WO2008058674A1 - Anlage zur herstellung einer leiterplatte mit additiven und integrieten und mittels ultraschall kontaktierten kupferelementen - Google Patents

Anlage zur herstellung einer leiterplatte mit additiven und integrieten und mittels ultraschall kontaktierten kupferelementen Download PDF

Info

Publication number
WO2008058674A1
WO2008058674A1 PCT/EP2007/009714 EP2007009714W WO2008058674A1 WO 2008058674 A1 WO2008058674 A1 WO 2008058674A1 EP 2007009714 W EP2007009714 W EP 2007009714W WO 2008058674 A1 WO2008058674 A1 WO 2008058674A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
printed circuit
sonotrode
plant
board according
Prior art date
Application number
PCT/EP2007/009714
Other languages
English (en)
French (fr)
Inventor
Lothar Oberender
Rudolf Janesch
Erich Strummer
Johann Hackl
Original Assignee
Häusermann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Häusermann GmbH filed Critical Häusermann GmbH
Priority to EP20070846548 priority Critical patent/EP2092810B1/de
Publication of WO2008058674A1 publication Critical patent/WO2008058674A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • B23K20/004Wire welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/103Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding or embedding conductive wires or strips
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/222Completing of printed circuits by adding non-printed jumper connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/328Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78313Wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7855Mechanical means, e.g. for severing, pressing, stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/786Means for supplying the connector to be connected in the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/787Means for aligning
    • H01L2224/78743Suction holding means
    • H01L2224/78744Suction holding means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/851Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector the connector being supplied to the parts to be connected in the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/1028Thin metal strips as connectors or conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10287Metal wires as connectors or conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0285Using ultrasound, e.g. for cleaning, soldering or wet treatment

Definitions

  • the invention relates to a system for producing a printed circuit board having at least one additional electrically conductive structure in the form of a round or rectangular electrically conductive wiring element, in particular in the form of an elongated Kupferatory copper-containing element, which is contacted as an additive element at least partially flat on copper foil elements by means of ultrasound and is integrated in a further printed circuit board manufacturing process by means of lamination in a printed circuit board.
  • WO02067642A1 or DE10108168C1 a method for producing a multiwire printed circuit board is called, in which defined on one side of a thin surface element of electrically conductive material by means of spaced adhesive bonding wires and laid at predetermined contact points of the surface element electrically by means of welding, bonding, soldering, Leitkleben or the like. be contacted.
  • Stabilizing element provided in the form of a prepreg or in the form of an applied by means of insulating film, electrically conductive or insulating surface element.
  • the surface element is thereby structured from the other side in such a way that the contact points are separated from the remaining surface element.
  • Lead wires are routed defined by adhesive surfaces.
  • the lead wires which are profiled on their own, are electrically conductively connected to the remaining parts of the printed circuit board by means of a weld or a bonding connection.
  • a relatively thinner and round wire cross section on a large-scale, metallized copper plate can be contacted only pointwise.
  • WO06077167A2 or DE102005003370A1 a method for continuous laying at least one insulated conductor wire between arranged on a printed circuit board electrical connection points and a device for carrying out the method is called.
  • a method for welding a conductor wire with a conductive foil which is preferably intended for connection to a printed circuit board carrier for producing a printed circuit board, wherein the thickness or the diameter of the conductor wire is preferably greater than the thickness of the conductive foil and wherein the conductive foil is in contact at least during the welding with a thermal separating plate whose thermal conductivity is lower than that of the conductive film.
  • a method and a device based on a resistance welding but not a US welding method is described, since only in an electric resistance welding method, a thermal separation plate is required in contact with a conductive foil.
  • a separating plate in an ultrasonic welding on an already etched inner layer with an epoxy-glass fabric structure on the back cause no good thermal dissipation, since such a structure conducts very poor thermal.
  • the object of the present invention is therefore to provide a system for the cost-effective production of multifunctional printed circuit boards for the wiring of highly complex conductor structures, in particular fine to Feinstleiter Modellen, together with structures for conducting relatively high currents on a circuit board.
  • This goal is achieved by attaching functional elements by means of friction welding or ultrasound on one or both surfaces and / or in an inner layer of a not yet structured copper foil and / or an already structured circuit board and the subsequent planarizing process in the form of a coating and / or achieved a lamination.
  • a system consisting of a
  • Ultrasonic generator arranged vertically and with a
  • Torsional vibration system larger-area intermetallic compounds are welded by means of ultrasonic energy.
  • Both embodiments can be integrated into one system or can be implemented separately or else sequentially in a multiple system and in both systems only the sonotrode head or only the sonotrode head can be used
  • Table can be moved in x and y direction or the sonotrode head in one direction and the table can be moved in the other direction.
  • the table top is replaceable and can be so quickly cleaned by the pressure during the ultrasonic contacting such Abnweilept.
  • the sonotrode tools are changeable and a fully automatic tool changer can be used.
  • the shapes of the sonotrodes are formed in particular triangular or trapezoidal and thus round or rectangular wiring elements can be deformed in the ultrasonic connections so that the contact surfaces of the wiring to the copper foil surface is significantly larger than the contact surface without a sonotrode shape formed in this way. By enlarging the contact surface, a much better current distribution and thermal coupling to the copper foil is achieved.
  • At least one elongated member is provided.
  • Wiring element by means of a specially shaped sonotrode in the at least piece-wise area contact area deformed in cross-section such that the contact surface with respect to the underlying film is increased by preferably 20%. Further preferred embodiments even provide for an increase of the contact area by more than 30% and more particularly by more than 50% compared to an undeformed (linear) contact surface (of a round wire).
  • the wiring element is deformed approximately triangular-like or trapezoidal in cross-section.
  • the desired enlargement of the contact surface is achieved.
  • triangular, trapezoidal or parallelogram-shaped deformations are provided, with the aim of setting up the blunt (and almost flattened) side of the wiring element with a larger surface area on the flat film and to weld there.
  • the heat transfers are distributed over a larger area and there is no risk of damage to the sensitive film. If a lovedsversch spaung is applied, then even the
  • Welding current can be increased without the risk that the sensitive CU-FoNe will be damaged.
  • the wiring elements are to receive a flattened shape with a matched sonotrode only at the location of their welding on the copper foil.
  • a sonotrode that makes a flattened shape at the site of welding a round wire has one triangular cross-section with a length of about 2 - 3 mm.
  • the depth of the V-shaped recess in the sonotrode must be smaller than the diameter of the received therein cross section of the triangularly deformed wire.
  • Such a round wire has, for example, a diameter of 500 .mu.m. This avoids the sonotrode itself lying on the CU-FoNe, which would otherwise damage it.
  • the sonotrode must ensure a large area on the CU surface of the wire to be deformed, otherwise the friction welding energy could not be transmitted sufficiently. Due to the pressure of the sonotrode on the round cross-section of the copper conductor (wiring element) and the US energy, the cross-section is flattened and pressed with its flattened broadside on the surface of the CU-FoNe and welded there by friction welding materially. Thus, a much larger contact surface is achieved in the coupling to the underlying CU-FoNe.
  • This CU film has a thickness of only 9 or 17 or 35 microns. This information relates to standardized thicknesses of commonly used CU films.
  • the deformation of a round wire in a (flattened) triangular profile at the location of its welding on the CU-FoNe only refers to a preferred embodiment of the invention.
  • the invention includes all flattened profile shapes of such round wires. In particular, right or square profiles or oval, trapezoidal and parallelogram profile shapes.
  • the wiring elements are preferably supplied controlled by a roller NC, but can also be supplied in principle as a prefabricated element from a magazine piece by piece.
  • the cut-to-length cut-off or partial cut-off and subsequent tearing off with a special hold-down system over a certain angle is used.
  • the film area to which a wiring element is to be applied surface by piece pre-cleaned by means of a cleaning sonotrode of titanium and thereby the thin oxide layer, which forms on non-passivated copper surfaces within a few hours, eliminated and so can a subsequent ultrasonic bonding process a good surface ultrasonic connection can be achieved.
  • the band-shaped wiring elements are contacted repeatedly and at predetermined intervals by means of ultrasound on the underneath copper foil during the laying process and it can thereby be an angling of, for example, 45 ° and below and realized. Consequently, the wiring elements can not only be laid in a line, but with correspondingly predetermined geometries.
  • the residence time of the sonotrode after the ultrasonic welding process is an essential criterion in such laying processes.
  • Such US sonotrodes have a greater mass than the laying wire element and the underlying copper foil and have a good thermal dissipation and, moreover, can be formed so that a passive or active increased heat dissipation is established. In this way, it is possible to prevent the sonotrode from being heated too much, even with a large number of ultrasound welds which are separated by a short time, so that the sonotrode can dissipate any heat development in the welding partners.
  • the residence time is also advantageous for the tear-off process or a bending process, as it does the weld is additionally stabilized by a corresponding contact pressure.
  • the invention accordingly also relates to a printed circuit board with additional functional elements.
  • a highly complex fine structure on a printed circuit board with the possibility of wiring high-current-carrying components is described on a circuit board.
  • electrically conductive wiring elements by friction welding or
  • Ultrasonic welding method preferably attached flat to an underlying etch-made conductor structure and then machined einbnend by means of appropriate resin systems.
  • Wiring elements by means of friction welding or ultrasonic insulating mounted on a printed circuit board substrate.
  • the insulating layer may be arranged over the entire surface or selectively on the corresponding circuit board surface, or the electrically conductive wiring element may be provided on the corresponding side or enveloping with a corresponding resin. This way becomes a stand-alone Wiring level produced.
  • the subsequent leveling by means of suitable resin systems can be carried out as in the first embodiment.
  • flat wiring elements are used as selective heat-dissipating elements.
  • planar elements are positioned in an inner layer or on one of the two surfaces and it is made after the leveling or lamination an opening such that the respective component can be mounted in direct heat-conductive contact.
  • Figure 1 a schematic representation of a system (1) for producing a printed circuit board (2) with at least one additional electrically conductive structure (4) in the form of a round or rectangular electrically conductive wiring element (4) using a horizontally arranged ultrasonic sonotrode system based a torsional vibration system or Longtidutionalsystems (5) for the welding of smaller wiring element (4) cross-sections,
  • FIG. 2 shows a schematic representation of a system (1) for producing a printed circuit board (2) with at least one additional electrically conductive structure (4) in the form of a round or rectangular electrically conductive wiring element (4) using a vertically arranged ultrasonic sonotrode system (6 ) based on a torsional vibration system or a longitudinal inertial system for the welding of larger wiring element (4) cross-sections,
  • FIG. 3 shows a schematic representation of a system (1) for producing a printed circuit board (2) with at least one additional electrically conductive structure (4) in the form of a round or rectangular electrically conductive wiring element (4), wherein in this illustration an ultrasonic sonotrode Notched coil unit (16) is shown summarized and this unit (16) is rotatable up to 360 ° and thus an angled laying a wiring element (4) is possible,
  • FIG. 4 is a schematic representation of the notch tear-off principle
  • FIG. 5 shows a plan view of a pattern plate (25) made of full-area and non-etched 70 ⁇ m thick copper foil (20) with piecewise ultrasonically welded (21) 500 ⁇ m copper wires (4),
  • FIG. 6 shows a section (26) from the plan view of the pattern plate (25) from FIG. 5 with a detailed view of the two-dimensional ultrasonic contact points (21) including the tear-off ends (24) of the wiring elements (4) and the bends (23).
  • FIG. 7 shows schematically a section through a substrate (2) with a conductor track (4) with a round wire (3) and a sonotrode (18) arranged above it before contacting.
  • FIG. 8 shows schematically a section through a substrate (2) with a conductor track (4) with a round wire (3) and a sonotrode (18) arranged above it after contacting.
  • Figure 1 is a schematic representation of a system (1) for
  • a multifunctional printed circuit board (2) is positioned in the unfinished state or a substrate (3) with a full-surface or already structured copper foil (20) on a table (15) or positioned and held with a clamping or registration system (14).
  • a table with vacuum suction may be used or an auxiliary carrier may be used.
  • the table (15) is based on the sonotrode ultrasound system (5) in the xyz direction NC-controlled movable, wherein in a first embodiment, the table for the input and output of the circuit board (2) or the substrate (3) the copper foil (20) is used and the entire upper work consisting of the sonotrode system (5), the hold-down (13), the notching system (12), the clamping system (1 1), the guide (10), the first and second eyelet (8, 9) and the coil (7) is designed to be movable and in addition, a part thereof is rotatable by 360 ° and in such angled laying a wiring element (4) is possible.
  • the coil (7) is shown vertically arranged, but it can also be arranged horizontally as shown in Figure 3.
  • the eyelets (8, 9) are used to compensate for the different winding diameter of a coil (7) with, for example, 100 m wiring element (4) and just introduce this into the guide element (10).
  • the clamping system (11) is shown in this illustration with jaws from above and below, however, is performed optimally depending on the wiring element cross-section used (4) and can be carried out laterally or repeatedly.
  • the clamping system (11) is designed such that the wiring element (4) is designed to act at an angle of a few degrees up to about 20 ° upwards.
  • the tearing process by means of notching system (12) is easier and better.
  • the notching system (12) does not score or cut through the wiring element (4) completely, since, due to tolerances, an anchoring of the printed circuit board (20) underneath can not be avoided.
  • the notching system (12) will therefore, with a certain safety distance from the copper surface (20), perform the wiring element (4) with at least one notch greater than half the height of the wiring element (4).
  • the sonotrode (5) clamps the wiring element (4) in the area of the planar one Ultrasonic contact point (21) with on the table (15) or against the table (15).
  • the free end of the segment is first lifted off the surface of the copper foil and the partial kerf cut is carried out in the part of the segment which is still resting on the surface of the copper foil. Thereafter, the partially notched and lifted off the surface of the copper foil end is torn off.
  • the distances, in contrast to this schematic representation, between the end of the guide (10), the clamping system (11), the notching system (12), the sonotrode tool (5) and the hold-down (13) are very small or closely spaced, so that an exact and NC-controlled positioning of a cut-to-length wiring element (4) on the surface of a copper foil element (20) and their surface welding is possible.
  • the ultrasonic welding takes place when using round wire elements (4) with corresponding triangular, trapezoidal or circular sonotrodes, so that the contact area (21) is substantially larger compared to the linear contact of a round wire element (4) on a plangeraden copper surface (20).
  • FIG. 2 shows a schematic representation of a system (1) for producing a printed circuit board (2) with at least one additional electrically conductive structure (4) in the form of a round or rectangular electrically conductive wiring element (4) using a vertically arranged ultrasonic sonotrode system (FIG. 6) based on a Torsionsschwingsystems or a Longitudionalsystems for the welding of larger wiring element (4) cross sections shown.
  • a vertically arranged ultrasonic sonotrode system FIG. 6
  • flat wire elements (4) with a cross section of a few millimeters to about 10 mm and typically 2 to 5 mm wide at a thickness of several 100 microns, typically in the range of about 200 to 500 microns, laid.
  • a torsional vibration ultrasound system (6) has proven itself.
  • the corresponding sonotrodes (6) are provided with a corresponding surface structure, so that a good ultrasonic friction welding energy input is possible and the surface of the wiring element (4) has only small impressions or notches. Moreover, even with a flat-shaped wiring element (4), the sonotrode (6) can be made trapezoidal. Thus, the lateral areas of the wiring element (4) are bevelled shaped and in one
  • PCB laminating is done better resin embedding.
  • FIG. 3 shows a schematic representation of a system (1) for producing a printed circuit board (2) with at least one additional electrically conductive structure (4) in the form of a round or rectangular electrically conductive wiring element (4)
  • Ultrasonic sonotrode-notched coil unit (16) is shown summarized and this unit (16) rotatable by up to 360 ° is executed and in such angled installation of a wiring element (4) is possible.
  • the sonotrode system (5, 6) including hold-down device (13) can also be made rotatable or selectively rotatable, and the other elements NC controlled are rotated in accordance with the desired bending of the wiring element (13).
  • FIG. 4 shows a schematic representation of the notch tear-off principle.
  • a notched cutting edge (12) NC is lowered controlled and notches the wire element (4) with the height (17) to a notch (18).
  • the notch depth (18) With the notch depth (18), the remaining non-notched height of the wire element (4) is understood, which is torn off by means of clamping system (11).
  • the notch depth (18) is dimensioned such that secured no notching or touching the surface of the copper foil (20) takes place.
  • the notch will amount to at least 50% of the height (17) of a wiring element (4) and is achieved according to the invention by the Anwinkelung (19) of the clamping system (11) and the notch effect a lower tearing force. If only a residual cross section of 25% were not scored and tried to tear off the straight, not lifted off from the surface end of the wiring element, the copper foil 20 would deform. This is avoided with the lifting of the free end by the lifting angle 19. The necessary tearing force is lower and deformation of the copper foil 20 is avoided.
  • FIG. 5 shows a plan view of a pattern plate (25) of full-surface and non-etched 70 ⁇ m thick copper foil (20) with piecewise ultrasonically welded (21) 500 ⁇ m copper wires (4).
  • Sample board (25) was executed in a variety of variants.
  • the photograph shows the contacting of 500 ⁇ m thick copper round wire (4) on a 70 ⁇ m thick copper foil (20), which is not structured and has no resin carrier.
  • Such a copper foil (20) is subjected to a lamination process after the application of the wire elements (4) and is etched technically on the opposite side of the wire elements (4) or the wire elements (4) in the laminating process in a printed circuit board press according to the prior art in the resin layer embedded.
  • the angled installation is shown in Figure 5.
  • the sonotrode head (5, 6) including the wire feed is rotated by 45 °, for example, or else the table with the copper foil (20) is rotated.
  • the wire (4) must be bent. It must therefore be mechanically held down during the ultrasonic welding process until the bending process is completed.
  • an ultrasonic White process is a largely cold welding process, but in the area of formation of the intermetallic compound is a relatively high temperature into the range of the melting point of copper at 1,083 0 C achieved.
  • a sonotrode (5, 6) usually has a relatively large mass in comparison to the wire elements (4), the residence time of the sonotrode (5, 6) after the ultrasonic welding process can cause the dissipation of the heat generated and, moreover, a mechanical solidification by the Effect pressurization.
  • the US sonotrode (5, 6) can also be provided with an active cooling.
  • FIG. 6 shows a section (26) from the plan view of the pattern plate (25) from FIG. 5 with a detailed view of the two-dimensional ultrasonic contact points (21) including the tear-off ends (24) of the wiring elements (4) and the bends (23).
  • FIG. 7 schematically shows a section through a substrate (3) with a conductor track (4) with a round wire (2) and a sonotrode (26) arranged above it prior to the contacting.
  • the sonotrode (26) touches the wire (2) only at certain points, that is to say just in the moment from which a deformation begins by means of ultrasound.
  • the wire (2) also touches only selectively the surface of the conductor track (4).
  • FIG. 8 schematically shows a section through a substrate (3) with a conductor track (4) with a round wire (2) and a sonotrode (26) arranged above it after contacting.
  • the sonotrode (26) has already formed the wire (2) in a triangular manner and the wire (2) is connected to the surface of the conductor track (4) in a thermally and electrically highly conductive manner by an intermetallic compound (21).
  • Multifunctional printed circuit board with at least one functional element in the form of a round or rectangular electrically conductive wiring element.
  • base material e.g. FR-2, FR-3, FR-4, FR-4-Low-Tg, CEM-1, CEM-x, PI, CE, aramid, etc., and prepreg, respectively

Abstract

Die Erfindung betrifft eine Anlage zur Herstellung einer Leiterplatte mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes (4), insbesondere in Form eines länglichen Kupfer- beziehungsweise Kupferhaitigen Elementes, das als additives Element zumindest stückweise flächig auf Kupferfolienelemente (2) mittels Ultraschall kontaktiert wird und in einem weiteren Leiterplattenherstellverfahren mittels Lamination in eine Leiterplatte integriert wird, wobei ein horizontal und/oder vertikal angeordneter Sonotrodenkopf mit Ultraschallgenerator (12) über einem Tisch (15) angeordnet ist und zueinander NC-gesteuert verfahrbar ausgeführt ist und das Verdrahtungselement (4) mit einem runden oder rechteckigen Querschnitt von einer Rolle (7) mittels Zuführsystem zugeführt wird und eine Kerbvorrichtung (12) und Abreißvorrichtung aufweist und der Sonotrodenkopf eine Niederhaltevorrichtung aufweist, die das Verdrahtungselement während der einzelnen Verfahrensschritte plan auf der Kupferfolienoberfläche hält und der Sonotrodenkopf drehbar ausgeführt ist und derart eine abgewinkelte Verlegung von Verdrahtungselementen erfolgen kann und das Sonotrodenwerkzeug wechselbar ausgeführt ist und manuell oder vollautomatisch gewechselt werden kann und das Sonotrodenwerkzeug flach und aus Titan und/oder anderen legierten metallischen Werkstoffen ausgebildet ist und derart bereichsweise die Oberfläche einer Kupferfolie reinigen kann und derart eine oxidische Passivationsschicht entfernt werden kann.

Description

Anlage zur Herstellung einer Leiterplatte mit additiven und integrierten und mittels Ultraschall kontaktierten Kupferelementen
Gegenstand der Erfindung ist eine Anlage zur Herstellung einer Leiterplatte mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes, insbesondere in Form eines länglichen Kupferbeziehungsweise kupferhaltigen Elementes, das als additives Element zumindest stückweise flächig auf Kupferfolienelemente mittels Ultraschall kontaktiert wird und in einem weiteren Leiterplattenherstellverfahren mittels Lamination in eine Leiterplatte integriert wird.
In der WO02067642A1 beziehungsweise der DE10108168C1 wird ein Verfahren zur Herstellung einer Multiwire-Leiterplatte genannt, bei dem auf einer Seite eines dünnen Flächenelementes aus elektrisch leitendem Material mittels voneinander beabstandeter Klebeflächen Leitungsdrähte definiert verlegt und an vorgegebenen Kontaktstellen des Flächenelementes elektrisch mittels Schweißen, Bonden, Löten, Leitkleben o.dgl. kontaktiert werden.
Auf den fixierten Leitungsdrähten wird ein mechanisches
Stabilisierungselement in Form eines Prepregs oder in Form eines mittels Isolierfolie aufgebrachten, elektrisch leitenden oder isolierenden Flächenelementes vorgesehen. Das Flächenelement wird dabei von der anderen Seite her derart strukturiert, dass die Kontaktstellen vom übrigen Flächenelement getrennt werden. Es werden Leitungsdrähte mittels Klebeflächen definiert verlegt.
Bei der genannten Druckschrift besteht der Nachteil, dass die an sich rund profilierten Leitungsdrähte mit Hilfe einer Verschweißung oder einer Bondverbindung elektrisch leitfähig mit den übrigen Teilen der Leiterplatte verbunden sind. Damit besteht jedoch der Nachteil, dass ein relativ dünner und runder Drahtquerschnitt auf einer großflächigen, metallisierten Kupferplatte nur punktweise kontaktiert werden kann.
Dies führt zu hohen Temperaturen an der Kontaktstelle und einer entsprechenden Wärmebelastung im Bereich der Leiterplatte, was zu Verwerfungen im Bereich der Kupferfolie und auch im Bereich der umliegenden Kunststoff-Materialien führt. Die Leiterplatte neigt deshalb zur Verwerfung an den genannten Kontaktstellen, und bei einer späteren fotolithografischen Bearbeitung der Platte ist eine ebene Oberfläche der Platte nicht mehr gegeben. Damit besteht der Nachteil, dass keine feinen Strukturen fehlerfrei auf die Oberfläche der Leiterplatte aufgebracht werden können. Damit wird die Ausschussquote sehr hoch.
In der WO06077167A2 beziehungsweise der DE102005003370A1 , wird ein Verfahren zur durchgehenden Verlegung wenigstens eines isolierten Leitungsdrahts zwischen auf einer Leiterplatte angeordneten elektrischen Anschlussstellen sowie eine Vorrichtung zur Ausführung des Verfahrens genannt.
Dabei wird ein Verfahren zum Verschweißen eines Leitungsdrahts mit einer leitfähigen Folie beschrieben, welches vorzugsweise zur Verbindung mit einem Leiterplattenträger zur Herstellung einer Leiterplatte bestimmt ist, wobei die Dicke oder der Durchmesser des Leitungsdrahtes vorzugsweise größer ist als die Dicke der leitfähigen Folie und wobei die leitfähige Folie sich zumindest während des Verschweißens mit einer thermischen Trennplatte in Kontakt befindet, deren Wärmeleitfähigkeit geringer ist als die der leitfähigen Folie.
Es wird also ein Verfahren und eine Vorrichtung auf Basis einer Widerstandsschweißung, jedoch nicht ein US-Schweißverfahren beschrieben, da nur bei einem elektrischen Widerstandsschweißverfahren eine thermische Trennplatte in Kontakt mit einer leitfähigen Folie benötigt wird. Insbesondere kann eine Trennplatte bei einer Ultraschallverschweißung auf einer bereits geätzten Innenlage mit einer Epoxid-Glasgewebe Struktur auf der Rückseite keine gute thermische Ableitung bewirken, da eine derartige Struktur thermisch sehr schlecht leitet.
Aufgabe der vorliegenden Erfindung ist daher die Schaffung einer Anlage zur kostengünstigen Herstellung von multifunktionellen Leiterplatten zur Verdrahtung von hochkomplexen Leiterstrukturen, insbesondere Fein- bis Feinstleiterstrukturen, gemeinsam mit Strukturen zur Leitung relativ hoher Ströme auf einer Platine.
Dieses Ziel wird durch das Anbringen von funktionellen Elementen mittels Reibschweißen beziehungsweise Ultraschall auf eine oder auf beide Oberflächen und/oder in einer inneren Lage einer noch nicht strukturierten Kupferfolie und/oder einer bereits strukturierten Leiterplatte und dem anschließenden einebnenden Prozess in Form einer Beschichtung und/oder einer Lamination erreicht.
In einer ersten Ausführungsform wird eine Anlage bestehend aus einem
Tisch und einem horizontal angeordneten Sonotrodenkopf mit Ultraschallgenerator und einem Zuführsystem inklusive Niederhaltesystem und einem Abreißsystem für das Verdrahtungselement beschrieben.
In einer zweiten Ausführungsform wird der Sonotrodenkopf mit
Ultraschallgenerator vertikal angeordnet und mit einem
Torsionsschwingsystem werden großflächigere intermetallische Verbindungen mittels Ultraschallenergie verschweißt.
Beide Ausführungsformen können in ein System integriert werden oder können getrennt oder auch sequentiell in einer Mehrfachanlage ausgeführt sein und bei beiden Systemen kann nur der Sonotrodenkopf oder nur der Tisch in x und y Richtung verfahren werden oder es kann der Sonotrodenkopf in eine Richtung und der Tisch in die andere Richtung verfahrbar ausgeführt werden.
In einer weiteren Ausbildungsform wird die Tischplatte wechselbar ausgeführt und können derart Abnützungen durch die Pressung während der Ultraschallkontaktierung rasch bereinigt werden.
Die Sonotrodenwerkzeuge, sind wechselbar ausgeführt und es kann dabei ein vollautomatischer Werkzeugwechsler verwendet werden. Die Formen der Sonotroden werden dabei insbesondere dreiecksförmig beziehungsweise trapezförmig ausgebildet und somit können runde beziehungsweise rechteckige Verdrahtungselemente im Bereich der Ultraschallverbindungen so verformt werden, dass die Kontaktflächen der Verdrahtungselemente zur Kupferfolienfläche bedeutend größer ist als die Kontaktfläche ohne eine derart ausgebildete Sonotrodenform. Durch die Vergrößerung der Kontaktfläche wird eine wesentlich bessere Stromverteilung und thermische Ankoppelung an die Kupferfolie erzielt.
Erfindungsgemäß wird dabei zumindest ein längliches
Verdrahtungselement mittels einer speziell geformten Sonotrode im zumindest stückweise flächigen Kontaktbereich derart im Querschnitt verformt, dass die Kontaktfläche gegenüber der darunter liegenden Folie um vorzugsweise 20% erhöht wird. Weitere bevorzugte Ausführungen sehen sogar eine Erhöhung der Kontaktfläche um mehr als 30% und ganz besonders um mehr als 50% gegenüber einer nicht verformten (linienförmigen) Kontaktfläche (eines Runddrahtes) vor.
In einer speziellen Ausführungsform wird das Verdrahtungselement im Querschnitt etwa dreiecksähnlich beziehungsweise trapezförmig verformt. Dadurch wird die gewünschte Vergrößerung der Kontaktfläche erreicht. Mit der Verwendung von Verdrahtungselementen, deren Querschnitt von der Rundform abweicht ergeben sich wesentliche Vorteile:
Wie eingangs beschrieben, entstehen beim Verschweißen rundprofilierter Verdrahtungselementen auf einer ebenen Folie - bedingt durch die linienförmige Kontaktfläche - so starke Wärmebelastungen auf der ebenen Folie, dass diese beschädigt wird.
Hier setzt die Erfindung ein, die vorsieht, dass mit den erfindungsgemäßen Einrichtungen der Anlage die Verdrahtungselemente mindestens an der Stelle ihrer Verschweißung auf der ebenen Folie an dieser Stelle abgeflacht werden und die Rundform an dieser Stelle verlieren.
Erfindungsgemäß werden dreiecksförmige, trapez- oder parallelogrammförmige Verformungen vorgesehen, mit dem Ziel, die stumpfe (und annährend abgeflachte) Seite des Verdrahtungselementes mit größerer Oberfläche auf der ebenen Folie aufzusetzen und dort zu verschweißen. Damit werden die Wärmeübergänge auf eine größere Fläche verteilt und es besteht keine Gefahr der Beschädigung der empfindlichen Folie. Sofern eine Widerstandsverschweißung angewendet wird, kann dann sogar die
Schweißstromstärke erhöht werden, ohne dass die Gefahr besteht, dass die empfindliche CU-FoNe beschädigt wird.
Zwar könnte man durchgehend Verdrahtungselemente verwenden, deren Querschnitt über die gesamte Länge von der Rundform abweicht, dies hat aber verschlechterte Stromleitungseigenschaften zur Folge. Aus diesem Grund sollen die Verdrahtungselemente mit einer daran angepassten Sonotrode nur am Ort ihrer Verschweißung auf der Kupferfolie eine abgeflachte Form erhalten.
Eine Sonotrode, die am Ort der Verschweißung eines Runddrahtes aus diesem eine abgeflachte Form gestaltet, hat zum Beispiel einen dreiecksförmigen Querschnitt mit einer Länge von etwa 2 - 3 mm. Die Tiefe der V-förmigen Ausnehmung in der Sonotrode muss jedoch kleiner sein als der Durchmesser des darin aufgenommene Querschnitt des dreiecksförmig verformten Drahtes. Ein solcher Runddraht hat beispielsweise einen Durchmesser von 500μm. Damit wird vermieden, dass die Sonotrode selbst auf der CU-FoNe aufliegt, was diese andernfalls beschädigen würde.
Die Sonotrode muss eine großflächige Anlage auf der CU-Oberfläche des zu verformenden Drahtes gewährleiten, ansonsten die Reibschweißenergie nicht ausreichend übertragen werden könnte. Durch den Druck der Sonotrode auf den runden Querschnitt des Kupferleiters (Verdrahtungselement) und durch die US-Energie wird der Querschnitt abgeflacht und mit seiner abgeflachten Breitseite auf die Oberfläche der CU-FoNe aufgepresst und dort durch Reibschweißung stoffschlüssig angeschweißt. Damit wird eine wesentlich größere Auflagefläche in der Ankoppelung an die darunter liegende CU-FoNe erreicht.
Diese CU-Folie hat dabei eine Dicke von lediglich 9 oder 17oder 35 μm. Diese Angaben beziehen sich auf standardisierte Dicken üblich verwendeter CU- Folien.
Selbstverständlich bezieht sich die Verformung eines Runddrahtes in ein (abgeflachtes) dreiecksförmiges Profil am Ort seiner Verschweißung auf der CU-FoNe nur auf eine bevorzugte Ausführung der Erfindung. Die Erfindung umfasst jedoch alle abgeflachten Profilformen von derartigen Runddrähten. Insbesondere auch Recht- oder Quadratprofile oder auch ovale, trapez- und parallelogrammartige Profilformen.
Die Verdrahtungselemente werden bevorzugt von einer Rolle NC gesteuert zugeführt, können jedoch auch grundsätzlich als vorgefertigtes Element aus einem Magazin stückweise zugeführt werden. Bei der Verwendung von bandförmigen Verdrahtungselementen wird das Ablängen mittel Vorkerbung beziehungsweise einem Teileinschnitt und einem anschließenden Abreißen mit einem speziellen Niederhaltesystem über einen bestimmten Winkel verwendet.
In einer Weiterbildung der Erfindung wird der Folienbereich, auf den ein Verdrahtungselement stückweise flächig appliziert werden soll, mittels einer Reinigungs-Sonotrode aus Titan vorgereinigt und dabei wird die dünne Oxidschicht, die sich auf nicht passivierten Kupferflächen innerhalb weniger Stunden bildet, eliminiert und so kann in einem anschließenden Ultraschall- Verbindungsprozess eine gute flächige Ultraschallverbindung erzielt werden.
In einer weiteren Ausbildung der Erfindung werden die bandförmigen Verdrahtungselemente während des Verlegevorgangs mehrfach und mit vorgegebenen Abständen mittels Ultraschall auf die darunter befindliche Kupferfolie kontaktiert und es kann dabei eine Abwinkelung von beispielsweise 45° und darunter und darüber realisiert werden. Demzufolge können die Verdrahtungselemente nicht nur in einer Linie, sondern mit entsprechend vorgegebenen Geometrien verlegt werden.
Verfahrenstechnisch ist bei derartigen Verlegeprozessen die Verweildauer der Sonotrode nach dem Ultraschallverschweißprozess ein wesentliches Kriterium. Derartige US-Sonotroden weisen gegenüber dem Verlegedrahtelement und der darunter befindlichen Kupferfolie eine größere Masse auf und weisen eine gute thermische Ableitung auf und können überdies so ausgebildet werden, dass eine passive oder aktive erhöhte Wärmeableitung eingerichtet wird. Derart kann auch bei einer großen Anzahl zeitlich kurz beabstandeter Ultraschallverschweißungen verhindert werden, dass die Sonotrode zu stark erwärmt wird, somit kann die Sonotrode allfällige Wärmeentwicklung in den Schweißpartnern ableiten. Die Verweildauer ist überdies für den Abreißprozess oder einen Biegeprozess von Vorteil, da dabei die Schweißstelle zusätzlich durch eine entsprechende Anpresskraft stabilisiert wird.
Die Erfindung bezieht sich demnach auch auf eine Leiterplatte mit zusätzlichen funktionalen Elementen. Dabei wird eine hochkomplexe feine Struktur auf einer Leiterplatte mit der Möglichkeit der Verdrahtung von Hochstrom führenden Bauteilen auf einer Platine beschrieben.
Es wird weiters die Wärmeableitung durch die Ausbildung derartiger zusätzlicher Elemente auf und/oder in einer Leiterplatte beschrieben und deren Anwendung für die Kontaktierung von Bauteilen zwecks Wärmeableitung.
Dabei wird ein Mechanismus zum Niederhalten vor der nachfolgenden US- Schweißung verwendet, um die Ausbreitung der US-Energie in Richtung der vorher gehenden Schweißstelle zu dämpfen und gleichzeitig das Substrat auf der Unterlage zu halten.
In einer ersten Ausführungsvariante werden elektrisch leitfähige Verdrahtungselemente mittels Reibschweißverfahren oder
Ultraschallschweißverfahren bevorzugt flächig auf eine darunter befindlichen ätztechnisch hergestellten Leiterstruktur befestigt und anschließend mittels entsprechender Harzsysteme einebnend bearbeitet.
In einer zweiten Ausführungsvariante werden elektrisch leitfähige
Verdrahtungselemente mittels Reibschweißen beziehungsweise Ultraschall isolierend auf einem Leiterplattensubstrat befestigt. Dabei kann die Isolationsschicht vollflächig oder selektiv auf der entsprechenden Leiterplattenoberfläche angeordnet sein oder es kann das elektrisch leitfähige Verdrahtungselement auf der entsprechenden Seite oder umhüllend mit einem entsprechenden Harz versehen sein. Auf diese Weise wird eine eigenständige Verdrahtungsebene hergestellt. Die anschließende Einebnung mittels geeigneter Harzsysteme kann wie in der ersten Ausführungsvariante erfolgen.
In einer weiteren Ausbildung der vorliegenden Erfindung werden insbesondere flache Verdrahtungselemente als selektive wärmeableitende Elemente verwendet. Dabei sind flächige Elemente in eine Innenlage oder auf einer der beiden Oberflächen positioniert und es wird im Anschluss an die Einebnung beziehungsweise Lamination eine Öffnung derart hergestellt, dass der jeweilige Bauteil in direktem wärmeleitendem Kontakt montiert werden kann.
Die Erfindung wird nun anhand mehrerer Ausführungsbeispiele näher beschrieben. Hierbei gehen aus den Zeichnungen und ihrer Beschreibung weitere Vorteile und Merkmale hervor.
Alle in den Unterlagen, einschließlich der Zusammenfassung offenbarten Angaben und Merkmale, insbesondere die in den Zeichnungen dargestellte Ausbildung, werden als erfindungswesentlich beansprucht, soweit sie einzeln oder in Kombination gegenüber dem Stand der Technik neu sind.
Einige Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungsfiguren näher beschrieben.
Dabei zeigen:
Figur 1 : eine schematische Darstellung eine Anlage (1 ) zur Herstellung einer Leiterplatte (2) mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur (4) in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes (4) unter Verwendung eines horizontal angeordneten Ultraschall-Sonotrodensystems auf Basis eines Torsionsschwingsystems bzw. eines Longtidutionalsystems (5) für die Verschweißung von kleineren Verdrahtungselement (4) Querschnitten,
Figur 2: eine schematische Darstellung eine Anlage (1 ) zur Herstellung einer Leiterplatte (2) mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur (4) in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes (4) unter Verwendung eines vertikal angeordneten Ultraschall-Sonotrodensystems (6) auf Basis eines Torsionsschwingsystems bzw. eines Longtidutionalsystems für die Verschweißung von größeren Verdrahtungselement (4) Querschnitten,
Figur 3: eine schematische Darstellung eine Anlage (1 ) zur Herstellung einer Leiterplatte (2) mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur (4) in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes (4), wobei in dieser Darstellung eine Ultraschall- Sonotroden-Kerb-Spulen-Einheit (16) zusammengefasst aufgezeigt ist und diese Einheit (16) drehbar um bis zu 360° ausgeführt ist und derart eine abgewinkelte Verlegung eines Verdrahtungselementes (4) möglich ist,
Figur 4: eine schematische Darstellung des Kerb-Abreißprinzips,
Figur 5: eine Draufsicht auf eine Musterplatine (25) aus vollflächiger und nicht geätzter 70 μm dicker Kupferfolie (20) mit stückweise ultraschallverschweißten (21 ) 500 μm Kupferdrähten (4),
Figur 6: einen Ausschnitt (26) aus der Draufsicht auf die Musterplatine (25) aus Figur 5 mit einer Detailansicht der flächigen Ultraschallkontaktstellen (21 ) inklusive der Abrißenden (24) der Verdrahtungselemente (4) und der Abwinkelungen (23). Figur 7: schematisch einen Schnitt durch ein Substrat (2) mit einer Leiterbahn (4) mit einem runden Draht (3) und einer darüber angeordneten Sonotrode (18) vor der Kontaktierung dargestellt.
Figur 8: schematisch einen Schnitt durch ein Substrat (2) mit einer Leiterbahn (4) mit einem runden Draht (3) und einer darüber angeordneten Sonotrode (18) nach der Kontaktierung dargestellt.
In Figur 1 wird eine schematische Darstellung eine Anlage (1 ) zur
Herstellung einer Leiterplatte (2) mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur (4) in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes (4) unter Verwendung eines horizontal angeordneten Ultraschall-Sonotrodensystems (5) für die Verschweißung von kleineren Verdrahtungselement (4) Querschnitten aufgezeigt.
Dabei wird eine multifunktionelle Leiterplatte (2) im noch nicht fertigen Zustand beziehungsweise ein Substrat (3) mit einer vollflächigen oder bereits strukturierten Kupferfolie (20) auf einem Tisch (15) positioniert beziehungsweise mit einem Klemm- beziehungsweise Registriersystem (14) positioniert und festgehalten. Anstelle eines Klemmsystems (14) oder zusätzlich zu diesem kann ein Tisch mit-Vakuumansaugung verwendet werden oder kann ein Hilfsträger verwendet werden.
Der Tisch (15) ist bezogen auf das Sonotroden-Ultraschall-System (5) in x-y-z Richtung NC-gesteuert verfahrbar, wobei in einer ersten Ausführungsform der Tisch für die Ein- und Ausgabe der Leiterplatte (2) beziehungsweise des Substrates (3) mit der Kupferfolie (20) verwendet wird und das gesamte Oberwerk bestehend aus dem Sonotrodensystem (5), dem Niederhalter (13), dem Kerbsystem (12), dem Klemmsystem (1 1 ), der Führung (10), der ersten und zweiten Öse (8, 9) und der Spule (7) verfahrbar ausgeführt ist und zusätzlich ein Teil davon um 360° drehbar ist und derart ein abgewinkeltes Verlegen eines Verdrahtungselementes (4) möglich ist.
In dieser schematischen Darstellung wird die Spule (7) vertikal angeordnet aufgezeigt, sie kann jedoch ebenso gut horizontal wie in Figur 3 aufgezeigt angeordnet werden. In beiden Fällen werden die Ösen (8, 9) dazu verwendet, den unterschiedlichen Wickeldurchmesser einer Spule (7) mit beispielsweise 100 m Verdrahtungselement (4) auszugleichen und diesen gerade in das Führungselement (10) einzuführen.
Das Klemmsystem (11 ) ist in dieser Darstellung mit Klemmbacken von oben und unten aufgezeigt, wird jedoch je nach verwendetem Verdrahtungselementquerschnitt (4) optimiert ausgeführt und kann derart auch seitlich beziehungsweise mehrfach ausgeführt werden. In einer bevorzugten Ausführung wird das Klemmsystem (11 ) derart ausgeführt, dass das Verdrahtungselement (4) unter einem Winkel von wenigen Grad bis zu etwa 20° nach oben wirkend ausgeführt ist. Damit wird der Abreißvorgang mittels Kerbsystem (12) einfacher und besser.
Das Kerbsystem (12) kerbt beziehungsweise schneidet das Verdrahtungselement (4) nicht vollständig durch, da toleranzbedingt eine Ankerbung der darunter befindlichen Leiterplatte (20) nicht vermieden werden kann. Das Kerbsystem (12) wird daher mit einem gewissen Sicherheitsabstand von der Kupferoberfläche (20) das Verdrahtungselement (4) mit zumindest einer Kerbung mit mehr als der Hälfte der Höhe des Verdrahtungselementes (4) ausführen.
Beim Vorgang des Abreißens des Verdrahtungselementes (4) klemmt die Sonotrode (5) das Verdrahtungselement (4) im Bereich der flächigen Ultraschallkontaktstelle (21 ) mit auf den Tisch (15) beziehungsweise gegen den Tisch (15).
Es wurde festgestellt, dass ein Einkerben eines Segmentes, das auf der Kupferfolie befestigt ist, mit großen Schwierigkeiten verbunden ist. Wird das teilweise Segment eingekerbt, ohne es mit seinem freien Ende von der Oberfläche der Kupferfolie abzuheben, dann ist bei einem nicht eingekerbten Restquerschnitt von 25 % die notwendige Abreißkraft so groß, dass eine Deformation der Kupferfolie in Kauf genommen werden muß.
Wird hingegen das freie Ende von der Oberfläche abgehoben, wobei der teilweise Kerbschnitt im nicht-angehobenen Teil des Segmentes erfolgt, dann ist die Abreißkraft wesentlich geringer, wenn wiederum von einer Einkerbung mit einer Tiefe von 75 % der Material stärke ausgegangen wird.
Verfahrenstechnisch wird also zunächst das freie Ende des Segmentes von der Oberfläche der Kupferfolie abgehoben und der teilweise Kerbschnitt im noch auf der Oberfläche der Kupferfolie aufliegenden Teil des Segmentes durchgeführt. Danach wird das teilweise eingekerbte und von der Oberfläche der Kupferfolie abgehobene Ende abgerissen.
In der maschinellen tatsächlichen Ausführung sind die Abstände, im Gegensatz zu dieser schematischen Darstellung, zwischen dem Ende der Führung (10), dem Klemmsystem (11 ), dem Kerbsystem (12), dem Sonotrodenwerkzeug (5) und dem Niederhalter (13) sehr gering beziehungsweise eng beabstandet, sodaß eine exakte und NC-gesteuerte Positionierung eines abgelängten Verdrahtungselementes (4) auf der Oberfläche eines Kupferfolienelementes (20) und deren flächige Verschweißung möglich ist. Die Ultraschallverschweißung erfolgt bei Verwendung von runden Drahtelementen (4) mit entsprechend dreieckförmigen , trapezförmigen oder kreisförmigen Sonotroden, so dass der Kontaktbereich (21 ) wesentlich größer wird verglichen mit der linienförmigen Kontaktierung eines runden Drahtelementes (4) auf einer plangeraden Kupferoberfläche (20).
In Figur 2 wird eine schematische Darstellung eine Anlage (1 ) zur Herstellung einer Leiterplatte (2) mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur (4) in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes (4) unter Verwendung eines vertikal angeordneten Ultraschall-Sonotrodensystems (6) auf Basis eines Torsionsschwingsystems bzw. eines Longitudionalsystems für die Verschweißung von größeren Verdrahtungselement (4) Querschnitten aufgezeigt. Bei diesem System können beispielsweise auch flächige Drahtelemente (4) mit einem Querschnitt von einigen Millimetern bis etwa 10 mm und typisch 2 bis 5 mm Breite bei einer Dicke von einigen 100 μm, typisch im Bereich von etwa 200 bis 500 μm, verlegt werden. Dabei hat sich ein Torsionsschwingungs-Ultraschallsystem (6) bewährt. Die entsprechenden Sonotroden (6) werden dabei mit einer entsprechenden Oberflächenstruktur versehen, so dass eine gute Ultraschall-Reibschweiß-Energieeinbringung möglich ist und die Oberfläche des Verdrahtungselementes (4) nur kleine Abdrücke beziehungsweise Einkerbungen aufweist. Überdies kann auch bei einem flachförmigen Verdrahtungselement (4) die Sonotrode (6) trapezförmig gestaltet werden. Damit werden die seitlichen Bereiche des Verdrahtungselementes (4) abgeschrägt geformt und in einem
Leiterplattenlaminierverfahren erfolgt eine bessere Harzeinbettung.
In Figur 3 wird eine schematische Darstellung eine Anlage (1 ) zur Herstellung einer Leiterplatte (2) mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur (4) in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes (4), wobei in dieser Darstellung eine Ultraschall-Sonotroden-Kerb-Spulen-Einheit (16) zusammengefasst aufgezeigt ist und diese Einheit (16) drehbar um bis zu 360° ausgeführt ist und derart eine abgewinkelte Verlegung eines Verdrahtungselementes (4) möglich ist. Dabei kann grundsätzlich auch das Sonotrodensystem (5, 6) inklusive Niederhalter (13) nicht drehbar ausgeführt werden beziehungsweise wahlweise drehbar ausgeführt werden und werden die anderen Elemente NC gesteuert entsprechend der gewünschten Abwinkelung des Verdrahtungselementes (13) gedreht.
In Figur 4 wird eine schematische Darstellung des Kerb-Abreißprinzips aufgezeigt. Dabei wird eine Kerbschneide (12) NC gesteuert abgesenkt und kerbt das Drahtelement (4) mit der Höhe (17) bis auf eine Einkerbtiefe (18) ein. Mit der Einkerbtiefe (18) wird die restliche nicht gekerbte Höhe des Drahtelementes (4) verstanden, die mittels Klemmsystem (11 ) abgerissen wird.
Die Einkerbtiefe (18) wird derart bemessen, dass gesichert keine Einkerbung beziehungsweise Berührung der Oberfläche der Kupferfolie (20) erfolgt. Umgekehrt wird die Einkerbung zumindest 50% der Höhe (17) eines Verdrahtungselementes (4) betragen und wird damit und es wird erfindungsgemäß durch die Anwinkelung (19) des Klemmsystems (11 ) und der Kerbwirkung eine geringere Abreißkraft erreicht. Würde lediglich ein Restquerschnitt von 25 % nicht eingekerbt und versucht, das gerade, nicht von der Oberfläche abgehobene Ende des Verdrahtungselementes abzureißen, würde sich die Kupferfolie 20 verformen. Dies wird mit dem Anheben des freien Endes um den Anhebewinkel 19 vermieden. Die notwendige Abreißkraft ist geringer und eine Verformung der Kupferfolie 20 wird vermieden.
In Figur 5 wird eine Draufsicht auf eine Musterplatine (25) aus vollflächiger und nicht geätzter 70 μm dicker Kupferfolie (20) mit stückweise ultraschallverschweißten (21 ) 500 μm Kupferdrähten (4) aufgezeigt. Diese Musterplatine (25) wurde mit einer Vielzahl von Varianten ausgeführt. Die Aufnahme zeigt die Kontaktierung von 500 μm dickem Kupferrunddraht (4) auf einer 70 μm dicken Kupferfolie (20) auf, die nicht strukturiert ist und die keinen Harzträger aufweist. Eine derartige Kupferfolie (20) wird nach der Applikation der Drahtelemente (4) einem Laminationsvorgang unterzogen und ätztechnisch an der den Drahtelementen (4) gegenüberliegenden Seite strukturiert beziehungsweise werden die Drahtelemente (4) beim Laminiervorgang in einer Leiterplattenpresse nach dem Stand der Technik in der Harzlage eingebettet.
In Figur 5 sind einzelne Runddrahtelemente (4) mittels Ultraschall in unterschiedlichen Abständen auf die Kupferfolie (20) kontaktiert. Diese Versuche pro Drahtquerschnitt dienen zur Optimierung der Sonotrode beziehungsweise der Niederhalter der Drahtelemente (4) für eine möglichst plane Verlegung, das heißt, dass die Drahtelemente (4) zwischen den einzelnen flächigen Ultraschallkontaktstellen (21 ) möglicht im Linienkontakt auf der Kupferoberfläche (4) angeordnet werden.
Weiters wird in Figur 5 die gewinkelte Verlegung aufgezeigt. Dabei wird der Sonotrodenkopf (5, 6) inklusive der Drahtzuführung um beispielsweise 45° gedreht oder aber der Tisch mit der Kupferfolie (20) wird gedreht. Gleichzeitig muss der Draht (4) gebogen werden. Er muss also beim Ultraschallschweißvorgang mechanisch so lange niedergehalten werden, bis der Biegevorgang beendet ist. Ein Ultraschallweißvorgang ist zwar ein weitgehend kalter Schweißvorgang, allerdings wird im Bereich der Bildung der intermetallischen Verbindung eine relativ hohe Temperatur bis in den Bereich des Schmelzpunktes von Kupfer bei 1.0830C erreicht. Da üblicherweise eine Sonotrode (5, 6) eine relativ große Masse im Vergleich zu den Drahtelementen (4) aufweist, kann die Verweildauer der Sonotrode (5, 6) nach dem Ultraschallschweißvorgang die Ableitung der erzeugten Wärme bewirken und kann überdies eine mechanische Verfestigung durch die Druckbeaufschlagung bewirken. Die US-Sonotrode (5, 6) kann überdies mit einer aktiven Kühlung versehen werden.
In Figur 6 wird ein Ausschnitt (26) aus der Draufsicht auf die Musterplatine (25) aus Figur 5 mit einer Detailansicht der flächigen Ultraschallkontaktstellen (21 ) inklusive der Abrissenden (24) der Verdrahtungselemente (4) und der Abwinkelungen (23) aufgezeigt.
In Figur 7 wird schematisch ein Schnitt durch ein Substrat (3) mit einer Leiterbahn (4) mit einem runden Draht (2) und einer darüber angeordneten Sonotrode (26) vor der Kontaktierung dargestellt. In dieser Darstellung berührt die Sonotrode (26) den Draht (2) nur punktuell, also gerade in dem Moment, ab dem eine Verformung mittels Ultraschall beginnt. Der Draht (2) berührt ebenfalls nur punktuell die Oberfläche der Leiterbahn (4).
In Figur 8 wird schematisch ein Schnitt durch ein Substrat (3) mit einer Leiterbahn (4) mit einem runden Draht (2) und einer darüber angeordneten Sonotrode (26) nach der Kontaktierung dargestellt. In dieser Darstellung hat die Sonotrode (26) den Draht (2) bereits dreiecksartig geformt und der Draht (2) ist flächig mit der Oberfläche der Leiterbahn (4) durch eine intermetallische Verbindung (21 ) thermisch und elektrisch gut leitfähig verbunden.
Bezugszeichenliste
1 Anlage zur Herstellung einer Leiterplatte mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes.
2 Multifunktionelle Leiterplatte mit zumindest einem funktionalen Element in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes.
3 Substrat: Basismaterial z.B. FR-2, FR-3, FR-4, FR-4-Low-Tg, CEM-1 , CEM-x, PI, CE, Aramid, usw. bzw. Prepreg
4 Funktionales elektrisch und thermisch gut leitfähiges Verdrahtungselement: rund oder rechteckig bzw. bandförmig; Kupfer oder Aluminium oder elektrisch u/o thermisch gut leitfähig
5 Sonotrode mit horizontalem Ultrschallschweißgerät (Generator) für kleinere Verdrahtungselement-Querschnitte
6 Sonotrode mit vertikalem Ultraschallschweißgerät mit einem Torsionsschwingsystem für größere Verdrahtungselement-Querschnitte
7 Verdrahtungselement-Spule
8 Erste Öse 9 Zweite Öse
10 Führung
11 Klemmsystem zum Abreisen des Verdrahtungselementes
12 Kerbsystem beziehungsweise Schneidkerbsystem
13 Niederhalter 14 Klemmsystem beziehungsweise Registriersystem für das Substrat (3) beziehungsweise die multifunktionelle Leiterplatte (2) 15 Tisch Ultraschall-Sonotroden-Kerb-Spulen Einheit, drehbar um bis zu 360c Höhe des Verdrahtungselementes Einkerbtiefe Anhebewinkel beziehungsweise Anhebehöhe des Verdrahtungselementes beim Eingerben und Abreissen Kupferfolie Ultraschallkontaktstelle Abreißstelle Abwinklung Abrißende Ausschnitt Sonotrode

Claims

Patentansprüche
1. Anlage zur Herstellung einer Leiterplatte mit zumindest einer zusätzlichen elektrisch leitfähigen Struktur in Form eines runden oder rechteckigen elektrisch leitfähigen Verdrahtungselementes (4), insbesondere in Form eines länglichen Kupfer- beziehungsweise kupferhaltigen Elementes, das als additives Verdrahtungselement (4) zumindest stückweise flächig auf Kupferfolienelemente (2, 20) kontaktiert wird und in einem weiteren Leiterplattenherstellverfahren mittels Lamination in eine Leiterplatte integriert wird, dadurch gekennzeichnet, dass das das additive Verdrahtungselement (4) mittels Ultraschall kontaktiert wird, dass das Verdrahtungselement (4) mit einem runden oder rechteckigen Querschnitt von einer Rolle mittels Zuführsystem zugeführt wird und eine Kerbvorrichtung (12) und Abreißvorrichtung aufweist und der Sonotrodenkopf (5, 6, 26) eine
Niederhaltevorrichtung aufweist, die das Verdrahtungselement (4) während der einzelnen Verfahrensschritte plan auf der Kupferfolienoberfläche hält.
2. Anlage zur Herstellung einer Leiterplatte nach Anspruch 1 , dadurch gekennzeichnet, dass ein horizontal angeordneter Sonotrodenkopf (5, 26) mit Ultraschallgenerator über einem Tisch angeordnet ist und zueinander NC- gesteuert verfahrbar ausgeführt ist.
3. Anlage zur Herstellung einer Leiterplatte nach Anspruch 1 , dadurch gekennzeichnet, dass ein vertikal angeordneter Sonotrodenkopf (6, 26) mit
Ultraschallgenerator und Torsionsschwingsystem bzw. eines Longitudionalsystems über einem Tisch angeordnet ist und zueinander NC- gesteuert verfahrbar ausgeführt ist.
4. Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Sonotrodenkopf (5, 6, 26) mit Ultraschallgenerator in x- und y-Richtung NC-gesteuert verfahren wird und der Tisch nicht verfahrbar angeordnet ist.
5. Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Tisch in x- und y-Richtung NC- gesteuert verfahren wird und der Sonotrodenkopf (5, 6, 26) mit Ultraschallgenerator nicht verfahrbar angeordnet ist.
6. Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Tisch in eine Richtung und der
Sonotrodenkopf (5, 6, 26) mit Ultraschallgenerator in die andere Richtung NC- gesteuert verfahren wird.
7. Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Substrat mit einer entsprechend ausgestalteten Kupferfolienoberfläche beziehungsweise eine entsprechende Kupferfolie manuell auf den Tisch eingelegt wird und nach dem Verlegeprozess manuell entnommen wird oder die Zu- und Abfuhr vollautomatisch erfolgt und dass das Substrat mit der Kupferfolie beziehungsweise die Kupferfolie am Tisch in einer genau definierten Position mittels Greifer- beziehungsweise Klemmsystemen festhält.
8. Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Sonotrodenkopf (5, 6, 26) drehbar ausgeführt ist und derart eine abgewinkelte Verlegung von Verdrahtungselementen erfolgen kann.
9. Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Sonotrodenwerkzeug wechselbar ausgeführt ist und manuell oder vollautomatisch gewechselt werden kann.
10. Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Sonotrodenwerkzeug flach und aus Titan ausgebildet ist und derart bereichsweise die Oberfläche einer Kupferfolie reinigen kann und derart eine oxidische Passivationsschicht entfernt werden kann.
1 1. Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein bereits vorgefertigtes Verdrahtungselement aus einem Magazin positionsgenau auf der Kupferoberfläche positioniert wird und anschließend mittels Sonotroden und Ultraschall stückweise verbunden wird.
12. Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass der Sonotrodenkopf (5, 6, 26) eine Abflachung des Kontaktierungsbereiches eines runden Drahtes (2) bei der Verschweißung mit der gegenüberliegenden Fläche ausführt.
13. Verfahren zum Betrieb der Anlage zur Herstellung einer Leiterplatte nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass eine Kerbschneide (12) NC-gesteuert abgesenkt und das Drahtelement (4) mit der Höhe (17) bis auf eine Einkerbtiefe (18) eingekerbt wird und dass die restliche nicht gekerbte Höhe des Drahtelementes (4) mittels eines Klemmsystems (1 1 ) abgerissen wird.
PCT/EP2007/009714 2006-11-13 2007-11-13 Anlage zur herstellung einer leiterplatte mit additiven und integrieten und mittels ultraschall kontaktierten kupferelementen WO2008058674A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20070846548 EP2092810B1 (de) 2006-11-13 2007-11-13 Anlage zur herstellung einer leiterplatte mit additiven und integrieten und mittels ultraschall kontaktierten kupferelementen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006053696.7 2006-11-13
DE200610053696 DE102006053696A1 (de) 2006-11-13 2006-11-13 Anlage zur Herstellung einer Leiterplatte mit additiven und integrierten und mittels Ultraschall kontaktierten Kupferelementen

Publications (1)

Publication Number Publication Date
WO2008058674A1 true WO2008058674A1 (de) 2008-05-22

Family

ID=39273236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/009714 WO2008058674A1 (de) 2006-11-13 2007-11-13 Anlage zur herstellung einer leiterplatte mit additiven und integrieten und mittels ultraschall kontaktierten kupferelementen

Country Status (3)

Country Link
EP (1) EP2092810B1 (de)
DE (1) DE102006053696A1 (de)
WO (1) WO2008058674A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470229A (zh) * 2014-12-18 2015-03-25 浪潮(北京)电子信息产业有限公司 印刷电路板元件管脚处铜箔去除的方法及装置
CN110244656A (zh) * 2019-06-24 2019-09-17 杭州电子科技大学 一种基于五轴数控龙门机床六轴改造的nc代码仿真方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012002945B4 (de) * 2012-02-16 2017-07-13 Häusermann GmbH Multifunktionelle Mehrlagenleiterplatten mit einer elektrisch leitfähigen Hochstrom-Leitstruktur und Verfahren zur Herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791533A (en) 1980-11-29 1982-06-07 Shinkawa Ltd Wire bonding method and apparatus therefor
US4976392A (en) 1989-08-11 1990-12-11 Orthodyne Electronics Corporation Ultrasonic wire bonder wire formation and cutter system
US5868300A (en) * 1995-06-29 1999-02-09 Orthodyne Electronics Corporation Articulated wire bonder
DE102005003370A1 (de) * 2005-01-24 2006-07-27 Juma Pcb Gmbh Verfahren zur durchgehenden Verlegung eines Leitungsdrahtes auf einer Leiterplatte und Vorrichtung zur Durchführung des Verfahrens
DE102005003870A1 (de) 2005-01-21 2006-08-03 Siemens Ag Gehäusebaugruppe eines von einer elektrischen Isolation umgebenen Leiterzuges

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2220022C3 (de) * 1972-04-24 1984-08-16 Standard Elektrik Lorenz Ag, 7000 Stuttgart Abreißdraht für Abreißsicherungen, insbesondere gleichzeitig als Zuleitungsdraht dienender Abreißdraht für elektrische Kondensatoren
US4450623A (en) * 1981-12-18 1984-05-29 Kollmorgen Technologies Corporation Process for the manufacture of circuit boards
US4693778A (en) * 1985-07-19 1987-09-15 Kollmorgen Technologies Corporation Apparatus for making scribed circuit boards and circuit board modifications
DE3912175A1 (de) * 1989-04-13 1990-10-18 Siemens Ag Vorrichtung zum ablaengen und biegen von anschlussdraehten
DE10108168C1 (de) * 2001-02-21 2002-10-02 Juma Leiterplattentechnologie Verfahren zur Herstellung einer Multiwire-Leiterplatte
DE202005001161U1 (de) * 2005-01-24 2005-03-31 Juma Leiterplattentechologie M Drahtgeschriebene Leiterplatte oder Platine mit Leiterdrähten mit rechteckigem oder quadratischem Querschnitt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791533A (en) 1980-11-29 1982-06-07 Shinkawa Ltd Wire bonding method and apparatus therefor
US4976392A (en) 1989-08-11 1990-12-11 Orthodyne Electronics Corporation Ultrasonic wire bonder wire formation and cutter system
US5868300A (en) * 1995-06-29 1999-02-09 Orthodyne Electronics Corporation Articulated wire bonder
DE102005003870A1 (de) 2005-01-21 2006-08-03 Siemens Ag Gehäusebaugruppe eines von einer elektrischen Isolation umgebenen Leiterzuges
DE102005003370A1 (de) * 2005-01-24 2006-07-27 Juma Pcb Gmbh Verfahren zur durchgehenden Verlegung eines Leitungsdrahtes auf einer Leiterplatte und Vorrichtung zur Durchführung des Verfahrens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470229A (zh) * 2014-12-18 2015-03-25 浪潮(北京)电子信息产业有限公司 印刷电路板元件管脚处铜箔去除的方法及装置
CN110244656A (zh) * 2019-06-24 2019-09-17 杭州电子科技大学 一种基于五轴数控龙门机床六轴改造的nc代码仿真方法
CN110244656B (zh) * 2019-06-24 2020-06-05 杭州电子科技大学 一种基于五轴数控龙门机床六轴改造的nc代码仿真方法

Also Published As

Publication number Publication date
EP2092810B1 (de) 2013-12-25
DE102006053696A1 (de) 2008-05-29
EP2092810A1 (de) 2009-08-26

Similar Documents

Publication Publication Date Title
DE102009014582B4 (de) Verfahren zur Herstellung einer Halbleitervorrichtung
DE102006019602B4 (de) Leistungshalbleitermodul
DE10066446B4 (de) Verfahren zur Herstellung eines elektronischen Bauteils mit zwei Abstrahlungsbauteilen
EP1061783B2 (de) Keramik-Metall-Substrat, insbesondere Mehrfachsubstrat
DE102015210603B4 (de) Verfahren zur Herstellung einer Halbleitervorrichtung
DE102012201172B4 (de) Verfahren zur Herstellung eines Leistungshalbleitermoduls mit geprägter Bodenplatte
DE1950516B2 (de) Verbindung elektrischer leiter
DE112011101129B4 (de) Ultraschall-Bondsysteme und Verfahren zu ihrer Verwendung
EP2226747B1 (de) Verfahren und Vorrichtung zur Erzeugung eines Schaltungsmusters auf einem Substrat
EP0144915A2 (de) Verfahren zum Anheften eines dünnen elektrisch leitenden Drahtes an elektronischen Bauteilen, insbesondere Halbleiterbauelementen
DE102011105631A1 (de) Batteriefahnenfügestellen und Herstellverfahren
EP2092810B1 (de) Anlage zur herstellung einer leiterplatte mit additiven und integrieten und mittels ultraschall kontaktierten kupferelementen
EP2415547A2 (de) Lötkopf und Verfahren zum induktiven Löten
EP0058852A2 (de) Halbleiteranordnung mit aus Blech ausgeschnittenen Anschlussleitern
EP2092806B1 (de) Verfahren zur herstellung einer leiterplatte mit additiven und integrierten und mittels ultraschall kontaktierten kupferelementen
EP0632684A2 (de) Verfahren zum Herstellen eines Metall-Keramik-Substrates
DE3931551C2 (de) Verfahren zum Herstellen eines Substrates
WO2009121697A1 (de) Stromführungsbauteil mit einem träger, leiterbahnen und leiterplättchen
WO1997042798A1 (de) Verfahren zur herstellung elektrisch leitender verbindungen zwischen zwei oder mehr leiterstrukturen
DE102014115201A1 (de) Verfahren zum verlöten eines schaltungsträgers mit einer trägerplatte
EP1283664B1 (de) System aus Flachleiter und Bauteil und Verfahren zur Verlöten von Flachleiter und Bauteil
DE10050798C1 (de) Verfahrn zum Verbinden von flachen Folienkabeln
EP2287899B1 (de) Lötverbindung mit einer mehrlagigen lötbaren Schicht und entsprechendes Herstellungsverfahren
DE102010000951B4 (de) Leistungshalbleitermodul mit verringertem Leitungswiderstand und Verfahren
WO1997008925A1 (de) Verfahren zur herstellung einer verbindung zwischen zumindest zwei elektrischen leitern, von denen einer auf einem trägersubstrat angeordnet ist

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07846548

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007846548

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE