by blending with hydrous waste is known. However, natural water-absorbing fibrous materials such as debris In order to absorb water sufficiently, it is necessary to mix water-absorbing fibrous material several times the amount of highly water-containing waste in order to absorb water sufficiently. There was a problem that it took time to compost. Thus, conventionally, treatment methods as described in Patent Documents 1 to 3 are known as biological treatment methods for composting organic high-water-containing waste by fermentation.
[0004] 特許文献 1では、高!/、吸水倍率を有する高吸水性樹脂であるポリアクリル酸ソーダ 架橋物が家畜の排泄物に混合されて堆肥化処理が行われている。特許文献 2は、極 めて高い吸水倍率を有する吸水性ポリマーであるポリ 7 グルタミン酸を堆肥化 助剤として用いて堆肥化を促進する方法を開示する。特許文献 3は、ゲル化材又は 固化材である多糖類、例えばセルロースを用いて高含水性原料の堆肥化を促進す る方法を開示する。特許文献;!〜 3に開示される堆肥原料の処理方法は、吸水性ポリ マーを使用することにより、例えばォガ屑が用いられた場合に生じる堆肥原料の嵩の 増加を抑制しながら堆肥原料の通気性を向上させて堆肥化処理を行うことができる。 特許文献 1 :特開平 8— 208362号公報 [0004] In Patent Document 1, composting is performed by mixing a cross-linked poly (sodium acrylate), which is a highly water-absorbing resin having high! / Water absorption capacity, with livestock excrement. Patent Document 2 discloses a method for promoting composting using poly-7-glutamic acid, which is a water-absorbing polymer having an extremely high water absorption capacity, as a composting aid. Patent Document 3 discloses a method for promoting composting of a highly hydrous raw material using a polysaccharide, for example, cellulose, which is a gelling material or a solidifying material. The method for treating compost raw materials disclosed in Patent Documents !! to 3 uses a water-absorbing polymer, for example, while suppressing an increase in the volume of the compost raw materials that are generated when sawdust is used. It is possible to improve the breathability of the composting process. Patent Document 1: JP-A-8-208362
特許文献 2:特開 2001— 261475号公報 Patent Document 2: JP 2001-261475 A
特許文献 3:特開 2003— 342093号公報 Patent Document 3: Japanese Unexamined Patent Publication No. 2003-342093
発明の開示 Disclosure of the invention
[0005] ところが、特許文献 1に開示される処理方法には、家畜の排泄物に配合されるポリ アクリル酸ソーダ架橋物が微生物及び発酵熱によってほとんど分解されないことから 、堆肥中に不純物として残留するという問題があった。特許文献 2に開示される処理 方法では、微生物から産出されるプロテアーゼによってポリ γ グルタミン酸が容 易に分解される。そのため、特許文献 2に開示される処理方法には、発酵処理の途 中において堆肥原料中の水分量が過剰に多くなる場合があり、堆肥原料の水分調 整が難しいという問題があった。特許文献 3に開示される処理方法では、ゲル化材と して配合されるセルロースが堆肥化処理後に最終的に生分解されることから堆肥中 に不純物として残留するという問題は生じない。し力、しながら、セルロースは主として 中温以下の温度で活動するセルロース分解菌によって分解されることから、高温処 理中において十分に分解されず堆肥化処理後に徐々に生分解される。したがって、
特許文献 3に開示される処理方法には、堆肥化処理後にセルロースが最終的に生 分解されるまでに時間を要するという問題があった。 [0005] However, in the treatment method disclosed in Patent Document 1, the cross-linked sodium polyacrylate mixed with the excrement of livestock is hardly decomposed by microorganisms and heat of fermentation, and therefore remains as an impurity in compost. There was a problem. In the treatment method disclosed in Patent Document 2, polyγ-glutamic acid is easily decomposed by a protease produced from a microorganism. For this reason, the treatment method disclosed in Patent Document 2 has a problem that the amount of water in the compost raw material may increase excessively during the fermentation process, making it difficult to adjust the water content of the compost raw material. In the treatment method disclosed in Patent Document 3, since the cellulose blended as the gelling material is finally biodegraded after the composting treatment, there is no problem of remaining as impurities in the compost. However, since cellulose is decomposed mainly by cellulose-degrading bacteria that are active at temperatures below medium temperature, it is not fully decomposed during high-temperature treatment and gradually biodegraded after composting. Therefore, The treatment method disclosed in Patent Document 3 has a problem that it takes time until cellulose is finally biodegraded after composting treatment.
[0006] 本発明は、本発明者らの鋭意研究の結果、多糖類等からなる吸水性ポリマーと多 糖類分解酵素との併用により、堆肥処理後に吸水性ポリマーの残留を低減させること ができ、且つ短時間で水分調整及び堆肥化処理を行うことができることを見出したこ とによりなされたものである。本発明の目的は、有機性廃棄物を発酵処理することに より堆肥化するための処理方法において、堆肥処理後に吸水性ポリマーの残留を低 減させること力 Sでき、且つ短時間で水分調整及び堆肥化処理を行うことができる堆肥 化処理方法及びそれを用いて製造された堆肥を提供することにある。 [0006] As a result of intensive studies by the present inventors, the present invention can reduce residual water-absorbing polymer after compost treatment by using a water-absorbing polymer comprising a polysaccharide or the like and a polysaccharide-degrading enzyme. Moreover, it was made by finding that moisture adjustment and composting can be performed in a short time. The object of the present invention is to reduce the residual amount of water-absorbing polymer after composting in a processing method for composting organic waste by fermentation treatment, and to adjust the moisture in a short time. An object is to provide a composting method capable of performing composting and a compost produced using the composting method.
[0007] 上記の目的を達成するために、本発明の一態様では、堆肥原料を好気性微生物 により堆肥化処理するための堆肥化処理方法が提供される。この堆肥化処理方法は 、前記堆肥原料に、多糖類分解酵素と、多糖類及びその誘導体から選ばれる少なく とも一種からなる吸水性ポリマーとを配合して堆肥原料を堆肥化処理する工程を備え [0007] In order to achieve the above object, in one aspect of the present invention, a composting method for composting a compost raw material with an aerobic microorganism is provided. This composting method comprises the step of composting a compost raw material by blending the compost raw material with a polysaccharide-degrading enzyme and at least one water-absorbing polymer selected from polysaccharides and derivatives thereof.
[0008] 本発明の別の態様では、前記堆肥化処理方法を用いて製造される堆肥が提供さ れる。 [0008] In another aspect of the present invention, a compost produced using the composting method is provided.
図面の簡単な説明 Brief Description of Drawings
[0009] [図 1]実施例 1及び各比較例における堆肥化処理中の温度と時間との関係を示すグ ラフ。 [0009] Fig. 1 is a graph showing the relationship between temperature and time during composting in Example 1 and each comparative example.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明を、堆肥化処理方法を用いて製造された堆肥に具体化した実施形態 について詳細に説明する。 Hereinafter, an embodiment in which the present invention is embodied in compost produced using a composting method will be described in detail.
本実施形態に係る堆肥化処理方法は、堆肥原料に吸水性ポリマー及び多糖類分 解酵素を配合して最終的に堆肥原料を高温分解処理によって堆肥化するための処 理方法である。本実施形態において使用される堆肥原料の具体例は有機質原料で あれば特に限定されず、該具体例として、例えば牛、豚、羊、馬、鶏等の家畜の排泄 物 (粪尿)、下水処理汚泥、及び生ごみ等の食品廃棄物が挙げられる。本実施形態 にお!/、ては、従来ォガ屑等の天然の吸水性繊維質材料を大量に用いて水分を十分
に吸水させる必要が生じる高含水性の堆肥原料であっても、本発明を好適に用いる こと力 Sでさる。 The composting treatment method according to the present embodiment is a processing method for composting compost raw materials by high-temperature decomposition treatment by mixing a water-absorbing polymer and a polysaccharide-degrading enzyme with compost raw materials. Specific examples of the compost raw material used in the present embodiment are not particularly limited as long as they are organic raw materials. Examples of such compost raw materials include excrement of livestock such as cattle, pigs, sheep, horses, and chickens (sewage), and sewage. Examples include treated sludge and food waste such as food waste. In this embodiment, the water content is sufficient using a large amount of natural water-absorbing fibrous material such as conventional sawdust. Even if it is a highly hydrous compost raw material that needs to absorb water, it can be used with the power S suitably.
[0011] 堆肥原料に配合される吸水性ポリマーは、多糖類及びその誘導体から選ばれる少 なくとも一種からなる高分子体である。好ましくは、吸水性ポリマーは、堆肥化処理後 に残留しても最終的に生分解される。多糖類として、例えばデンプン、セルロース、 へミセルロース、キシロース、ぺクチン、キチン、及びキトサンが挙げられる。多糖類の 誘導体として、例えばデンプン誘導体、架橋デンプン誘導体、セルロース誘導体、架 橋セルロース誘導体、へミセルロース誘導体、及び架橋へミセルロース誘導体が挙 げられる。より具体的には、セルロース誘導体及び架橋セルロース誘導体として、力 ノレボキシメチルセルロース(CMC)及びその架橋体が挙げられる。デンプン誘導体 及び架橋デンプン誘導体として、カルボキシメチルデンプン (CMS)、ァセチル化ァ ジピン酸架橋デンプン、ァセチル化リン酸架橋デンプン、ヒドロキシプロピル化リン酸 化架橋デンプン、リン酸モノエステル化リン酸架橋デンプン、リン酸架橋デンプン、デ ンプンリン酸エステルナトリウム及びそれらの架橋体が挙げられる。好ましくは、吸水 性ポリマーは、入手が容易であるとともに生分解性に優れることからデンプン、デンプ ン誘導体、架橋デンプン誘導体、セルロース、セルロース誘導体、架橋セルロース誘 導体、へミセルロース、へミセルロース誘導体、及び架橋へミセルロース誘導体から 選ばれる少なくとも一種である。さらに好ましくは、堆肥化処理後に土壌中への残留 が少ないことから、架橋 CMC及びリン酸架橋デンプンが好ましい。最も好ましくは、 高い吸水性を有する CMCが使用される。これらの吸水性ポリマーは単独で堆肥原 料に配合されてもょレ、し、二種以上が組み合わされて堆肥原料に配合されてもよ!/、。 [0011] The water-absorbing polymer blended in the compost raw material is a polymer composed of at least one selected from polysaccharides and derivatives thereof. Preferably, the water-absorbing polymer will eventually biodegrade even if it remains after composting. Examples of polysaccharides include starch, cellulose, hemicellulose, xylose, pectin, chitin, and chitosan. Examples of polysaccharide derivatives include starch derivatives, crosslinked starch derivatives, cellulose derivatives, crosslinked cellulose derivatives, hemicellulose derivatives, and crosslinked hemicellulose derivatives. More specifically, examples of the cellulose derivative and the crosslinked cellulose derivative include force carboxymethyl cellulose (CMC) and a crosslinked product thereof. Starch derivatives and cross-linked starch derivatives include carboxymethyl starch (CMS), acetylated adipic acid cross-linked starch, acetylated phosphoric acid cross-linked starch, hydroxypropylated phosphoric acid cross-linked starch, phosphoric acid monoesterified phosphoric acid cross-linked starch, phosphorus Examples include acid-crosslinked starch, sodium starch phosphate, and cross-linked products thereof. Preferably, since the water-absorbing polymer is easily available and has excellent biodegradability, starch, starch derivative, crosslinked starch derivative, cellulose, cellulose derivative, crosslinked cellulose derivative, hemicellulose, hemicellulose derivative, And at least one selected from crosslinked hemicellulose derivatives. More preferably, cross-linked CMC and phosphoric acid cross-linked starch are preferred because they remain less in the soil after composting. Most preferably, CMC having a high water absorption is used. These water-absorbing polymers can be blended alone in compost raw materials, or two or more can be combined in compost raw materials!
[0012] 多糖類の架橋は公知の方法により行われることができ、例えば放射線処理又は架 橋剤を用いて行われることができる。架橋剤として、例えば多価アルコール、多価アミ ン、メタリン酸塩、ォキシ塩化リン、無水アジピン酸、及びェピクロルヒドリンが挙げられ る。多価アルコールとして、例えばポリエチレングリコール、エチレングリコールジグリ シジルエーテル、グリセリン、及びプロピレングリコールが挙げられる。多価ァミンとし て、例えば 1 , 4ージアミノブタンが挙げられる。 [0012] The polysaccharide can be crosslinked by a known method, for example, radiation treatment or a crosslinking agent. Examples of the cross-linking agent include polyhydric alcohols, polyamines, metaphosphates, phosphorus oxychloride, adipic anhydride, and epichlorohydrin. Examples of the polyhydric alcohol include polyethylene glycol, ethylene glycol diglycidyl ether, glycerin, and propylene glycol. Examples of the polyvalent amine include 1,4-diaminobutane.
[0013] 多糖類分解酵素は、吸水性ポリマーとして配合される多糖類又はその誘導体を最
終的に堆肥中において分解して消失させたり微生物により生分解され易くしたりする 。多糖類分解酵素として、例えば、デンプン又はその誘導体を加水分解するアミラー ゼ(デンプン分解酵素)、セルロース又はその誘導体を加水分解するセルラーゼ(セ ルロース分解酵素)、へミセルロース又はその誘導体を加水分解するへミセルラーゼ (へミセルロース分解酵素)、キシロース又はその誘導体を加水分解するキシラナ一 ゼ(キシロース分解酵素)、ぺクチン又はその誘導体を加水分解するぺクチナ一ゼ( ぺクチン分解酵素)、及びキチン又はその誘導体を加水分解するキチナーゼ(キチン 分解酵素)が挙げられる。多糖類分解酵素として、堆肥原料に配合される吸水性ポリ マーが分解可能な酵素が選択されて適用される。堆肥原料は通常、セルロース若し くはその誘導体、又はへミセルロース若しくはその誘導体を含有している。そのため、 好ましくは、多糖類分解酵素は、セルラーゼ及びへミセルラーゼから選ばれる少なく とも一種である。この場合、多糖類分解酵素は、堆肥原料中の例えばセルロースを分 解することにより、堆肥原料の堆肥化処理を促進することができる。 [0013] A polysaccharide-degrading enzyme is a polysaccharide or a derivative thereof blended as a water-absorbing polymer. Eventually, it decomposes and disappears in compost or is easily biodegraded by microorganisms. Examples of polysaccharide-degrading enzymes include amylase (starch-degrading enzyme) that hydrolyzes starch or its derivatives, cellulase (cellulose-degrading enzyme) that hydrolyzes cellulose or its derivatives, and hemicellulose or its derivatives. Hemicellulase (hemicellulose-degrading enzyme), xylanase hydrolyzing xylose or its derivative (xylose-degrading enzyme), pectinase hydrolyzing pectin or its derivative (pectin-degrading enzyme), and chitin or A chitinase (chitin degrading enzyme) that hydrolyzes the derivative is mentioned. As the polysaccharide degrading enzyme, an enzyme capable of degrading the water-absorbing polymer compounded in the compost raw material is selected and applied. Compost raw materials usually contain cellulose or its derivatives, or hemicellulose or its derivatives. Therefore, preferably, the polysaccharide degrading enzyme is at least one selected from cellulase and hemicellulase. In this case, the polysaccharide-degrading enzyme can promote the composting treatment of the compost raw material by decomposing, for example, cellulose in the compost raw material.
[0014] 多糖類分解酵素として、糖鎖の末端から特定数の糖単位を切り離すェキソ型の分 解酵素、及び切断様式力ランダムであるエンド型の分解酵素のいずれが使用されて もよい。ェキソ型の分解酵素として、例えば /3—アミラーゼ、及びセロビォヒドロラーゼ が挙げられる。エンド型の分解酵素として、例えば α —アミラーゼ及びエンドグルカ ナーゼが挙げられる。ェキソ型の分解酵素及びエンド型の分解酵素のうち、下記の 理由によりェキソ型の分解酵素が好ましい。即ち、ェキソ型の分解酵素では、堆肥化 中において吸水性ポリマーの過剰な分解を抑制して堆肥処理中における堆肥原料 中の水分量が過剰に多くなることを防止する効果が高い。更に、ェキソ型の分解酵 素は、堆肥化処理中及び堆肥化処理後に、吸水性ポリマーを速やかに分解したり微 生物による分解を促進したりすることができる。微生物による堆肥化処理は通常、堆 肥原料中のアンモニア等の塩基性物質の存在により塩基性領域で行われる。そのた め、好ましくは、少なくとも中性領域から塩基性領域において活性を有する分解酵素 が多糖類分解酵素として使用される。 [0014] As the polysaccharide-degrading enzyme, either an exo-type degrading enzyme that cleaves a specific number of sugar units from the end of the sugar chain or an endo-type degrading enzyme with a random cleavage mode force may be used. Examples of exo-type degrading enzymes include / 3-amylase and cellobiohydrolase. Examples of endo-type degrading enzymes include α-amylase and endoglucanase. Of the exo-type degrading enzymes and endo-type degrading enzymes, exo-type degrading enzymes are preferred for the following reasons. That is, the exo-type decomposing enzyme has a high effect of suppressing excessive decomposition of the water-absorbing polymer during composting and preventing an excessive amount of water in the compost raw material during compost processing. Furthermore, the exo-type decomposition enzyme can rapidly decompose the water-absorbing polymer or promote decomposition by microorganisms during and after the composting process. Composting with microorganisms is usually performed in the basic region due to the presence of basic substances such as ammonia in the compost raw material. Therefore, preferably, a degrading enzyme having activity in at least the neutral region to the basic region is used as the polysaccharide degrading enzyme.
[0015] 堆肥原料への吸水性ポリマー及び多糖類分解酵素の配合量は、例えばそれらの 化合物の種類、酵素の力価、並びに堆肥原料の成分及び水分の含有量により適宜
に設定される。好ましくは、吸水性ポリマーと多糖類分解酵素との配合比は、堆肥処 理中における過剰なポリマーの分解を抑制しながら堆肥化処理後に吸水性ポリマー を速やかに分解する比率と等し!/、。 [0015] The amount of the water-absorbing polymer and polysaccharide-degrading enzyme to be added to the compost raw material is appropriately determined depending on, for example, the type of the compound, the enzyme titer, and the compost raw material component and the water content Set to Preferably, the mixing ratio of the water-absorbing polymer and the polysaccharide-degrading enzyme is equal to the ratio of rapidly decomposing the water-absorbing polymer after composting treatment while suppressing excessive polymer degradation during composting treatment! /, .
堆肥原料には、該堆肥原料の堆肥化に必要な微生物 (種菌)を堆肥原料に配合す るために、戻し堆肥又は種菌資材が更に配合されてもよい。好ましくは、戻し堆肥及 び種菌資材には、好熱性の好気性菌及び中温性の好気性菌の少なくとも一方が含 有される。好熱性の好気性菌及び中温性の好気性菌として、自然界に存在する公知 の細菌が使用される。本実施形態に係る中温性の好気性菌、即ち中温菌として、堆 肥原料を常温(20°C)から中温域 (45〜55°Cの温域)へ導くために、 20°C〜55°Cの 範囲で少なくとも増殖可能な菌が好ましい。本実施形態に係る好熱性の好気性菌、 即ち好熱菌として、堆肥原料を中温域から高温域 (約 60〜95°Cの温域)へ導くため に、約 55°C以上の温度で少なくとも増殖可能な菌が好ましい。中温菌及び高温菌と して、例えばバチルス.アルヴエイ(Β· alvei)、バチルス.アミロリチカス(Β· amylolyticus )、バチルス.ァゾトフイクサンス(B. azotofixans)、バチルス.サーキュランス(B. circula ns)、バチルス.グルカノリチカス (B. glucanolyticus)、ノ チノレス.ラーべ一 (B. larvae)、 バチルス.ロータス(B. lautus)、バチルス.レンチモーバス(B. lentimorbus)、バチルス. マセランス (Β· macerans)、ノ チノレス.マッククオリエンシス (Β· macquariensis)、ノ チノレ スノ バリ (B. pabuli)、バチルス.ポリミキサ(Β· polymyxa)、バチルス.ポピリエー(Β· po pilliae)、ノ チノレス.シクロサッカロリチカス(Β· psychrosaccharolyticus)、ノ チノレスノ ノレヴイフェイシエンス(B. pulvifaciens)、バチルス.チアミノリチカス(B. thiaminolyticus) 、バチルス.ヴァリダス(B. validus)、バチルス.アルカロフィラス(B. alcalophilus)、バチ ノレス.アミロリカフエイシヤンス(B. amyloliquefaciens)、バチルス.アトロフエーアス(B. at rophaeus)、ノ チノレス.カロテーラム (Β· carotarumリ、ノ チノレス.ファーモス(Β· firmus)、 バチルス.フレタサス(B. flexus)、バチルス.ラテロスポラス(B. laterosporus)、バチル ス.レンタス(B. lentus)、バチルス.リケニフォミス(B. licheniformis)、バチルス.メガテリ ゥム(Β· megaterium)、バチノレス.ミコイデス(B. mycoides)、バチノレス.二ァシニ(B. nia cini)、バチノレスノ ントテニチカス(B. pantothenticus)、バチノレスノ ミラス(B. pumilus )、バチルス.シンプレックス(B. simplex)、バチルス.サブチリス(B. subtilis)、ノ チルス
.サリンジェンシス (B. thuringiensis)、ノ チノレス.スフエリカス (B. sphaericus)、ン フ チ ノレス.サーモデニトリフイカンス (Geobacillus thermodenitrificans),ジォバチルス.ステア 口サーモフィルス (Geobacillus stearothermophilus),ジォバチルス.コーストフィルス (G eobacillus kaustophilus)、ン才ノヽチノレス.サプ 7 "ノレフネンス (Geobacillus subterranens 、ジ才ノ チノレス.サーモノレーボランス (Geobacillus thermoleovorans),及びジ才ノ チノレ ス.カルドキシオシリチカス (Geobacillus caldoxylosilyticas)が挙げられる。本実施形態 において、戻し堆肥として市販の堆肥が使用されてもよいし、本実施形態において堆 肥化処理が完了した堆肥が戻し堆肥として使用されてもよい。市販品の種菌資材と して、例えばメニコン社製の商品名であるサーモマスターを使用することができる。 The compost raw material may be further mixed with back compost or inoculum material in order to mix microorganisms (inoculum) necessary for composting the compost raw material with the compost raw material. Preferably, the back compost and the inoculum material contain at least one of a thermophilic aerobic bacterium and a mesophilic aerobic bacterium. Known bacteria existing in nature are used as thermophilic aerobic bacteria and mesophilic aerobic bacteria. As a mesophilic aerobic bacterium according to the present embodiment, that is, a mesophilic bacterium, in order to guide the compost raw material from the normal temperature (20 ° C.) to the intermediate temperature range (45 to 55 ° C. temperature range), 20 ° C. to 55 ° C. Bacteria that can grow at least in the range of ° C are preferred. As a thermophilic aerobic bacterium according to this embodiment, that is, a thermophilic bacterium, in order to guide the compost raw material from the middle temperature range to the high temperature range (temperature range of about 60 to 95 ° C), the temperature is about 55 ° C or higher. At least proliferating bacteria are preferred. Examples of mesophilic and thermophilic bacteria include, for example, Bacillus alvei, Bacillus amylolyticus, B. azotofixans, B. circula ns. ), Bacillus. Glucanolyticus (B. glucanolyticus), Notinoles. Labee (B. larvae), Bacillus. Lotus (B. lautus), Bacillus. Lentimorbus, Bacillus. Macerans ), Nochinores. Macquariensis (Β macquariensis), Nochinole Snow varieties (B. pabuli), Bacillus polymixer (Β · polymyxa), Bacillus popirie (Β · po pilliae), Nochinoles. Cyclosaccharo ricica (Β · psychrosaccharolyticus), Nochinolesno Norevuifaciens (B. pulvifaciens), Bacillus thiaminolyticus (B. thiaminolyticus), Bacillus .validus (B. validus), Bachi B. alcalophilus, B. nores. B. amyloliquefaciens, B. at rophaeus, B. at rophaeus, Nochinoles. Caroterum (Β carotarum, Nochinoles. firmus), B. flexus, B. laterosporus, B. lentus, B. licheniformis, B. megaterium , B. mycoides, B. nia cini, B. pantothenticus, B. pumilus, B. simplex, B. subtilis (B. subtilis) B. subtilis), Notils B. thuringiensis B. sphaericus B. sphaericus, Geobacillus thermodenitrificans, Geobacillus stearothermophilus, D. phyllaceus (G eobacillus kaustophilus), S. 7 "Norefunens (Geobacillus subterranens), S. monorenolance. (Geobacillus thermoleovorans), and S. dino chinoles. Caldoxylosilyticas In this embodiment, commercially available compost may be used as the back compost, and compost that has been composted in this embodiment may be used as the back compost. Thus, for example, Thermomaster, which is a trade name manufactured by Menicon, can be used.
[0017] 堆肥原料には、本発明の効果を損なわない範囲内において、微生物の発酵及び 増殖を促進するために吸水性繊維質材料が更に配合されてもよい。好ましくは、吸 水性繊維質材料として、入手が容易であり、且つ堆肥化処理後に生分解される天然 の有機質材料が使用される。吸水性繊維質材料として、有機質廃棄物、例えばパノレ プ、コットンリタ、バーク、ォガ屑、もみ殻、稲わら、コーン柏、バガス、大豆粕、フスマ 、菜種柏、及び米糠が挙げられる。これらの有機質材料を餌として中温菌の増殖が 促進される。これらの有機質材料は単独で堆肥原料に配合されてもよいし、二種以 上が組み合わされて堆肥原料に配合されてもよ!/、。 [0017] The compost raw material may further contain a water-absorbing fibrous material in order to promote fermentation and growth of microorganisms within a range not impairing the effects of the present invention. Preferably, a natural organic material that is readily available and biodegradable after composting is used as the water-absorbing fibrous material. Examples of water-absorbing fibrous materials include organic wastes such as panolep, cotton lita, bark, sawdust, rice husk, rice straw, corn straw, bagasse, soybean meal, bran, rapeseed meal, and rice bran. Growth of mesophilic bacteria is promoted by using these organic materials as feed. These organic materials may be blended alone in compost raw materials, or two or more types may be combined in compost raw materials!
[0018] 本発明に係る堆肥化開始時における堆肥原料中の水分量は特に限定されないが 、好ましくは 30〜90質量%であり、より好ましくは 40〜85質量%である。水分量が 3 0質量%以下の場合、微生物、例えば中温菌が十分に増殖しないおそれがある。堆 肥原料中の水分量が高い場合、即ち高含水性堆肥原料の場合であっても、吸水性 ポリマーの配合によって堆肥原料をゲル化又は固化させることができる。それによつ て高含水性堆肥原料の通気性を高め、微生物の好気的代謝を維持又は向上させる こと力 Sでさる。 [0018] The amount of water in the compost raw material at the start of composting according to the present invention is not particularly limited, but is preferably 30 to 90% by mass, and more preferably 40 to 85% by mass. When the water content is 30% by mass or less, there is a possibility that microorganisms such as mesophilic bacteria do not grow sufficiently. Even when the amount of water in the compost raw material is high, that is, in the case of a highly hydrous compost raw material, the compost raw material can be gelled or solidified by blending the water-absorbing polymer. This increases the air permeability of the highly hydrous compost material and maintains or improves the aerobic metabolism of microorganisms.
[0019] 堆肥原料には、前記各成分以外にも、堆肥原料の通気性を確保するために、例え ば有機質廃棄物又は多孔質鉱物が配合されてもよい。有機質廃棄物として、例えば もみ殻及びそば殻が挙げられる。多孔質鉱物として、例えばパーライトが挙げられる
[0020] 次に、上記のように構成された本実施形態の堆肥化処理方法を用いて製造された 堆肥の作用を説明する。堆肥化原料として例えば家畜の排泄物が使用され、家畜の 排泄物に吸水性ポリマーとして例えば CMCが配合されるとともに多糖類分解酵素と して例えばェキソ型のセルラーゼが配合される場合、家畜の排泄物は以下のような 反応によって分解される。まず、家畜の排泄物に CMCが配合された際、家畜の排泄 物中において過剰に含有される水分が CMCに捕捉され、家畜の排泄物はゲル化又 は固化される。その結果、家畜の排泄物中の通気性が確保される。一次分解として、 まず家畜の排泄物中の多糖類が分解酵素により低分子化され、即ち例えばセルロー スがセルラーゼにより低分子化されて糖類が遊離する。それに伴い、低分子化された セルロース、例えばセロオリゴ糖又はグルコースを餌とする微生物が増殖する。微生 物の増殖に伴い、家畜の排泄物中の温度は約 2〜 3日で最高温度(中温域〜高温 域: 50〜85°C)へ上昇する。このとき、吸水性ポリマーとして配合される CMCは、ェ キソ型のセルラーゼにより糖鎖の末端から徐々に分解される。し力、しながら、 CMCの 保水性は依然として維持されていることから、堆肥化処理中において家畜の排泄物 中の水分量が過剰に多くなるおそれはない。 [0019] In addition to the above-mentioned components, for example, organic waste or porous mineral may be blended with the compost raw material in order to ensure the breathability of the compost raw material. Examples of organic waste include rice husk and buckwheat husk. Examples of porous minerals include pearlite. [0020] Next, the operation of the compost manufactured using the composting method of the present embodiment configured as described above will be described. When, for example, livestock excrement is used as composting raw material, and CMC is added to the livestock excretion as a water-absorbing polymer and exo cellulase is added as a polysaccharide-degrading enzyme, for example, excretion of livestock The product is decomposed by the following reaction. First, when CMC is mixed with livestock excreta, the excess water contained in the livestock excreta is captured by the CMC, and the livestock excreta is gelled or solidified. As a result, air permeability in livestock excrement is ensured. As primary degradation, first, polysaccharides in livestock excreta are reduced in molecular weight by degrading enzymes, that is, for example, cellulose is reduced in molecular weight by cellulase to release sugars. Along with this, microorganisms that feed on low molecular weight cellulose such as cellooligosaccharides or glucose grow. As microorganisms grow, the temperature in the excreta of livestock rises to the highest temperature (medium temperature range to high temperature range: 50 to 85 ° C) in about 2 to 3 days. At this time, CMC blended as a water-absorbing polymer is gradually decomposed from the end of the sugar chain by exo-type cellulase. However, since the water retention capacity of CMC is still maintained, there is no risk that the amount of water in livestock excrement will become excessive during composting.
[0021] 次に、例えば撹拌又はブロア一による空気混入作業により、家畜の排泄物に空気 を積極的に混合させて好気的発酵を誘導する。好ましくは、空気混入作業は処理完 了まで連続的に繰り返される。高温域での処理により、例えば水分含有量の減少、 有機物の低分子化、ァミン等の臭気化合物の分解、好気性発酵に起因するメタンガ ス等の発生の抑制、及び高分子繊維、タンパク質等の低分子化が行われる。また、 高温処理によって、家畜の排泄物由来の植物の種子及び病原性細菌が死滅する。 病原性細菌として、例えば大腸菌群、及び牛の乳房炎起因菌として知られる黄色ブ ドウ状球菌が挙げられる。高温処理過程中において水分量の減少とともに CMCは 微生物により徐々に分解されていく。 [0021] Next, aerobic fermentation is induced by, for example, agitation or aeration work by mixing with a blower to positively mix air with livestock excrement. Preferably, the aeration operation is continuously repeated until the processing is completed. Treatment at high temperatures can reduce water content, reduce the molecular weight of organic matter, decompose odorous compounds such as amines, suppress the generation of methane gas due to aerobic fermentation, and polymer fibers, proteins, etc. Reduction of molecular weight is performed. In addition, high-temperature treatment kills plant seeds and pathogenic bacteria derived from livestock excreta. Examples of pathogenic bacteria include coliform bacteria and Staphylococcus aureus known as cattle mastitis-causing bacteria. During the high-temperature treatment process, CMC is gradually degraded by microorganisms as the water content decreases.
[0022] 堆肥原料の堆肥化は、例えば空気の供給量、外気温、又は堆肥原料中の水分率 によって左右される力 S、通常は 2〜3ヶ月、堆肥化に長期間を要する場合には約 6ケ 月で完了する。処理の完了は、堆肥中の高分子有機物の低分子化及び水分量の減 少により温度の低下を伴う。処理が完了して製造された堆肥中の悪臭成分及び水分
は著しく減少している。 CMCは、堆肥処理完了時においてはェキソ型のセルラーゼ 及び微生物の作用により低分子化されていることから、処理後の堆肥中における微 生物又は土壌中の微生物によって容易且つ速やかに分解されて消失する。 [0022] Composting of compost raw materials is, for example, a force S that depends on the air supply amount, outside temperature, or moisture content in the compost raw materials, usually 2 to 3 months. It will be completed in about 6 months. Completion of the treatment is accompanied by a decrease in temperature due to the lower molecular weight of the macromolecular organic matter in the compost and the reduction of the water content. Malodorous components and moisture in compost produced after processing Has decreased significantly. CMC is reduced in molecular weight by the action of exo-type cellulase and microorganisms at the completion of compost treatment, so it is easily and quickly decomposed and disappeared by microorganisms in the compost after treatment or microorganisms in the soil. .
[0023] 本実施形態は以下の利点を有して!/、る。 [0023] This embodiment has the following advantages!
(1)本実施形態では、堆肥原料に吸水性ポリマーが配合されて堆肥化処理が行わ れている。そのため、堆肥原料中の水分量が堆肥化にとって過剰に多い場合に、バ ーク、才ガ屑、もみ殻等の天然の吸水性繊維質材料が堆肥原料に配合されなくても 、もしくは通常量より少ない量の吸水性繊維質材料が配合されても、堆肥化処理を行 うこと力 Sできる。よって、堆肥原料全体の嵩の増加を大幅に抑制することができる。ま た、堆肥原料中の水分バランスを容易に調整することができ、堆肥化処理時間の短 縮ィ匕を図ること力 Sでさる。 (1) In this embodiment, a composting process is performed by mixing a water-absorbing polymer with a compost raw material. Therefore, when the amount of water in the compost raw material is excessively high for composting, natural water-absorbing fibrous materials such as bark, shredded waste, and rice husk are not included in the compost raw material, or the normal amount Even if a smaller amount of water-absorbing fibrous material is added, composting can be performed. Therefore, the increase in the bulk of the entire compost raw material can be significantly suppressed. In addition, the water balance in the compost raw material can be easily adjusted, and the power S can reduce the composting time.
[0024] (2)本実施形態において、好ましくは、吸水性ポリマーとしてセルロース、デンプン 等の生分解性の多糖類又はその誘導体が使用される。この場合、堆肥化処理後に 土壌中又は堆肥中の微生物に吸水性ポリマーを分解させ、該吸水性ポリマーの残 渣を低減させることができる。 (2) In this embodiment, preferably, a biodegradable polysaccharide such as cellulose or starch or a derivative thereof is used as the water-absorbing polymer. In this case, after the composting treatment, the water-absorbing polymer can be decomposed by microorganisms in the soil or compost to reduce the residue of the water-absorbing polymer.
[0025] (3)本実施形態において、堆肥原料中に多糖類及びその誘導体から選ばれる少な くとも一種からなる吸水性ポリマーとともに多糖類分解酵素が配合されている。したが つて、堆肥化処理中において吸水性ポリマーはある程度低分子化され、堆肥化処理 後に微生物により容易に分解される。それにより短期間で吸水性ポリマーの残渣を非 常に少なくすることができる。 [0025] (3) In this embodiment, the polysaccharide-degrading enzyme is blended in the compost material together with at least one water-absorbing polymer selected from polysaccharides and derivatives thereof. Therefore, the water-absorbing polymer is reduced in molecular weight to some extent during the composting process and is easily degraded by microorganisms after the composting process. As a result, the residue of the water-absorbing polymer can be extremely reduced in a short period of time.
[0026] (4)本実施形態において、好ましくは、多糖類分解酵素として糖鎖の末端から特定 数の糖単位を切断するェキソ型の分解酵素が用いられる。ェキソ型の分解酵素が使 用される場合、吸水性ポリマーとしての多糖類の急速な低分子化が抑制されることか ら、堆肥化処理中において堆肥原料の水分量が過剰に多くなるおそれがない。また 、吸水性ポリマーはある程度分解されていることから、堆肥化処理後に微生物により 容易に分解される。 [0026] (4) In this embodiment, an exo-type decomposing enzyme that cleaves a specific number of sugar units from the end of the sugar chain is preferably used as the polysaccharide degrading enzyme. When exo-type degrading enzymes are used, the rapid decrease in the molecular weight of the polysaccharide as a water-absorbing polymer is suppressed, so there is a risk that the amount of water in the composting material will become excessive during composting. Absent. In addition, since the water-absorbing polymer is decomposed to some extent, it is easily decomposed by microorganisms after composting treatment.
[0027] (5)本実施形態において、好ましくは、吸水性ポリマーとして架橋 CMCが使用され る。このとき、多糖類分解酵素としてセロビォヒドロラーゼが使用される。この場合、架
橋 CMCの吸水性がより高いとともに堆肥化後に架橋 CMCが生分解されることから、 堆肥化処理を短期間で完了することができる。更に、多糖類の急速な低分子化が抑 制され、堆肥化処理中において堆肥原料中の水分量が過剰に多くなるおそれがな いとともに、堆肥化処理後に吸水性ポリマーはある程度分解されていることから微生 物により容易に分解される。 (5) In the present embodiment, preferably, crosslinked CMC is used as the water-absorbing polymer. At this time, cellobiohydrolase is used as a polysaccharide-degrading enzyme. In this case, the rack Since the bridge CMC has higher water absorption and the cross-linked CMC is biodegraded after composting, composting can be completed in a short period of time. Furthermore, the rapid depolymerization of polysaccharides is suppressed, there is no risk of excessive water content in the composting material during the composting process, and the water-absorbing polymer is decomposed to some extent after the composting process. Therefore, it is easily decomposed by microorganisms.
[0028] (6)本実施形態にお!/、て、好ましくは、好熱性の好気性菌及び中温性の好気性菌 の少なくとも一方を含有する戻し堆肥又は種菌資材が堆肥原料に更に配合される。 この場合、堆肥原料に安価に種菌を配合することができ、堆肥化処理を容易に行うこ と力 Sできる。 [0028] (6) In this embodiment, preferably, back compost or inoculum material containing at least one of thermophilic aerobic bacteria and mesophilic aerobic bacteria is further blended in the compost raw material. The In this case, it is possible to mix the inoculum with the compost raw material at a low cost and to facilitate the composting process.
[0029] (7)本実施形態の堆肥化処理は、微生物を用いた分解及び発酵処理であることか ら、燃焼法、浄化法、吸着法等の物理的又は化学的な処理方法に比べて、複雑な 装置及び大量の水を必要とせず、更なる処理を必要とする二次処理物、即ち副産物 も少なぐ且つ化石燃料等のエネルギー消費量を抑制することができる。 [0029] (7) Since the composting process of the present embodiment is a decomposition and fermentation process using microorganisms, it is compared with a physical or chemical processing method such as a combustion method, a purification method, or an adsorption method. In addition, it does not require complicated equipment and a large amount of water, and requires a small amount of secondary processing products that require further processing, that is, by-products, and can reduce energy consumption of fossil fuels and the like.
[0030] (8)本実施形態の堆肥化処理によって得られる堆肥は、該堆肥と同じ堆肥原料か ら得られる従来の堆肥に比べて高!/、発熱量を有してレ、る(下記の実施例及び比較例 参照)。そのため、本実施形態に係る堆肥が燃焼される際には、堆肥の燃焼に要す る燃料の量を従来の堆肥に比べて減少させることができる。 [0030] (8) The compost obtained by the composting treatment of the present embodiment has a higher calorific value than the conventional compost obtained from the same compost raw material as the compost. See Examples and Comparative Examples). Therefore, when the compost according to the present embodiment is combusted, the amount of fuel required for compost combustion can be reduced as compared with the conventional compost.
[0031] 上記実施形態は以下のように変更されてもよい。 [0031] The embodiment described above may be modified as follows.
上記実施形態において、堆肥化処理方法が堆肥の製造方法として適用されている 。しかしながら、単にそのまま廃棄されることが例えば環境の悪化を招ぐ家畜の排泄 物、下水処理汚泥等の廃棄物を、環境を悪化させるおそれのない処理物に処理す る方法として本発明が適用されてもよい。この場合、本実施形態において処理された 処理物を適切に廃棄することが容易となる。 In the above embodiment, the composting method is applied as a method for producing compost. However, the present invention is applied as a method for treating wastes such as livestock excrement and sewage treatment sludge that are simply discarded as they do not deteriorate the environment. May be. In this case, it becomes easy to appropriately dispose of the processed material processed in the present embodiment.
[0032] 上記実施形態において、堆肥化処理方法を用いて製造された堆肥が戻し堆肥とし て畜産用敷料に適用されてもよい。 [0032] In the above embodiment, compost produced by using the composting method may be applied to livestock bedding as back compost.
実施例 Example
[0033] 次に、実施例及び比較例を挙げて前記実施形態を更に具体的に説明する。 Next, the embodiment will be described more specifically with reference to examples and comparative examples.
下記の実施例 1及び各比較例に関して、堆肥原料中の温度変化、堆肥化処理後
の吸水性ポリマー残渣の有無、及び堆肥の発熱量について評価を行った。温度変 化として、堆肥原料の表層より 25cm下部における温度変化を測定した。結果を図 1 に示す。 Regarding the following Example 1 and each comparative example, temperature change in compost raw material, after composting treatment The presence or absence of the water-absorbing polymer residue and the calorific value of the compost were evaluated. As the temperature change, the temperature change 25 cm below the surface of the compost material was measured. The results are shown in Figure 1.
[0034] 吸水性ポリマー残渣に関して、堆肥化処理後の堆肥を目視で観察した。結果を表 [0034] Regarding the water-absorbing polymer residue, compost after composting was visually observed. Table results
1に示す。表 1の" CMC残渣"欄において、 "〇〇"はポリマー残渣が確認されなかつ たことを示し、 "〇"はポリマー残渣が僅かに確認されたことを示す。更に、 "△"は吸 水性ポリマーが僅かに分解されていることが確認されたことを示し、 " X "はポリマー残 渣がほとんど分解されていないことが確認されたことを示し、 " "は堆肥が観察され なかったことを示す。 Shown in 1. In the “CMC residue” column of Table 1, “OO” indicates that no polymer residue was confirmed, and “◯” indicates that a slight amount of polymer residue was confirmed. Furthermore, “△” indicates that the water-absorbing polymer was confirmed to be slightly decomposed, “X” indicates that the polymer residue was hardly decomposed, and ““ Indicates that no compost was observed.
[0035] 日本の工業規格である JIS Z7302— 1 : 1999に従って、堆肥化処理後の堆肥の 発熱量を測定した。この堆肥の発熱量の測定を、 日本の財団法人である東海技術セ ンターで行った。結果を表 1に示す。表 1の"発熱量"欄において、 " "は発熱量が 測定されなかったことを示す。 [0035] The calorific value of the compost after composting was measured according to Japanese Industrial Standard JIS Z7302-1: 1999. The calorific value of this compost was measured at the Tokai Technical Center, a Japanese foundation. The results are shown in Table 1. In the “Heat generation” column of Table 1, “” indicates that the heat generation was not measured.
[0036] (実施例 1) [Example 1]
堆肥原料としての乳牛フンに、下記の各成分を配合して混合することにより混合物 を調製した。即ち、前記乳牛フン (含水率: 86. 7%) 13kgに、吸水性ポリマーとして の架橋 CMC (ティェヌケィ東日本社製) 130g、多糖類分解酵素としてのェキソ型の 分解酵素であるセロビォヒドロラーゼを含有する酵素資材(トヨタルーフガーデン社製 )約 8g、種菌資材 (メニコン社製:製品名サーモマスター) 65ml、並びに吸水性繊維 質材料としてのォガ屑(おが粉) 3. 9L及びもみ殻 1. 3Lを配合した。堆肥化試験装 置(富士平工業社製:商品名かぐやひめ)に前記混合物 13Lを仕込み、堆肥化処理 を fiつた。 The mixture was prepared by blending and mixing the following components with dairy cow dung as compost raw material. That is, 13 kg of the dairy cow dung (water content: 86.7%), 130 g of cross-linked CMC (manufactured by Thienke East Japan) as a water-absorbing polymer, and cellobiohydrolase which is an exo-type degrading enzyme as a polysaccharide degrading enzyme Enzyme material (Toyota Roof Garden Co., Ltd.) approx. 8g, Inoculum material (Menicon Co., Ltd. product name: Thermomaster) 65ml, Slag as a water-absorbing fiber material (sawdust) 3. 9L and rice husk 1 Formulated with 3L. The composting test apparatus (Fujidaira Kogyo Co., Ltd .: trade name Kaguyahime) was charged with 13 L of the mixture and subjected to a composting treatment.
[0037] (比較例 1) [0037] (Comparative Example 1)
酵素資材及び種菌資材の配合を省略した以外は、実施例 1と同様にして堆肥化処 理を行った。 The composting process was performed in the same manner as in Example 1 except that the enzyme material and the inoculum material were omitted.
[0038] (比較例 2) [0038] (Comparative Example 2)
堆肥原料としての乳牛フン (含水率: 86. 7%) 10kgに、吸水性繊維質材料として のォガ屑(おが粉) 10L及びもみ殻 1. 0Lを配合してそれらを混合することにより混合
物を調製した。混合物の調製において、ォガ屑の体積及びもみ殻の体積の合計と、 乳牛フンの体積とを等しく設定した。堆肥化試験装置 (富士平工業社製:商品名かぐ やひめ)に前記混合物 13Lを仕込み、堆肥化処理を行った。 By mixing 10kg of dairy cow dung as raw material for compost (moisture content: 86.7%) with 10L of sawdust as a water-absorbent fibrous material and 1.0L of rice husk. mixture A product was prepared. In the preparation of the mixture, the total volume of sawdust and rice husk and the volume of dairy cow dung were set equal. The mixture 13L was charged into a composting test apparatus (manufactured by Fujidaira Kogyo Co., Ltd .: trade name Kaguyahime) and composted.
[表 1] 表 1 [Table 1] Table 1
[0040] 図 1に示すように、実施例 1においては処理開始から約 60時間で発酵温度が最高 温度の 52. 1°Cに達した。その後温度は急激に低下して約 90時間後に常温に戻つ た(図示しない)。比較例 1においては、処理開始から約 60時間で発酵温度が最高 温度の 45. 3°Cに達した。その後温度は急激に低下して約 120時間後に常温に戻つ た(図示しない)。比較例 2においては、処理開始から約 80時間で発酵温度が最高 温度の 44. 7°Cに達した。その後温度は急激に低下して 120時間後に常温に戻った (図示しない)。 [0040] As shown in Fig. 1, in Example 1, the fermentation temperature reached the maximum temperature of 52.1 ° C in about 60 hours from the start of the treatment. Thereafter, the temperature dropped rapidly and returned to room temperature after about 90 hours (not shown). In Comparative Example 1, the fermentation temperature reached the maximum temperature of 45.3 ° C in about 60 hours from the start of the treatment. Thereafter, the temperature dropped rapidly and returned to room temperature after about 120 hours (not shown). In Comparative Example 2, the fermentation temperature reached the maximum temperature of 44.7 ° C in about 80 hours from the start of the treatment. The temperature then dropped rapidly and returned to room temperature after 120 hours (not shown).
[0041] 実施例 1では、その最高温度が比較例 1、 2の最高温度に比べて高いことから、発 酵に必要な高分子有機物が早期に枯渴し、発酵処理が早期に完了することが分か つた。比較例 1では、最高温度の到達時間は実施例 1とほぼ同一であつたが最高温 度自体が低ぐ且つ堆肥化完了までに長時間を要した。この結果から、酵素資材及 び種菌資材により堆肥化が促進されることが分かった。比較例 2では、堆肥原料と同 体積の吸水性繊維質材料が堆肥原料に配合されている。そのため、最高温度の到 達時間が実施例 1より長ぐさらに堆肥化の完了までに長時間を要した。堆肥化処理 における堆肥原料の発酵温度の最高温度および堆肥化に要する時間は、例えば処 理される堆肥原料の量に依存する。従って、実施例 1に係る堆肥原料に比べて多い 量の堆肥原料の堆肥化処理の際には、実施例 1に比べて発酵温度の最高温度が高 くなつたり、堆肥化に長時間を要したりする可能性がある。 [0041] In Example 1, the maximum temperature is higher than the maximum temperature of Comparative Examples 1 and 2, so that the macromolecular organic matter necessary for fermentation is quickly withered and the fermentation treatment is completed early. I understand. In Comparative Example 1, the time to reach the maximum temperature was almost the same as in Example 1, but the maximum temperature itself was low and it took a long time to complete composting. From this result, it was found that composting is promoted by enzyme materials and inoculum materials. In Comparative Example 2, a water-absorbing fibrous material having the same volume as the compost material is blended in the compost material. For this reason, the time to reach the maximum temperature was longer than in Example 1, and it took a long time to complete composting. The maximum fermentation temperature and the time required for composting in the composting process depend on, for example, the amount of composting material to be processed. Therefore, when composting a large amount of compost raw material compared to the compost raw material according to Example 1, the maximum fermentation temperature is higher than that of Example 1, and it takes a long time for composting. There is a possibility of doing.
[0042] 表 1に示すように、実施例 1においては吸水性ポリマーとして配合された架橋 CMC
に起因するポリマー残渣が堆肥化処理後に確認されなかった。酵素資材が配合され ない比較例 1では、堆肥化処理後に吸水性ポリマーが僅かに分解されている程度で あった。比較例 1において吸水性ポリマーを十分に分解するためには、前記混合物 をさらに長期間放置する必要がある。また、実施例 1に係る堆肥の発熱量は、比較例 2に係る堆肥の発熱量に比べて高かった。この結果より、本発明に係る堆肥化処理 方法により得られる堆肥が燃焼される際に、堆肥の燃焼に使用される燃料の量を従 来の堆肥に比べて減少させることができることが分かった。
[0042] As shown in Table 1, in Example 1, crosslinked CMC formulated as a water-absorbing polymer. The polymer residue resulting from was not confirmed after composting treatment. In Comparative Example 1 where no enzyme material was blended, the water-absorbing polymer was only slightly degraded after composting. In order to sufficiently decompose the water-absorbing polymer in Comparative Example 1, it is necessary to leave the mixture for a longer period. Further, the calorific value of the compost according to Example 1 was higher than the calorific value of the compost according to Comparative Example 2. From this result, it was found that when compost obtained by the composting method according to the present invention is combusted, the amount of fuel used for compost combustion can be reduced as compared with conventional compost.
Claims
[1] 堆肥原料を好気性微生物により堆肥化処理するための堆肥化処理方法において 前記堆肥原料に、多糖類分解酵素と、多糖類及びその誘導体から選ばれる少なく とも一種からなる吸水性ポリマーとを配合して堆肥原料を堆肥化処理する工程を備え ることを特徴とする堆肥化処理方法。 [1] In a composting method for composting a compost raw material with an aerobic microorganism, the compost raw material includes a polysaccharide-degrading enzyme and a water-absorbing polymer consisting of at least one selected from polysaccharides and derivatives thereof. A composting method comprising a step of composting a compost raw material by blending.
[2] 前記堆肥原料は、家畜の排泄物、下水余剰汚泥、及び食品廃棄物から選ばれる 少なくとも一種であることを特徴とする請求項 1に記載の堆肥化処理方法。 [2] The composting method according to claim 1, wherein the compost raw material is at least one selected from livestock excrement, sewage surplus sludge, and food waste.
[3] 前記多糖類分解酵素は、少なくとも中性領域力 塩基性領域で活性を有することを 特徴とする請求項 1又は請求項 2に記載の堆肥化処理方法。 [3] The composting method according to claim 1 or 2, wherein the polysaccharide-degrading enzyme has an activity in at least a neutral region force basic region.
[4] 前記多糖類分解酵素は、セルロース分解酵素及びへミセルロース分解酵素から選 ばれる少なくとも一種であることを特徴とする請求項 1から請求項 3のいずれか一項に 記載の堆肥化処理方法。 [4] The composting treatment method according to any one of claims 1 to 3, wherein the polysaccharide-degrading enzyme is at least one selected from a cellulose-degrading enzyme and a hemicellulose-degrading enzyme. .
[5] 前記多糖類分解酵素は、糖鎖の末端から特定数の糖単位を切断するェキソ型の 分解酵素であることを特徴とする請求項 1から請求項 4のいずれか一項に記載の堆 肥化処理方法。 [5] The polysaccharide degrading enzyme according to any one of claims 1 to 4, wherein the polysaccharide degrading enzyme is an exolytic enzyme that cleaves a specific number of sugar units from the end of a sugar chain. Composting method.
[6] 前記吸水性ポリマーは、デンプン、デンプン誘導体、架橋デンプン誘導体、セル口 ース、セルロース誘導体、架橋セルロース誘導体、へミセルロース、へミセルロース誘 導体、及び架橋へミセルロース誘導体から選ばれる少なくとも一種であることを特徴と する請求項 1から請求項 5のいずれか一項に記載の堆肥化処理方法。 [6] The water-absorbing polymer is at least selected from starch, starch derivatives, crosslinked starch derivatives, cellulose, cellulose derivatives, crosslinked cellulose derivatives, hemicellulose, hemicellulose derivatives, and crosslinked hemicellulose derivatives. 6. The composting method according to claim 1, wherein the composting method is one type.
[7] 前記堆肥原料を堆肥化処理する工程は、好熱性の好気性菌及び中温性の好気性 菌の少なくとも一方を含有する、戻し堆肥又は種菌資材を堆肥原料に配合する工程 を更に備えることを特徴とする請求項 1から請求項 6のいずれか一項に記載の堆肥 化処理方法。 [7] The step of composting the compost raw material further includes a step of blending the back compost or the inoculum material containing at least one of a thermophilic aerobic bacterium and a mesophilic aerobic bacterium into the compost raw material. The composting method according to any one of claims 1 to 6, characterized by:
[8] 堆肥原料を堆肥化処理する工程は、パルプ、コットンリタ、バーク、才ガ屑、もみ殻、 稲わら、コーン柏、バガス、大豆粕、フスマ、菜種柏、及び米糠から選ばれる少なくと も一種の吸水性繊維質材料を堆肥原料に配合する工程を更に備えることを特徴とす る請求項 1から請求項 7のいずれか一項に記載の堆肥化処理方法。
[8] The composting process of compost raw material is at least selected from pulp, cotton rita, bark, sardine waste, rice husk, rice straw, corn straw, bagasse, soybean meal, bran, rapeseed meal, and rice straw. The composting method according to any one of claims 1 to 7, further comprising a step of blending a kind of water-absorbing fibrous material with compost raw material.
[9] 前記吸水性ポリマーは架橋カルボキシメチルセルロースであり、前記多糖類分解酵 素はセロビォヒドロラーゼであることを特徴とする請求項 1から請求項 8のいずれか一 項に記載の堆肥化処理方法。 [9] The composting method according to any one of claims 1 to 8, wherein the water-absorbing polymer is crosslinked carboxymethylcellulose, and the polysaccharide-degrading enzyme is cellobiohydrolase. .
[10] 請求項 1から請求項 9のいずれか一項に記載の堆肥化処理方法を用いて製造され ることを特徴とする堆肥。
[10] A compost produced using the composting method according to any one of claims 1 to 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006309266 | 2006-11-15 | ||
JP2006-309266 | 2006-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008059749A1 true WO2008059749A1 (en) | 2008-05-22 |
Family
ID=39401555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/071712 WO2008059749A1 (en) | 2006-11-15 | 2007-11-08 | Composting treatment method and compost produced by using the same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008059749A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139443A1 (en) * | 2008-05-14 | 2009-11-19 | 株式会社 メニコン | Agent and method for control of composting |
CN102491619A (en) * | 2011-12-13 | 2012-06-13 | 中国轻工业长沙工程有限公司 | Mixed drying process for sludge from wheat straw hood pulping papermaking plants |
CN102838393A (en) * | 2012-04-18 | 2012-12-26 | 武汉日清生物科技有限公司 | Method for rapid fermentation treatment of edible fungus dregs into biological organic fertilizer by thermophilic cellulose decomposition bacteria |
CN103253999A (en) * | 2013-05-23 | 2013-08-21 | 苏州谷力生物科技有限公司 | Microbial compound organic fertilizer |
CN103304283A (en) * | 2013-06-08 | 2013-09-18 | 梧州市亿源肥业有限公司 | Production method for organic fertilizer |
JP2013545702A (en) * | 2010-10-26 | 2013-12-26 | マネテック、エー.エス. | Organic fertilizer and method for producing the same |
CN103524220A (en) * | 2013-10-10 | 2014-01-22 | 泰兴市地得益土肥技术开发专业合作社 | Production method for rice seedling cultivation dedicated organic fertilizer |
CN104016740A (en) * | 2014-06-12 | 2014-09-03 | 曹荣福 | Zizania aquatica production increase fertilizer |
CN104478582A (en) * | 2014-12-09 | 2015-04-01 | 贵州黔丰农兴科技有限公司 | Disease-resistant organic fertilizer used in organic agricultural industrial parks and preparation method thereof |
CN104761312A (en) * | 2015-03-17 | 2015-07-08 | 云南省农业科学院农业环境资源研究所 | Substrate suitable for prevention and treatment of non-point source pollution of high-fertility soil |
CN105418181A (en) * | 2015-12-18 | 2016-03-23 | 郎溪县新发镇华兵农作物种植家庭农场 | Fertilizer for high-calcium rice seedlings and preparation method of fertilizer |
WO2016068093A1 (en) * | 2014-10-31 | 2016-05-06 | 株式会社山有 | Novel microorganism |
CN112808739A (en) * | 2020-12-30 | 2021-05-18 | 深圳市麦田友品科技有限公司 | Biodegradation method of starch and coffee residue, tea residue and bagasse |
CN115784804A (en) * | 2022-11-28 | 2023-03-14 | 福建技术师范学院 | High water absorption and retention organic fertilizer and special fertilizer for vegetables |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5781893A (en) * | 1980-11-06 | 1982-05-22 | Shin Etsu Chem Co Ltd | Treatment of high hydrous waste |
JPH10120482A (en) * | 1996-10-15 | 1998-05-12 | Hoei Bussan Kk | Composting acceleration method and composting acceleration agent |
JP2001261475A (en) * | 2000-03-15 | 2001-09-26 | Toshio Hara | Composting assistant and gelatinizing or solidifying method of compost raw material using the same |
JP2003183090A (en) * | 2001-12-13 | 2003-07-03 | Idemitsu Petrochem Co Ltd | Composting aid and method of gelling or solidifying compost material using it |
JP2003342093A (en) * | 2002-05-23 | 2003-12-03 | Idemitsu Petrochem Co Ltd | Composting aid and method for gelation or solidification of compost material by using the same |
JP2006328346A (en) * | 2005-04-27 | 2006-12-07 | Kyushu Univ | Biodegradable water-absorbing material, its production method, and composting aid comprising the material |
-
2007
- 2007-11-08 WO PCT/JP2007/071712 patent/WO2008059749A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5781893A (en) * | 1980-11-06 | 1982-05-22 | Shin Etsu Chem Co Ltd | Treatment of high hydrous waste |
JPH10120482A (en) * | 1996-10-15 | 1998-05-12 | Hoei Bussan Kk | Composting acceleration method and composting acceleration agent |
JP2001261475A (en) * | 2000-03-15 | 2001-09-26 | Toshio Hara | Composting assistant and gelatinizing or solidifying method of compost raw material using the same |
JP2003183090A (en) * | 2001-12-13 | 2003-07-03 | Idemitsu Petrochem Co Ltd | Composting aid and method of gelling or solidifying compost material using it |
JP2003342093A (en) * | 2002-05-23 | 2003-12-03 | Idemitsu Petrochem Co Ltd | Composting aid and method for gelation or solidification of compost material by using the same |
JP2006328346A (en) * | 2005-04-27 | 2006-12-07 | Kyushu Univ | Biodegradable water-absorbing material, its production method, and composting aid comprising the material |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139443A1 (en) * | 2008-05-14 | 2009-11-19 | 株式会社 メニコン | Agent and method for control of composting |
JP2013545702A (en) * | 2010-10-26 | 2013-12-26 | マネテック、エー.エス. | Organic fertilizer and method for producing the same |
CN102491619A (en) * | 2011-12-13 | 2012-06-13 | 中国轻工业长沙工程有限公司 | Mixed drying process for sludge from wheat straw hood pulping papermaking plants |
CN102838393A (en) * | 2012-04-18 | 2012-12-26 | 武汉日清生物科技有限公司 | Method for rapid fermentation treatment of edible fungus dregs into biological organic fertilizer by thermophilic cellulose decomposition bacteria |
CN103253999A (en) * | 2013-05-23 | 2013-08-21 | 苏州谷力生物科技有限公司 | Microbial compound organic fertilizer |
CN103304283A (en) * | 2013-06-08 | 2013-09-18 | 梧州市亿源肥业有限公司 | Production method for organic fertilizer |
CN103524220B (en) * | 2013-10-10 | 2015-06-24 | 泰兴市地得益土肥技术开发专业合作社 | Production method for rice seedling cultivation dedicated organic fertilizer |
CN103524220A (en) * | 2013-10-10 | 2014-01-22 | 泰兴市地得益土肥技术开发专业合作社 | Production method for rice seedling cultivation dedicated organic fertilizer |
CN104016740A (en) * | 2014-06-12 | 2014-09-03 | 曹荣福 | Zizania aquatica production increase fertilizer |
WO2016068093A1 (en) * | 2014-10-31 | 2016-05-06 | 株式会社山有 | Novel microorganism |
CN105829522A (en) * | 2014-10-31 | 2016-08-03 | 株式会社山有 | Novel microorganism |
CN104478582A (en) * | 2014-12-09 | 2015-04-01 | 贵州黔丰农兴科技有限公司 | Disease-resistant organic fertilizer used in organic agricultural industrial parks and preparation method thereof |
CN104761312A (en) * | 2015-03-17 | 2015-07-08 | 云南省农业科学院农业环境资源研究所 | Substrate suitable for prevention and treatment of non-point source pollution of high-fertility soil |
CN104761312B (en) * | 2015-03-17 | 2018-09-28 | 云南省农业科学院农业环境资源研究所 | A kind of matrix suitable for high fertility soil Ides On Prevention And Control of Regional Pollution |
CN105418181A (en) * | 2015-12-18 | 2016-03-23 | 郎溪县新发镇华兵农作物种植家庭农场 | Fertilizer for high-calcium rice seedlings and preparation method of fertilizer |
CN112808739A (en) * | 2020-12-30 | 2021-05-18 | 深圳市麦田友品科技有限公司 | Biodegradation method of starch and coffee residue, tea residue and bagasse |
CN115784804A (en) * | 2022-11-28 | 2023-03-14 | 福建技术师范学院 | High water absorption and retention organic fertilizer and special fertilizer for vegetables |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008059749A1 (en) | Composting treatment method and compost produced by using the same | |
JP2009149813A (en) | Solid fuel and manufacturing method therefor | |
JP5986983B2 (en) | Organic waste treatment | |
Parawira | Enzyme research and applications in biotechnological intensification of biogas production | |
JP4272251B1 (en) | Composting adjusting agent and composting adjusting method | |
CN102964155B (en) | Method for preparing internal growth nitrogen-fixing bacteria organic fertilizer | |
KR101057475B1 (en) | Microbial agent promoting composting of organic wastes treatment and manufacturing method thereof, composting method of organic wastes using the same | |
Nozhevnikova et al. | Composition of a microbial community at different stages of composting and the prospects for compost production from municipal organic waste | |
Manyi-Loh et al. | Microbial anaerobic digestion: process dynamics and implications from the renewable energy, environmental and agronomy perspectives | |
Leow et al. | A review on application of microorganisms for organic waste management | |
CN104355777A (en) | Bioorganic-inorganic compound fertilizer containing nano-selenium and preparation method of bioorganic-inorganic compound fertilizer | |
KR102187897B1 (en) | Manufacturing Method of Bioplast Pellet using Livestock Manure | |
CN107090417A (en) | A kind of process of utilization microbial composite bacteria group degraded livestock and poultry feces | |
CA2555516A1 (en) | Food additive for human and animal and uses thereof | |
CN107540416A (en) | A kind of method for innocent treatment of poultry manure | |
CN112094782A (en) | Composite microbial inoculum for degrading kitchen garbage and preparation method thereof | |
CN113248331A (en) | Biochar-based microbial soil conditioner and preparation method thereof | |
KR101098520B1 (en) | Microbial agent promoting composting of organic wastes treatment and manufacturing method thereof, composting method of organic wastes using the same | |
CN113088462A (en) | Composite leaven for organic material compost | |
CN112250488A (en) | Method for treating municipal domestic sludge by using microbial agent | |
CN112299901A (en) | Method for rapidly fermenting dairy cow dung and product thereof | |
Yasin et al. | ANAEROBIC DIGESTION OF BUFFALO DUNG, SHEEP WASTE AND POULTRY LITTER FOR BIOGAS PRODUCTION. | |
CN107382398A (en) | A kind of fertilizer decomposition agent and preparation method thereof | |
CN108440035B (en) | Composting method for reducing emission of nitrous oxide and ammonia gas | |
CN110078539A (en) | A kind of harmless biological degradation agent and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07831443 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07831443 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |