WO2008056423A1 - Plasma display device - Google Patents

Plasma display device Download PDF

Info

Publication number
WO2008056423A1
WO2008056423A1 PCT/JP2006/322481 JP2006322481W WO2008056423A1 WO 2008056423 A1 WO2008056423 A1 WO 2008056423A1 JP 2006322481 W JP2006322481 W JP 2006322481W WO 2008056423 A1 WO2008056423 A1 WO 2008056423A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
plasma display
numbered
glass substrate
Prior art date
Application number
PCT/JP2006/322481
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Ikeda
Toshio Ueda
Original Assignee
Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plasma Display Limited filed Critical Hitachi Plasma Display Limited
Priority to PCT/JP2006/322481 priority Critical patent/WO2008056423A1/en
Publication of WO2008056423A1 publication Critical patent/WO2008056423A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/46Connecting or feeding means, e.g. leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Definitions

  • the present invention generally relates to a plasma display device, and more particularly to a wiring structure of discharge electrodes of a plasma display device.
  • FIG. 1 is a schematic cross-sectional view of a three-electrode surface discharge AC-plasma display panel.
  • a three-electrode surface discharge AC—plasma display panel is composed of two glass substrates, a front glass substrate 15 and a back glass substrate 11.
  • the front glass substrate 15 has a BUS electrode as a sustain electrode.
  • a common sustain electrode (X electrode) and a scanning electrode (Y electrode) composed of 17 and the transparent electrode 16 are formed. These X electrodes and Y electrodes are arranged alternately.
  • a dielectric layer 18 is formed on the X and Y electrodes, and a protective film 19 such as MgO is formed on the dielectric layer 18.
  • the BUS electrode 17 has high conductivity and functions to supplement the conductivity of the transparent electrode 16.
  • the dielectric layer 13 functions to maintain a discharge due to wall charges and has a low melting point glass force.
  • An address electrode 12 is formed on the rear glass substrate 11 so as to be orthogonal to the X electrode and the Y electrode.
  • a dielectric layer 13 is formed on the address electrode 12, and a partition wall 14 is formed on the dielectric layer 13 at a position corresponding to the gap between the address electrodes 12.
  • phosphor layers R, G, and B are formed so as to cover the dielectric layer 13 and the barrier rib side walls.
  • the phosphor layers R, G, and B correspond to three colors of red, green, and blue.
  • a discharge gas such as a mixed gas of neon and xenon is filled between the front surface on which the X electrode and the Y electrode are provided and the back surface on which the address electrode 12 is provided.
  • the space where the X electrode, the heel electrode, and the address electrode intersect constitute one discharge cell (pixel).
  • FIG. 2 is a block diagram showing the main part of the overall configuration of a conventional plasma display device.
  • the plasma display device shown in FIG. 2 includes a plasma display panel 21, an address electrode drive circuit 22, an electrode drive circuit 23, an X electrode drive circuit 24, a scan circuit 25, a drive control circuit 26, and a signal processing circuit 27. .
  • the signal processing circuit 27 receives an externally input clock signal, display data, vertical synchronization signal, horizontal synchronization signal, etc., and writes display data of RG to the internal frame memory based on the vertical synchronization signal, etc. Do the work.
  • the drive control circuit 26 controls the address electrode drive circuit 22, the negative electrode drive circuit 23, the X electrode drive circuit 24, and the scan circuit 25 to display the display data stored in the frame memory on the plasma display panel 21. .
  • the drive control circuit 26 generates an address control signal corresponding to the display data of the frame memory in synchronization with the clock signal.
  • the address control signal is supplied to the address electrode drive circuit 22.
  • the drive control circuit 26 further generates a scan driver control signal for controlling the scan circuit 25 in synchronization with the vertical synchronization signal and the horizontal synchronization signal.
  • the scan driver control signal is supplied to the scan circuit 25.
  • the drive control circuit 26 further drives the heel electrode drive circuit 23 and the X electrode drive circuit 24 in synchronization with the vertical synchronization signal and the horizontal synchronization signal.
  • the address electrode drive circuit 22 applies an address voltage pulse corresponding to display data to each address electrode A1 to Am (corresponding to the address electrode 12 in FIG. 1) in synchronization with the clock signal.
  • the Y electrode drive circuit 23 drives each of the Y electrodes Y1 to Yn independently via the scan circuit 25.
  • the X electrode drive circuit 24 drives the even-numbered electrodes of the X electrodes XI to ⁇ in common, and independently drives the odd-numbered electrodes of the X electrodes XI to ⁇ .
  • each display pixel is initialized in the reset period and the next address is set.
  • the pixel to be displayed is selected during the scan period, and the selected pixel is caused to emit light during the last sustain period.
  • the reset Z address voltage generation circuit in the Y electrode drive circuit 23 In the reset period, the reset Z address voltage generation circuit in the Y electrode drive circuit 23 generates a reset voltage, and the scan circuit 25 applies the reset voltage to all the Y electrodes Y1 to Yn.
  • the reset voltage generated by the reset / address voltage generator in the X electrode drive circuit 24 is applied to all the X electrodes XI to Xn.
  • the scan circuit 25 drives the address electrodes while sequentially driving the Y electrodes Y1 to Yn one by one by the address voltage generated by the reset Z address voltage generation circuit of the Y electrode drive circuit 23.
  • the circuit 22 applies address voltage pulses corresponding to the lines of each horizontal line corresponding to the display data to the address electrodes A1 to Am in parallel. This selects the cell to be displayed and controls the display / non-display (selection Z non-selection) of each display cell (pixel).
  • the sustain voltage noise generated by the sustain noise circuit in the Y electrode drive circuit 23 is applied to the Y electrodes Y1 to Yn via the scan circuit 25, and the X electrode drive circuit 24
  • the sustain voltage pulse generated by the sustain pulse circuit is applied to the X electrodes XI to Xn.
  • a sustain voltage pulse By applying a sustain voltage pulse, a sustain discharge is generated between the X electrode and the Y electrode in the cell selected as the display cell.
  • the X-electrode drive circuit 24 drives the X-th electrode evenly from the X-electrodes XI to Xn, and independently from the X-electrodes XI to Xn. Are driven in common. From this, the ALIS (Alternate Lighting of Surfaces) type electrode is driven.
  • the ALIS method uses all electrode gaps as display lines for low cost and high definition.
  • all display lines between the X electrodes XI to Xn and the Y electrodes Y1 to Yn that is, between Y1 and XI, between XI and Y2, between Y2 and X2, and between X2 and Y3 It is not possible to turn on all the display lines in between. Therefore, one frame is divided into two fields, odd lines (for example, between Y1 and XI, between Y2 and X2) are displayed in the first field, and even lines (for example, XI and Y2) are displayed in the second field. Between X2 and Y3).
  • a sustain electrode drive circuit used in the ALIS method is used. Are configured so that different voltages can be applied to the odd-numbered X electrodes XI, X3,... And the even-numbered X electrodes ⁇ 2, ⁇ 4,.
  • FIG. 3 is a diagram showing a conventional example of the configuration of a portion where an X electrode is taken out from the plasma display panel 21.
  • the same components as those in FIGS. 1 and 2 are referred to by the same numerals, and a description thereof will be omitted.
  • Two-layer flexible cable 31 has a wiring pattern 32 on the first layer and a wiring pattern 33 on the second layer.
  • the wiring pattern 32 is connected to the odd-numbered X electrode X_odd. All these connected X electrodes X—odd are grouped together in the two-layer flexible cable 31 and electrically connected to each other.
  • the wiring pattern 33 is connected to the even-numbered X electrode X_even. All of these connected even-numbered X electrodes X—even are connected together in a two-layer flexible cable 31 and electrically connected to each other.
  • the wiring pattern 32 of one two-layer flexible cable 31 is not connected to all X electrodes X—odd provided on the plasma display panel 21. Only connected.
  • the wiring pattern 33 is not connected to all the X electrodes X—even provided on the plasma display panel 21 but only to some X electrodes X—even. This is because when a two-layer flexible cable 31 that can be connected to all X electrodes is manufactured, its size is the same as the vertical length of the plasma display panel 21, and such a two-layer flexible cable with such a large size is used. This is because the cable 31 is expensive. Therefore, in general, a small number of two-layer flexible cables 31 are connected to one plasma display panel 21, and the X electrode X—odd is divided into several groups, one layer for each group. The structure is summarized in flexible cable 31.
  • the present invention provides a plasma display device that can separately combine even-numbered X electrodes and odd-numbered X electrodes into one electrode without using a two-layer flexible cable.
  • the purpose is to do.
  • a plasma display device includes a plasma display panel including a plurality of Y electrodes and a plurality of X electrodes arranged on a glass substrate, and an even-numbered X electrode and an odd-numbered X electrode among the X electrodes.
  • a first plurality of electrodes that are all or part of even-numbered X electrodes and a second plurality of electrodes that are all or part of odd-numbered X electrodes, each including an X-electrode drive circuit that is driven independently Among these, one of the plurality of electrodes is connected to one common electrode provided on the glass substrate through a wiring pattern provided on the glass substrate, and the other plurality of electrodes is a conductor cable having an insulation coating. The conductor cable is arranged so as to cross over the wiring pattern existing on the glass substrate.
  • the cost can be reduced.
  • the size of the single-layer flexible cable can be made smaller than that of the conventional two-layer flexible cable, so that the cost can be further reduced.
  • the electrode is already used in the wiring lead-out portion from the plasma display panel, the size of the connector portion for connecting the wiring to the plasma display panel can be reduced, and the cost can be further reduced.
  • FIG. 1 A cross-sectional schematic view of a three-electrode surface discharge AC-plasma display panel. is there.
  • FIG. 2 is a block diagram showing the main part of the overall configuration of a conventional plasma display device.
  • FIG. 3 is a diagram showing a conventional example of the configuration of the X electrode extraction part of the plasma display panel force.
  • FIG. 4 is a view showing a first embodiment of a configuration of a portion for taking out an X electrode from a plasma display panel according to the present invention.
  • FIG. 5 is a diagram showing an example of the arrangement of components such as circuit boards when a conventional plasma display device is viewed from the back.
  • FIG. 6 is a diagram showing another example of the arrangement of components such as circuit boards when the conventional plasma display device is viewed from the back.
  • FIG. 7 is a diagram showing an example of the arrangement of components such as circuit boards when the back surface force of the plasma display device according to the present invention is viewed.
  • FIG. 8 is a view showing a second embodiment of the configuration of the portion for taking out the X electrode from the plasma display panel according to the present invention.
  • FIG. 9 is a view showing a third embodiment of a configuration of a portion for taking out an X electrode from a plasma display panel according to the present invention.
  • FIG. 10 is a diagram showing a fourth embodiment of the configuration of a portion for taking out an X electrode from a plasma display panel according to the present invention.
  • FIG. 11 is a diagram for explaining the relationship between a single-layer flexible cable and wiring on a glass substrate.
  • FIG. 12 is a cross-sectional view showing a cross-sectional configuration along line AA ′ of the configuration shown in FIG.
  • the main part of the overall configuration of the plasma display device of the present invention is the same as that shown in FIG. 2, and the internal configuration of the plasma display panel 21 is the same as that shown in FIG. However, the configuration of the X electrode extraction part from the plasma display panel 21 is different from the conventional one.
  • FIG. 4 is a view showing a first embodiment of a configuration of a portion for taking out an X electrode from the plasma display panel 21 according to the present invention.
  • the same components as those in FIGS. 1 and 2 are referred to by the same numerals, and a description thereof will be omitted.
  • odd-numbered X electrodes X—odd and even-numbered X electrodes X—even are provided! /.
  • the odd-numbered X electrodes X—odd are connected to each other and connected together for common driving, and are connected to one common electrode 51.
  • the even-numbered X electrodes X—even are connected to each other for common driving, and are combined into one, and are connected to one common electrode 52.
  • the common electrode 51 and the common electrode 52 are the last part of the wiring to be drawn out from the plasma display panel 21 in order to connect the X electrode from the plasma display panel 21 to the X electrode driving circuit 24. To do.
  • the odd-numbered X electrode X_odd is connected to one common electrode 52 provided on the glass substrate via a wiring pattern 44 provided on the glass substrate 15.
  • the even-numbered X electrode X—even is connected to the common electrode 51 via a conductor cable having an insulation coating (in this example, the connection wiring 45 of the single-layer flexible cable 41).
  • the conductor cable (connection wiring 45 of the single-layer flexible cable 41) is arranged so as to cross over the wiring pattern 44 existing on the glass substrate 15. More specifically, the even-numbered X electrode X—even is connected to the wiring pattern 43 provided on the glass substrate 15 via the single-layer flexible cable 41, and further on the glass substrate 15 via the wiring pattern 43. Connected to the common electrode 51 The
  • even-numbered X electrodes X—even connected to the common electrode 51 may be all even-numbered X electrodes X—even provided in the plasma display panel 21.
  • the odd-numbered X electrodes X—odd connected to the common electrode 52 may be all of the odd-numbered X electrodes X—odd provided in the plasma display panel 21.
  • the single-layer flexible cable 42 that connects all X electrodes of the plasma display panel 21 to the X electrode drive circuit 24 is a flexible cable that also has two connection wiring forces connected to the common electrode 51 and the common electrode 52, respectively. But ...
  • the even-numbered X electrode X—even is connected to the single-layer flexible cable 41.
  • the odd-numbered X electrode X—odd is connected to the single-layer flexible cable 41. It is good also as a structure connected to.
  • the even-numbered X electrode X—even is connected to one common electrode by the wiring pattern provided on the glass substrate 15.
  • one of the plurality of even-numbered X electrodes X—even and the plurality of odd-numbered X electrodes X—odd is provided on the glass substrate.
  • the wiring electrode is connected to one common electrode provided on the glass substrate, and the other plurality of electrodes are connected to one other common electrode via a conductor cable having an insulation coating.
  • the conductor cable is arranged so as to cross over the wiring pattern existing on the glass substrate.
  • FIGS. 5 to 7 are views for explaining further effects of the configuration of the X electrode lead-out portion according to the present invention shown in FIG.
  • FIG. 5 is a diagram showing an example of the arrangement of components such as circuit boards when a conventional plasma display device is viewed from the back.
  • the same components as those in FIG. 2 and FIG. 3 are referred to by the same numerals, and a description thereof will be omitted.
  • the plasma display device shown in FIG. 5 includes a plasma display panel 21, a two-layer flexible cable 31, a power supply circuit board 61, a signal processing circuit board 62, a Y drive circuit board 63, an X drive circuit board 64, and a scan driver. Board 65, address relay board 67, X relay board 68, and flexible cable 69 are included.
  • the power supply circuit board 61 is equipped with a power supply circuit that supplies power to each circuit portion.
  • the signal processing circuit board 62 is mounted with the signal processing circuit 27 of FIG.
  • the Y drive circuit board 63 carries the Y electrode drive circuit 23 of FIG.
  • the X drive circuit board 64 is equipped with the X electrode drive circuit 24 of FIG.
  • the scan driver board 65 includes the scan circuit 25 shown in FIG.
  • the scan circuit 25 of the scan driver board 65 is connected to a Y electrode disposed on the front surface of the plasma display panel 21 via a flexible cable 69.
  • the X electrode drive circuit 24 of the X drive circuit board 64 is connected to the X electrode disposed on the front surface of the plasma display panel 21 via the X relay board 68 and the plurality of two-layer flexible cables 31.
  • a plurality of small-sized two-layer flexible cables 31 are connected to one plasma display panel 21, and the X electrode X—odd is divided into several groups. Each group is composed of one two-layer flexible cable 31.
  • the X relay is used to connect a plurality of two-layer flexible cables 31 to the X drive circuit board 64.
  • a substrate 68 is required. Providing such an X relay board 68 leads to an increase in cost.
  • FIG. 6 is a diagram showing another example of the arrangement of components such as circuit boards when a conventional plasma display device is viewed from the back.
  • the same elements as those of FIG. 5 are referred to by the same numerals, and a description thereof will be omitted.
  • FIG. 7 is a diagram showing an example of the arrangement of components such as each circuit board when the back surface force of the plasma display device according to the present invention is viewed.
  • the same elements as those of FIG. 5 are referred to by the same numerals, and a description thereof will be omitted.
  • the arrangement example of the components shown in FIG. 7 corresponds to the configuration shown in FIG. 4, and the X electrode drive circuit 24 of the X drive circuit board 64 is connected to the plasma display via one single-layer flexible cable 42. Connected to the X electrode on the front of the panel 21.
  • This single-layer flexible cable 42 is a flexible cable that connects all the X electrodes of the plasma display panel 21 to the X electrode drive circuit 24.
  • the cost of working on the flexible cable can be reduced compared to the conventional configuration shown in Fig. 3, so all even-numbered X electrodes X-even are combined into one. All the odd-numbered X electrodes X—odd are combined into one, and the electrodes can be pulled out by one single-layer flexible cable 42.
  • the single-layer flexible cable 42 without using the X relay board can be directly connected to the X drive circuit board 64. Therefore, the cost can be further reduced as compared with the case where the X relay board 68 is required as in the configurations of FIGS.
  • FIG. 8 is a diagram showing a second embodiment of the configuration of the portion for taking out the X electrode from the plasma display panel 21 according to the present invention.
  • the same components as those of FIG. 4 are referred to by the same numerals, and a description thereof will be omitted.
  • all X electrodes on the plasma display panel 21 are grouped, and one common electrode 51 and one common electrode 52 are provided for each group. Similarly, one wiring pattern 43 and one wiring pattern 44 are provided for each group. The force that a plurality of connection wirings 45 are also provided for each group
  • the single-layer flexible cable 41 may be composed of one flexible board as a whole.
  • the configuration of the connection between the even-numbered X electrode X—even and the common electrode 51 and the configuration of the connection between the odd-numbered X electrode X—odd and the common electrode 52 are the same as those shown in FIG. It is.
  • one common electrode 51 is not connected to all even-numbered X electrodes X even provided on the plasma display panel 21, but is a part of even-numbered X-electrodes. Only connected to electrode X—even. This is because when the conductor widths of the common electrode 51 and the wiring pattern 43 are the same, the number of even-numbered X electrodes X—even is compared to a configuration in which all even-numbered X electrodes X—even are combined into one. These groups can be divided into these groups and combined into one group for each group. This is a force that can reduce the influence of impedance on the common electrode 51 and wiring pattern 43 in the part where the electrodes are combined. . The same applies to the common electrode 52 and the wiring pattern 44 provided for the odd-numbered X electrodes X-o dd.
  • FIG. 9 is a diagram showing a third embodiment of the configuration of the portion for taking out the X electrode from the plasma display panel 21 according to the present invention.
  • the same components as those in FIG. 4 or FIG. 8 are referred to by the same numerals, and a description thereof will be omitted.
  • the illustration of the glass substrate 15 is omitted.
  • the common electrode 51 is widened to be the common electrode 51 A, and the common electrode 52 is widened to provide the common electrode 52 A.
  • all or a part of the wiring width of the wiring pattern 43 and the wiring pattern 44 is increased to provide the wiring pattern 43A and the wiring pattern 44A, respectively.
  • the wide portions of the common electrodes 51A and 52A and the wiring patterns 43A and 44A may be configured as mesh electrodes, respectively.
  • the entire configuration is such that all even-numbered X electrodes X—even are connected to one common electrode and all odd-numbered X electrodes X—as shown in FIG.
  • the odd number may be connected to one common electrode.
  • even-numbered X electrodes X—even and odd-numbered X electrodes X—odd may be divided into a plurality of groups and grouped into one common electrode for each group. Good.
  • FIG. 10 is a diagram showing a fourth embodiment of the configuration of the portion for taking out the X electrode from the plasma display panel 21 according to the present invention.
  • the same elements as those of FIG. 4 or FIG. 8 are referred to by the same numerals, and a description thereof will be omitted.
  • the illustration of the glass substrate 15 is omitted.
  • a single-layer flexible cable 41 A is provided instead of the single-layer flexible cable 41.
  • the wiring pattern 43 is included, and even-numbered X electrodes X—even are combined into one by a single-layer flexible cable 41A, and then connected to one common electrode 51 provided on the glass substrate.
  • the wiring pattern 43 is not formed on the glass substrate 15 but may be formed inside the single-layer flexible cable.
  • FIG. 11 is a diagram for explaining the relationship between the single-layer flexible cable 41 and the wiring on the glass substrate.
  • the same elements as those of FIG. 9 are referred to by the same numerals, and a description thereof will be omitted.
  • the illustration of the glass substrate 15 is omitted.
  • even-numbered X electrodes X—even and odd-numbered X electrodes X—odd are formed on the glass substrate! Between even-numbered X electrode X—even and odd-numbered X electrode X—odd, even-numbered Y electrode Y—even or odd-numbered Y electrode Y—odd is formed on the glass substrate,
  • Even-numbered Y electrode Y—even or odd-numbered Y electrode Y—odd is formed on the glass substrate.
  • the odd-numbered X electrodes X—odd are connected to the wiring pattern 44A formed on the glass substrate.
  • the even-numbered X electrode X—even is connected to one end of the connection wiring 45 of the single-layer flexible cable 41.
  • the other end of the connection wiring 45 of the single-layer flexible cable 41 is connected to the wiring pattern 43A.
  • FIG. 12 is a cross-sectional view showing a cross-sectional configuration along line AA ′ of the configuration shown in FIG.
  • FIG. 12 the same elements as those of FIG. 11 are referred to by the same numerals, and a description thereof will be omitted.
  • the even-numbered X electrode X—even formed on the glass substrate 15 is connected to one end of the connection wiring 45 of the single-layer flexible cable 41.
  • the other end of the connection wiring 45 of the single-layer flexible cable 41 is connected to the wiring pattern 43A.
  • the odd-numbered X electrode X odd (see Fig. 1) is directly below the connection wiring 45 of the single-layer flexible cable 41.
  • a wiring pattern 44A to be connected to 1) is formed on the glass substrate 15. That is, the single-layer flexible cable 41 is arranged on the wiring pattern 44A formed on the glass substrate 15 so as to cover and cover the wiring pattern 44A.
  • connection wiring 45 of the single-layer flexible cable 41 is covered with insulation, so that the connection wiring 45 and the wiring pattern 44A are not electrically connected. If the wiring pattern 44A and the connection wiring 45 are insulated from each other in this way, the single-layer flexible cable 41 should be used if the connection wiring 45 can be crossed over the wiring pattern 44A. Is not necessarily required. That is, for example, a plurality of conductor cables are connected to a plurality of even-numbered X electrodes X-even by using individual conductor cables that are individually insulated and coated as connection wiring 45, and these conductor cables are connected to each other. It may be configured to cross over the wiring pattern 44A. However, there is an advantage that the force assembly using the single layer flexible cable 41 is much easier.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

Provided is a plasma display device comprising a plasma display panel including a plurality of Y-electrodes and a plurality of X-electrodes arranged on a glass substrate, and an X-electrode drive circuit for driving the X-electrodes of even orders and the X-electrodes of odd orders independently of each other. The plasma display device is characterized in that, of the first plural electrodes of all or a part of the even X-electrodes and the second plural electrodes of all or a part of the odd X-electrodes, the plural electrodes of one side are connected through a wiring pattern formed on the glass substrate with one common electrode formed on the glass substrate whereas the plural electrodes of the other side are connected through a conductor cable having an insulating sheath with another common electrode, and in that the conductor cable is arranged across the wiring pattern existing over the glass substrate.

Description

明 細 書  Specification
プラズマディスプレイ装置  Plasma display device
技術分野  Technical field
[0001] 本発明は、一般にプラズマディスプレイ装置に関し、詳しくはプラズマディスプレイ 装置の放電電極の配線構造に関する。  TECHNICAL FIELD [0001] The present invention generally relates to a plasma display device, and more particularly to a wiring structure of discharge electrodes of a plasma display device.
背景技術  Background art
[0002] フラットディスプレイパネルを利用したフラットディスプレイ装置は、従来のブラウン 管に置き換わり、小型ディスプレイ力 大型ディスプレイまで広 、範囲に渡り実用化 が進められている。特に大型ディスプレイの分野では、プラズマディスプレイパネルが その原理構成上の特性力も優位であり、普及の主流として商品化が図られている。  [0002] Flat display devices using flat display panels have been put to practical use over a wide range, replacing conventional cathode-ray tubes with small display power and large displays. Especially in the field of large displays, plasma display panels have superior characteristics in terms of their principle structure, and are being commercialized as the mainstream.
[0003] 図 1は、 3電極型面放電 AC—プラズマディスプレイパネルの断面模式図を示した 図である。  FIG. 1 is a schematic cross-sectional view of a three-electrode surface discharge AC-plasma display panel.
[0004] 3電極型面放電 AC—プラズマディスプレイパネルは、前面ガラス基板 15と背面ガ ラス基板 11の 2枚のガラス基板によって構成されており、前面ガラス基板 15には、維 持電極の BUS電極 17と透明電極 16とで構成される共通維持電極 (X電極)及び走 查電極 (Y電極)が形成される。これらの X電極及び Y電極は交互に配置されている。 X電極及び Y電極上に誘電体層 18が形成され、誘電体層 18の上には MgO等の保 護膜 19が形成される。  [0004] A three-electrode surface discharge AC—plasma display panel is composed of two glass substrates, a front glass substrate 15 and a back glass substrate 11. The front glass substrate 15 has a BUS electrode as a sustain electrode. A common sustain electrode (X electrode) and a scanning electrode (Y electrode) composed of 17 and the transparent electrode 16 are formed. These X electrodes and Y electrodes are arranged alternately. A dielectric layer 18 is formed on the X and Y electrodes, and a protective film 19 such as MgO is formed on the dielectric layer 18.
[0005] BUS電極 17は高い導電性を有し、透明電極 16の導電性を補うよう機能する。誘電 体層 13は壁電荷による放電を維持するよう機能し、低融点ガラス力 なる。  [0005] The BUS electrode 17 has high conductivity and functions to supplement the conductivity of the transparent electrode 16. The dielectric layer 13 functions to maintain a discharge due to wall charges and has a low melting point glass force.
[0006] 背面ガラス基板 11には X電極及び Y電極と直交する形でアドレス電極 12が形成さ れる。このアドレス電極 12の上に誘電体層 13が形成され、更に誘電体層 13上にお いてアドレス電極 12の間隙に対応する位置に隔壁 14が形成されている。  An address electrode 12 is formed on the rear glass substrate 11 so as to be orthogonal to the X electrode and the Y electrode. A dielectric layer 13 is formed on the address electrode 12, and a partition wall 14 is formed on the dielectric layer 13 at a position corresponding to the gap between the address electrodes 12.
[0007] 隔壁 14間には誘電体層 13及び隔壁側壁を覆うように蛍光体層 R, G, Bが形成さ れる。この蛍光体層 R, G, Bは赤、緑、青の 3色に対応する。プラズマディスプレイパ ネル駆動時には X電極と Y電極との間の放電によって紫外線が生じ、蛍光体層 R, G , Bが紫外線で励起され発光することにより画像表示が行なわれる。 [0008] X電極及び Y電極が設けられた前面とアドレス電極 12が設けられた背面との間に は、ネオンとキセノンの混合ガス等の放電ガスが充填される。 X電極及び Υ電極とアド レス電極とが交差する部分の空間が、 1つの放電セル (画素)を構成する。 [0007] Between the barrier ribs 14, phosphor layers R, G, and B are formed so as to cover the dielectric layer 13 and the barrier rib side walls. The phosphor layers R, G, and B correspond to three colors of red, green, and blue. When the plasma display panel is driven, ultraviolet rays are generated by the discharge between the X electrode and the Y electrode, and the phosphor layers R, G, and B are excited by the ultraviolet rays and emit light to display an image. [0008] A discharge gas such as a mixed gas of neon and xenon is filled between the front surface on which the X electrode and the Y electrode are provided and the back surface on which the address electrode 12 is provided. The space where the X electrode, the heel electrode, and the address electrode intersect constitute one discharge cell (pixel).
[0009] 図 2は、従来のプラズマディスプレイ装置の全体構成の主要部を示すブロック図で ある。図 2に示されるプラズマディスプレイ装置は、プラズマディスプレイパネル 21、ァ ドレス電極駆動回路 22、 Υ電極駆動回路 23、 X電極駆動回路 24、スキャン回路 25、 駆動制御回路 26、及び信号処理回路 27を含む。  FIG. 2 is a block diagram showing the main part of the overall configuration of a conventional plasma display device. The plasma display device shown in FIG. 2 includes a plasma display panel 21, an address electrode drive circuit 22, an electrode drive circuit 23, an X electrode drive circuit 24, a scan circuit 25, a drive control circuit 26, and a signal processing circuit 27. .
[0010] 信号処理回路 27は、外部より入力されるクロック信号、表示データ、垂直同期信号 、水平同期信号等を受け取り、垂直同期信号に基づいて内部のフレームメモリに RG Βの表示データを書き込む等の作業を行う。駆動制御回路 26は、アドレス電極駆動 回路 22、 Υ電極駆動回路 23、 X電極駆動回路 24、及びスキャン回路 25を制御して 、フレームメモリに格納された表示データをプラズマディスプレイパネル 21に表示す る。  [0010] The signal processing circuit 27 receives an externally input clock signal, display data, vertical synchronization signal, horizontal synchronization signal, etc., and writes display data of RG to the internal frame memory based on the vertical synchronization signal, etc. Do the work. The drive control circuit 26 controls the address electrode drive circuit 22, the negative electrode drive circuit 23, the X electrode drive circuit 24, and the scan circuit 25 to display the display data stored in the frame memory on the plasma display panel 21. .
[0011] 具体的には、駆動制御回路 26は、クロック信号に同期してフレームメモリの表示デ ータに応じたアドレス制御信号を生成する。アドレス制御信号は、アドレス電極駆動 回路 22に供給される。駆動制御回路 26は更に、垂直同期信号及び水平同期信号 に同期して、スキャン回路 25を制御するスキャンドライバ制御信号を生成する。スキヤ ンドライバ制御信号は、スキャン回路 25に供給される。駆動制御回路 26は更に、垂 直同期信号及び水平同期信号に同期して、 Υ電極駆動回路 23及び X電極駆動回 路 24を駆動する。  Specifically, the drive control circuit 26 generates an address control signal corresponding to the display data of the frame memory in synchronization with the clock signal. The address control signal is supplied to the address electrode drive circuit 22. The drive control circuit 26 further generates a scan driver control signal for controlling the scan circuit 25 in synchronization with the vertical synchronization signal and the horizontal synchronization signal. The scan driver control signal is supplied to the scan circuit 25. The drive control circuit 26 further drives the heel electrode drive circuit 23 and the X electrode drive circuit 24 in synchronization with the vertical synchronization signal and the horizontal synchronization signal.
[0012] アドレス電極駆動回路 22は、表示データに応じたアドレス電圧パルスをクロック信 号に同期して各アドレス電極 A1乃至 Am (図 1のアドレス電極 12に相当)に印加する 。 Y電極駆動回路 23は、スキャン回路 25を介して、各 Y電極 Y1乃至 Ynを独立して 駆動する。 X電極駆動回路 24は、 X電極 XI乃至 Χηの偶数番目の電極を共通に駆 動するとともに、それとは独立して X電極 XI乃至 Χηの奇数番目の電極を共通に駆動 する。  The address electrode drive circuit 22 applies an address voltage pulse corresponding to display data to each address electrode A1 to Am (corresponding to the address electrode 12 in FIG. 1) in synchronization with the clock signal. The Y electrode drive circuit 23 drives each of the Y electrodes Y1 to Yn independently via the scan circuit 25. The X electrode drive circuit 24 drives the even-numbered electrodes of the X electrodes XI to Χη in common, and independently drives the odd-numbered electrodes of the X electrodes XI to Χη.
[0013] アドレス電極駆動回路 22、 Υ電極駆動回路 23、 X電極駆動回路 24、及びスキャン 回路 25の動作により、リセット期間において各表示画素の初期化を行い、次のアドレ ス期間にお 、て表示する画素を選択し、最後のサスティン期間にお 、て選択された 画素を発光させる。 [0013] By the operations of the address electrode drive circuit 22, the Υ electrode drive circuit 23, the X electrode drive circuit 24, and the scan circuit 25, each display pixel is initialized in the reset period and the next address is set. The pixel to be displayed is selected during the scan period, and the selected pixel is caused to emit light during the last sustain period.
[0014] リセット期間においては、 Y電極駆動回路 23内部のリセット Zアドレス電圧発生回 路がリセット電圧を発生し、スキャン回路 25がリセット電圧を全ての Y電極 Y1乃至 Yn に印加する。また X電極駆動回路 24内部のリセット Ζアドレス電圧発生回路が発生し たリセット電圧が、全ての X電極 XI乃至 Xnに印加される。  In the reset period, the reset Z address voltage generation circuit in the Y electrode drive circuit 23 generates a reset voltage, and the scan circuit 25 applies the reset voltage to all the Y electrodes Y1 to Yn. The reset voltage generated by the reset / address voltage generator in the X electrode drive circuit 24 is applied to all the X electrodes XI to Xn.
[0015] アドレス期間においては、スキャン回路 25が、 Y電極駆動回路 23のリセット Zァドレ ス電圧発生回路の発生したアドレス電圧により各 Y電極 Y1乃至 Ynを一本ずつ順次 駆動しながら、アドレス電極駆動回路 22が、表示データに応じた各水平ラインのーラ イン分のアドレス電圧パルスをアドレス電極 A1乃至 Amに並列に印加する。これによ り表示するセルを選択して、各表示セル (画素)の表示 ·不表示 (選択 Z非選択)を制 御する。  [0015] In the address period, the scan circuit 25 drives the address electrodes while sequentially driving the Y electrodes Y1 to Yn one by one by the address voltage generated by the reset Z address voltage generation circuit of the Y electrode drive circuit 23. The circuit 22 applies address voltage pulses corresponding to the lines of each horizontal line corresponding to the display data to the address electrodes A1 to Am in parallel. This selects the cell to be displayed and controls the display / non-display (selection Z non-selection) of each display cell (pixel).
[0016] サスティン期間においては、 Y電極駆動回路 23内部のサスティンノ ルス回路により 発生した維持電圧ノ ルスを、スキャン回路 25を介して Y電極 Y1乃至 Ynに印加する と共に、 X電極駆動回路 24内部のサスティンパルス回路により発生した維持電圧パ ルスを X電極 XI乃至 Xnに印加する。維持電圧パルスを印加することで、表示セルと して選択されたセルにおいて、 X電極と Y電極の間に維持放電を発生させる。  [0016] During the sustain period, the sustain voltage noise generated by the sustain noise circuit in the Y electrode drive circuit 23 is applied to the Y electrodes Y1 to Yn via the scan circuit 25, and the X electrode drive circuit 24 The sustain voltage pulse generated by the sustain pulse circuit is applied to the X electrodes XI to Xn. By applying a sustain voltage pulse, a sustain discharge is generated between the X electrode and the Y electrode in the cell selected as the display cell.
[0017] この維持放電を発生させる際、前述のように、 X電極駆動回路 24により X電極 XI乃 至 Xnの偶数番目の電極を共通に駆動するとともに、それとは独立して X電極 XI乃至 Xnの奇数番目の電極を共通に駆動する。これ〖こより、 ALIS (Alternate Lighting of S urfaces)方式による電極を駆動する。 ALIS方式は、低コストィ匕及び高精細化のため に全ての電極の隙間を表示ラインとして活用する方式である。プラズマディスプレイ パネル 21では、 X電極 XI乃至 Xnと Y電極 Y1乃至 Ynとの間の全ての表示ライン、即 ち Y1と XIの間、 XIと Y2の間、 Y2と X2との間、 X2と Y3の間等にある全ての表示ラ インを、同時に点灯させることは出来ない。そこで 1フレームを 2つのフィールドに分割 し、第 1フィールドでは奇数ライン (例えば、 Y1と XIの間、 Y2と X2の間)の表示を行 い、第 2フィールドでは偶数ライン (例えば、 XIと Y2の間、 X2と Y3の間)の表示を実 施する。このような表示を実現するために、 ALIS方式で用いる維持電極駆動回路で は、奇数番目の X電極 XI、 X3、 · · ·と偶数番目の X電極 Χ2、 Χ4、 · · 'とに別々の電 圧を印加可能なように構成されて 、る。 When the sustain discharge is generated, as described above, the X-electrode drive circuit 24 drives the X-th electrode evenly from the X-electrodes XI to Xn, and independently from the X-electrodes XI to Xn. Are driven in common. From this, the ALIS (Alternate Lighting of Surfaces) type electrode is driven. The ALIS method uses all electrode gaps as display lines for low cost and high definition. In the plasma display panel 21, all display lines between the X electrodes XI to Xn and the Y electrodes Y1 to Yn, that is, between Y1 and XI, between XI and Y2, between Y2 and X2, and between X2 and Y3 It is not possible to turn on all the display lines in between. Therefore, one frame is divided into two fields, odd lines (for example, between Y1 and XI, between Y2 and X2) are displayed in the first field, and even lines (for example, XI and Y2) are displayed in the second field. Between X2 and Y3). In order to realize such a display, a sustain electrode drive circuit used in the ALIS method is used. Are configured so that different voltages can be applied to the odd-numbered X electrodes XI, X3,... And the even-numbered X electrodes Χ2, Χ4,.
[0018] 図 3は、プラズマディスプレイパネル 21からの X電極の取り出し部分の構成の従来 例を示す図である。図 3において、図 1及び図 2と同一の構成要素は同一の番号で 参照し、その説明は省略する。  FIG. 3 is a diagram showing a conventional example of the configuration of a portion where an X electrode is taken out from the plasma display panel 21. In FIG. 3, the same components as those in FIGS. 1 and 2 are referred to by the same numerals, and a description thereof will be omitted.
[0019] プラズマディスプレイパネル 21のガラス基板 15上には、奇数番目の X電極 X— odd 及び偶数番目の X電極 X— evenが設けられている。これらの X電極を X電極駆動回 路 24に電気的に接続するために、 2層フレキシブルケーブル 31が用いられる。 2層 フレキシブルケーブル 31の第 1層には配線パターン 32が設けられ、第 2層には配線 パターン 33が設けられて!/、る。  On the glass substrate 15 of the plasma display panel 21, odd-numbered X electrodes X—odd and even-numbered X electrodes X—even are provided. In order to electrically connect these X electrodes to the X electrode drive circuit 24, a two-layer flexible cable 31 is used. Two-layer flexible cable 31 has a wiring pattern 32 on the first layer and a wiring pattern 33 on the second layer.
[0020] 配線パターン 32は奇数番目の X電極 X_oddに接続される。これらの接続された X 電極 X— oddの全てを、 2層フレキシブルケーブル 31内で 1つに纏めて互いに電気 的に接続する。また配線パターン 33は偶数番目の X電極 X_evenに接続される。こ れらの接続された偶数番目の X電極 X— evenの全てを、 2層フレキシブルケーブル 3 1内で 1つに纏めて互 ヽに電気的に接続する。  The wiring pattern 32 is connected to the odd-numbered X electrode X_odd. All these connected X electrodes X—odd are grouped together in the two-layer flexible cable 31 and electrically connected to each other. The wiring pattern 33 is connected to the even-numbered X electrode X_even. All of these connected even-numbered X electrodes X—even are connected together in a two-layer flexible cable 31 and electrically connected to each other.
[0021] 一般に、 1つの 2層フレキシブルケーブル 31の配線パターン 32は、プラズマデイス プレイパネル 21に設けられた全ての X電極 X— oddに接続されるのではなぐ一部の X電極 X— oddにのみ接続される。また同様に、配線パターン 33は、プラズマデイス プレイパネル 21に設けられた全ての X電極 X— evenに接続されるのではなぐ一部 の X電極 X— evenにのみ接続される。これは、全ての X電極に接続できるような 2層フ レキシブルケーブル 31を製造すると、そのサイズがプラズマディスプレイパネル 21の 縦の長さと同等となってしまい、そのような巨大なサイズの 2層フレキシブルケーブル 31は高価なものとなるからである。従って一般には、 1つのプラズマディスプレイパネ ル 21に対して、サイズの小さな複数の 2層フレキシブルケーブル 31を接続し、 X電極 X— oddを幾つかのグループに分けて各グループ毎に 1つの 2層フレキシブルケープ ル 31で纏める構成とされる。  [0021] Generally, the wiring pattern 32 of one two-layer flexible cable 31 is not connected to all X electrodes X—odd provided on the plasma display panel 21. Only connected. Similarly, the wiring pattern 33 is not connected to all the X electrodes X—even provided on the plasma display panel 21 but only to some X electrodes X—even. This is because when a two-layer flexible cable 31 that can be connected to all X electrodes is manufactured, its size is the same as the vertical length of the plasma display panel 21, and such a two-layer flexible cable with such a large size is used. This is because the cable 31 is expensive. Therefore, in general, a small number of two-layer flexible cables 31 are connected to one plasma display panel 21, and the X electrode X—odd is divided into several groups, one layer for each group. The structure is summarized in flexible cable 31.
[0022] しかしそのサイズに関わらず、 2層フレキシブルケーブル 31のような多層フレキシブ ルケーブルは、単層のフレキシブルケーブルと比較して高価である。従って、 2層フレ キシブルケーブル 31を大量に使用すると、プラズマディスプレイ装置のコストアップ につながるという問題がある。 However, regardless of its size, a multilayer flexible cable such as the two-layer flexible cable 31 is more expensive than a single-layer flexible cable. Therefore, the two-layer frame There is a problem that the use of a large amount of the kibble cable 31 leads to an increase in the cost of the plasma display device.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0023] 以上を鑑みて本発明は、 2層フレキシブルケーブルを使用することなく偶数番目の X電極及び奇数番目の X電極をそれぞれ別々に 1つの電極に纏めることが可能なプ ラズマディスプレイ装置を提供することを目的とする。 [0023] In view of the above, the present invention provides a plasma display device that can separately combine even-numbered X electrodes and odd-numbered X electrodes into one electrode without using a two-layer flexible cable. The purpose is to do.
課題を解決するための手段  Means for solving the problem
[0024] プラズマディスプレイ装置は、ガラス基板上に配置された複数の Y電極と複数の X 電極とを含むプラズマディスプレイパネルと、 X電極のうちで偶数番目の X電極と奇数 番目の X電極とをそれぞれ独立に駆動する X電極駆動回路を含み、偶数番目の X電 極の全部又は一部である第 1の複数の電極と奇数番目の X電極の全部又は一部で ある第 2の複数の電極とのうちで、一方の複数の電極はガラス基板上に設けた配線 ノ ターンを介してガラス基板上に設けた 1つの共通電極に接続され、他方の複数の 電極は絶縁被覆を有する導体ケーブルを介して 1つの別の共通電極に接続され、そ の導体ケーブルがガラス基板上に存在する上記配線パターンの上を横切るように配 置されることを特徴とする。  [0024] A plasma display device includes a plasma display panel including a plurality of Y electrodes and a plurality of X electrodes arranged on a glass substrate, and an even-numbered X electrode and an odd-numbered X electrode among the X electrodes. A first plurality of electrodes that are all or part of even-numbered X electrodes and a second plurality of electrodes that are all or part of odd-numbered X electrodes, each including an X-electrode drive circuit that is driven independently Among these, one of the plurality of electrodes is connected to one common electrode provided on the glass substrate through a wiring pattern provided on the glass substrate, and the other plurality of electrodes is a conductor cable having an insulation coating. The conductor cable is arranged so as to cross over the wiring pattern existing on the glass substrate.
発明の効果  The invention's effect
[0025] 本発明の少なくとも 1つの実施例によれば、従来のように 2層のフレキシブルケープ ルを使用する必要が無くなり、コストを削減することができる。また導体ケーブルとして 単層フレキシブルケーブルを用いた場合、単層フレキシブルケーブルのサイズを従 来の構成の 2層フレキシブルケーブルに比べて小さくすることができるので、更にコス トを削減することができる。またプラズマディスプレイパネルからの配線引き出し部分 では、既に電極が共通化されているので、プラズマディスプレイパネルに配線を結合 するコネクタ部分のサイズを小さくすることができ、更にコストを削減することができる。 図面の簡単な説明  [0025] According to at least one embodiment of the present invention, it is not necessary to use a two-layer flexible cable as in the prior art, and the cost can be reduced. In addition, when a single-layer flexible cable is used as the conductor cable, the size of the single-layer flexible cable can be made smaller than that of the conventional two-layer flexible cable, so that the cost can be further reduced. In addition, since the electrode is already used in the wiring lead-out portion from the plasma display panel, the size of the connector portion for connecting the wiring to the plasma display panel can be reduced, and the cost can be further reduced. Brief Description of Drawings
[0026] [図 1]3電極型面放電 AC—プラズマディスプレイパネルの断面模式図を示した図で ある。 [0026] [Fig. 1] A cross-sectional schematic view of a three-electrode surface discharge AC-plasma display panel. is there.
[図 2]従来のプラズマディスプレイ装置の全体構成の主要部を示すブロック図である。  FIG. 2 is a block diagram showing the main part of the overall configuration of a conventional plasma display device.
[図 3]プラズマディスプレイパネル力らの X電極の取り出し部分の構成の従来例を示 す図である。 FIG. 3 is a diagram showing a conventional example of the configuration of the X electrode extraction part of the plasma display panel force.
[図 4]本発明によるプラズマディスプレイパネルからの X電極の取り出し部分の構成の 第 1実施例を示す図である。  FIG. 4 is a view showing a first embodiment of a configuration of a portion for taking out an X electrode from a plasma display panel according to the present invention.
[図 5]従来のプラズマディスプレイ装置を背面力 見たときの各回路基板等の構成部 品の配置の一例を示す図である。  FIG. 5 is a diagram showing an example of the arrangement of components such as circuit boards when a conventional plasma display device is viewed from the back.
[図 6]従来のプラズマディスプレイ装置を背面力 見たときの各回路基板等の構成部 品の配置の別の一例を示す図である。  FIG. 6 is a diagram showing another example of the arrangement of components such as circuit boards when the conventional plasma display device is viewed from the back.
[図 7]本発明によるプラズマディスプレイ装置を背面力 見たときの各回路基板等の 構成部品の配置の一例を示す図である。  FIG. 7 is a diagram showing an example of the arrangement of components such as circuit boards when the back surface force of the plasma display device according to the present invention is viewed.
[図 8]本発明によるプラズマディスプレイパネルからの X電極の取り出し部分の構成の 第 2実施例を示す図である。  FIG. 8 is a view showing a second embodiment of the configuration of the portion for taking out the X electrode from the plasma display panel according to the present invention.
[図 9]本発明によるプラズマディスプレイパネルからの X電極の取り出し部分の構成の 第 3実施例を示す図である。  FIG. 9 is a view showing a third embodiment of a configuration of a portion for taking out an X electrode from a plasma display panel according to the present invention.
[図 10]本発明によるプラズマディスプレイパネルからの X電極の取り出し部分の構成 の第 4実施例を示す図である。  FIG. 10 is a diagram showing a fourth embodiment of the configuration of a portion for taking out an X electrode from a plasma display panel according to the present invention.
[図 11]単層フレキシブルケーブルとガラス基板上の配線との関係を説明するための 図である。  FIG. 11 is a diagram for explaining the relationship between a single-layer flexible cable and wiring on a glass substrate.
[図 12]図 11に示す構成の線 A—A'に沿った断面の構成を示す断面図である。  12 is a cross-sectional view showing a cross-sectional configuration along line AA ′ of the configuration shown in FIG.
符号の説明 Explanation of symbols
15 ガラス基板 15 Glass substrate
21 プラズマディスプレイパネル  21 Plasma display panel
41 単層フレキシブルケーブル 41 Single layer flexible cable
42 単層フレキシブルケーブル 42 Single layer flexible cable
43 配線パターン 43 Wiring pattern
44 配線パターン 45 接続配線 44 Wiring pattern 45 Connection wiring
51 共通電極  51 Common electrode
52 共通電極  52 Common electrode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下に、本発明の実施例を添付の図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0029] 本発明のプラズマディスプレイ装置の全体構成の主要部は図 2に示すものと同一 であり、またプラズマディスプレイパネル 21の内部の構成は図 1に示すものと同一で ある。但し、プラズマディスプレイパネル 21からの X電極の取り出し部分の構成が従 来のものとは異なる。 The main part of the overall configuration of the plasma display device of the present invention is the same as that shown in FIG. 2, and the internal configuration of the plasma display panel 21 is the same as that shown in FIG. However, the configuration of the X electrode extraction part from the plasma display panel 21 is different from the conventional one.
[0030] 図 4は、本発明によるプラズマディスプレイパネル 21からの X電極の取り出し部分の 構成の第 1実施例を示す図である。図 4において、図 1及び図 2と同一の構成要素は 同一の番号で参照し、その説明は省略する。  FIG. 4 is a view showing a first embodiment of a configuration of a portion for taking out an X electrode from the plasma display panel 21 according to the present invention. In FIG. 4, the same components as those in FIGS. 1 and 2 are referred to by the same numerals, and a description thereof will be omitted.
[0031] プラズマディスプレイパネル 21のガラス基板 15上には、奇数番目の X電極 X— odd 及び偶数番目の X電極 X— evenが設けられて!/、る。奇数番目の X電極 X— oddは、 共通駆動のために互 、に接続されて 1つに纏められ、 1つの共通電極 51に接続され る。また偶数番目の X電極 X— evenは、共通駆動のために互いに接続されて 1つに 纏められ、 1つの共通電極 52に接続される。ここで説明の便宜上、共通電極 51及び 共通電極 52は、 X電極をプラズマディスプレイパネル 21から X電極駆動回路 24へ接 続するために、プラズマディスプレイパネル 21内から引き出すべき配線の最終部分 であるとする。  [0031] On the glass substrate 15 of the plasma display panel 21, odd-numbered X electrodes X—odd and even-numbered X electrodes X—even are provided! /. The odd-numbered X electrodes X—odd are connected to each other and connected together for common driving, and are connected to one common electrode 51. The even-numbered X electrodes X—even are connected to each other for common driving, and are combined into one, and are connected to one common electrode 52. For convenience of explanation here, it is assumed that the common electrode 51 and the common electrode 52 are the last part of the wiring to be drawn out from the plasma display panel 21 in order to connect the X electrode from the plasma display panel 21 to the X electrode driving circuit 24. To do.
[0032] 奇数番目の X電極 X_oddは、ガラス基板 15上に設けた配線パターン 44を介して ガラス基板上に設けた 1つの共通電極 52に接続される。偶数番目の X電極 X— even は絶縁被覆を有する導体ケーブル (この例では単層フレキシブルケーブル 41の接続 配線 45)を介して共通電極 51に接続される。この際、導体ケーブル (単層フレキシブ ルケーブル 41の接続配線 45)がガラス基板 15上に存在する配線パターン 44の上を 横切るように配置される。より詳細には、偶数番目の X電極 X— evenは、単層フレキ シブルケーブル 41を介してガラス基板 15上に設けた配線パターン 43に接続され、 更にその配線パターン 43を介してガラス基板 15上に設けた共通電極 51に接続され る。 The odd-numbered X electrode X_odd is connected to one common electrode 52 provided on the glass substrate via a wiring pattern 44 provided on the glass substrate 15. The even-numbered X electrode X—even is connected to the common electrode 51 via a conductor cable having an insulation coating (in this example, the connection wiring 45 of the single-layer flexible cable 41). At this time, the conductor cable (connection wiring 45 of the single-layer flexible cable 41) is arranged so as to cross over the wiring pattern 44 existing on the glass substrate 15. More specifically, the even-numbered X electrode X—even is connected to the wiring pattern 43 provided on the glass substrate 15 via the single-layer flexible cable 41, and further on the glass substrate 15 via the wiring pattern 43. Connected to the common electrode 51 The
[0033] ここで共通電極 51に接続される偶数番目の X電極 X— evenは、プラズマディスプレ ィパネル 21に設けられる偶数番目の X電極 X— evenの全部であってよい。また共通 電極 52に接続される奇数番目の X電極 X— oddは、プラズマディスプレイパネル 21 に設けられる奇数番目の X電極 X— oddの全部であってよい。この場合、プラズマデ イスプレイパネル 21の全 X電極を X電極駆動回路 24に接続する単層フレキシブルケ 一ブル 42は、共通電極 51及び共通電極 52にそれぞれ接続される 2本の接続配線 力もなるフレキシブルケーブルであってよ 、。  Here, even-numbered X electrodes X—even connected to the common electrode 51 may be all even-numbered X electrodes X—even provided in the plasma display panel 21. The odd-numbered X electrodes X—odd connected to the common electrode 52 may be all of the odd-numbered X electrodes X—odd provided in the plasma display panel 21. In this case, the single-layer flexible cable 42 that connects all X electrodes of the plasma display panel 21 to the X electrode drive circuit 24 is a flexible cable that also has two connection wiring forces connected to the common electrode 51 and the common electrode 52, respectively. But ...
[0034] なお上記説明では、単層フレキシブルケーブル 41に接続されるのは偶数番目の X 電極 X— evenであるとした力 逆に奇数番目の X電極 X— oddを単層フレキシブルケ 一ブル 41に接続する構成としてもよい。この場合、偶数番目の X電極 X— evenは、 ガラス基板 15上に設けられる配線パターンにより 1つの共通電極に接続されることに なる。  In the above description, it is assumed that the even-numbered X electrode X—even is connected to the single-layer flexible cable 41. On the contrary, the odd-numbered X electrode X—odd is connected to the single-layer flexible cable 41. It is good also as a structure connected to. In this case, the even-numbered X electrode X—even is connected to one common electrode by the wiring pattern provided on the glass substrate 15.
[0035] このように図 4に示す構成では、複数の偶数番目の X電極 X— evenと複数の奇数 番目の X電極 X— oddとのうちで、一方の複数の電極はガラス基板上に設けた配線 ノ ターンを介してガラス基板上に設けた 1つの共通電極に接続され、他方の複数の 電極は絶縁被覆を有する導体ケーブルを介して 1つの別の共通電極に接続される。 またその際、導体ケーブルがガラス基板上に存在する配線パターンの上を横切るよう に配置される。このような構成とすることで、従来のように 2層のフレキシブルケーブル を使用する必要が無くなり、コストを削減することができる。また単層フレキシブルケー ブル 41のサイズを図 3に示す従来の構成の 2層フレキシブルケーブル 31に比べて 小さくすることができるので、更にコストを削減することができる。またプラズマディスプ レイパネル 21からの配線引き出し部分では、既に電極が共通化されているので、プ ラズマディスプレイパネル 21と単層フレキシブルケーブル 42とを結合するコネクタ部 分のサイズを小さくすることができ、更にコストを削減することができる。  As described above, in the configuration shown in FIG. 4, one of the plurality of even-numbered X electrodes X—even and the plurality of odd-numbered X electrodes X—odd is provided on the glass substrate. The wiring electrode is connected to one common electrode provided on the glass substrate, and the other plurality of electrodes are connected to one other common electrode via a conductor cable having an insulation coating. At that time, the conductor cable is arranged so as to cross over the wiring pattern existing on the glass substrate. By adopting such a configuration, it is not necessary to use a two-layer flexible cable as in the conventional case, and the cost can be reduced. Further, since the size of the single layer flexible cable 41 can be made smaller than that of the conventional two layer flexible cable 31 shown in FIG. 3, the cost can be further reduced. In addition, since the electrodes are already shared in the wiring lead-out portion from the plasma display panel 21, the size of the connector portion that couples the plasma display panel 21 and the single-layer flexible cable 42 can be reduced. Cost can be reduced.
[0036] 図 5乃至図 7は、図 4に示す本発明による X電極引き出し部分の構成の更なる効果 を説明するための図である。図 5は、従来のプラズマディスプレイ装置を背面から見 たときの各回路基板等の構成部品の配置の一例を示す図である。図 5において、図 2及び図 3と同一の構成要素は同一の番号で参照し、その説明は省略する。 FIGS. 5 to 7 are views for explaining further effects of the configuration of the X electrode lead-out portion according to the present invention shown in FIG. FIG. 5 is a diagram showing an example of the arrangement of components such as circuit boards when a conventional plasma display device is viewed from the back. In FIG. The same components as those in FIG. 2 and FIG. 3 are referred to by the same numerals, and a description thereof will be omitted.
[0037] 図 5に示すプラズマディスプレイ装置は、プラズマディスプレイパネル 21、 2層フレ キシブルケーブル 31、電源回路基板 61、信号処理回路基板 62、 Y駆動回路基板 6 3、 X駆動回路基板 64、スキャンドライバ基板 65、アドレス中継基板 67、 X中継基板 6 8、及びフレキシブルケーブル 69を含む。 [0037] The plasma display device shown in FIG. 5 includes a plasma display panel 21, a two-layer flexible cable 31, a power supply circuit board 61, a signal processing circuit board 62, a Y drive circuit board 63, an X drive circuit board 64, and a scan driver. Board 65, address relay board 67, X relay board 68, and flexible cable 69 are included.
[0038] 電源回路基板 61は、各回路部分への電源を供給する電源回路を搭載する。信号 処理回路基板 62は、図 2の信号処理回路 27等を搭載する。 Y駆動回路基板 63は、 図 2の Y電極駆動回路 23を搭載する。 X駆動回路基板 64は、図 2の X電極駆動回路 24を搭載する。スキャンドライバ基板 65は、図 2のスキャン回路 25を搭載する。スキ ヤンドライバ基板 65のスキャン回路 25は、フレキシブルケーブル 69を介して、プラズ マディスプレイパネル 21の前面に配置される Y電極に接続される。また X駆動回路基 板 64の X電極駆動回路 24は、 X中継基板 68及び複数の 2層フレキシブルケーブル 31を介して、プラズマディスプレイパネル 21の前面に配置される X電極に接続される [0038] The power supply circuit board 61 is equipped with a power supply circuit that supplies power to each circuit portion. The signal processing circuit board 62 is mounted with the signal processing circuit 27 of FIG. The Y drive circuit board 63 carries the Y electrode drive circuit 23 of FIG. The X drive circuit board 64 is equipped with the X electrode drive circuit 24 of FIG. The scan driver board 65 includes the scan circuit 25 shown in FIG. The scan circuit 25 of the scan driver board 65 is connected to a Y electrode disposed on the front surface of the plasma display panel 21 via a flexible cable 69. Further, the X electrode drive circuit 24 of the X drive circuit board 64 is connected to the X electrode disposed on the front surface of the plasma display panel 21 via the X relay board 68 and the plurality of two-layer flexible cables 31.
[0039] 前述のように、一般には、 1つのプラズマディスプレイパネル 21に対して、サイズの 小さな複数の 2層フレキシブルケーブル 31を接続し、 X電極 X— oddを幾つかのグル ープに分けて各グループ毎に 1つの 2層フレキシブルケーブル 31で纏める構成とさ れる。この場合、 X駆動回路基板 64の縦のサイズは、プラズマディスプレイパネル 21 の縦のサイズよりも小さ 、ので、複数の 2層フレキシブルケーブル 31を X駆動回路基 板 64に接続するために、 X中継基板 68が必要となってしまう。このような X中継基板 68を設けることは、コスト増加につながる。 [0039] As described above, generally, a plurality of small-sized two-layer flexible cables 31 are connected to one plasma display panel 21, and the X electrode X—odd is divided into several groups. Each group is composed of one two-layer flexible cable 31. In this case, since the vertical size of the X drive circuit board 64 is smaller than the vertical size of the plasma display panel 21, the X relay is used to connect a plurality of two-layer flexible cables 31 to the X drive circuit board 64. A substrate 68 is required. Providing such an X relay board 68 leads to an increase in cost.
[0040] 図 6は、従来のプラズマディスプレイ装置を背面力 見たときの各回路基板等の構 成部品の配置の別の一例を示す図である。図 6において、図 5と同一の構成要素は 同一の番号で参照し、その説明は省略する。  FIG. 6 is a diagram showing another example of the arrangement of components such as circuit boards when a conventional plasma display device is viewed from the back. In FIG. 6, the same elements as those of FIG. 5 are referred to by the same numerals, and a description thereof will be omitted.
[0041] 図 6に示す構成においては、 X中継基板 68が 2つ設けられており、これら 2つの X中 継基板 68を介して、 X駆動回路基板 64が複数の 2層フレキシブルケーブル 31に接 続されている。それ以外の構成は、図 5に示すものと同様である。図 6の構成におい ても、 X中継基板 68を設けることがコスト増加につながる。 [0042] 図 7は、本発明によるプラズマディスプレイ装置を背面力 見たときの各回路基板等 の構成部品の配置の一例を示す図である。図 7において、図 5と同一の構成要素は 同一の番号で参照し、その説明は省略する。 In the configuration shown in FIG. 6, two X relay boards 68 are provided, and the X drive circuit board 64 is connected to the two-layer flexible cables 31 via these two X relay boards 68. It has been continued. Other configurations are the same as those shown in FIG. Even in the configuration of FIG. 6, the provision of the X relay board 68 leads to an increase in cost. FIG. 7 is a diagram showing an example of the arrangement of components such as each circuit board when the back surface force of the plasma display device according to the present invention is viewed. In FIG. 7, the same elements as those of FIG. 5 are referred to by the same numerals, and a description thereof will be omitted.
[0043] 図 7に示す構成部品の配置例は図 4に示す構成に対応しており、 X駆動回路基板 64の X電極駆動回路 24は、 1つの単層フレキシブルケーブル 42を介して、プラズマ ディスプレイパネル 21の前面に配置される X電極に接続される。この単層フレキシブ ルケーブル 42は、プラズマディスプレイパネル 21の全 X電極を X電極駆動回路 24に 接続するフレキシブルケーブルであり、図 4に示す共通電極 51及び共通電極 52〖こ それぞれ接続される 2本の接続配線力 なる。  The arrangement example of the components shown in FIG. 7 corresponds to the configuration shown in FIG. 4, and the X electrode drive circuit 24 of the X drive circuit board 64 is connected to the plasma display via one single-layer flexible cable 42. Connected to the X electrode on the front of the panel 21. This single-layer flexible cable 42 is a flexible cable that connects all the X electrodes of the plasma display panel 21 to the X electrode drive circuit 24. The common electrode 51 and the common electrode 52 shown in FIG. The connection wiring power of
[0044] 図 4に示す構成では、フレキシブルケーブルに力かるコストを図 3に示す従来の構 成の場合に比べて小さくすることができるので、全偶数番目の X電極 X— evenを 1つ に纏めるとともに全奇数番目の X電極 X— oddを 1つに纏め、 1つの単層フレキシブル ケーブル 42により電極を引き出すことができる。そのような構成の場合、図 7に示すよ うに、 X中継基板を使用することなぐ単層フレキシブルケーブル 42を直接に X駆動 回路基板 64に接続することができる。従って、図 5や図 6の構成のように X中継基板 6 8が必要な場合に比較して、コストを更に削減することが可能となる。  [0044] In the configuration shown in Fig. 4, the cost of working on the flexible cable can be reduced compared to the conventional configuration shown in Fig. 3, so all even-numbered X electrodes X-even are combined into one. All the odd-numbered X electrodes X—odd are combined into one, and the electrodes can be pulled out by one single-layer flexible cable 42. In such a configuration, as shown in FIG. 7, the single-layer flexible cable 42 without using the X relay board can be directly connected to the X drive circuit board 64. Therefore, the cost can be further reduced as compared with the case where the X relay board 68 is required as in the configurations of FIGS.
[0045] 図 8は、本発明によるプラズマディスプレイパネル 21からの X電極の取り出し部分の 構成の第 2実施例を示す図である。図 8において、図 4と同一の構成要素は同一の 番号で参照し、その説明は省略する。  FIG. 8 is a diagram showing a second embodiment of the configuration of the portion for taking out the X electrode from the plasma display panel 21 according to the present invention. In FIG. 8, the same components as those of FIG. 4 are referred to by the same numerals, and a description thereof will be omitted.
[0046] 図 8の構成では、プラズマディスプレイパネル 21上の全ての X電極をグループ分け し、各グループ毎に 1つの共通電極 51及び 1つの共通電極 52を設ける。また同様に 、各グループ毎に 1つの配線パターン 43及び 1つの配線パターン 44を設ける。複数 の接続配線 45も各グループ毎に設けることになる力 単層フレキシブルケーブル 41 としては、全体で 1つのフレキシブル基板で構成されてよい。偶数番目の X電極 X— e venと共通電極 51との間の接続の構成及び奇数番目の X電極 X— oddと共通電極 5 2との間の接続の構成は、図 4に示すものと同様である。  In the configuration of FIG. 8, all X electrodes on the plasma display panel 21 are grouped, and one common electrode 51 and one common electrode 52 are provided for each group. Similarly, one wiring pattern 43 and one wiring pattern 44 are provided for each group. The force that a plurality of connection wirings 45 are also provided for each group The single-layer flexible cable 41 may be composed of one flexible board as a whole. The configuration of the connection between the even-numbered X electrode X—even and the common electrode 51 and the configuration of the connection between the odd-numbered X electrode X—odd and the common electrode 52 are the same as those shown in FIG. It is.
[0047] 図 8の構成では、 1つの共通電極 51は、プラズマディスプレイパネル 21に設けられ た全ての偶数番目の X電極 X evenに接続されるのではなぐ一部の偶数番目の X 電極 X— evenにのみ接続される。これは共通電極 51や配線パターン 43の導体幅が 同一である場合、全ての偶数番目の X電極 X— evenを 1つに纏めた構成と比較して 、偶数番目の X電極 X— evenを幾つかのグループに分けて各グループ毎に 1つに纏 めた構成の方力 電極を纏めた部分にある共通電極 51や配線パターン 43のインピ 一ダンスの影響を小さくすることができる力らである。これは、奇数番目の X電極 X— o ddに対して設けられた共通電極 52及び配線パターン 44についても同様である。 In the configuration of FIG. 8, one common electrode 51 is not connected to all even-numbered X electrodes X even provided on the plasma display panel 21, but is a part of even-numbered X-electrodes. Only connected to electrode X—even. This is because when the conductor widths of the common electrode 51 and the wiring pattern 43 are the same, the number of even-numbered X electrodes X—even is compared to a configuration in which all even-numbered X electrodes X—even are combined into one. These groups can be divided into these groups and combined into one group for each group. This is a force that can reduce the influence of impedance on the common electrode 51 and wiring pattern 43 in the part where the electrodes are combined. . The same applies to the common electrode 52 and the wiring pattern 44 provided for the odd-numbered X electrodes X-o dd.
[0048] 図 9は、本発明によるプラズマディスプレイパネル 21からの X電極の取り出し部分の 構成の第 3実施例を示す図である。図 9において、図 4又は図 8と同一の構成要素は 同一の番号で参照し、その説明は省略する。また図 9において、ガラス基板 15の図 示は省略してある。 FIG. 9 is a diagram showing a third embodiment of the configuration of the portion for taking out the X electrode from the plasma display panel 21 according to the present invention. In FIG. 9, the same components as those in FIG. 4 or FIG. 8 are referred to by the same numerals, and a description thereof will be omitted. In FIG. 9, the illustration of the glass substrate 15 is omitted.
[0049] 図 9の構成においては、共通電極 51の配線幅を太くして共通電極 51 Aとするととも に、共通電極 52の配線幅を太くして共通電極 52Aとして設けてある。また同様に、配 線パターン 43及び配線パターン 44の全部又は一部の配線幅を太くして、それぞれ 配線パターン 43A及び配線パターン 44Aとして設けてある。このような構成により、共 通電極や配線パターンの部分のインピーダンスを下げて、効率的な X電極駆動を実 現することが可能となる。なお共通電極 51 A、 52A及び配線パターン 43A、 44Aの 幅広部分をそれぞれ、メッシュ状の電極として構成してもよ 、。  In the configuration of FIG. 9, the common electrode 51 is widened to be the common electrode 51 A, and the common electrode 52 is widened to provide the common electrode 52 A. Similarly, all or a part of the wiring width of the wiring pattern 43 and the wiring pattern 44 is increased to provide the wiring pattern 43A and the wiring pattern 44A, respectively. With such a configuration, it is possible to reduce the impedance of the common electrode and the wiring pattern and realize efficient X electrode driving. The wide portions of the common electrodes 51A and 52A and the wiring patterns 43A and 44A may be configured as mesh electrodes, respectively.
[0050] なお図 9に示す構成の場合、全体の構成としては、図 4のように全偶数番目の X電 極 X— evenを 1つの共通電極に接続するとともに全奇数番目の X電極 X— oddを 1つ の共通電極に接続する構成でよい。また或いは、図 8のように偶数番目の X電極 X— even及び奇数番目の X電極 X— oddを複数のグループに分けて、各グループ毎に 偶数及び奇数それぞれ 1つの共通電極に纏める構成としてもよい。  In the configuration shown in FIG. 9, the entire configuration is such that all even-numbered X electrodes X—even are connected to one common electrode and all odd-numbered X electrodes X—as shown in FIG. The odd number may be connected to one common electrode. Alternatively, as shown in FIG. 8, even-numbered X electrodes X—even and odd-numbered X electrodes X—odd may be divided into a plurality of groups and grouped into one common electrode for each group. Good.
[0051] 図 10は、本発明によるプラズマディスプレイパネル 21からの X電極の取り出し部分 の構成の第 4実施例を示す図である。図 10において、図 4又は図 8と同一の構成要 素は同一の番号で参照し、その説明は省略する。また図 10において、ガラス基板 15 の図示は省略してある。  FIG. 10 is a diagram showing a fourth embodiment of the configuration of the portion for taking out the X electrode from the plasma display panel 21 according to the present invention. In FIG. 10, the same elements as those of FIG. 4 or FIG. 8 are referred to by the same numerals, and a description thereof will be omitted. In FIG. 10, the illustration of the glass substrate 15 is omitted.
[0052] 図 10の構成においては、単層フレキシブルケーブル 41の代わりに単層フレキシブ ルケーブル 41Aが設けられる。単層フレキシブルケーブル 41Aは、その一部として 配線パターン 43を含んでおり、偶数番目の X電極 X— evenは単層フレキシブルケー ブル 41Aにより 1つに纏められ、その後ガラス基板上に設けた 1つの共通電極 51に 接続される。このように配線パターン 43は、ガラス基板 15の上に形成されるのではな く、単層フレキシブルケーブルの内部に形成されるものであってもよい。 In the configuration of FIG. 10, a single-layer flexible cable 41 A is provided instead of the single-layer flexible cable 41. As part of the single layer flexible cable 41A The wiring pattern 43 is included, and even-numbered X electrodes X—even are combined into one by a single-layer flexible cable 41A, and then connected to one common electrode 51 provided on the glass substrate. Thus, the wiring pattern 43 is not formed on the glass substrate 15 but may be formed inside the single-layer flexible cable.
[0053] 図 4、図 8、図 9に示す構成においては、単層フレキシブルケーブル 41とガラス基板 上の電極とで位置合わせが必要な部分が、単層フレキシブルケーブル 41の両側に 存在する。それに対して図 10に示される構成の場合、単層フレキシブルケーブル 41 Aとガラス基板上の電極とで複数の位置合わせが必要な部分は、単層フレキシブル ケーブル 41 Aの片側にしかない。従って、位置合わせ作業が容易であるという効果 が得られる。 In the configurations shown in FIGS. 4, 8, and 9, there are portions that need to be aligned between the single-layer flexible cable 41 and the electrodes on the glass substrate on both sides of the single-layer flexible cable 41. FIG. On the other hand, in the case of the configuration shown in FIG. 10, the single layer flexible cable 41A and the electrode on the glass substrate need only be aligned on one side of the single layer flexible cable 41A. Therefore, an effect that the alignment operation is easy can be obtained.
[0054] 図 11は、単層フレキシブルケーブル 41とガラス基板上の配線との関係を説明する ための図である。図 11において、図 9と同一の構成要素は同一の番号で参照し、そ の説明は省略する。なおガラス基板 15の図示は省略してある。  FIG. 11 is a diagram for explaining the relationship between the single-layer flexible cable 41 and the wiring on the glass substrate. In FIG. 11, the same elements as those of FIG. 9 are referred to by the same numerals, and a description thereof will be omitted. The illustration of the glass substrate 15 is omitted.
[0055] 図 11に示される構成にぉ 、て、ガラス基板上には偶数番目の X電極 X— even及び 奇数番目の X電極 X— oddが形成されて!、る。偶数番目の X電極 X— evenと奇数番 目の X電極 X— oddとの間には、偶数番目の Y電極 Y— even又は奇数番目の Y電極 Y— oddがガラス基板上に形成されて 、る。  In the configuration shown in FIG. 11, even-numbered X electrodes X—even and odd-numbered X electrodes X—odd are formed on the glass substrate! Between even-numbered X electrode X—even and odd-numbered X electrode X—odd, even-numbered Y electrode Y—even or odd-numbered Y electrode Y—odd is formed on the glass substrate, The
[0056] 奇数番目の X電極 X— oddは、ガラス基板上に形成された配線パターン 44Aに接 続される。また偶数番目の X電極 X— evenは、単層フレキシブルケーブル 41の接続 配線 45の一端に接続される。単層フレキシブルケーブル 41の接続配線 45の他端は 、配線パターン 43Aに接続される。  [0056] The odd-numbered X electrodes X—odd are connected to the wiring pattern 44A formed on the glass substrate. The even-numbered X electrode X—even is connected to one end of the connection wiring 45 of the single-layer flexible cable 41. The other end of the connection wiring 45 of the single-layer flexible cable 41 is connected to the wiring pattern 43A.
[0057] 図 12は、図 11に示す構成の線 A—A'に沿った断面の構成を示す断面図である。  FIG. 12 is a cross-sectional view showing a cross-sectional configuration along line AA ′ of the configuration shown in FIG.
図 12において、図 11と同一の構成要素は同一の番号で参照し、その説明は省略す る。  In FIG. 12, the same elements as those of FIG. 11 are referred to by the same numerals, and a description thereof will be omitted.
[0058] 図 12に示されるように、ガラス基板 15上に形成された偶数番目の X電極 X— even は、単層フレキシブルケーブル 41の接続配線 45の一端に接続される。単層フレキシ ブルケーブル 41の接続配線 45の他端は、配線パターン 43Aに接続される。単層フ レキシブルケーブル 41の接続配線 45の直下には、奇数番目の X電極 X odd (図 1 1参照)に接続される配線パターン 44Aがガラス基板 15上に形成されている。即ち、 ガラス基板 15上に形成される配線パターン 44Aの上に、単層フレキシブルケーブル 41が覆 、被さるように配置されて 、る。 As shown in FIG. 12, the even-numbered X electrode X—even formed on the glass substrate 15 is connected to one end of the connection wiring 45 of the single-layer flexible cable 41. The other end of the connection wiring 45 of the single-layer flexible cable 41 is connected to the wiring pattern 43A. The odd-numbered X electrode X odd (see Fig. 1) is directly below the connection wiring 45 of the single-layer flexible cable 41. A wiring pattern 44A to be connected to 1) is formed on the glass substrate 15. That is, the single-layer flexible cable 41 is arranged on the wiring pattern 44A formed on the glass substrate 15 so as to cover and cover the wiring pattern 44A.
[0059] 上記説明した構成において、単層フレキシブルケーブル 41の接続配線 45は絶縁 被覆されているので、接続配線 45と配線パターン 44Aとが電気的に接続されること はない。このように配線パターン 44Aと接続配線 45とが互いに絶縁された状態で、配 線パターン 44Aの上に接続配線 45を横切らせることが可能な構成であれば、単層フ レキシブルケーブル 41を用いることは必ずしも必要ではない。即ち、例えば一本ごと に絶縁被覆された一本ごとにバラの導体ケーブルを接続配線 45として用いて、複数 の導体ケーブルを複数の偶数番目の X電極 X— evenに接続し、これら導体ケーブル を配線パターン 44Aのうえに横切らせるように構成してもよい。但し、単層フレキシブ ルケーブル 41を用いた方力 組み立てが遙かに容易であるというメリットがある。  [0059] In the configuration described above, the connection wiring 45 of the single-layer flexible cable 41 is covered with insulation, so that the connection wiring 45 and the wiring pattern 44A are not electrically connected. If the wiring pattern 44A and the connection wiring 45 are insulated from each other in this way, the single-layer flexible cable 41 should be used if the connection wiring 45 can be crossed over the wiring pattern 44A. Is not necessarily required. That is, for example, a plurality of conductor cables are connected to a plurality of even-numbered X electrodes X-even by using individual conductor cables that are individually insulated and coated as connection wiring 45, and these conductor cables are connected to each other. It may be configured to cross over the wiring pattern 44A. However, there is an advantage that the force assembly using the single layer flexible cable 41 is much easier.
[0060] 以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定される ものではなぐ特許請求の範囲に記載の範囲内で様々な変形が可能である。  The present invention has been described based on the embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the claims.

Claims

請求の範囲 The scope of the claims
[1] ガラス基板上に配置された複数の Y電極と複数の X電極とを含むプラズマディスプ レイパネルと、  [1] a plasma display panel including a plurality of Y electrodes and a plurality of X electrodes disposed on a glass substrate;
該 X電極のうちで偶数番目の X電極と奇数番目の X電極とをそれぞれ独立に駆動 する X電極駆動回路  X electrode drive circuit for independently driving even-numbered X electrodes and odd-numbered X electrodes among the X electrodes
を含み、該偶数番目の X電極の全部又は一部である第 1の複数の電極と該奇数番目 の X電極の全部又は一部である第 2の複数の電極とのうちで、一方の複数の電極は 該ガラス基板上に設けた配線パターンを介して該ガラス基板上に設けた 1つの共通 電極に接続され、他方の複数の電極は絶縁被覆を有する導体ケーブルを介して 1つ の別の共通電極に接続され、該導体ケーブルが該ガラス基板上に存在する該配線 パターンの上を横切るように配置されることを特徴とするプラズマディスプレイ装置。  A plurality of first electrodes that are all or part of the even-numbered X electrodes and a plurality of second electrodes that are all or part of the odd-numbered X electrodes. The other electrode is connected to one common electrode provided on the glass substrate via a wiring pattern provided on the glass substrate, and the other plurality of electrodes are connected to one another via a conductor cable having an insulation coating. A plasma display device, wherein the plasma display device is connected to a common electrode and disposed so as to cross over the wiring pattern existing on the glass substrate.
[2] 該導体ケーブルは単層フレキシブルケーブルであることを特徴とする請求項 1記載 のプラズマディスプレイ装置。  2. The plasma display device according to claim 1, wherein the conductor cable is a single-layer flexible cable.
[3] 該他方の複数の電極は、該導体ケーブルを介して該ガラス基板上に設けた配線パ ターンに接続され、該配線パターンを介して該ガラス基板上に設けた該 1つの別の共 通電極に接続されることを特徴とする請求項 1記載のプラズマディスプレイ装置。 [3] The other plurality of electrodes are connected to a wiring pattern provided on the glass substrate via the conductor cable, and the one other common electrode provided on the glass substrate via the wiring pattern. 2. The plasma display device according to claim 1, wherein the plasma display device is connected to a through electrode.
[4] 該他方の複数の電極は、該導体ケーブルにより 1つに纏められ、その後該ガラス基 板上に設けた該 1つの別の共通電極に接続されることを特徴とする請求項 1記載の プラズマディスプレイ装置。 [4] The other plurality of electrodes are bundled together by the conductor cable and then connected to the one other common electrode provided on the glass substrate. The plasma display device.
[5] 該共通電極は該 X電極より幅広の電極であることを特徴とする請求項 1記載のブラ ズマディスプレイ装置。 5. The plasma display device according to claim 1, wherein the common electrode is an electrode wider than the X electrode.
[6] 該共通電極はメッシュ状の電極であることを特徴とする請求項 5記載のプラズマディ スプレイ装置。  6. The plasma display device according to claim 5, wherein the common electrode is a mesh electrode.
[7] 該第 1の複数の電極は該偶数番目の X電極の全部であり且つ該第 2の複数の電極 は該奇数番目の X電極の全部であり、全ての X電極は前記 1つの共通電極及び前記 1つの別の共通電極にそれぞれ接続される 2本の接続配線力もなるケーブルを介し て該 X電極駆動回路に接続されることを特徴とする請求項 1記載のプラズマディスプ レイ装置。 該第 1の複数の電極は該偶数番目の X電極の一部であり且つ該第 2の複数の電極 は該奇数番目の X電極の一部であり、全ての X電極をグループ分けした各グループ 毎に前記配線パターン、前記導体ケーブル、前記 1つの共通電極、及び前記 1つの 別の共通電極が設けられることを特徴とする請求項 1記載のプラズマディスプレイ装 置。 [7] The first plurality of electrodes are all of the even-numbered X electrodes, and the second plurality of electrodes are all of the odd-numbered X electrodes, and all the X electrodes are common to the one 2. The plasma display device according to claim 1, wherein the plasma display device is connected to the X electrode driving circuit via two electrodes connected to the electrode and the one other common electrode. Each of the first plurality of electrodes is a part of the even-numbered X electrode and the second plurality of electrodes is a part of the odd-numbered X electrode. 2. The plasma display device according to claim 1, wherein the wiring pattern, the conductor cable, the one common electrode, and the one other common electrode are provided for each.
PCT/JP2006/322481 2006-11-10 2006-11-10 Plasma display device WO2008056423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/322481 WO2008056423A1 (en) 2006-11-10 2006-11-10 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/322481 WO2008056423A1 (en) 2006-11-10 2006-11-10 Plasma display device

Publications (1)

Publication Number Publication Date
WO2008056423A1 true WO2008056423A1 (en) 2008-05-15

Family

ID=39364252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322481 WO2008056423A1 (en) 2006-11-10 2006-11-10 Plasma display device

Country Status (1)

Country Link
WO (1) WO2008056423A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170892A (en) * 1996-12-09 1998-06-26 Sony Corp Image display panel
JP2000231882A (en) * 1999-02-10 2000-08-22 Mitsubishi Electric Corp Alternating-current surface discharge type plasma display panel, driving method of alternating-current surface discharge type plasma display panel, plasma display device, and manufacture of alternating-current surface discharge type plasma display panel
JP2002373590A (en) * 2001-06-13 2002-12-26 Matsushita Electric Ind Co Ltd Plasma display panel and its driving method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170892A (en) * 1996-12-09 1998-06-26 Sony Corp Image display panel
JP2000231882A (en) * 1999-02-10 2000-08-22 Mitsubishi Electric Corp Alternating-current surface discharge type plasma display panel, driving method of alternating-current surface discharge type plasma display panel, plasma display device, and manufacture of alternating-current surface discharge type plasma display panel
JP2002373590A (en) * 2001-06-13 2002-12-26 Matsushita Electric Ind Co Ltd Plasma display panel and its driving method

Similar Documents

Publication Publication Date Title
US6703792B2 (en) Module for mounting driver IC
WO2011105062A1 (en) Image display device
JP2000251739A (en) Surface-discharge plasma display panel
JPH11272232A (en) Plasma device panel and device using the same
JP2007212882A (en) Plasma display device
KR20100011284A (en) Plasma display panel
WO2008056423A1 (en) Plasma display device
US8350833B2 (en) Plasma display device
JP3644789B2 (en) Plasma display panel and driving method thereof
KR100487359B1 (en) Plasma Display Panel And Module thereof
JPWO2007023568A1 (en) Plasma display panel and plasma display device
JP4825568B2 (en) Plasma display device
JP3764897B2 (en) Driving method of plasma display panel
JP2001175222A (en) Ac type pdp device having small number of wiring between signal processing substrate and panel
KR100765512B1 (en) Apparatus of plasma display panel
WO2008004271A1 (en) Plasma display device
KR100824465B1 (en) Electrode architecture of AC-PDP
KR100658318B1 (en) Plasma Display Apparatus
KR100701947B1 (en) Plasma Display Panel
JP2002202752A (en) Ac-type pdp device having small number of wires between signal processing board and panel
JP5050143B2 (en) Display device
JP2005018032A (en) Driver ic packaging module
KR20080023920A (en) Plasma display device
KR20060022604A (en) Plasma display apparatus
JPWO2007088607A1 (en) Plasma display panel driving method and plasma display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06823303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP