WO2008004271A1 - Plasma display device - Google Patents

Plasma display device Download PDF

Info

Publication number
WO2008004271A1
WO2008004271A1 PCT/JP2006/313232 JP2006313232W WO2008004271A1 WO 2008004271 A1 WO2008004271 A1 WO 2008004271A1 JP 2006313232 W JP2006313232 W JP 2006313232W WO 2008004271 A1 WO2008004271 A1 WO 2008004271A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
electrode
address
plasma display
electrodes
Prior art date
Application number
PCT/JP2006/313232
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Kanazawa
Shigetoshi Tomio
Ken Kumakura
Original Assignee
Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plasma Display Limited filed Critical Hitachi Plasma Display Limited
Priority to PCT/JP2006/313232 priority Critical patent/WO2008004271A1/en
Priority to JP2008523553A priority patent/JPWO2008004271A1/en
Publication of WO2008004271A1 publication Critical patent/WO2008004271A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections

Definitions

  • the present invention relates to a method for driving a plasma display panel (PDP) and a display device (plasma display device: PDP device).
  • a PDP device is expected as a display device that can realize full-color and large-screen display from advantages such as display area, display capacity, and response.
  • advantages such as display area, display capacity, and response.
  • a direct-view display device a large screen of 40 to 60 inches or more, which cannot be realized by other devices, has been realized.
  • the ON / OFF state of a cell can be controlled by individually applying a pulse (address pulse) to the address electrode (address drive circuit) force PDP address electrode group.
  • the address operation to be selected is performed.
  • the address driver In a full-color (RGB) format PDP device in which a pixel is composed of a set of R (red), G (green), and B (blue) cells, the address driver has three times the number of addresses for the pixel. A circuit is needed. Disclosure of the invention
  • the present invention has been made in view of the above problems, and the object of the present invention is to a PDP device. Oh! Thus, it is an object of the present invention to provide a technology capable of coping with the increasing trend of address electrodes and address drivers and realizing cost reduction.
  • the present invention is a technique of a PDP device including a PDP and a circuit unit for driving and controlling the PDP, and includes the following technical means.
  • the PDP includes, for example, a sustain electrode (first electrode), a scan electrode (second electrode), and an address electrode (third electrode).
  • the circuit unit has, for example, a drive circuit corresponding to the above-described various electrode (first to third electrodes) groups.
  • PDP is a format in which a pixel is composed of a set of cells of three different colors (first color, second color, and third color), and a group (group) of third electrodes of the type corresponding to each color. Have That is, as the third electrode, the first type, second type, and third type electrodes corresponding to the cells of each color are provided.
  • PDP is a format in which a pixel is composed of a set of cells of three kinds of colors R (red), G (green), and B (blue), and a group of address electrodes corresponding to each color ( As a group, there are R, G, B address electrodes (Ar, Ag, Ab) corresponding to cells of each color (R cell, G cell, B cell).
  • the individual address electrode drive circuit (first drive circuit) is the same as the conventional one of the three types of electrodes (R, G, B address electrodes) according to the color. Provided only for two types of electrodes (type 1 and type 2). The remaining one type of electrode (third type electrode) is connected to the common drive circuit (common address driver) of the electrode group, and thereby drives a plurality of third type electrodes in common.
  • the configuration is as follows. That is, the circuit section includes first and second type drive circuits (first address drivers) and third type electrode groups that individually drive the first and second type electrode groups. A common driving circuit (second address driver).
  • the individual driving of the first and second type electrode groups can be combined into one driver as in the conventional case.
  • one type of address driver is divided into a plurality of substrates and ICs (semiconductor integrated circuit devices).
  • the PDP driving method is as follows, for example, in the drive control of the display area and period of the PDP.
  • the first and second type electrodes eg, R and B address electrodes
  • the third type electrode eg, G address electrode.
  • the SF period has a period and operation such as reset, address, and sustain.
  • the operation of address discharge for the cells corresponding to the individual first and second type electrodes (first and second type cells) implement. That is, a data memory for selecting ON / OFF states of cell lighting by applying an address pulse to the third electrode (first type and second type electrode) and applying a scan pulse to the second electrode (scan electrode). Perform the operation. Subsequently, in the second period, an address discharge operation is performed on the cells (third type cells) corresponding to the common third type electrodes. At that time, the first and second type cells (electrodes) adjacent to both sides of the third type cell (electrode) to be turned ON are simultaneously turned ON (predetermined voltage is applied). As a result, the electric field in the third type cell to be turned ON between the first type and second type cells (electrodes) adjacent to each other is turned on, and the address in the third type cell is changed. Discharge occurs.
  • FIG. 1 is a diagram showing an overall configuration of a PDP device in an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the structure of a PDP in the PDP device according to one embodiment of the present invention.
  • FIG. 3 shows the connection between the PDP electrode and the drive circuit in the PDP device according to the embodiment of the present invention. It is a figure which shows the example of a structure of a continuation.
  • FIG. 4 is a diagram showing a configuration example of connection between an address electrode and an address drive circuit in the PDP device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a state relating to a discharge in a cell in a first address period in the PDP device according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a state related to discharge in a cell in a second address period in the PDP device according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration example of a drive sequence for PDP display control in the PDP device according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration example of a PDP drive waveform in the PDP device according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing a PDP structure (first example) in the PDP device according to the second embodiment of the present invention.
  • FIG. 10 shows a PDP structure (second example) in the PDP device according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing a configuration example of a drive sequence for PDP display control in the PDP device according to the third embodiment of the present invention.
  • FIG. 12 is a diagram showing a configuration example of connection between a PDP electrode and a drive circuit in the PDP device according to the fourth embodiment of the present invention.
  • Embodiment 1 the address electrode group corresponding to G in RGB is connected to a common address driver and driven in common, and voltage application to the R and B address electrodes and cells on both sides is controlled. In the meantime, address operation of G address electrode and cell is realized. [0015] ⁇ PDP device>
  • the present PDP device (PDP module) 100 mainly includes a PDP 10 and a chassis 190 that holds the PDP 10 and includes a circuit unit and the like.
  • the circuit portion mainly includes various drive circuits, a control circuit 191, a signal processing circuit 192, a power supply circuit 193, and the like.
  • the drive circuit includes an X drive circuit (X sustain driver) 111 for driving the X electrode (sustain electrode) 11, a Y drive circuit (Y sustain drive) 121 for driving the Y electrode (sustain scan electrode) 12, and a scan drive.
  • a circuit (scan driver) 122 and an address drive circuit (address driver) 132 for driving the address electrode 13 are provided.
  • the control circuit 191 controls the whole including each drive circuit.
  • the signal processing circuit 191 performs signal processing on data information input to the control circuit.
  • the power circuit 193 supplies power to each part.
  • an X relay board 112 is connected to the X drive circuit 111, and the X electrode 11 passes from the X relay board 112 through a connecting portion such as an FPCB (flexible printed circuit board Z flexible cable) 113. Connected to a group.
  • a scan driver 122 is connected to the Y drive circuit 121, and is connected to the Y electrode 11 group from the scan driver 122 through a connection portion such as an FPCB 123.
  • the plurality of address drivers 132 are connected to the original address relay board 131, and are connected from the address driver 132 to the group of address electrodes 13 through a connecting portion such as an FPCB. Circuits such as each driver are mounted on an IC board.
  • the PDP 10 is configured by combining a front part 201 that is mainly a structure on the front substrate 1 side made of glass and a back part 202 that is a structure on the rear substrate 2 side.
  • the PDP 10 has an X electrode (sustain electrode) 11 as a first electrode, a Y electrode (scan electrode) 12 as a second electrode, and an address electrode 13 as a third electrode.
  • These display electrode groups (11, 12) are covered with the first dielectric layer 16, and the surface facing the discharge space of the first dielectric layer 16 is covered with a protective layer 17 such as MgO. It has been broken.
  • the display electrodes (11, 12) are each composed of, for example, a linear metal bus electrode and a transparent electrode that is electrically connected to the bus electrode and forms a discharge gap between adjacent electrodes.
  • a plurality of metal address electrodes 13 ⁇ 13r, 13g, 13b ⁇ are extended on the back substrate 2 in parallel to a second direction substantially orthogonal to the display electrodes (11, 12). Are arranged.
  • the address electrodes 13r, 13g, 13b correspond to the respective colors (R, G, B).
  • the group of address electrodes 13 is covered with a second dielectric layer 18.
  • partition walls (vertical ribs) 14 extending in the second direction are arranged to divide cells in the column direction of the display area.
  • the top surface of the second dielectric layer 18 on the address electrode 13 and the side surface of the partition wall 14 are excited by ultraviolet rays to generate red (R), green (G), and blue (B) visible light.
  • the bodies 15 ⁇ 15r, 15g, 15b ⁇ are applied separately for each row.
  • the front part 201 and the rear part 202 are bonded together so that the protective layer 17 and the upper surface of the partition wall 14 are in contact with each other, and a mixed gas such as Ne—Xe for discharge is sealed in the discharge space between them.
  • PDP10 force S is composed.
  • the driver side force also generates a discharge by applying a voltage higher than the discharge start voltage between the electrodes (11, 12, 13), and the phosphors of each color 15 ⁇ 15r, 15g , 15b ⁇ are excited and emitted to display.
  • a row is formed by a set of the X electrode 11 and the Y electrode 12, and a cell (display cell) is formed corresponding to a region intersected with the address electrode 13 and separated by the partition wall 14.
  • X This is a normal configuration in which rows by Y are arranged in sequence.
  • a pixel consists of a set of R, G, and B cells.
  • the X drive circuit 111 connects and drives the X electrodes 11 of the PDP 10 in common.
  • the Y drive circuit (Y sustain driver) 121 and the scan driver (scan drive circuit) 122 connect and drive the Y electrode 12 group.
  • the Y drive circuit 121 maintains and drives the Y electrode 12 group in common via the scan driver 122.
  • the scan driver 122 scans the Y electrodes 12 individually.
  • the driver of the X electrode 11 and the Y electrode 12 has the same configuration as before.
  • the R and B address electrodes 13 r and 13 b are connected to a first address driver (individual address dryer) 132 having a function of individually driving the electrode group.
  • the G address electrode 13g is connected to a second address driver (common address dry module) 140 having a function of driving the electrode group in common.
  • the sealing portion 3 is a frame portion that seals the discharge gas between the front and rear substrate structures.
  • the side force of one side of the PDP 10 is also drawn and connected to the X drive circuit 111 side from the X electrode 11 group, and the Y electrode 12 group is bowed out from the other side to scan driver 122 Wired and connected to the side.
  • the R and B address electrodes 13r and 13b are pulled out from one side of the upper and lower sides of the PDP 10 (the lower side in FIG. 3) and wired and connected to the first address driver 132 side. From the other side (upper side in FIG. 3), the G address electrode 13g group is drawn out and connected to the second address driver 135 side.
  • FIG. 4 the connection configuration of the address electrode 13 and the address driver (132, 140) of the first embodiment will be described.
  • the address of G corresponding to the G cell (CG) A group of electrodes (Ag) 13g is collectively driven by a common second address driver 140 (Ag dry type) 140.
  • the R and B address electrodes (Ar, Ab) 13r and 13b corresponding to the remaining R cell (CR) and B cell (CB) are the first addresses having the function that can be individually turned ON / OFF as before. It is driven by a driver (Dryno for Ar and Ab) 132.
  • the G electrode (Ag) 13g corresponds to the third type electrode, and the R and B address electrodes (Ar, Ab) 13r and 13b correspond to the first and second type electrodes.
  • the first address driver 132 located on the lower side includes, for example, a plurality of ICs 135 mounted on the address driver board 134.
  • the IC 135 has the power shown as the drive circuit unit for the single address electrode 13.
  • the plurality of circuit units may be configured as a single IC.
  • the first IC (D1) 135 is connected to the first address electrode (A1), that is, the first R address electrode (Arl) 13r.
  • the second IC (D2) 135 is connected to the third address electrode (A3), that is, the first B address electrode (Abl) 13b.
  • the other R and B address electrodes 13r and 13b are similarly configured repeatedly.
  • the second address driver 140 located on the upper side is mounted and configured as an address voltage clamp circuit that is commonly connected to a group of G address electrodes (Ag) 13 g through a common wiring 141.
  • the voltage clamp circuit itself is a known technique.
  • the second address driver 140 generates V, a ground voltage (GND) and a predetermined address voltage (Vac) and applies them to the G address electrode 13g.
  • One field (field period) 20 constituting the video is displayed in 1Z60 seconds, for example.
  • One field 20 includes a plurality of SFs 30 that are temporally divided for gradation expression.
  • one field 20 includes SF30 from the first “# 1” to the nth “#n”.
  • Each SF 30 has a reset period (TR) 31, a next address period (TA) 32, and a next sustain period (TS) 33.
  • TR reset period
  • TA next address period
  • TS next sustain period
  • Each SF30 in field 20 is weighted by the length of sustain period (TS) 33 (number of sustain discharges).
  • the gradation is expressed by the combination of lighting on Z off of SF30.
  • a discharge (reset discharge) operation for setting all cells to the initial state, in other words, charge writing for preparing for the next address period 32 And the adjustment operation is performed.
  • an operation (address operation) for selecting a lighted (ON) Z non-lighted (OFF) cell in the SF30 cell group is performed.
  • the wall charges are formed in the selected cell by applying a scan pulse to the Y electrode 12 and an address pulse to the address electrode 13 (data Discharge (address discharge) for memory.
  • This address operation is executed sequentially across all display lines of the screen (SF30) to determine the ONZOFF status of all cells in the screen.
  • the sustain discharge is performed by applying the sustain pulse to the display electrodes (11, 12), and the display is performed. Perform the operation (sustain operation).
  • the address period 32 is divided into a first period (321) and a second period (322).
  • first address period (321) of the first half address operation is performed for R and B cells. That is, address discharge of the R cell and B cell driven by the individual first address driver 132 is sequentially executed.
  • second address period (322) in the latter half the address operation for the G cell is performed. That is, the G cell address discharge driven by the common second address driver 140 is performed.
  • FIGS. 6 and 7 corresponding to the above-described configuration, the concept and driving method of the address discharge operation for selecting individual cells in the address period 32 of SF30 in the drive control of field 20 are described.
  • a partial cross section of an RGB cell (CR, CG, CB) of PDP10 is shown schematically.
  • FIG. 6 shows a first stage operation state of the address period 32, that is, a state corresponding to the first period (321).
  • first R cell (CR) and B cell
  • a predetermined voltage from the individual first address driver 132 side to the target R and B address electrodes 13r and 13b ( Apply an address pulse with Va (for example, 60V), and apply a scan pulse with a predetermined voltage (-Vyl: for example, -100V) to the corresponding Y electrode 12.
  • This generates an address discharge (discharge 602) in the discharge space 601 of the R cell (CR) and B cell (CB).
  • the second address driver 140 causes a predetermined voltage different from Va. Maintain the clamped state (OV (GND): 1st clamp voltage) and do not perform any address discharge in the G cell.
  • FIG. 7 shows a second stage operation state of the address period 32, that is, a state corresponding to the second period (322).
  • the address discharge is performed to turn on the G cell (CG).
  • the R and B address electrodes 13r and 13b in the R cell (CR) and B cell (CB) adjacent to the G cell (CG) are connected to the G cell (CG).
  • Va a predetermined voltage
  • Vac second clamp voltage
  • the second address driver 140 maintains the clamped state at a predetermined voltage (Vac) in the G cell. Further, a scan pulse with a predetermined voltage (one Vy2: for example ⁇ 40 V) different from the scan pulse applied in the first address period (321) is applied to the corresponding Y electrode 12.
  • a predetermined voltage one Vy2: for example ⁇ 40 V
  • PAr is the drive waveform for the R cell address electrode (Ar) 13r
  • PAb is the waveform for the B cell address electrode (Ab) 13b
  • PAg is the G cell address.
  • PX shows the waveform for the X electrode 11
  • PY shows the waveform for the Y electrode 12! /.
  • the address electrode 13g of the G cell is always fixed at 0V (first clamp voltage), and the scan pulse (501) is sequentially applied to the Y electrode 12, and R, B Cell add An address pulse (601) based on an address voltage (Va) is applied to the less electrodes 13r and 13b to perform address discharge. Also in the second address period (322), the scan pulse (502) is sequentially applied to the Y electrode 12. In order to turn on the G cell, address discharge is performed by applying an address pulse (602) based on the address voltage (Va) to the address electrodes 13r and 13b of the adjacent R and B cells on both sides of the G cell. .
  • the detailed driving waveform is as follows, for example. First, in the reset period 31, in (d) PX, (e) PY, the waveform (41, 51) for charge writing is first applied to the display electrodes (11, 12) in the first period. Waveform 52 of PY has an ultimate potential of Vw. Next, during the second period, waveforms (42, 52) for charge adjustment are applied. The waveform 42 of PX is a predetermined voltage (Vxl). As a result, reset discharge occurs.
  • a predetermined voltage (Vac: second clamp voltage) 61 is applied to the address electrode 13g in the first period and 0V (first voltage is applied to the second period). Apply 62 (clamp voltage).
  • the address electrodes (Va) are applied to the address electrodes 13r, 13b corresponding to the R cell and B cell according to the display data.
  • the voltage 63 of the address electrode 13 g corresponding to the G cell is continuously fixed at 0 V (first clamp voltage).
  • a predetermined voltage (Vxl) 43 is applied to the X electrode 11 by PX, and a scan pulse (501) is sequentially applied to the Y electrode 12 by (e) PY.
  • the reference voltage 53 of the Y electrode 12 is set to, for example, ⁇ 60V (—Va), and the voltage (one Vyl) of the scan pulse (501) is set to, for example, 100V (the magnitude of the scan pulse from the reference voltage). Is 40V).
  • address discharge is performed in the R cell and the B cell.
  • PX applies a predetermined voltage (Vx2) 44 higher than the predetermined voltage (Vxl) 43 in the first address period (321) to the X electrode 11, and (e) PY Y electrode 12 mm, sequentially, scan pal A scan pulse (502) having a voltage higher than that of the source (501) is applied.
  • a predetermined voltage (0V) 54 higher than the predetermined voltage (one 60V) 53 in the first address period (321) is applied.
  • the voltage ( ⁇ Vy2) of the scan pulse (502) is, for example, ⁇ 40V.
  • the address period 32 of each electrode is the potential of the address period 32 of each electrode.
  • the address electrode 13g of the G cell is 0V (first clamp voltage) 63, even if the adjacent address electrodes 13r and 13b are in the ON state, the G cell There is no discharge.
  • the configuration of the second address period (322) is particularly important.
  • the address electrodes 13r and 13b of the adjacent R cell and B cell are turned on. In this case, it is necessary to prevent discharge from occurring in the R cell or B cell in which the address discharge is not performed in the first address period (321), that is, in the OFF state.
  • the difference voltage (Va) may be Vac or a voltage close thereto.
  • —Vyl is set to —100V
  • Va is set to 60V
  • —Vy2 is set to —40V. 60V)
  • address discharge is not erroneously performed in the R cell and B cell.
  • the potential difference between the X electrode 11 and the scan pulse (502) requires the same voltage as in the first address period (321).
  • the applied voltage is applied to the address electrode 13g of the G cell in the second address period (322).
  • the address pulse (602) is applied to the R and B address electrodes 13r and 13b adjacent to the G cell in the second address period (322) in the voltage state as described above.
  • an address discharge can be generated in the G cell as shown in FIG.
  • the design of voltages such as Vxl, Vx2, -Vyl, Vy2, Va, Vac, etc. may be adjusted according to the electrode structure and drive system of 1S PDP10 as described above.
  • a specific type of address electrode (Ag) 13g among the three types of address electrodes 13 corresponding to each color is commonly driven, so that a necessary address is particularly obtained.
  • the number or scale of drivers can be reduced to about two-thirds of the conventional size, which can greatly contribute to the cost reduction of the device.
  • the second embodiment is the same as the first embodiment in terms of the drive waveform and the circuit configuration, but is a configuration in which the arrangement and shape of the address electrodes 13 are devised.
  • the second embodiment has a configuration in which the address electrodes 13r and 13b of the R cell and the B cell are arranged closer to the G cell as shown in FIG. 9 in order to further increase the influence of the electric field.
  • the width of the address electrode 13g of the G cell is made narrower than the width of the address electrodes 13r and 13b of the R cell and B cell. As a result, a more stable operation may be performed in connection with the address discharge.
  • the G cell address electrode 13g may be wider than the R cell and B cell address electrodes 13r and 13b. Similarly, there are cases where more stable operation can be performed in connection with the address discharge.
  • the drive sequence in the PDP device according to the third embodiment of the present invention Will be explained.
  • the basic configuration is the same as that of the previous embodiment.
  • the second address period (322) is not implemented in the drive control of the field 20 in some SF30 among the plurality of SF30.
  • the first minimum luminance SF30 (# 1) has only the first address period (TA1) 321 as the address period 32. That is, in SF30 (# 1), the address operation of the R and B cells is performed in the first address period (TA1) 321 and the address operation of the G cell in the second address period (322) is omitted.
  • the address period 32 is composed of two stages (321, 322), and the required period is approximately doubled. : For applications where there is no problem even if the number of gradations is reduced only for G) (when such display is performed), as described in Embodiment 3, it corresponds to the specific color (G).
  • the drive display can be performed without performing the operation in the second address period (322).
  • the drive period is shortened by omitting the second address period (322).
  • blue (B) having a low luminance is set as a common electrode drive target.
  • B blue having a low luminance
  • the configuration of the fourth embodiment shown in FIG. 12 differs from the configuration of the first embodiment in FIG. 3 and the like in the mounting configuration of the wiring 141 of the G address electrode 13g and the second address driver.
  • the address electrode 13g connected to the common second address driver 140 is output to the opposite side (upper side in FIG. 12) of the address electrodes 13r and 13b connected to the individual first address driver 132.
  • the PDP10 glass substrate (back substrate 2) can be connected together. In the configuration of FIG. 12, a common connection is made like a wiring 141 in a region outside the sealing portion 3 on the upper side of the PDP 10.
  • the second address driver 140 that drives the common address electrode 13g is smaller in scale, and therefore, the X drive circuit 111 side or the Y drive circuit 121 side than the configuration of the separate substrate. To be mounted on the substrate. In the configuration of FIG. 12, the second address driver 140 is mounted on the substrate of the X drive circuit 111. This configuration has advantages such as mounting size and cost.
  • the FPCB flexible printed circuit board Z flexible cable
  • the wiring 141 of the address electrode 13g on the upper side of the PDP 10 is connected to the second address driver 140 on the X drive circuit 111, one connection on the FPCB 113 connected to the X relay board 112 is performed. Partial wiring is used.
  • the present invention can be used in a plasma display device using address electrodes.

Abstract

A subject technology is to realize cost reduction or the like by taking measures for a tendency to increase address electrodes and address drivers in a PDP device. The PDP (10) in this PDP device is provided with three kinds of address electrodes (13r, 13g, 13b) corresponding to roles for selection of three kind of RGB colors, wherein the address electrodes (13r, 13b) for two kinds of colors (R and B, for example) are connected with first address drivers (132) for individual driving and address electrodes (13g) for one color (G, for example) are connected with a second address driver (140) for common driving.

Description

明 細 書  Specification
プラズマディスプレイ装置  Plasma display device
技術分野  Technical field
[0001] 本発明は、プラズマディスプレイパネル (PDP)の駆動方法及びその表示装置(プラ ズマディスプレイ装置: PDP装置)の技術に関し、特に、アドレス電極の駆動に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a method for driving a plasma display panel (PDP) and a display device (plasma display device: PDP device).
[0002] PDP装置は、表示面積や表示容量、更に応答性などの優位性から、フルカラ一大 画面表示を実現できる表示装置として期待されている。現在、直視型の表示装置とし ては、他のデバイスでは実現できな 、40型から 60型以上の大画面が実現されて 、 る。  A PDP device is expected as a display device that can realize full-color and large-screen display from advantages such as display area, display capacity, and response. Currently, as a direct-view display device, a large screen of 40 to 60 inches or more, which cannot be realized by other devices, has been realized.
[0003] 従来の PDP装置にお!、て、アドレスドライバ(アドレス駆動回路)力 PDPのァドレ ス電極群に対して個別選択的にパルス (アドレスパルス)を印加することにより、セル の ONZOFF状態を選択するアドレス動作を実施している。 R (赤), G (緑), B (青) の各色のセルのセットで画素が構成されるフルカラー(RGB)形式の PDP装置にお いては、画素に対するアドレス数の 3倍のアドレスドライバの回路が必要である。 発明の開示  [0003] In a conventional PDP device, the ON / OFF state of a cell can be controlled by individually applying a pulse (address pulse) to the address electrode (address drive circuit) force PDP address electrode group. The address operation to be selected is performed. In a full-color (RGB) format PDP device in which a pixel is composed of a set of R (red), G (green), and B (blue) cells, the address driver has three times the number of addresses for the pixel. A circuit is needed. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] PDP装置を含む表示デバイスは、近年、ますます高精細化が進み、画素数として 水平方向が 1920で垂直方向が 1080である、所謂 HD対応と呼ばれる表示装置が 登場している。この場合、フルカラー(RGB)形式の PDP装置において、アドレス電 極としては、水平方向の 1920の 3倍(5760)の本数が必要となり、また、それに対応 したアドレスドライバが必要となる。また、垂直方向のライン数が 1080である場合に、 アドレス電極を上下で分割した構成で同時に駆動する方式なども用いられる。その場 合、必要なアドレスドライバの数は更に 2倍となる。このように、特にアドレス電極及び アドレスドライバの増カロが、 PDP装置のコストアップの大きな要因となっている。  [0004] In recent years, display devices including a PDP device have become increasingly high definition, and a so-called HD compatible display device having a horizontal number of 1920 and a vertical direction of 1080 has appeared. In this case, in the full color (RGB) PDP device, the number of address electrodes is three times that of 1920 in the horizontal direction (5760), and an address driver corresponding to that is required. In addition, when the number of lines in the vertical direction is 1080, a system in which the address electrodes are simultaneously driven in a configuration in which the upper and lower addresses are divided is used. In that case, the number of required address drivers is further doubled. Thus, the increase in the number of address electrodes and address drivers is a major factor in increasing the cost of the PDP device.
[0005] 本発明は以上のような問題に鑑みてなされたものであり、その目的は、 PDP装置に お!、て、アドレス電極及びアドレスドライバの増加の傾向に対処してコストダウン等を 実現できる技術を提供することにある。 [0005] The present invention has been made in view of the above problems, and the object of the present invention is to a PDP device. Oh! Thus, it is an object of the present invention to provide a technology capable of coping with the increasing trend of address electrodes and address drivers and realizing cost reduction.
課題を解決するための手段  Means for solving the problem
[0006] 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、 次のとおりである。前記目的を達成するために、本発明は、 PDPとその駆動及び制 御のための回路部とを備える PDP装置の技術であって、以下に示す技術的手段を 備えることを特徴とする。  [0006] Outline of representative ones of the inventions disclosed in the present application will be briefly described as follows. In order to achieve the above object, the present invention is a technique of a PDP device including a PDP and a circuit unit for driving and controlling the PDP, and includes the following technical means.
[0007] まず、 PDPは、例えば、維持電極 (第 1の電極)、走査電極 (第 2の電極)、アドレス 電極 (第 3の電極)を有する。回路部は、例えば、上記各種の電極 (第 1〜第 3の電極 )群に応じた駆動回路を有する。 PDPは、三種類の色 (第 1色、第 2色、第 3色)のセ ルのセットにより画素が構成される形式であり、各色に対応した種類の第 3の電極の 群 (グループ)を有する。即ち、第 3の電極として、各色のセルに対応した、第 1種、第 2種、及び第 3種の電極を有する。例えば、 PDPは、 R (赤), G (緑), B (青)の三種 類の色のセルのセットにより画素が構成される形式であり、各色に対応した種類のァ ドレス電極の群(グループ)として、各色のセル(Rセル、 Gセル、 Bセル)に対応した、 R, G, Bのアドレス電極 (Ar, Ag, Ab)を有する。  [0007] First, the PDP includes, for example, a sustain electrode (first electrode), a scan electrode (second electrode), and an address electrode (third electrode). The circuit unit has, for example, a drive circuit corresponding to the above-described various electrode (first to third electrodes) groups. PDP is a format in which a pixel is composed of a set of cells of three different colors (first color, second color, and third color), and a group (group) of third electrodes of the type corresponding to each color. Have That is, as the third electrode, the first type, second type, and third type electrodes corresponding to the cells of each color are provided. For example, PDP is a format in which a pixel is composed of a set of cells of three kinds of colors R (red), G (green), and B (blue), and a group of address electrodes corresponding to each color ( As a group, there are R, G, B address electrodes (Ar, Ag, Ab) corresponding to cells of each color (R cell, G cell, B cell).
[0008] 従来では、 PDPの全アドレス電極に対して個別駆動回路が必要であった。本 PDP 装置では、アドレスドライバのうち、従来同様のアドレス電極の個別駆動回路 (第 1の 駆動回路)については、色に応じた三種類の電極 (R, G, Bのアドレス電極)のうち、 二種類の電極 (第 1種及び第 2種の電極)に対してのみ設ける。そして、残りの一種類 の電極 (第 3種の電極)については、当該電極群の共通駆動回路(共通アドレスドライ ノ )に接続され、これによつて複数の第 3種の電極を共通に駆動する構成とする。即 ち、回路部は、第 1種及び第 2種の電極群を個別に駆動する第 1種及び第 2種の駆 動回路 (第 1のアドレスドライバ)、及び、第 3種の電極群を共通駆動する駆動回路( 第 2のアドレスドライバ)、を備える。なお、第 1種及び第 2種の電極群の個別駆動に ついては、従来同様に 1つのドライバにまとめることもできる。また従来同様に、 1つの 種類のアドレスドライバを、複数の基板及び IC (半導体集積回路装置)に分けて構成 することちでさる。 [0009] 本 PDP駆動方法としては、 PDPの表示領域及び期間の駆動制御にぉ 、て、例え ば以下のようになる。複数の第 3の電極 (アドレス電極)において、第 3種の電極 (例: Gのアドレス電極)の隣に第 1種及び第 2種の電極(例: R及び Bのアドレス電極)が配 置される構成において、両側の第 1種及び第 2種の電極に対する印加電圧を制御す ることにより、その間の第 3種の電極に対するアドレス動作を実現する。 SF期間にお いて、リセット、アドレス、サスティン等の期間及び動作を有する。 Conventionally, individual drive circuits are required for all address electrodes of the PDP. In this PDP device, among the address drivers, the individual address electrode drive circuit (first drive circuit) is the same as the conventional one of the three types of electrodes (R, G, B address electrodes) according to the color. Provided only for two types of electrodes (type 1 and type 2). The remaining one type of electrode (third type electrode) is connected to the common drive circuit (common address driver) of the electrode group, and thereby drives a plurality of third type electrodes in common. The configuration is as follows. That is, the circuit section includes first and second type drive circuits (first address drivers) and third type electrode groups that individually drive the first and second type electrode groups. A common driving circuit (second address driver). The individual driving of the first and second type electrode groups can be combined into one driver as in the conventional case. As in the past, one type of address driver is divided into a plurality of substrates and ICs (semiconductor integrated circuit devices). The PDP driving method is as follows, for example, in the drive control of the display area and period of the PDP. In the multiple third electrodes (address electrodes), the first and second type electrodes (eg, R and B address electrodes) are placed next to the third type electrode (eg, G address electrode). In this configuration, by controlling the voltage applied to the first and second type electrodes on both sides, the address operation for the third type electrode between them is realized. The SF period has a period and operation such as reset, address, and sustain.
[0010] アドレス期間において、はじめに、第 1の期間では、個別の第 1種及び第 2種の電 極に対応するセル (第 1種及び第 2種のセル)に対してのアドレス放電の動作を実施 する。即ち、第 3の電極 (第 1種及び第 2種の電極)に対するアドレスパルス印加かつ 第 2の電極(走査電極)に対する走査パルス印加により、セルの点灯の ONZOFF状 態の選択のためのデータメモリの動作を実施する。続いて、第 2の期間では、共通の 第 3種の電極に対応するセル (第 3種のセル)に対してのアドレス放電の動作を実施 する。その際、 ON対象の第 3種のセル (電極)の両側に隣接する第 1種と第 2種のセ ル (電極)を対象として、同時に ON状態にする(所定電圧を印加する)。これにより、 上記両側に隣接する第 1種と第 2種のセル (電極)〖こ挟まれている ON対象の第 3種 のセルにおける電界が ON状態となり、当該第 3種のセルでのアドレス放電が発生す る。  [0010] In the address period, first, in the first period, the operation of address discharge for the cells corresponding to the individual first and second type electrodes (first and second type cells) Implement. That is, a data memory for selecting ON / OFF states of cell lighting by applying an address pulse to the third electrode (first type and second type electrode) and applying a scan pulse to the second electrode (scan electrode). Perform the operation. Subsequently, in the second period, an address discharge operation is performed on the cells (third type cells) corresponding to the common third type electrodes. At that time, the first and second type cells (electrodes) adjacent to both sides of the third type cell (electrode) to be turned ON are simultaneously turned ON (predetermined voltage is applied). As a result, the electric field in the third type cell to be turned ON between the first type and second type cells (electrodes) adjacent to each other is turned on, and the address in the third type cell is changed. Discharge occurs.
発明の効果  The invention's effect
[0011] 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に 説明すれば以下のとおりである。本発明によれば、 PDP装置において、アドレス電極 及びアドレスドライバの増加の傾向に対処してコストダウン等を実現できる。特に、必 要なアドレスドライバの数ないし規模を、従来の約三分の二にすることができるため、 装置のコストダウンに大きく寄与できる。  [0011] The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows. According to the present invention, in the PDP device, it is possible to realize cost reduction or the like by coping with the increasing trend of address electrodes and address drivers. In particular, the number or scale of necessary address drivers can be reduced to about two-thirds of the conventional one, which can greatly contribute to the cost reduction of the device.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の一実施の形態における PDP装置の全体の構成を示す図である。  FIG. 1 is a diagram showing an overall configuration of a PDP device in an embodiment of the present invention.
[図 2]本発明の一実施の形態の PDP装置における、 PDPの構造の一例を示す図で ある。  FIG. 2 is a diagram showing an example of the structure of a PDP in the PDP device according to one embodiment of the present invention.
[図 3]本発明の一実施の形態の PDP装置における、 PDP電極及び駆動回路との接 続の構成例を示す図である。 FIG. 3 shows the connection between the PDP electrode and the drive circuit in the PDP device according to the embodiment of the present invention. It is a figure which shows the example of a structure of a continuation.
[図 4]本発明の実施の形態 1の PDP装置における、アドレス電極及びアドレス駆動回 路との接続の構成例を示す図である。  FIG. 4 is a diagram showing a configuration example of connection between an address electrode and an address drive circuit in the PDP device according to the first embodiment of the present invention.
[図 5]本発明の実施の形態 1の PDP装置における、第 1のアドレス期間におけるセル での放電に係わる状態を示す図である。  FIG. 5 is a diagram showing a state relating to a discharge in a cell in a first address period in the PDP device according to the first embodiment of the present invention.
[図 6]本発明の実施の形態 1の PDP装置における、第 2のアドレス期間におけるセル での放電に係わる状態を示す図である。  FIG. 6 is a diagram showing a state related to discharge in a cell in a second address period in the PDP device according to the first embodiment of the present invention.
[図 7]本発明の実施の形態 1の PDP装置における、 PDP表示制御の駆動シーケンス の構成例を示す図である。  FIG. 7 is a diagram showing a configuration example of a drive sequence for PDP display control in the PDP device according to the first embodiment of the present invention.
[図 8]本発明の実施の形態 1の PDP装置における、 PDP駆動波形の構成例を示す 図である。  FIG. 8 is a diagram showing a configuration example of a PDP drive waveform in the PDP device according to the first embodiment of the present invention.
[図 9]本発明の実施の形態 2の PDP装置における、 PDPの構造 (第 1の例)を示す図 である。  FIG. 9 is a diagram showing a PDP structure (first example) in the PDP device according to the second embodiment of the present invention.
[図 10]本発明の実施の形態 2の PDP装置における、 PDPの構造 (第 2の例)を示す 図である。  FIG. 10 shows a PDP structure (second example) in the PDP device according to the second embodiment of the present invention.
[図 11]本発明の実施の形態 3の PDP装置における、 PDP表示制御の駆動シーケン スの構成例を示す図である。  FIG. 11 is a diagram showing a configuration example of a drive sequence for PDP display control in the PDP device according to the third embodiment of the present invention.
[図 12]本発明の実施の形態 4の PDP装置における、 PDP電極及び駆動回路との接 続の構成例を示す図である。  FIG. 12 is a diagram showing a configuration example of connection between a PDP electrode and a drive circuit in the PDP device according to the fourth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態 を説明するための全図において、同一部には原則として同一符号を付し、その繰り 返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
[0014] (実施の形態 1) [0014] (Embodiment 1)
図 1〜図 8を参照しながら、実施の形態 1の PDP装置を説明する。実施の形態 1で は、 RGBのうち Gに対応するアドレス電極群を共通アドレスドライバに接続して共通 駆動するものであり、両側の R, Bのアドレス電極及びセルに対する電圧印加を制御 することによりその間の Gのアドレス電極及びセルのアドレス動作を実現する。 [0015] < PDP装置 > The PDP device according to the first embodiment will be described with reference to FIGS. In Embodiment 1, the address electrode group corresponding to G in RGB is connected to a common address driver and driven in common, and voltage application to the R and B address electrodes and cells on both sides is controlled. In the meantime, address operation of G address electrode and cell is realized. [0015] <PDP device>
まず、本実施の形態の PDP装置の基本的な構成を説明する。図 1において、本 P DP装置(PDPモジュール) 100は、主に、 PDP10と、 PDP10を保持し回路部などが 構成されるシャーシ 190とを有して構成される。回路部として、主に、各種の駆動回 路、制御回路 191、信号処理回路 192、及び電源回路 193などを有する。駆動回路 としては、 X電極 (維持電極) 11を駆動する X駆動回路 (Xサスティンドライバ) 111、 Y 電極 (維持走査電極) 12を駆動する Y駆動回路 (Yサスティンドライノく) 121及び走査 駆動回路 (スキャンドライノく) 122、アドレス電極 13を駆動するアドレス駆動回路 (アド レスドライバ) 132を有する。制御回路 191は、各駆動回路などを含む全体を制御す る。信号処理回路 191は、制御回路に入力するデータ情報を信号処理する。電源回 路 193は、各部へ電源供給する。  First, the basic configuration of the PDP apparatus of this embodiment will be described. In FIG. 1, the present PDP device (PDP module) 100 mainly includes a PDP 10 and a chassis 190 that holds the PDP 10 and includes a circuit unit and the like. The circuit portion mainly includes various drive circuits, a control circuit 191, a signal processing circuit 192, a power supply circuit 193, and the like. The drive circuit includes an X drive circuit (X sustain driver) 111 for driving the X electrode (sustain electrode) 11, a Y drive circuit (Y sustain drive) 121 for driving the Y electrode (sustain scan electrode) 12, and a scan drive. A circuit (scan driver) 122 and an address drive circuit (address driver) 132 for driving the address electrode 13 are provided. The control circuit 191 controls the whole including each drive circuit. The signal processing circuit 191 performs signal processing on data information input to the control circuit. The power circuit 193 supplies power to each part.
[0016] また、 X駆動回路 111には、 X中継基板 112が接続されており、 X中継基板 112か ら、 FPCB (フレキシブルプリント回路基板 Zフレキシブルケーブル) 113等による接 続部を通じて、 X電極 11群に接続されている。また、 Y駆動回路 121には、スキャンド ライバ 122が接続されており、スキャンドライバ 122から、 FPCB123等による接続部 を通じて、 Y電極 11群に接続されている。また、複数のアドレスドライバ 132は、元と なるアドレス中継基板 131に接続されており、アドレスドライバ 132から、 FPCB等に よる接続部を通じて、アドレス電極 13群に接続されている。各ドライバ等の回路は、 I C基板などにより実装されている。  [0016] Further, an X relay board 112 is connected to the X drive circuit 111, and the X electrode 11 passes from the X relay board 112 through a connecting portion such as an FPCB (flexible printed circuit board Z flexible cable) 113. Connected to a group. Further, a scan driver 122 is connected to the Y drive circuit 121, and is connected to the Y electrode 11 group from the scan driver 122 through a connection portion such as an FPCB 123. The plurality of address drivers 132 are connected to the original address relay board 131, and are connected from the address driver 132 to the group of address electrodes 13 through a connecting portion such as an FPCB. Circuits such as each driver are mounted on an IC board.
[0017] < PDP>  [0017] <PDP>
次に、図 2において、 PDP10の構成例(AC型、面放電、(X, Υ, A)三電極、 X-Y 行順次配置、及びストライプ状リブ構成)を説明する。 PDP10は、主にガラス製の前 面基板 1側の構造体である前面部 201と、背面基板 2側の構造体である背面部 202 とが組み合わされて構成される。 PDP10は、三電極構造において、第 1電極である X 電極 (維持電極) 11、第 2電極である Y電極(走査電極) 12、第 3電極であるアドレス 電極 13を有する。  Next, referring to FIG. 2, a configuration example of the PDP 10 (AC type, surface discharge, (X, Υ, A) three electrodes, XY row sequential arrangement, and striped rib configuration) will be described. The PDP 10 is configured by combining a front part 201 that is mainly a structure on the front substrate 1 side made of glass and a back part 202 that is a structure on the rear substrate 2 side. In a three-electrode structure, the PDP 10 has an X electrode (sustain electrode) 11 as a first electrode, a Y electrode (scan electrode) 12 as a second electrode, and an address electrode 13 as a third electrode.
[0018] 前面部 201において、前面基板 1には、表示の繰り返しの放電を行うための電極( 表示電極)である、複数の X電極 11及び Y電極 12が、所定の間隔で第 1方向(横方 向)に平行に伸びて、第 2方向(縦方向)に交互に繰り返して配置されている。これら の表示電極群(11, 12)は、第 1の誘電体層 16に覆われており、更に第 1の誘電体 層 16の放電空間に向力 表面は、 MgO等による保護層 17に覆われている。表示電 極(11, 12)は、例えば、それぞれ、直線状で金属製のバス電極と、バス電極に電気 的に接続され隣接電極間で放電ギャップを形成する透明電極とから構成される。 [0018] In the front part 201, a plurality of X electrodes 11 and Y electrodes 12, which are electrodes (display electrodes) for performing repeated display discharge, are arranged on the front substrate 1 in a first direction (predetermined intervals). Sideways Extending in parallel with the second direction (vertical direction). These display electrode groups (11, 12) are covered with the first dielectric layer 16, and the surface facing the discharge space of the first dielectric layer 16 is covered with a protective layer 17 such as MgO. It has been broken. The display electrodes (11, 12) are each composed of, for example, a linear metal bus electrode and a transparent electrode that is electrically connected to the bus electrode and forms a discharge gap between adjacent electrodes.
[0019] 背面部 201において、背面基板 2には、金属製の複数のアドレス電極 13{ 13r, 13 g, 13b}が、表示電極(11, 12)と略直交する第 2方向に平行に伸びて配置されてい る。アドレス電極 13r, 13g, 13bは、各色 (R, G, B)に対応したものである。更にアド レス電極 13群は、第 2の誘電体層 18に覆われている。第 2の誘電体層 18上、ァドレ ス電極 13の両側には、第 2方向に伸びる隔壁 (縦リブ) 14が配置されており、表示領 域の列方向のセルを区分けしている。更に、アドレス電極 13上の第 2の誘電体層 18 上面及び隔壁 14側面には、紫外線により励起されて赤 (R) ,緑 (G) ,青 (B)の可視 光を発生する各色の蛍光体 15 { 15r, 15g, 15b}が、列ごとに区別して塗布されてい る。 [0019] In the back surface 201, a plurality of metal address electrodes 13 {13r, 13g, 13b} are extended on the back substrate 2 in parallel to a second direction substantially orthogonal to the display electrodes (11, 12). Are arranged. The address electrodes 13r, 13g, 13b correspond to the respective colors (R, G, B). Further, the group of address electrodes 13 is covered with a second dielectric layer 18. On the second dielectric layer 18 and on both sides of the address electrode 13, partition walls (vertical ribs) 14 extending in the second direction are arranged to divide cells in the column direction of the display area. Furthermore, the top surface of the second dielectric layer 18 on the address electrode 13 and the side surface of the partition wall 14 are excited by ultraviolet rays to generate red (R), green (G), and blue (B) visible light. The bodies 15 {15r, 15g, 15b} are applied separately for each row.
[0020] これら前面部 201と背面部 202を、保護層 17と隔壁 14上面部が接するように貼り 合わせて、その間の放電空間に、放電用の Ne— Xe等の混合ガスを封入することに より、 PDP10力 S構成される。本構造において、ドライバ側力も電極(11, 12, 13)間 に放電開始電圧以上の電圧を印加することにより放電を発生させ、放電によって発 生した紫外線により、各色の蛍光体 15{ 15r, 15g, 15b}を励起 ·発光させて表示を 行うものである。  [0020] The front part 201 and the rear part 202 are bonded together so that the protective layer 17 and the upper surface of the partition wall 14 are in contact with each other, and a mixed gas such as Ne—Xe for discharge is sealed in the discharge space between them. PDP10 force S is composed. In this structure, the driver side force also generates a discharge by applying a voltage higher than the discharge start voltage between the electrodes (11, 12, 13), and the phosphors of each color 15 {15r, 15g , 15b} are excited and emitted to display.
[0021] X電極 11と Y電極 12の組で行(表示ライン)が構成され、更にアドレス電極 13と交 差して隔壁 14で区切られる領域に対応してセル (表示セル)が構成される。 X— Yに よる行が順次配列されるノーマル構成である。 R, G, Bのセルのセットで画素が構成 される。  A row (display line) is formed by a set of the X electrode 11 and the Y electrode 12, and a cell (display cell) is formed corresponding to a region intersected with the address electrode 13 and separated by the partition wall 14. X—This is a normal configuration in which rows by Y are arranged in sequence. A pixel consists of a set of R, G, and B cells.
[0022] PDP10の構造は、本例ではノーマル構成を示している力 駆動方式に応じて各種 が存在し、本実施の形態で示すようなアドレス電極 13等に関する条件を満たすもの であれば各種が適用可能である。  [0022] There are various types of structures of the PDP 10 according to the force drive method indicating the normal configuration in this example, and various types are applicable as long as the conditions regarding the address electrode 13 and the like as shown in the present embodiment are satisfied. Applicable.
[0023] <電極及びドライバ > 次に、図 3において、 PDP10の各種電極群と各ドライバとの接続の構成を説明する 。 X駆動回路 111は、 PDP10の X電極 11群を共通に接続し駆動する。 Y駆動回路( Yサスティンドライバ) 121及びスキャンドライバ(走査駆動回路) 122は、 Y電極 12群 を接続し駆動する。 Y駆動回路 121は、スキャンドライバ 122を介して、 Y電極 12群を 共通に維持駆動する。スキャンドライバ 122は、 Y電極 12を個別に走査駆動する。 X 電極 11と Y電極 12のドライバは、従来と同様の構成である。 [0023] <Electrode and driver> Next, referring to FIG. 3, the connection configuration between various electrode groups of the PDP 10 and each driver will be described. The X drive circuit 111 connects and drives the X electrodes 11 of the PDP 10 in common. The Y drive circuit (Y sustain driver) 121 and the scan driver (scan drive circuit) 122 connect and drive the Y electrode 12 group. The Y drive circuit 121 maintains and drives the Y electrode 12 group in common via the scan driver 122. The scan driver 122 scans the Y electrodes 12 individually. The driver of the X electrode 11 and the Y electrode 12 has the same configuration as before.
[0024] アドレス電極 13群において、 R及び Bのアドレス電極 13r, 13bは、当該電極群を個 別に駆動する機能を備える第 1のアドレスドライバ (個別アドレスドライノく) 132に接続 されている。 Gのアドレス電極 13gは、当該電極群を共通に駆動する機能を備える第 2のアドレスドライバ(共通アドレスドライノく) 140に接続されている。  In the address electrode 13 group, the R and B address electrodes 13 r and 13 b are connected to a first address driver (individual address dryer) 132 having a function of individually driving the electrode group. The G address electrode 13g is connected to a second address driver (common address dry module) 140 having a function of driving the electrode group in common.
[0025] PDP10において、封止部 3は、前後の基板構造体の間で放電ガスを封止している 枠部分である。 PDP10の一方の横辺部力も X電極 11群が引き出されて X駆動回路 111側に配線及び接続されており、他方の横辺部から Y電極 12群が弓 Iき出されてス キャンドライバ 122側に配線及び接続されている。また、 PDP10の上下の辺部の一 方側(図 3では下側)から、 R及び Bのアドレス電極 13r, 13b郡が引き出されて、第 1 のアドレスドライバ 132側に配線及び接続されており、他方の側(図 3では上側)から 、 Gのアドレス電極 13g群が引き出されて、第 2のアドレスドライバ 135側に配線及び 接続されている。  In the PDP 10, the sealing portion 3 is a frame portion that seals the discharge gas between the front and rear substrate structures. The side force of one side of the PDP 10 is also drawn and connected to the X drive circuit 111 side from the X electrode 11 group, and the Y electrode 12 group is bowed out from the other side to scan driver 122 Wired and connected to the side. In addition, the R and B address electrodes 13r and 13b are pulled out from one side of the upper and lower sides of the PDP 10 (the lower side in FIG. 3) and wired and connected to the first address driver 132 side. From the other side (upper side in FIG. 3), the G address electrode 13g group is drawn out and connected to the second address driver 135 side.
[0026] <アドレス電極及びアドレスドライバ >  <Address electrode and address driver>
図 4において、実施の形態 1のアドレス電極 13及びアドレスドライバ(132, 140)の 接続の構成を説明する。実施の形態 1では、(R, G, B)に対応する各色のセル (Rセ ル: CR, Gセル: CG, Bセル: CB)のうち、 Gセル(CG)に対応する Gのアドレス電極( Ag) 13gの群を、一括して共通の第 2のアドレスドライバ (Ag用ドライノく) 140により駆 動する。そして、残りの Rセル(CR)及び Bセル(CB)に対応する R, Bのアドレス電極 (Ar, Ab) 13r, 13bでは、従来通り、個別に ONZOFFが可能な機能を持つ第 1の アドレスドライバ (Ar及び Ab用ドライノく) 132によって駆動する。 Gの電極 (Ag) 13g は、第 3種の電極、 R, Bのアドレス電極 (Ar, Ab) 13r, 13bは、第 1種,第 2種の電 極に対応する。 [0027] PDP10の複数のアドレス電極 13 (Al〜Am)において、 Rのアドレス電極 (Ar) 13r として、 {Al, A4, A7,…… } = {Arl, Ar2, Ar3,…… }を有する。また、 Gのァドレ ス電極 (Ag) 13gとして、 {A2, A5, A8,…… } = {Agl, Ag2, Ag3,…… }を有する 。 Bのアドレス電極 (Ab) 13bとして、 {A3, A6, A9,…… } = {Abl, Ab2, Ab3,… ···}を有する。 In FIG. 4, the connection configuration of the address electrode 13 and the address driver (132, 140) of the first embodiment will be described. In the first embodiment, among the cells of each color corresponding to (R, G, B) (R cell: CR, G cell: CG, B cell: CB), the address of G corresponding to the G cell (CG) A group of electrodes (Ag) 13g is collectively driven by a common second address driver 140 (Ag dry type) 140. The R and B address electrodes (Ar, Ab) 13r and 13b corresponding to the remaining R cell (CR) and B cell (CB) are the first addresses having the function that can be individually turned ON / OFF as before. It is driven by a driver (Dryno for Ar and Ab) 132. The G electrode (Ag) 13g corresponds to the third type electrode, and the R and B address electrodes (Ar, Ab) 13r and 13b correspond to the first and second type electrodes. [0027] The plurality of address electrodes 13 (Al to Am) of the PDP 10 have {Al, A4, A7, ...} = {Arl, Ar2, Ar3, ...} as the R address electrodes (Ar) 13r . In addition, G address electrode (Ag) 13g has {A2, A5, A8, ...} = {Agl, Ag2, Ag3, ...}. B address electrodes (Ab) 13b have {A3, A6, A9,...} = {Abl, Ab2, Ab3,.
[0028] 下側に位置する第 1のアドレスドライバ 132では、例えば、アドレスドライバ基板 134 上に搭載される複数の IC135により構成される。 IC135は、単一のアドレス電極 13 の駆動回路部として示している力 これら複数の回路部をまとめて 1つの ICとして構 成する形でも構わない。第 1番目の IC (D1) 135は、第 1番目のアドレス電極 (A1)即 ち第 1番目の Rのアドレス電極 (Arl) 13rに接続されて!、る。第 2番目の IC (D2) 135 は、第 3番目のアドレス電極 (A3)即ち第 1番目の Bのアドレス電極 (Abl) 13bに接 続されている。他の R, Bのアドレス電極 13r, 13bについても同様に繰り返し構成さ れている。  The first address driver 132 located on the lower side includes, for example, a plurality of ICs 135 mounted on the address driver board 134. The IC 135 has the power shown as the drive circuit unit for the single address electrode 13. The plurality of circuit units may be configured as a single IC. The first IC (D1) 135 is connected to the first address electrode (A1), that is, the first R address electrode (Arl) 13r. The second IC (D2) 135 is connected to the third address electrode (A3), that is, the first B address electrode (Abl) 13b. The other R and B address electrodes 13r and 13b are similarly configured repeatedly.
[0029] 上側に位置する第 2のアドレスドライバ 140では、 Gのアドレス電極 (Ag) 13g群に、 共通配線 141を通じて共通に接続されるアドレス電圧クランプ回路として実装構成さ れている。電圧クランプ回路自体は公知技術である。第 2のアドレスドライバ 140にお V、て、グランド電圧(GND)と所定のアドレス電圧 (Vac)とを生成して Gのアドレス電 極 13gに印加する。  The second address driver 140 located on the upper side is mounted and configured as an address voltage clamp circuit that is commonly connected to a group of G address electrodes (Ag) 13 g through a common wiring 141. The voltage clamp circuit itself is a known technique. The second address driver 140 generates V, a ground voltage (GND) and a predetermined address voltage (Vac) and applies them to the G address electrode 13g.
[0030] <フィールドの駆動 >  [0030] <Field drive>
次に、図 5において、実施の形態 1における PDP10の駆動制御の基本を説明する 。 PDP10の表示領域 (画面)に対応する映像表示単位である、フィールド (又はフレ ーム) 20における構成を説明する。  Next, the basics of drive control of the PDP 10 in the first embodiment will be described with reference to FIG. The configuration of the field (or frame) 20 that is a video display unit corresponding to the display area (screen) of the PDP 10 will be described.
[0031] 映像を構成するうちの 1つのフィールド (フィールド期間) 20は、例えば 1Z60秒で 表示される。 1つのフィールド 20は、階調表現のために時間的に分割された複数の S F30により構成される。例えば、 1つのフィールド 20は、 1番目「# 1」から n番目「# n」 までの SF30により構成される。各 SF30は、リセット期間(TR) 31と、次のアドレス期 間(TA) 32と、次のサスティン期間(TS) 33とを有する。フィールド 20の各 SF30は、 サスティン期間 (TS) 33の長さ (維持放電回数)による重み付けが与えられており、各 SF30の点灯オン Zオフの組み合わせによって、階調が表現される。 [0031] One field (field period) 20 constituting the video is displayed in 1Z60 seconds, for example. One field 20 includes a plurality of SFs 30 that are temporally divided for gradation expression. For example, one field 20 includes SF30 from the first “# 1” to the nth “#n”. Each SF 30 has a reset period (TR) 31, a next address period (TA) 32, and a next sustain period (TS) 33. Each SF30 in field 20 is weighted by the length of sustain period (TS) 33 (number of sustain discharges). The gradation is expressed by the combination of lighting on Z off of SF30.
[0032] 基本として、リセット期間 31では、全てのセルを初期状態にセットするための放電 (リ セット放電)の動作 (リセット動作)、換言すれば、次のアドレス期間 32に備えるための 電荷書き込み及び調整の動作を実施する。次のアドレス期間 32では、 SF30のセル 群における点灯 (ON) Z非点灯 (OFF)のセルを選択する動作 (アドレス動作)を行う 。即ち、表示データに基づく点灯 ON対象セルの選択に対応して、 Y電極 12に走査 パルスを印加し、かつ、アドレス電極 13にアドレスパルスを印加することにより、選択 セルでの壁電荷形成 (データメモリ)のための放電 (アドレス放電)を実施する。このよ うなアドレス動作を画面(SF30)の全表示ラインに渡って順次に実行し、画面内の全 セルの ONZOFF状態を決定する。次のサスティン期間 33では、直前のアドレス期 間 32でアドレス放電が実施された選択セル (ON状態)において、表示電極(11, 12 )に対する維持パルスの印加により、維持放電を実施して表示する動作 (サスティン 動作)を行う。 [0032] Basically, in the reset period 31, a discharge (reset discharge) operation (reset operation) for setting all cells to the initial state, in other words, charge writing for preparing for the next address period 32 And the adjustment operation is performed. In the next address period 32, an operation (address operation) for selecting a lighted (ON) Z non-lighted (OFF) cell in the SF30 cell group is performed. In other words, in response to the selection of the lighting ON target cell based on the display data, the wall charges are formed in the selected cell by applying a scan pulse to the Y electrode 12 and an address pulse to the address electrode 13 (data Discharge (address discharge) for memory. This address operation is executed sequentially across all display lines of the screen (SF30) to determine the ONZOFF status of all cells in the screen. In the next sustain period 33, in the selected cell (ON state) in which the address discharge was performed in the previous address period 32, the sustain discharge is performed by applying the sustain pulse to the display electrodes (11, 12), and the display is performed. Perform the operation (sustain operation).
[0033] 本実施の形態において、アドレス期間 32は、第 1の期間(321)と第 2の期間(322) に分割されて構成されている。前半の第 1アドレス期間(321)では、 R, Bのセルに対 するアドレス動作を行う。即ち、個別の第 1のアドレスドライバ 132により駆動する Rセ ル及び Bセルのアドレス放電を順次実行する。後半の第 2アドレス期間(322)では、 Gのセルに対するアドレス動作を行う。即ち、共通の第 2のアドレスドライバ 140により 駆動する Gセルのアドレス放電を行う。  In the present embodiment, the address period 32 is divided into a first period (321) and a second period (322). In the first address period (321) of the first half, address operation is performed for R and B cells. That is, address discharge of the R cell and B cell driven by the individual first address driver 132 is sequentially executed. In the second address period (322) in the latter half, the address operation for the G cell is performed. That is, the G cell address discharge driven by the common second address driver 140 is performed.
[0034] なお、アドレス方式としては、書き込みアドレス方式、消去アドレス方式のいずれに 係わらず適用可能である力 本例では前者の方式を用いる。  It should be noted that as the address method, power that can be applied regardless of either the write address method or the erase address method, the former method is used in this example.
[0035] <アドレス期間の駆動 >  [0035] <Address period drive>
次に、図 6及び図 7において、前述の構成に対応して、フィールド 20の駆動制御に おける SF30のアドレス期間 32での個別セルの選択のためのアドレス放電の動作に ついて、概念及び駆動方法などを説明する。 PDP10の RGBのセル(CR, CG, CB) の一部断面を模式的に示している。  Next, in FIGS. 6 and 7, corresponding to the above-described configuration, the concept and driving method of the address discharge operation for selecting individual cells in the address period 32 of SF30 in the drive control of field 20 are described. Explain etc. A partial cross section of an RGB cell (CR, CG, CB) of PDP10 is shown schematically.
[0036] 図 6において、アドレス期間 32の第 1段階の動作状態、即ち第 1の期間(321)に対 応する状態を示している。第 1アドレス期間(321)において、まず、 Rセル (CR)と Bセ ル (CB)について、点灯対象セルの選択による ON状態とする場合には、個別の第 1 のアドレスドライバ 132側から、対象の R, Bのアドレス電極 13r, 13bに対して、所定 の電圧 (Va :例えば 60V)によるアドレスパルスを印加し、かつ、対応する Y電極 12に 所定の電圧(― Vyl :例えば— 100V)によるスキャンパルスを印加する。これにより、 Rセル(CR)及び Bセル(CB)の放電空間 601におけるアドレス放電(放電 602)を発 生させる。一方、このタイミングでは、 Rセル(CR)と Bセル(CB)の間にある Gセル(C G)に対応するアドレス電極 13gについては、第 2のアドレスドライバ 140により、 Vaと は異なる所定の電圧 (OV (GND):第 1のクランプ電圧)にクランプした状態を維持し 、当該 Gセルでのアドレス放電を一切行わな 、ようにする。 FIG. 6 shows a first stage operation state of the address period 32, that is, a state corresponding to the first period (321). In the first address period (321), first, R cell (CR) and B cell In the case of turning ON the light source (CB) by selecting the lighting target cell, a predetermined voltage (from the individual first address driver 132 side to the target R and B address electrodes 13r and 13b ( Apply an address pulse with Va (for example, 60V), and apply a scan pulse with a predetermined voltage (-Vyl: for example, -100V) to the corresponding Y electrode 12. This generates an address discharge (discharge 602) in the discharge space 601 of the R cell (CR) and B cell (CB). On the other hand, at this timing, for the address electrode 13g corresponding to the G cell (CG) between the R cell (CR) and the B cell (CB), the second address driver 140 causes a predetermined voltage different from Va. Maintain the clamped state (OV (GND): 1st clamp voltage) and do not perform any address discharge in the G cell.
[0037] 次に、図 7において、アドレス期間 32の第 2段階の動作状態、即ち第 2の期間(322 )に対応する状態を示している。図 6の状態に続いて、第 2アドレス期間(322)におい て、 Gセル (CG)に対して ON状態とするためのアドレス放電を実施する場合である。 該当 Gセル (CG)のアドレス放電を実施する場合は、当該 Gセル (CG)に隣接する前 記 Rセル(CR)と Bセル(CB)における R, Bのアドレス電極 13r, 13bを、前記所定の 電圧 (Va)によって同時に ON状態にすることにより、その間の Gセル (CG)の電位も 所定の電圧 (Vac:第 2のクランプ電圧)に上昇し、アドレス放電 (放電 602)を発生さ せることができる。第 2のアドレスドライバ 140により、 Gセルにおいて所定の電圧 (Va c)にクランプした状態が維持される。また、対応する Y電極 12には、前記第 1アドレス 期間(321)で印加したスキャンパルスとは異なる、所定の電圧(一 Vy2 :例えば— 40 V)によるスキャンパルスが印加される。  Next, FIG. 7 shows a second stage operation state of the address period 32, that is, a state corresponding to the second period (322). In the second address period (322) following the state of FIG. 6, the address discharge is performed to turn on the G cell (CG). When address discharge of the G cell (CG) is performed, the R and B address electrodes 13r and 13b in the R cell (CR) and B cell (CB) adjacent to the G cell (CG) are connected to the G cell (CG). By simultaneously turning ON with a predetermined voltage (Va), the potential of the G cell (CG) during that time also rises to a predetermined voltage (Vac: second clamp voltage), and an address discharge (discharge 602) is generated. Can be made. The second address driver 140 maintains the clamped state at a predetermined voltage (Vac) in the G cell. Further, a scan pulse with a predetermined voltage (one Vy2: for example −40 V) different from the scan pulse applied in the first address period (321) is applied to the corresponding Y electrode 12.
[0038] <駆動波形 >  [0038] <Drive waveform>
次に、図 8において、実施の形態 1における具体的な SF30の駆動波形の構成例を 説明する。上から、(a) PArは、 Rセルのアドレス電極 (Ar) 13rに対する駆動波形、( b) PAbは、 Bセルのアドレス電極 (Ab) 13bに対する波形、(c) PAgは、 Gセルのアド レス電極 (Ag) 13gに対する波形、(d) PXは、 X電極 11に対する波形、(e) PYは、 Y 電極 12に対する波形を示して!/、る。  Next, referring to FIG. 8, a specific configuration example of the SF30 drive waveform in the first embodiment will be described. From the top, (a) PAr is the drive waveform for the R cell address electrode (Ar) 13r, (b) PAb is the waveform for the B cell address electrode (Ab) 13b, and (c) PAg is the G cell address. (D) PX shows the waveform for the X electrode 11 and (e) PY shows the waveform for the Y electrode 12! /.
[0039] 第 1アドレス期間(321)では、 Gセルのアドレス電極 13gを常に 0V (第 1のクランプ 電圧)に固定し、 Y電極 12に順次にスキャンパルス(501)を印加し、 R, Bセルのアド レス電極 13r, 13bにはアドレス電圧(Va)によるアドレスパルス(601)を印加して、ァ ドレス放電を実施する。第 2アドレス期間(322)においても、 Y電極 12には順次にス キャンパルス(502)を印加する。 Gセルを ON状態にするためには、その両側に隣接 の R, Bセルのアドレス電極 13r, 13bに、アドレス電圧(Va)によるアドレスパルス(60 2)を印加して、アドレス放電を実施する。 [0039] In the first address period (321), the address electrode 13g of the G cell is always fixed at 0V (first clamp voltage), and the scan pulse (501) is sequentially applied to the Y electrode 12, and R, B Cell add An address pulse (601) based on an address voltage (Va) is applied to the less electrodes 13r and 13b to perform address discharge. Also in the second address period (322), the scan pulse (502) is sequentially applied to the Y electrode 12. In order to turn on the G cell, address discharge is performed by applying an address pulse (602) based on the address voltage (Va) to the address electrodes 13r and 13b of the adjacent R and B cells on both sides of the G cell. .
[0040] 上記の詳しい駆動波形は例えば以下のようになる。まず、リセット期間 31では、 (d) PX, (e) PYで、表示電極(11, 12)に対して、まず第 1期間に、電荷書き込みのため の波形 (41, 51)を印加する。 PYの波形 52は、到達電位が Vwである。次いで第 2 期間に、電荷調整のための波形 (42, 52)を印加する。 PXの波形 42は、所定の電 圧 (Vxl)である。これらによりリセット放電が発生する。  [0040] The detailed driving waveform is as follows, for example. First, in the reset period 31, in (d) PX, (e) PY, the waveform (41, 51) for charge writing is first applied to the display electrodes (11, 12) in the first period. Waveform 52 of PY has an ultimate potential of Vw. Next, during the second period, waveforms (42, 52) for charge adjustment are applied. The waveform 42 of PX is a predetermined voltage (Vxl). As a result, reset discharge occurs.
[0041] 一方、(c) PAgで、アドレス電極 13gには、第 1期間に、所定の電圧 (Vac :第 2のク ランプ電圧) 61を印加し、第 2期間に、 0V (第 1のクランプ電圧)の電圧 62を印加す る。  [0041] On the other hand, in (c) PAg, a predetermined voltage (Vac: second clamp voltage) 61 is applied to the address electrode 13g in the first period and 0V (first voltage is applied to the second period). Apply 62 (clamp voltage).
[0042] 次に、第 1アドレス期間(321)では、(a) PAr, (b) PAbで、 Rセル及び Bセル対応 のアドレス電極 13r, 13bには、表示データに応じてアドレス電圧 (Va)によるアドレス パルス(601)を印加する。また、(c) PAgで、引き続き、 Gセル対応のアドレス電極 13 gの電圧 63を常に 0V (第 1のクランプ電圧)に固定する。また、(d) PXで、 X電極 11 に所定の電圧(Vxl) 43を印加し、(e) PYで、 Y電極 12に順次にスキャンパルス(50 1)を印加する。この際の Y電極 12の基準の電圧 53は、例えば— 60V (— Va)にし、 スキャンパルス (501)の電圧(一 Vyl)は、例えば 100Vにする(基準の電圧からの スキャンパルスの大きさは 40V)。これらにより前記図 6のように、 Rセル及び Bセルで のアドレス放電を実施する。  [0042] Next, in the first address period (321), in (a) PAr, (b) PAb, the address electrodes (Va) are applied to the address electrodes 13r, 13b corresponding to the R cell and B cell according to the display data. ) Apply the address pulse (601). (C) With PAg, the voltage 63 of the address electrode 13 g corresponding to the G cell is continuously fixed at 0 V (first clamp voltage). Further, (d) a predetermined voltage (Vxl) 43 is applied to the X electrode 11 by PX, and a scan pulse (501) is sequentially applied to the Y electrode 12 by (e) PY. In this case, the reference voltage 53 of the Y electrode 12 is set to, for example, −60V (—Va), and the voltage (one Vyl) of the scan pulse (501) is set to, for example, 100V (the magnitude of the scan pulse from the reference voltage). Is 40V). As a result, as shown in FIG. 6, address discharge is performed in the R cell and the B cell.
[0043] 続く第 2アドレス期間(322)では、(a) PAr, (b) PAbで、 Gセルに隣接する Rセル 及び Bセル対応のアドレス電極 13r, 13bには、表示データに応じてアドレス電圧(V a)によるアドレスパルス(602)を印加する。また、(c) PAgで、 Gセル対応のアドレス 電極 13gの電圧 64を常に所定の電圧 Vac (第 2のクランプ電圧)に固定する。また、( d) PXで、 X電極 11に、前記第 1アドレス期間(321)での所定の電圧 (Vxl) 43よりも 高い所定の電圧(Vx2) 44を印加し、(e) PYで、 Y電極 12〖こ、順次に、スキャンパル ス(501)よりも高い電圧のスキャンパルス(502)を印加する。この際、 Y電極 12の基 準の電圧 54は、前記第 1アドレス期間(321)での所定の電圧(一 60V) 53よりも高い 所定の電圧 (0V) 54を印加する。スキャンパルス (502)の電圧(― Vy2)は、例えば — 40Vである。 [0043] In the subsequent second address period (322), in (a) PAr, (b) PAb, the address electrodes 13r, 13b corresponding to the R cell and the B cell adjacent to the G cell are addressed according to the display data. An address pulse (602) with a voltage (Va) is applied. (C) The voltage 64 of the address electrode 13g corresponding to the G cell is always fixed to the predetermined voltage Vac (second clamp voltage) with PAg. Further, (d) PX applies a predetermined voltage (Vx2) 44 higher than the predetermined voltage (Vxl) 43 in the first address period (321) to the X electrode 11, and (e) PY Y electrode 12 mm, sequentially, scan pal A scan pulse (502) having a voltage higher than that of the source (501) is applied. At this time, as the reference voltage 54 of the Y electrode 12, a predetermined voltage (0V) 54 higher than the predetermined voltage (one 60V) 53 in the first address period (321) is applied. The voltage (−Vy2) of the scan pulse (502) is, for example, −40V.
[0044] 続くサスティン期間 33では、(c) PAgで電圧 65として Vac (第 2のクランプ電圧)を 維持したまま、 (d) PX, (e) PYで、従来同様に所定電圧 (Vs, —Vs)による繰り返し のサスティンパルス(45, 55)を印加することにより、 ON状態のセルにおける点灯を 行う。  [0044] In the subsequent sustain period 33, (c) while maintaining Vac (second clamp voltage) as voltage 65 at PAg, (d) PX, (e) PY, with the same predetermined voltage (Vs, — By applying repeated sustain pulses (45, 55) according to Vs), the cells in the ON state are turned on.
[0045] 以上の動作を実施するために重要なのは、各電極のアドレス期間 32の電位である 。まず、第 1アドレス期間(321)では、 Gセルのアドレス電極 13gが 0V (第 1のクランプ 電圧) 63であるため、その隣接のアドレス電極 13r, 13bが ON状態となっても、 Gセ ルで放電が発生することは無い。そして、特に第 2アドレス期間(322)の構成が要点 である。第 2アドレス期間(322)では、 Gセルで放電を実施するために、その隣接の R セル及び Bセルのアドレス電極 13r, 13bで ON状態にする。この場合、第 1アドレス 期間(321)でアドレス放電を実施していない、つまり OFF状態である、 Rセルまたは Bセルで、放電が発生しないようにする必要がある。そのため、第 2アドレス期間(322 )のスキャンパルス (502)の電圧(一 Vy2)を、第 1アドレス期間(321)のスキャンパル ス(501)の電圧(一 Vyl)よりも、電圧 Va分、高くなるように構成している。つまり、 - Vy2=— Vyl +Vaとしている。この差の電圧(Va)は、 Vac又はそれに近い電圧分と してちよい。  [0045] What is important for performing the above operation is the potential of the address period 32 of each electrode. First, in the first address period (321), since the address electrode 13g of the G cell is 0V (first clamp voltage) 63, even if the adjacent address electrodes 13r and 13b are in the ON state, the G cell There is no discharge. The configuration of the second address period (322) is particularly important. In the second address period (322), in order to discharge the G cell, the address electrodes 13r and 13b of the adjacent R cell and B cell are turned on. In this case, it is necessary to prevent discharge from occurring in the R cell or B cell in which the address discharge is not performed in the first address period (321), that is, in the OFF state. For this reason, the voltage (one Vy2) of the scan pulse (502) in the second address period (322) is set to the voltage Va, compared to the voltage (one Vyl) of the scan pulse (501) in the first address period (321). It is configured to be higher. That is,-Vy2 = — Vyl + Va. The difference voltage (Va) may be Vac or a voltage close thereto.
[0046] 具体的に、本例では、—Vylを— 100V、 Vaを 60V、—Vy2を—40Vに設定して V、る (-Vy2 (-40V) = -Vyl (- 100V) +Va (60V) )。このように構成することで 、前記 Rセルと Bセルで誤ってアドレス放電が実施されることが無い。また、第 2ァドレ ス期間(322)においても、 X電極 11とスキャンパルス(502)との間の電位差は、第 1 アドレス期間(321)と同じ電圧が必要であるため、 X電極 11には電圧 Vx2 (44)とし て、電圧 Vxl (43)よりも同様に電圧 Va分高!、電圧を印加して!/、る (Vx2=Vxl +V a) 0 [0046] Specifically, in this example, —Vyl is set to —100V, Va is set to 60V, and —Vy2 is set to —40V. 60V)). With this configuration, address discharge is not erroneously performed in the R cell and B cell. In the second address period (322), the potential difference between the X electrode 11 and the scan pulse (502) requires the same voltage as in the first address period (321). Similarly, the voltage Vx2 (44) is higher than the voltage Vxl (43) by the voltage Va !, and the voltage is applied! /, (Vx2 = Vxl + V a) 0
[0047] さらに、第 2アドレス期間(322)の Gセルのアドレス電極 13gに対しては、印加の電 圧 64を、第 1アドレス期間(321)よりも高い Vac (第 2のクランプ電圧)としている力 こ れは例えば電圧 Vaと同じ値としてもよい(Vac =Va、 Vac≠Vaのいずれも可能であ る)。 [0047] Further, the applied voltage is applied to the address electrode 13g of the G cell in the second address period (322). The force that makes the voltage 64 a Vac (second clamp voltage) higher than the first address period (321), for example, may be the same value as the voltage Va (Vac = Va, Vac ≠ Va is possible) is there).
[0048] 上記のような電圧の状態で、第 2アドレス期間(322)に、アドレス放電を実施させた い Gセルに隣接する R及び Bのアドレス電極 13r, 13bにアドレスパルス(602)を印加 することにより、前記図 7のように当該 Gセルでアドレス放電を発生させることができる 。なお、 Vxl, Vx2, -Vyl, Vy2, Va, Vac等の電圧の設計は上記の通りである 1S PDP10の電極構造や駆動方式等に応じて調整してもよ ヽ。  [0048] In the second address period (322), the address pulse (602) is applied to the R and B address electrodes 13r and 13b adjacent to the G cell in the second address period (322) in the voltage state as described above. As a result, an address discharge can be generated in the G cell as shown in FIG. Note that the design of voltages such as Vxl, Vx2, -Vyl, Vy2, Va, Vac, etc. may be adjusted according to the electrode structure and drive system of 1S PDP10 as described above.
[0049] 以上のように実施の形態 1によれば、各色に対応した三種類のアドレス電極 13のう ち特定の種類のアドレス電極 (Ag) 13gを共通駆動する構成により、特に、必要なァ ドレスドライバの数ないし規模を、従来の約三分の二にすることができるため、装置の コストダウンに大きく寄与できる。  As described above, according to the first embodiment, a specific type of address electrode (Ag) 13g among the three types of address electrodes 13 corresponding to each color is commonly driven, so that a necessary address is particularly obtained. The number or scale of drivers can be reduced to about two-thirds of the conventional size, which can greatly contribute to the cost reduction of the device.
[0050] (実施の形態 2)  [0050] (Embodiment 2)
次に、図 9,図 10において、本発明の実施の形態 2の PDP装置における PDP10の 構造を説明する。実施の形態 2は、駆動波形や回路構成などについては実施の形 態 1と同様であるが、アドレス電極 13の配置及び形状に一工夫した構成である。前述 のように、 Gセルをアドレスする際は、それに隣接する Rセル及び Bセルのアドレス電 極 13r, 13bにアドレスパルスを印加して、その電界によって Gセルを ON状態にする ことが特徴である。よって、実施の形態 2では、その電界の影響をより高めるために、 図 9に示すように、 Gセル寄りに、 Rセル及び Bセルのアドレス電極 13r, 13bを配置し た構成である。また更に、 Gセルのアドレス電極 13gの幅を、 Rセル及び Bセルのアド レス電極 13r, 13bの幅よりも細くした構成である。これにより、前記アドレス放電に係 わり、より安定な動作を実施できる場合がある。  Next, the structure of the PDP 10 in the PDP device according to the second embodiment of the present invention will be described with reference to FIGS. The second embodiment is the same as the first embodiment in terms of the drive waveform and the circuit configuration, but is a configuration in which the arrangement and shape of the address electrodes 13 are devised. As described above, when addressing a G cell, an address pulse is applied to the address electrodes 13r and 13b of the R cell and B cell adjacent to the G cell, and the G cell is turned on by the electric field. is there. Therefore, the second embodiment has a configuration in which the address electrodes 13r and 13b of the R cell and the B cell are arranged closer to the G cell as shown in FIG. 9 in order to further increase the influence of the electric field. Furthermore, the width of the address electrode 13g of the G cell is made narrower than the width of the address electrodes 13r and 13b of the R cell and B cell. As a result, a more stable operation may be performed in connection with the address discharge.
[0051] また、上記とは逆に、図 10に示すように、 Gセルのアドレス電極 13gの幅を、 Rセル 及び Bセルのアドレス電極 13r, 13bの幅よりも太くした構成も可能であり、同様に、前 記アドレス放電に係わり、より安定な動作を実施できる場合がある。  [0051] Contrary to the above, as shown in FIG. 10, the G cell address electrode 13g may be wider than the R cell and B cell address electrodes 13r and 13b. Similarly, there are cases where more stable operation can be performed in connection with the address discharge.
[0052] (実施の形態 3)  [0052] (Embodiment 3)
次に、図 11において、本発明の実施の形態 3の PDP装置における駆動シーケンス を説明する。実施の形態 3では、基本的な構成は前述の実施の形態と同様であり、 異なる特徴として、フィールド 20の駆動制御において、複数の SF30の中で一部の S F30では、前記第 2アドレス期間(322)の動作を実施しない構成である。例えば、図 11のように、第 1番目の最小輝度の SF30 ( # 1)では、アドレス期間 32として、第 1ァ ドレス期間(TA1) 321のみ有する。即ち、その SF30 ( # 1)では、第 1アドレス期間( TA1) 321で R, Bセルのアドレス動作を実施し、第 2アドレス期間(322)での Gセル のアドレス動作を省略する。 Next, in FIG. 11, the drive sequence in the PDP device according to the third embodiment of the present invention Will be explained. In the third embodiment, the basic configuration is the same as that of the previous embodiment. As a different feature, in the drive control of the field 20, in some SF30 among the plurality of SF30, the second address period (322) is not implemented. For example, as shown in FIG. 11, the first minimum luminance SF30 (# 1) has only the first address period (TA1) 321 as the address period 32. That is, in SF30 (# 1), the address operation of the R and B cells is performed in the first address period (TA1) 321 and the address operation of the G cell in the second address period (322) is omitted.
[0053] 各実施の形態では、アドレス期間 32について、二段階の期間(321, 322)で構成 される分、必要期間が約 2倍になるものである力 RGBのうちの特定の色 (例: G)の み階調数を削減しても問題ないような用途の場合 (そのような表示を行う場合)、本実 施の形態 3のように、前記特定の色 (G)に対応した第 2アドレス期間(322)の動作を 実施せずに駆動表示することが可能である。第 2アドレス期間(322)を省略した分、 駆動期間が短縮される。  [0053] In each embodiment, the address period 32 is composed of two stages (321, 322), and the required period is approximately doubled. : For applications where there is no problem even if the number of gradations is reduced only for G) (when such display is performed), as described in Embodiment 3, it corresponds to the specific color (G). The drive display can be performed without performing the operation in the second address period (322). The drive period is shortened by omitting the second address period (322).
[0054] また例えば、各実施の形態では、 RGBのうち Gを共通電極駆動対象 (第 3種)とした 場合である力 他にも、輝度が低い青 (B)を共通電極駆動対象として、上記と同様に 第 1の SF30 ( # 1)で Bセルをアドレス動作しない構成にすることも有効である。  [0054] Further, for example, in each embodiment, in addition to the force when G of RGB is a common electrode drive target (third type), blue (B) having a low luminance is set as a common electrode drive target. Similarly to the above, it is also effective to configure the B cell so that it does not operate with the first SF30 (# 1).
[0055] (実施の形態 4)  [Embodiment 4]
次に、図 12において、本発明の実施の形態 4の PDP装置の電極及びドライバ接続 の構成を説明する。図 12に示す実施の形態 4の構成は、図 3等の実施の形態 1の構 成に比べて、 Gのアドレス電極 13gの配線 141等及び第 2のアドレスドライバの実装 構成が異なる。  Next, referring to FIG. 12, the configuration of the electrode and driver connection of the PDP device according to the fourth embodiment of the present invention will be described. The configuration of the fourth embodiment shown in FIG. 12 differs from the configuration of the first embodiment in FIG. 3 and the like in the mounting configuration of the wiring 141 of the G address electrode 13g and the second address driver.
[0056] 共通の第 2のアドレスドライバ 140に接続するアドレス電極 13gは、個別の第 1のァ ドレスドライバ 132に接続するアドレス電極 13r, 13bの反対側(図 12の上側)に出力 することにより、 PDP10のガラス基板 (背面基板 2)上で一括して結線することができ る。図 12の構成では、 PDP10の上辺部の封止部 3の外側の領域で、配線 141のよう に共通接続している。  [0056] The address electrode 13g connected to the common second address driver 140 is output to the opposite side (upper side in FIG. 12) of the address electrodes 13r and 13b connected to the individual first address driver 132. The PDP10 glass substrate (back substrate 2) can be connected together. In the configuration of FIG. 12, a common connection is made like a wiring 141 in a region outside the sealing portion 3 on the upper side of the PDP 10.
[0057] また、共通のアドレス電極 13gを駆動する第 2のアドレスドライバ 140は、規模も小さ いので、個別の基板で構成するよりも、 X駆動回路 111側もしくは Y駆動回路 121側 の基板上に搭載する構成とする。図 12の構成では、 X駆動回路 111の基板上に、第 2のアドレスドライバ 140を搭載している。このような構成の方力 実装サイズ及びコス ト等のメリットがある。 [0057] The second address driver 140 that drives the common address electrode 13g is smaller in scale, and therefore, the X drive circuit 111 side or the Y drive circuit 121 side than the configuration of the separate substrate. To be mounted on the substrate. In the configuration of FIG. 12, the second address driver 140 is mounted on the substrate of the X drive circuit 111. This configuration has advantages such as mounting size and cost.
[0058] また、アドレス電極 13gと第 2のアドレスドライノく 140との接続では、 X電極 11や Y電 極 12を駆動回路に接続する FPCB (フレキシブルプリント回路基板 Zフレキシブルケ 一ブル)等の接続部を利用して接続してもよい。図 12の構成では、 PDP10の上辺部 のアドレス電極 13gの配線 141と X駆動回路 111上の第 2のアドレスドライバ 140との 接続にお 、て、前記 X中継基板 112につながる FPCB113上での一部配線を利用し ている。  [0058] In addition, in the connection between the address electrode 13g and the second address line 140, the FPCB (flexible printed circuit board Z flexible cable) or the like that connects the X electrode 11 and the Y electrode 12 to the drive circuit is used. You may connect using a connection part. In the configuration of FIG. 12, when the wiring 141 of the address electrode 13g on the upper side of the PDP 10 is connected to the second address driver 140 on the X drive circuit 111, one connection on the FPCB 113 connected to the X relay board 112 is performed. Partial wiring is used.
[0059] 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが 、本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能であることは言うまでもな 、。  [0059] While the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say, there is.
産業上の利用可能性  Industrial applicability
[0060] 本発明は、アドレス電極を用いるプラズマディスプレイ装置に利用可能である。 The present invention can be used in a plasma display device using address electrodes.

Claims

請求の範囲 The scope of the claims
[1] 三種類の色のセルが行列状に構成され、前記セルに対するアドレス動作のための 電極を備えるプラズマディスプレイパネルと、前記プラズマディスプレイパネルの電極 群を駆動及び制御する回路部とを備えるプラズマディスプレイ装置であって、 前記アドレス動作のための電極は、前記三種類の色における第 1色、第 2色、及び 第 3色のセルを選択してアドレス動作する役割に応じた、第 1種、第 2種、及び第 3種 の三種類の電極の群から構成され、  [1] A plasma including a plasma display panel in which cells of three kinds of colors are arranged in a matrix and having electrodes for addressing the cells, and a circuit unit for driving and controlling the electrode group of the plasma display panel In the display device, the electrode for the address operation is a first type corresponding to the role of selecting the first color, the second color, and the third color cell in the three colors and performing the address operation. Is composed of a group of three types of electrodes, type 2 and type 3,
前記三種類の色のうち二種類の第 1色及び第 2色に対応する前記第 1種及び第 2 種の電極は、当該電極群を個別に駆動する第 1の駆動回路に接続され、  The first type and second type electrodes corresponding to two types of first color and second color among the three types of colors are connected to a first drive circuit that individually drives the electrode group,
前記三種類の色のうち一種類の第 3色に対応する前記第 3種の電極は、当該電極 群を共通に駆動する第 2の駆動回路に接続されることを特徴とするプラズマディスプ レイ装置。  The plasma display apparatus, wherein the third type electrode corresponding to one type of the third color among the three types of colors is connected to a second drive circuit that drives the electrode group in common. .
[2] 請求項 1記載のプラズマディスプレイ装置にぉ 、て、  [2] The plasma display device according to claim 1, wherein
前記プラズマディスプレイパネルは、赤、緑、及び青の三種類の色に応じた蛍光体 を備え、前面基板側に表示駆動のための第 1及び第 2の電極を備え、背面基板側に 前記アドレス動作のための第 3の電極を備え、これらにより前記三種類の色のセル及 びそれらのセットによる画素が構成されることを特徴とするプラズマディスプレイ装置。  The plasma display panel includes phosphors corresponding to three colors of red, green, and blue, includes first and second electrodes for display driving on the front substrate side, and the address on the rear substrate side. A plasma display device comprising a third electrode for operation, and comprising the cells of the three kinds of colors and the pixels thereof.
[3] 請求項 1記載のプラズマディスプレイ装置にぉ 、て、 [3] The plasma display device according to claim 1, wherein
前記アドレス動作のための電極のうち、  Among the electrodes for the address operation,
前記第 1種及び第 2種の電極は、前記プラズマディスプレイパネルの上側もしくは 下側の一方力 引き出されて前記第 1の駆動回路に接続され、  The first-type and second-type electrodes are connected to the first drive circuit by pulling one of the upper and lower electrodes of the plasma display panel.
前記第 3種の電極は、前記プラズマディスプレイパネルの前記第 1種及び第 2種の 電極が引き出される側とは他方の側力 引き出されて前記第 2の駆動回路に接続さ れることを特徴とするプラズマディスプレイ装置。  The third type electrode is connected to the second drive circuit by being pulled out of the other side of the plasma display panel from which the first and second types of electrodes are pulled out. Plasma display device.
[4] 請求項 1記載のプラズマディスプレイ装置にぉ 、て、 [4] The plasma display device according to claim 1, wherein
前記プラズマディスプレイパネルの表示領域の駆動制御にぉ 、て、表示データに 応じて前記セルの ONZOFF状態を選択するアドレス動作を実施するアドレス期間 において、第 1と第 2の期間を有し、 前記第 1の期間では、前記第 1の駆動回路から前記第 1種及び第 2種の電極に対 応する第 1種及び第 2種のセルに対して、選択されるセルでのアドレス放電を実施し 続く前記第 2の期間では、前記第 2の駆動回路から前記第 3種の電極に対応する 第 3種のセルに対して、選択されるセルでのアドレス放電を実施することを特徴とする プラズマディスプレイ装置。 The driving period of the display area of the plasma display panel has a first period and a second period in an address period for performing an address operation for selecting an ONZOFF state of the cell according to display data, In the first period, address discharge in the selected cell is performed on the first type and second type cells corresponding to the first type and second type electrodes from the first drive circuit. In the second period to be performed, address discharge in the selected cell is performed on the third type cell corresponding to the third type electrode from the second drive circuit. Yes Plasma display device.
[5] 請求項 4記載のプラズマディスプレイ装置にぉ 、て、 [5] The plasma display device according to claim 4, wherein
前記第 2の期間における前記第 2の駆動回路から前記第 3種の電極に対応する第 3種のセルに対してのアドレス放電の動作では、  In the operation of address discharge from the second drive circuit to the third type cell corresponding to the third type electrode in the second period,
前記第 3種のセルを ON状態にする場合に、当該第 3種のセルの両側に隣接する 前記第 1種及び第 2種の電極に対応した第 1種及び第 2種のセルに対して、当該第 1 種及び第 2種の電極を電圧印加により ON状態にすることにより、当該第 3種のセル でのアドレス放電を実施して ON状態にすることを特徴とするプラズマディスプレイ装 置。  When the third type cell is turned on, the first type and second type cells corresponding to the first type and second type electrodes adjacent to both sides of the third type cell The plasma display device is characterized in that the first type and second type electrodes are turned on by applying a voltage, thereby performing address discharge in the third type cell and turning it on.
[6] 請求項 4記載のプラズマディスプレイ装置にぉ 、て、  [6] The plasma display device according to claim 4, wherein
前記プラズマディスプレイパネルは、前記アドレス期間での走査駆動のための走査 電極を有し、  The plasma display panel has scan electrodes for scan driving in the address period,
前記第 1の期間では、前記第 1種及び第 2種の電極に対してアドレスパルスを印加 し、前記走査電極に対して第 1の走査パルスを印加し、  In the first period, an address pulse is applied to the first type electrode and the second type electrode, a first scan pulse is applied to the scan electrode,
前記第 2の期間では、前記第 1種及び第 2種の電極に対してアドレスパルスを印加 し、前記走査電極に対して第 2の走査パルスを印加し、  In the second period, an address pulse is applied to the first and second types of electrodes, a second scan pulse is applied to the scan electrodes,
前記第 1の期間で前記走査電極に印加する第 1の走査パルスの電圧よりも、前記 第 2の期間で前記走査電極に印加する第 2の走査パルスの電圧の方が、所定電圧 分高 、ことを特徴とするプラズマディスプレイ装置。  The voltage of the second scan pulse applied to the scan electrode in the second period is higher than the voltage of the first scan pulse applied to the scan electrode in the first period by a predetermined voltage, A plasma display device.
[7] 請求項 4記載のプラズマディスプレイ装置にぉ 、て、 [7] The plasma display device according to claim 4, wherein
前記第 1の期間では、前記第 1種及び第 2種の電極に対してアドレスパルスを印加 し、前記第 3種の電極に対して第 1の電圧を印加し、  In the first period, an address pulse is applied to the first and second types of electrodes, and a first voltage is applied to the third type of electrodes,
前記第 2の期間では、前記第 1種及び第 2種の電極に対してアドレスパルスを印加 し、前記第 3種の電極に対して第 2の電圧を印加し、 In the second period, an address pulse is applied to the first-type and second-type electrodes. And applying a second voltage to the third type electrode,
前記第 1の期間で前記第 3種の電極に印加する第 1の電圧よりも、前記第 2の期間 で前記第 3種の電極に印加する第 2の電圧の方が、所定電圧分高いことを特徴とす るプラズマディスプレイパネルの駆動方法。  The second voltage applied to the third type electrode in the second period is higher by a predetermined voltage than the first voltage applied to the third type electrode in the first period. A driving method of a plasma display panel characterized by the above.
[8] 請求項 1記載のプラズマディスプレイ装置にぉ 、て、 [8] The plasma display device according to claim 1, wherein
前記第 3種の電極に隣接する前記第 1種及び第 2種の電極は、それに対応する第 1種及び第 2種のセルの中心よりも、前記第 3種の電極に対応する第 3種のセル側に 近!、位置に配置されて 、ることを特徴とするプラズマディスプレイ装置。  The first and second types of electrodes adjacent to the third type of electrode have a third type corresponding to the third type electrode rather than the center of the corresponding first and second type cells. A plasma display device, characterized in that the plasma display device is arranged at a position close to the cell side of the cell.
[9] 請求項 8記載のプラズマディスプレイ装置にぉ 、て、 [9] The plasma display device according to claim 8, wherein
前記第 3種の電極は、前記第 1種及び第 2種の電極と比べて、幅が狭い形状である ことを特徴とするプラズマディスプレイ装置。  The plasma display apparatus according to claim 3, wherein the third type electrode has a narrower width than the first type and second type electrodes.
[10] 請求項 8記載のプラズマディスプレイ装置にぉ ヽて、 [10] In the plasma display device according to claim 8,
前記第 3種の電極は、前記第 1種及び第 2種の電極と比べて、幅が広い形状である ことを特徴とするプラズマディスプレイ装置。  The plasma display device according to claim 3, wherein the third type electrode has a wider shape than the first type and second type electrodes.
[11] 請求項 1記載のプラズマディスプレイ装置において、 [11] The plasma display device according to claim 1,
前記プラズマディスプレイパネルの駆動制御における、フィールドを構成する複数 のサブフィールドのうち、少なくとも 1つのサブフィールドでは、前記第 2の駆動回路か ら前記第 3種の電極に対するアドレス放電の動作を省略することを特徴とするプラズ マディスプレイ装置。  In the drive control of the plasma display panel, the address discharge operation for the third type electrode from the second drive circuit is omitted in at least one subfield among a plurality of subfields constituting the field. Plasma display device characterized by
[12] 請求項 1記載のプラズマディスプレイ装置にぉ 、て、 [12] The plasma display device according to claim 1, wherein
前記プラズマディスプレイパネルは、表示駆動のための第 1及び第 2の電極と、前 記アドレス動作のための第 3の電極とを備え、  The plasma display panel includes first and second electrodes for display driving, and a third electrode for the address operation,
前記第 1の電極の駆動回路と前記第 2の電極の駆動回路とを備え、  A drive circuit for the first electrode and a drive circuit for the second electrode;
前記第 2の駆動回路は、前記第 1の電極の駆動回路もしくは前記第 2の電極の駆 動回路の基板上に搭載されていることを特徴とするプラズマディスプレイ装置。  The plasma display apparatus, wherein the second driving circuit is mounted on a substrate of the driving circuit for the first electrode or the driving circuit for the second electrode.
[13] 請求項 12記載のプラズマディスプレイ装置にぉ ヽて、 [13] In the plasma display device according to claim 12,
前記第 3種の電極の群は、前記プラズマディスプレイパネルの辺部の領域で共通 接続されており、 前記第 3種の電極の群の共通接続の配線と前記第 2の駆動回路とを接続する配線 は、前記第 1の電極の駆動回路もしくは前記第 2の電極の駆動回路の配線を構成す るフレキシブルモジュールの一部を使用して構成されていることを特徴とするプラズ マディスプレイ装置。 The group of the third type electrodes are commonly connected in the side area of the plasma display panel, The wiring for connecting the common connection wiring of the group of the third type electrode and the second driving circuit constitutes the wiring of the driving circuit for the first electrode or the driving circuit for the second electrode. A plasma display device comprising a part of a flexible module.
PCT/JP2006/313232 2006-07-03 2006-07-03 Plasma display device WO2008004271A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/313232 WO2008004271A1 (en) 2006-07-03 2006-07-03 Plasma display device
JP2008523553A JPWO2008004271A1 (en) 2006-07-03 2006-07-03 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313232 WO2008004271A1 (en) 2006-07-03 2006-07-03 Plasma display device

Publications (1)

Publication Number Publication Date
WO2008004271A1 true WO2008004271A1 (en) 2008-01-10

Family

ID=38894251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313232 WO2008004271A1 (en) 2006-07-03 2006-07-03 Plasma display device

Country Status (2)

Country Link
JP (1) JPWO2008004271A1 (en)
WO (1) WO2008004271A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010011518A2 (en) 2008-07-24 2010-01-28 Praxair Technology, Inc. Simultaneous gas supply from multiple bsgs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11306996A (en) * 1998-02-23 1999-11-05 Mitsubishi Electric Corp Surface discharge plasma display device, plasma display panel, and board for display panel
JP2000231882A (en) * 1999-02-10 2000-08-22 Mitsubishi Electric Corp Alternating-current surface discharge type plasma display panel, driving method of alternating-current surface discharge type plasma display panel, plasma display device, and manufacture of alternating-current surface discharge type plasma display panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11306996A (en) * 1998-02-23 1999-11-05 Mitsubishi Electric Corp Surface discharge plasma display device, plasma display panel, and board for display panel
JP2000231882A (en) * 1999-02-10 2000-08-22 Mitsubishi Electric Corp Alternating-current surface discharge type plasma display panel, driving method of alternating-current surface discharge type plasma display panel, plasma display device, and manufacture of alternating-current surface discharge type plasma display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010011518A2 (en) 2008-07-24 2010-01-28 Praxair Technology, Inc. Simultaneous gas supply from multiple bsgs

Also Published As

Publication number Publication date
JPWO2008004271A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US6703792B2 (en) Module for mounting driver IC
KR100515821B1 (en) Plasma discharge display element and driving method thereof
JP2002328648A (en) Method and device for driving ac type plasma display panel
TW200305180A (en) Display device and plasma display apparatus
CN101086815B (en) Plasma display apparatus
JPH10123999A (en) Plasma display panel for color display, and its driving method
KR100782219B1 (en) Method and circuit for driving plasma display panel, and plasma display apparatus
US7619590B2 (en) Plasma display panel and module thereof
KR100746059B1 (en) Pdp data driver, pdp driving method, plasma display device, and control method for the same
US7701413B2 (en) Plasma display apparatus and driving method thereof
KR101098814B1 (en) Plasma dispaly panel having integrated driving board and method of driving thereof
US20050168408A1 (en) Plasma display panel and driving method thereof
US7009583B2 (en) Display panel with sustain electrodes
WO2008004271A1 (en) Plasma display device
KR100607512B1 (en) Plasma Display Panel And Module thereof
US20080024395A1 (en) Plasma display apparatus
KR100811553B1 (en) Plasma Display Apparatus
JP2002304151A (en) Driving device for plasma display panel and plasma display unit
US7486257B2 (en) Plasma display panel and driving method thereof
KR100346376B1 (en) Apparatus for driving plasma display panel
KR100349924B1 (en) Method for driving a plasma display panel
JPWO2007023568A1 (en) Plasma display panel and plasma display device
KR100502341B1 (en) Method for driving plasma display panel
KR100680708B1 (en) Plasma display device and method of driving the same
JP2007156472A (en) Plasma display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06780736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523553

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06780736

Country of ref document: EP

Kind code of ref document: A1