WO2008053124A1 - Lens for a lighting module for a motor vehicle and lighting module comprising such a lens - Google Patents

Lens for a lighting module for a motor vehicle and lighting module comprising such a lens Download PDF

Info

Publication number
WO2008053124A1
WO2008053124A1 PCT/FR2007/052280 FR2007052280W WO2008053124A1 WO 2008053124 A1 WO2008053124 A1 WO 2008053124A1 FR 2007052280 W FR2007052280 W FR 2007052280W WO 2008053124 A1 WO2008053124 A1 WO 2008053124A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
opaque
zone
lighting module
patterns
Prior art date
Application number
PCT/FR2007/052280
Other languages
French (fr)
Inventor
Daniel Goraguer
Original Assignee
Holophane
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holophane filed Critical Holophane
Publication of WO2008053124A1 publication Critical patent/WO2008053124A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase

Definitions

  • Motor vehicle lighting module lens and lighting module comprising such a lens
  • the present invention relates to a lighting module lens for motor vehicles.
  • Lighting modules are used in many types of motor vehicles, such as passenger cars. The function of these modules is to illuminate the roadway ahead of the vehicle, as well as the right side and the area above the roadway where signs are frequently installed. There are also lighting modules specifically designed for use in foggy weather. These illuminate the road just in front of the vehicle. In recent years, some lighting modules incorporate a focusing lens for focusing the light rays from a source placed in the lighting module.
  • the lens may be of the elliptical or aspherical type.
  • the lighting module comprises a concave reflector, a lamp holder, a bulb mounted on the lamp holder, a lens holder and a lens mounted on this support.
  • the purpose of the lens holder is to accurately hold and position the lens relative to the reflector that supports the lamp holder and the bulb.
  • a type of lens frequently used is a convex lens having a flat rear face turned towards the inside of the module and a curved outer face facing towards the outside of the module.
  • the light emitted by the light source (bulb) is reflected by the reflective inner wall of the reflector and then directed towards the flat rear face of the lens.
  • the light rays pass through this rear face to penetrate inside the body of the lens.
  • the light rays emerge from the lens through the convex outer face.
  • the light rays pass through two light transmission surfaces respectively formed by the rear face and the front face of the lens.
  • a Fresnel lens with concentric steps.
  • the lens When the lighting module is turned on and the source emits light, the lens is hardly not visible, and in any case dazzling. On the other hand, when the lighting module is off, the lens is visible. In recent years, some car manufacturers want to improve the aesthetic effect of the lens by giving it a color when the lighting module is off. Thus, the lens may appear with a shade of color, such as blue. However, it is not necessary that the color, visible when the lighting module is off, considerably modifies the distribution and the color of the light rays coming from the lighting module.
  • a first solution of the prior art consists in applying a layer of transparent or translucent varnish to the flat rear face of the lens.
  • the varnish used is colored, for example in blue, and the light rays emitted by the bulb will pass through this transparent colored varnish.
  • it because it is colored, it will filter the light by blocking the wavelength of the light rays corresponding to the color of the varnish.
  • the light emitted by the lighting module is no longer perfectly white.
  • the application of a layer of varnish is a relatively inexpensive technique, but also has the disadvantage of poor resistance to high temperatures, which is precisely the case inside a lighting module where the temperature can reach several hundred degrees. Therefore, it often happens that the varnish deteriorates and decreases the lighting qualities of the module.
  • Another much more expensive technique is to apply a series of transparent metal layers to the flat back side of the lens.
  • the final effect is to slightly color the lens, for example in blue.
  • the filter partially reflects certain wavelengths of light, so that the color of the light at the exit of the lens is little changed.
  • the layers must be vacuum applied with complicated techniques, which has the effect of significantly increasing the price of the lens. Such a technique of deposition of successive layers is used only for lighting modules to be mounted in very high-end vehicles.
  • the present invention aims to overcome the aforementioned drawbacks of the prior art by defining a lighting module lens having a color when it is not illuminated, without disturbing the light distribution when the module is lit. .
  • Good resistance to high temperatures is also a goal.
  • the lens of the invention must be produced at lower cost.
  • the present invention proposes a lighting module lens for motor vehicles comprising a light transmission surface S intended to be illuminated by a light source of the lighting module, this surface being locally provided with at least one light source.
  • a substantially opaque zone adjacent to at least one substantially transparent bare zone, the opaque and transparent zones being distributed substantially inhomogeneously over at least a portion of the surface S, said opaque zone occupying less than 20% of the area; S surface, and forming a pattern network, characterized in that said patterns are substantially punctual, have a size of the order of 100 to 300 microns, preferably 150 microns, and are separated from each other by a distance varying from 200 to 1000 ⁇ m. There is no filtering of light.
  • the opaque zone (s) occupy (s) only a portion of the light transmitting surface, leaving one or more transparent bare area (s) through which the light emitted by the module can pass.
  • the opaque zone (s) prevent (s) the light from passing, but do not act in the manner of a color filter by blocking only a certain amount of light. part of wavelength.
  • the opaque zone (s) gives (the) to the lens a certain color which is a function of the color used to create the opaque zone (s) .
  • Light passing through the lens passes through transparent bare areas without filtering.
  • the zone (s) opaque (s) decreases (certainly) the amount of light, but does not alter the transmitted light by filtering or blocking a certain wavelength or color. If the opaque zone occupies for example only 5% of the light transmitting surface, the transparent bare area occupies 95% so that the light transmitted through the lens corresponds to 95% of the luminous flux received by the transmission surface. from light.
  • the opaque zone occupies less than 20% of the surface portion S, advantageously between 1% and 12%. It is possible that the opaque and transparent areas are inhomogeneously distributed over the entire transmission surface. It is also possible that a portion of the transmission surface may be provided with homogeneous opaque and transparent areas and another part of the transmission surface may also be provided with homogeneous opaque and transparent areas, but with a concentration or density different from that of the first part. This gives a transmission surface defining several parts having different concentrations or densities, each part being individually homogeneous, but generally inhomogeneous.
  • the opaque zone formed by all the point patterns generally represents approximately 5% of the surface area. light transmission, so the bare area accounts for 95%.
  • punctual patterns are meant all forms of patterns having a relatively compact configuration. Round, square or more generally polygonal shapes as well as star or cross shapes are considered as point patterns.
  • the point patterns are arranged in a triangular configuration with respect to each other.
  • said at least one substantially opaque zone is formed by a substantially opaque material applied to the surface S.
  • the material is enamel, deposited on the surface, and then melted.
  • enamel we may use any other suitable material having good adhesion to the lens surface and having good high temperature resistance characteristics.
  • said at least one substantially opaque area may be colored, so that the color of the area is visible when the light source of the illumination module is extinguished.
  • the lens comprises a substantially flat inner face intended to be oriented towards the light source and an outer face, advantageously curved, intended to be oriented away from the light source, the transmission surface S being formed by the inner face.
  • the convex outer face of the lens it is not excluded to use the convex outer face of the lens to affix one or more zone (s) substantially opaque (s) according to the invention. We can even treat both sides of the lens.
  • the transmission surface is not excluded to use the convex outer face of the lens to affix one or more zone (s) substantially opaque (s) according to the invention. We can even treat both sides of the lens.
  • the transmission surface S is not excluded to use the convex outer face of the lens to affix one or more zone (s) substantially opaque (s) according to the invention.
  • the transmission surface it is not excluded to use the convex outer face of the lens to affix one or more zone (s) substantially opaque (s) according to the invention. We can even treat both sides of the lens.
  • S comprises several parts provided with substantially opaque zones and transparent zones, the opaque and transparent zones in each surface part being distributed in a substantially homogeneous manner, the opaque and transparent zones being distributed in a non-homogeneous manner from one part to another part.
  • the transmission surface
  • S comprises a substantially homogeneous first distribution portion extending from a central zone of the transmission surface to an edge region of the transmission surface and a substantially homogeneous second portion extending in the form of a crescent or horseshoe around the first part, the opaque areas of the first part being less dense than those of the second part.
  • the opaque areas in the first and second portions have a substantially identical size, only the distance between the patterns varying from one part to the other. We can thus distinguish on the transmission surface several individually homogeneous parts, but inhomogeneous with respect to each other.
  • the homogeneous portions P1 and P2 are separated by an inhomogeneous transition portion P3 of increasing density from P1 to P2.
  • the invention also relates to a motor vehicle lighting module comprising a light source and a lens as defined above, the source comprising a reflector delivering a light beam having a maximum intensity passing through the lens in the portion P1 of lower or lower density.
  • An interesting principle of the invention lies in the fact of applying to a portion of a surface of the lens to be traversed by the light rays of the lighting module a substantially opaque local coating having a pattern which is substantially imperceptible to the human eye.
  • the pattern of the coating is not discernible and gives the general impression that the coating covers the entire surface of the lens.
  • the coating occupies only a very small part of the surface, for example only 2 to 10%, in order not to reduce too much the quantity of light emitted by the lighting module.
  • the distribution of light through the lens is not disturbed, only a little diminished.
  • FIG. 1 is a longitudinal cross-sectional view through an illumination module
  • FIG. 2 is a view of the rear plane face of a lens of revolution provided with opaque point patterns
  • FIG. 3 is a schematic view of the rear face of the lens of FIG. 2 for showing the concentration or density gradient of the point patterns;
  • FIG. 4 is another schematic view of the rear face of the lens showing two separate parts P1 and P2, and Figures 5a, 5b and 5c are very greatly enlarged views of details A, B and C respectively of Figure 4.
  • Figure 1 shows a conventional lighting module. This comprises five constituent elements, namely a lens holder 1, a lens 2, a reflector 3, a lamp holder 4 and a lamp or bulb 5.
  • the lens holder 1 is a part having a general configuration in the form of a cylindrical or slightly conical sleeve.
  • the support 1 comprises an edge 11 in engagement with the lens 2 and another opposite edge 12 in engagement with the reflector 3.
  • the lens holder 1 is overmolded on the lens 2 at this edge 11.
  • the lens holder 1 can be made of metal, or preferably of plastic as is the case here.
  • the lens 2 is preferably made of glass, although other materials are not excluded.
  • the lens 2 has a flat inner face 22 facing the inside of the support 1 and an opposite outer face 21 which is curved.
  • the lens comprises a peripheral ring 23 which is engaged with the edge 11 of the lens holder 1.
  • the support 1 is here overmolded on the lens 2, other techniques can be envisaged.
  • the lens may be a lens of circular revolution. It can be provided with an orientation notch 26 for angularly orienting the lens 2 in its support 1, and thus with respect to the reflector 3.
  • the reflector 3 can be made of glass or metal. It has a concave body 30 whose inner surface is made reflective, for example by metallization. The reflective inner surface is preferably of parabolic shape.
  • the reflector 3 further comprises an opening 31, 32 which is engaged with the edge 12 of the support 1. The light transmitted by the reflector is not distributed homogeneously.
  • the lamp holder 4 is fixed in the opening 31 of the reflector 3 by any known means.
  • the lamp holder 4 is equipped with a lamp or bulb 5 which is disposed inside the reflector 3 at the opening 31.
  • the light rays emitted by the bulb 5 are reflected by the reflective inner surface of the reflector 3 and sent towards the flat internal face
  • the light rays pass through this surface 22 to penetrate inside the lens 2. Then, the light rays pass through the convex outer face with a diffraction.
  • the varnish or the multilayer deposit is applied to the flat internal face 22 of the lens. It should be remembered that the varnish or the multilayer deposit is transparent to the light emitted by the bulb 5, but filters this light because it is colored, conventionally blue.
  • a light transmitting surface which can be formed by the convex outer surface, but preferably by the planar inner surface 22, is provided with at least one substantially opaque zone which extends locally only over a part of the transmission surface.
  • the substantially opaque zone will be designated as a whole by the reference Zo.
  • the opaque zone Zo is continuous, we can speak of a single zone.
  • this expression includes one or more zones that are perfectly opaque or substantially opaque.
  • the opaque zone is disposed substantially or perfectly regularly over at least a portion of the light transmission surface, and advantageously over the entire surface.
  • the light transmission surface S is the flat internal face 22.
  • the light transmission surface may also be formed by the outer face 21 of the lens, which is curved here. .
  • the rear face 22 of the lens 2 which also forms the transmission surface S of the light.
  • This transmission surface S is here provided with an opaque zone Zo which is distributed non-homogeneous manner on substantially the entire transmission surface S.
  • Figure 2 shows the rear face of the lens substantially realistically as can be seen with the naked eye. It may be noted that the opaque zone is denser over most of the periphery and less dense on a band from the center to an edge of the lens.
  • FIG. 3 represents the lens with several gradient lines L G which represent increasing concentration or density gradients of the opaque zone Zo of FIG. 2.
  • the gradients L G extend radially or in a fan in the upper part of the lens and aligned and parallel in the lower part of the lens.
  • the concentration or density of the opaque zone is substantially constant or homogeneous in the zone of origin of the gradient lines and also substantially constant and homogeneous in the arrival zone of the gradients which extends into the region.
  • periphery of the lens, while the area of origin extends from the center of the lens to an edge of the lens.
  • the transmission surface S (or rear face 22) can be divided into three distinct parts P1, P2 and P3 which occupy substantially the entire transmission surface.
  • Part P3 forms the transition interface between P1 and P2.
  • the portion P1 roughly has the shape of a thumb, a terminal or a cat's tongue and extends from the central zone of the lens to a peripheral edge area of the lens.
  • Part P3 surrounds portion P1 with an inverted U-shaped configuration.
  • the concentration or density of the opaque zone Zo in the transmission surface portion P1 S is substantially homogeneous or regular.
  • the opaque zone is inhomogeneous, its increasing concentration of P1 towards P2.
  • the individually homogeneous portions P1 and P2 are not homogeneous with each other, the concentration or density of the opaque zones Zo varying from one part to the other.
  • the part P3 very schematically represents the transition zone where the concentration of the opaque zone Zo varies from the part P1 to the part P2.
  • the concentration transition in the P3 part is not abrupt or abrupt, but preferably progressive and soft, and therefore inhomogeneous. This is also what can be seen in Figure 2 and what can be understood from the gradient lines of Figure 3. It is thus seen that the opaque zone Zo is formed by a network of These points 25 form opaque islands arranged on a substantially transparent bare zone 24. It can be considered that the surface S is formed by the bare zone 24 and the opaque zone Zo constituted here by a network of pixels. In this embodiment, the dots are substantially round in shape. Other forms are possible, however.
  • the size of the points 25 is here of the order of 150 microns. However, the size of the points may also vary: one can for example achieve points of 200, 300 or 500 microns.
  • the points are of round or annular shape, they can be considered to have a diameter of the order of 150 ⁇ m. This is valid for the points of the zone P1 as well as for the points of the zone P2: the points thus have a uniform size over the whole of the transmission surface S, but this is not mandatory.
  • the distance separating the points 25 varies very strongly from the zone P1 to the zone P2.
  • the points 25 are separated by a distance D max which can be up to 1000 ⁇ m (1 mm).
  • the distance D min separating the points 25 may be of the order of 200 ⁇ m.
  • the distance separating the patterns of the opaque zone can vary from 200 to 1000 ⁇ m.
  • the points 25 are arranged in a triangular or hexagonal configuration.
  • This configuration can be obtained using mathematical models or programs to vary the spacing of points by influencing only on a single distance separating them. Indeed, as can be seen in Figure 5b, each point 25 is separated from surrounding adjacent points of the same distance D m i n . When the concentration of points is constant or homogeneous, the distance D m i n is fixed and unique. On the other hand, in the transition zone of FIG. 4 represented by the dashed line, this distance will vary from D min to D max gradually.
  • the triangular or hexagonal configuration is therefore very advantageous, but other pattern configurations can also be envisaged such as square or honeycomb.
  • the limit of point size and spacing of points is at the limit of the visual perception of the human eye. Indeed, it is necessary that the pattern network is imperceptible to the human eye and gives the impression of a continuous and regular coating. To do this, it is essential that the patterns used are small enough to be imperceptible to the human eye. On the other hand, it is necessary that the patterns are arranged substantially uniformly and homogeneously in the parts P1 and P2. However, the patterns must not be too significant a percentage of the transmission area, so as not to excessively reduce the area of the bare area through which the light will pass. To do this, it is necessary that the opaque zone Zo occupies not more than 20% of the transmission area, and advantageously less than 10%.
  • the opaque zone Zo in the P2 portion occupies only 10 to 12%, which is quite acceptable.
  • the zone Zo occupies 1 to 2%.
  • a lens 2 which has a colored appearance, for example blue, when it is off.
  • the lens has no color and does not filter the light emitted over a certain wavelength. The lens only blocks a portion of the emitted light corresponding to the area occupied by the opaque zone Zo.
  • round dots 25 instead of the round dots 25, other square, polygonal, star, etc. point patterns can be used.
  • the configuration and the mutual arrangement of the parts P1 and P2 can be explained by the fact that the light beam coming from the reflector 3 is not uniform or uniform, but on the contrary has a maximum intensity in its central and low zone than in the rest. This therefore explains the shape and density of the portion P1 which extends from the center of the lens to the lower edge of the lens. It is therefore essential to orient the lens 2 in the support 1, and therefore with respect to the reflector 3, which can be done thanks to the orientation notch 26.
  • the opaque zone Zo is preferably applied to the inner face 22, because it is flat and perpendicular to the incident light rays coming from the bulb. It is thus easier to arrange the opaque zone Zo in a regular and homogeneous manner. However, it is also possible to apply the opaque zone Zo on the outer face 21, but this requires more technicality.
  • the opaque zone Zo is made from an opaque, substantially opaque or slightly transparent material which is applied to the transmission surface S.
  • An example of an advantageous material is enamel, since it is easily colorable for make it opaque, has good adhesion to the glass and very good temperature resistance.
  • the enamel can for example be used in the form of powder or suspension.
  • the enamel can be applied to the entire transmission surface S on a regular basis. Then, using a laser, the enamel-coated surface S is scanned to locally melt the enamel that will adhere to the surface S. The laser will travel through the desired pattern network, for example in the form of dots. , or lines. Once the laser melting operation is complete, the surface S is freed from enamel that has not been melted. Finally, the surface S is provided with an array of patterns forming an opaque zone Zo.
  • Another technique for depositing enamel is pad printing or screen printing.
  • the array of patterns is then applied to the surface S, leaving a large part of the surface S free of enamel. Then you have to pass the lenses in a baking oven to melt the enamel that will attach to the surface S.
  • Other application techniques can also be used.
  • the arrangement of the points on the transmission surface can advantageously be determined using a mathematical model using a triangular arrangement, advantageously isosceles, points with respect to each other. This mathematical model makes it possible, for example, to guide the laser or to guide the tampography or screen printing apparatus.
  • the transmission surface S generally comprises two substantially homogeneous portions P1 and P2 each separated by an inhomogeneous transition zone.
  • the transmission surface may be wholly or partially provided with a single opaque zone formed of uniformly distributed point patterns.
  • the rear face 22 may be entirely and regularly coated with points spaced homogeneously. Thanks to the invention, it is possible to produce lenses having a colored appearance at a lower cost without filtering the light, only by blocking it partially and locally.
  • the opaque areas, advantageously punctual, are distributed homogeneously in different parts of the transmission surface, without being homogeneous with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The invention relates to a lens (2) for a lighting module for motor vehicles, comprising a light transmission surface (S) illuminated by a light source (5) in the lighting module, said surface being locally provided with at least one essentially opaque region (Zo) adjacent to at least one essentially transparent bare region (24), the transparent and opaque regions being distributed essentially inhomogeneously over at least one part (P3) of the surface said opaque surface (Zo) occupying less than 20% of the surface (S) and forming a network of patterns, characterised in that said patterns (25) are essentially punctiform, of a size in the range 100 to 300 µm, preferably 150 µm and separated from each other by a distance of 200 to 1000 µm.

Description

Lentille de module d'éclairage pour véhicules automobiles et module d'éclairage comprenant une telle lentille Motor vehicle lighting module lens and lighting module comprising such a lens
La présente invention concerne une lentille de module d'éclairage pour véhicules automobiles. Les modules d'éclairage sont utilisés dans de nombreux types de véhicules automobiles, comme par exemple les voitures particulières. La fonction de ces modules est d'éclairer la chaussée en avant du véhicule, ainsi que le côté droit et la zone située au-dessus de la chaussée où sont fréquemment installés les panneaux indicateurs. Il existe également des modules d'éclairage spécialement destinés à une utilisation en temps de brouillard. Ceux-ci éclairent la chaussée juste devant le véhicule. Depuis quelques années, certains modules d'éclairage incorporent une lentille focalisatrice destinée à concentrer les rayons lumineux issus d'une source placée dans le module d'éclairage. La lentille peut être du type elliptique ou asphérique. De manière conventionnelle, le module d'éclairage comprend un réflecteur concave, un porte-lampe, une ampoule montée sur le porte-lampe, un support de lentille et une lentille montée sur ce support. Le support de lentille a pour fonction de maintenir fixement et de positionner avec précision la lentille par rapport au réflecteur qui supporte le porte-lampe et l'ampoule. Un type de lentille fréquemment utilisé est une lentille convexe présentant une face arrière plane tournée vers l'intérieur du module et une face externe bombée tournée vers l'extérieur du module. La lumière émise par la source lumineuse (ampoule) est réfléchie par la paroi interne réfléchissante du réflecteur et ensuite dirigée vers la face arrière plane de la lentille. Les rayons lumineux traversent cette face arrière pour pénétrer à l'intérieur du corps de la lentille. Ensuite, les rayons lumineux sortent de la lentille en traversant la face externe bombée. Ainsi, les rayons lumineux traversent deux surfaces de transmission de lumière formées respectivement par la face arrière et la face avant de la lentille. A la place d'une lentille convexe bombée, on peut également utiliser une lentille de Fresnel à gradins concentriques.The present invention relates to a lighting module lens for motor vehicles. Lighting modules are used in many types of motor vehicles, such as passenger cars. The function of these modules is to illuminate the roadway ahead of the vehicle, as well as the right side and the area above the roadway where signs are frequently installed. There are also lighting modules specifically designed for use in foggy weather. These illuminate the road just in front of the vehicle. In recent years, some lighting modules incorporate a focusing lens for focusing the light rays from a source placed in the lighting module. The lens may be of the elliptical or aspherical type. Conventionally, the lighting module comprises a concave reflector, a lamp holder, a bulb mounted on the lamp holder, a lens holder and a lens mounted on this support. The purpose of the lens holder is to accurately hold and position the lens relative to the reflector that supports the lamp holder and the bulb. A type of lens frequently used is a convex lens having a flat rear face turned towards the inside of the module and a curved outer face facing towards the outside of the module. The light emitted by the light source (bulb) is reflected by the reflective inner wall of the reflector and then directed towards the flat rear face of the lens. The light rays pass through this rear face to penetrate inside the body of the lens. Then, the light rays emerge from the lens through the convex outer face. Thus, the light rays pass through two light transmission surfaces respectively formed by the rear face and the front face of the lens. In place of a lens curved convex, one can also use a Fresnel lens with concentric steps.
Lorsque le module d'éclairage est allumé et que la source émet de la lumière, la lentille n'est pas pratiquement pas visible, et en tout cas éblouissante. En revanche, lorsque le module d'éclairage est éteint, la lentille est visible. Depuis quelques années, certains constructeurs automobiles souhaitent améliorer l'effet esthétique de la lentille en lui donnant une couleur lorsque le module d'éclairage est éteint. Ainsi, la lentille pourra apparaître avec une nuance de couleur, comme par exemple le bleu. Cependant, il ne faut pas que la couleur, visible lorsque le module d'éclairage est éteint, modifie considérablement la distribution et la couleur des rayons lumineux issus du module d'éclairage.When the lighting module is turned on and the source emits light, the lens is hardly not visible, and in any case dazzling. On the other hand, when the lighting module is off, the lens is visible. In recent years, some car manufacturers want to improve the aesthetic effect of the lens by giving it a color when the lighting module is off. Thus, the lens may appear with a shade of color, such as blue. However, it is not necessary that the color, visible when the lighting module is off, considerably modifies the distribution and the color of the light rays coming from the lighting module.
Une première solution de l'art antérieur consiste à appliquer une couche de vernis transparent ou translucide sur la face arrière plane de la lentille. Le vernis utilisé est coloré, par exemple en bleu, et les rayons lumineux émis par l'ampoule vont traverser ce vernis coloré transparent. Toutefois, du fait qu'il est coloré, il va filtrer la lumière en bloquant la longueur d'ondes des rayons lumineux correspondant à la couleur du vernis. De ce fait, la lumière émise par le module d'éclairage n'est plus parfaitement blanche. L'application d'une couche de vernis est une technique relativement peu coûteuse, mais présente en outre le désavantage d'une mauvaise tenue aux hautes températures, ce qui est précisément le cas à l'intérieur d'un module d'éclairage où la température peut atteindre plusieurs centaines de degrés. Par conséquent, il arrive souvent que le vernis se détériore et diminue les qualités d'éclairage du module.A first solution of the prior art consists in applying a layer of transparent or translucent varnish to the flat rear face of the lens. The varnish used is colored, for example in blue, and the light rays emitted by the bulb will pass through this transparent colored varnish. However, because it is colored, it will filter the light by blocking the wavelength of the light rays corresponding to the color of the varnish. As a result, the light emitted by the lighting module is no longer perfectly white. The application of a layer of varnish is a relatively inexpensive technique, but also has the disadvantage of poor resistance to high temperatures, which is precisely the case inside a lighting module where the temperature can reach several hundred degrees. Therefore, it often happens that the varnish deteriorates and decreases the lighting qualities of the module.
Une autre technique bien plus coûteuse consiste à appliquer une série de couches métalliques transparentes sur la face arrière plane de la lentille. L'effet final est de colorer légèrement la lentille, par exemple en bleu. Le filtre réfléchit partiellement certaines longueurs d'ondes lumineuses, de sorte que la couleur de la lumière à la sortie de la lentille est peu modifiée. Les couches doivent être appliquées sous vide avec des techniques compliquées, ce qui a pour effet d'augmenter considérablement le prix de la lentille. Une telle technique de dépôt de couches successives n'est utilisée que pour les modules d'éclairage destinés à être montés dans des véhicules très haut de gamme.Another much more expensive technique is to apply a series of transparent metal layers to the flat back side of the lens. The final effect is to slightly color the lens, for example in blue. The filter partially reflects certain wavelengths of light, so that the color of the light at the exit of the lens is little changed. The layers must be vacuum applied with complicated techniques, which has the effect of significantly increasing the price of the lens. Such a technique of deposition of successive layers is used only for lighting modules to be mounted in very high-end vehicles.
La présente invention a pour but de remédier aux inconvénients précités de l'art antérieur en définissant une lentille de module d'éclairage ayant une couleur lorsqu'elle n'est pas éclairée, sans pour autant perturber la distribution de lumière lorsque le module est allumé. Une bonne tenue aux hautes températures est également un but recherché. Bien entendu, la lentille de l'invention doit pouvoir être produite à moindre coût. Pour ce faire, la présente invention propose une lentille de module d'éclairage pour véhicules automobiles comprenant une surface de transmission de lumière S destinée à être éclairée par une source lumineuse du module d'éclairage, cette surface étant localement pourvue d'au moins une zone sensiblement opaque adjacente à au moins une zone nue sensiblement transparente, les zones opaque(s) et transparente(s) étant réparties de manière sensiblement inhomogène sur au moins une partie de la surface S, ladite zone opaque occupant moins de 20% de la surface S, et formant un réseau de motifs, caractérisée en ce que lesdits motifs sont sensiblement ponctuels, présentent une taille de l'ordre de 100 à 300 μm, de préférence 150 μm, et sont séparés les uns des autres par une distance variant de 200 à 1000 μm. Il n'y a donc pas de filtrage de la lumière. La ou les zone(s) opaque(s) n'occupe(nt) qu'une partie de la surface de transmission de lumière, laissant ainsi une ou plusieurs zone(s) nue(s) transparente(s) à travers lesquelles la lumière émise par le module peut passer. Ainsi, lorsque le module d'éclairage est allumé, la ou les zone(s) opaque(s) empêche(nt) la lumière de passer, mais n'agissent pas à la manière d'un filtre de couleur en bloquant seulement une certaine partie de longueur d'ondes. En revanche, lorsque le module est éteint, la ou les zone(s) opaque(s) donne(nt) à la lentille une certaine couleur qui est fonction de la couleur utilisée pour créer la ou les zone(s) opaque(s). La lumière qui traverse la lentille passe à travers les zones nues transparentes sans filtrage. La ou les zone(s) opaque(s) diminue(nt) certes la quantité de lumière, mais ne modifie(nt) pas la lumière transmise en filtrant ou bloquant une certaine longueur d'ondes ou couleur. Si la zone opaque n'occupe par exemple que 5% de la surface de transmission de lumière, la zone nue transparente occupe 95% de sorte que la lumière transmise à travers la lentille correspond à 95% du flux lumineux reçu par la surface de transmission de lumière. LesThe present invention aims to overcome the aforementioned drawbacks of the prior art by defining a lighting module lens having a color when it is not illuminated, without disturbing the light distribution when the module is lit. . Good resistance to high temperatures is also a goal. Of course, the lens of the invention must be produced at lower cost. To do this, the present invention proposes a lighting module lens for motor vehicles comprising a light transmission surface S intended to be illuminated by a light source of the lighting module, this surface being locally provided with at least one light source. a substantially opaque zone adjacent to at least one substantially transparent bare zone, the opaque and transparent zones being distributed substantially inhomogeneously over at least a portion of the surface S, said opaque zone occupying less than 20% of the area; S surface, and forming a pattern network, characterized in that said patterns are substantially punctual, have a size of the order of 100 to 300 microns, preferably 150 microns, and are separated from each other by a distance varying from 200 to 1000 μm. There is no filtering of light. The opaque zone (s) occupy (s) only a portion of the light transmitting surface, leaving one or more transparent bare area (s) through which the light emitted by the module can pass. Thus, when the lighting module is turned on, the opaque zone (s) prevent (s) the light from passing, but do not act in the manner of a color filter by blocking only a certain amount of light. part of wavelength. On the other hand, when the module is off, the opaque zone (s) gives (the) to the lens a certain color which is a function of the color used to create the opaque zone (s) . Light passing through the lens passes through transparent bare areas without filtering. The zone (s) opaque (s) decreases (certainly) the amount of light, but does not alter the transmitted light by filtering or blocking a certain wavelength or color. If the opaque zone occupies for example only 5% of the light transmitting surface, the transparent bare area occupies 95% so that the light transmitted through the lens corresponds to 95% of the luminous flux received by the transmission surface. from light. The
5% non transmis étant bloqués par la zone opaque. De toute façon, la zone opaque occupe moins de 20% de la partie de surface S, avantageusement entre 1 % et 12%. Il est possible que les zones opaque et transparente soient réparties de manière inhomogène sur la totalité de la surface de transmission. Il est également possible qu'une partie de la surface de transmission puisse être pourvue de zones opaque et transparente homogènes et une autre partie de la surface de transmission peut également être pourvue de zones opaque et transparente homogènes, mais de concentration ou de densité différente de celle de la première partie. On obtient ainsi une surface de transmission définissant plusieurs parties ayant des concentrations ou densités distinctes, chaque partie étant individuellement homogène, mais dans l'ensemble inhomogène.5% not transmitted being blocked by the opaque area. In any case, the opaque zone occupies less than 20% of the surface portion S, advantageously between 1% and 12%. It is possible that the opaque and transparent areas are inhomogeneously distributed over the entire transmission surface. It is also possible that a portion of the transmission surface may be provided with homogeneous opaque and transparent areas and another part of the transmission surface may also be provided with homogeneous opaque and transparent areas, but with a concentration or density different from that of the first part. This gives a transmission surface defining several parts having different concentrations or densities, each part being individually homogeneous, but generally inhomogeneous.
En prévoyant par exemple un réseau de motifs ponctuels ayant une taille de 100 μm séparés les uns des autres par une distance variant de 200 à 1000 μm, la zone opaque formée par l'ensemble des motifs ponctuels représente globalement environ 5% de la surface de transmission de lumière, de sorte que la zone nue représente 95%. Par motifs ponctuels, il faut entendre toutes formes de motifs ayant une configuration relativement compacte. Les formes rondes, carrées ou plus généralement polygonales ainsi que les formes en étoiles ou en croix sont considérées comme des motifs ponctuels.By providing, for example, a network of point patterns having a size of 100 μm separated from each other by a distance ranging from 200 to 1000 μm, the opaque zone formed by all the point patterns generally represents approximately 5% of the surface area. light transmission, so the bare area accounts for 95%. By punctual patterns are meant all forms of patterns having a relatively compact configuration. Round, square or more generally polygonal shapes as well as star or cross shapes are considered as point patterns.
Selon une forme de mise en œuvre pratique, les motifs ponctuels sont disposés selon une configuration triangulaire les uns par rapport aux autres. Selon un autre aspect intéressant de l'invention, ladite au moins une zone sensiblement opaque est formée par un matériau sensiblement opaque appliqué sur la surface S. Avantageusement, le matériau est de l'émail, déposé sur la surface, puis fondu. Bien entendu, à la place de l'émail, on peut utiliser n'importe quel autre matériau approprié présentant une bonne adhérence à la surface de la lentille et présentant de bonnes caractéristiques de résistance aux hautes températures. Comme susmentionné, ladite au moins une zone sensiblement opaque peut être colorée, de sorte que la couleur de la zone est visible lorsque la source lumineuse du module d'éclairage est éteinte.According to one form of practical implementation, the point patterns are arranged in a triangular configuration with respect to each other. According to another interesting aspect of the invention, said at least one substantially opaque zone is formed by a substantially opaque material applied to the surface S. Advantageously, the material is enamel, deposited on the surface, and then melted. Of course, instead of enamel, we may use any other suitable material having good adhesion to the lens surface and having good high temperature resistance characteristics. As mentioned above, said at least one substantially opaque area may be colored, so that the color of the area is visible when the light source of the illumination module is extinguished.
Selon un autre aspect de l'invention, la lentille comprend une face interne sensiblement plane destinée à être orientée vers la source lumineuse et une face externe, avantageusement bombée, destinée à être orientée en éloignement de la source lumineuse, la surface de transmission S étant formée par la face interne. Il n'est toutefois pas exclut d'utiliser la face externe bombée de la lentille pour y apposer une ou plusieurs zone(s) sensiblement opaque(s) selon l'invention. On peut même traiter les deux faces de la lentille. Selon un mode de réalisation avantageux, la surface de transmissionAccording to another aspect of the invention, the lens comprises a substantially flat inner face intended to be oriented towards the light source and an outer face, advantageously curved, intended to be oriented away from the light source, the transmission surface S being formed by the inner face. However, it is not excluded to use the convex outer face of the lens to affix one or more zone (s) substantially opaque (s) according to the invention. We can even treat both sides of the lens. According to an advantageous embodiment, the transmission surface
S comprend plusieurs parties pourvues de zones sensiblement opaques et de zones transparentes, les zones opaques et transparentes dans chaque partie de surface étant réparties de manière sensiblement homogène, les zones opaques et transparentes étant réparties de manière non homogène d'une partie à une autre partie. Avantageusement, la surface de transmissionS comprises several parts provided with substantially opaque zones and transparent zones, the opaque and transparent zones in each surface part being distributed in a substantially homogeneous manner, the opaque and transparent zones being distributed in a non-homogeneous manner from one part to another part. . Advantageously, the transmission surface
S comprend une première partie de répartition sensiblement homogène s'étendant à partir d'une zone centrale de la surface de transmission vers une zone de bord de la surface de transmission et une seconde partie de répartition sensiblement homogène s'étendant en forme de croissant ou de fer à cheval autour de la première partie, les zones opaques de la première partie étant moins denses que celles de la deuxième partie. De préférence, les zones opaques dans les première et seconde parties présentent une taille sensiblement identique, seule la distance entre les motifs variant d'une partie à l'autre. On peut ainsi distinguer sur la surface de transmission plusieurs parties individuellement homogènes, mais inhomogènes les unes par rapport aux autres. Avantageusement, les parties homogènes P1 et P2 sont séparées par une partie de transition inhomogène P3 de densité croissant de P1 vers P2.S comprises a substantially homogeneous first distribution portion extending from a central zone of the transmission surface to an edge region of the transmission surface and a substantially homogeneous second portion extending in the form of a crescent or horseshoe around the first part, the opaque areas of the first part being less dense than those of the second part. Preferably, the opaque areas in the first and second portions have a substantially identical size, only the distance between the patterns varying from one part to the other. We can thus distinguish on the transmission surface several individually homogeneous parts, but inhomogeneous with respect to each other. Advantageously, the homogeneous portions P1 and P2 are separated by an inhomogeneous transition portion P3 of increasing density from P1 to P2.
L'invention a également pour objet un module d'éclairage de véhicule automobile comprenant une source lumineuse et une lentille telle que définie ci-dessus, la source comprenant un réflecteur délivrant un faisceau lumineux ayant une intensité maximale traversant la lentille dans la partie P1 de densité inférieure ou minimale.The invention also relates to a motor vehicle lighting module comprising a light source and a lens as defined above, the source comprising a reflector delivering a light beam having a maximum intensity passing through the lens in the portion P1 of lower or lower density.
Un principe intéressant de l'invention réside dans le fait d'appliquer sur au moins une partie d'une surface de la lentille destinée à être traversée par les rayons lumineux du module d'éclairage un revêtement local sensiblement opaque présentant un motif qui est pratiquement imperceptible à l'œil humain. Ainsi, en regardant la lentille, le motif du revêtement n'est pas discernable et donne l'impression générale que le revêtement recouvre toute la surface de la lentille. En réalité, le revêtement n'occupe qu'une très faible partie de la surface, par exemple seulement 2 à 10%, afin de ne pas réduire de trop la quantité de lumière émise par le module d'éclairage. De plus, la distribution de lumière à travers la lentille n'est pas perturbée, seulement un peu diminuée.An interesting principle of the invention lies in the fact of applying to a portion of a surface of the lens to be traversed by the light rays of the lighting module a substantially opaque local coating having a pattern which is substantially imperceptible to the human eye. Thus, by looking at the lens, the pattern of the coating is not discernible and gives the general impression that the coating covers the entire surface of the lens. In reality, the coating occupies only a very small part of the surface, for example only 2 to 10%, in order not to reduce too much the quantity of light emitted by the lighting module. In addition, the distribution of light through the lens is not disturbed, only a little diminished.
L'invention sera maintenant plus amplement décrite en référence aux dessins joints donnant, à titre d'exemples non limitatifs, plusieurs modes de réalisation de l'invention. Sur les figures :The invention will now be more fully described with reference to the accompanying drawings giving, by way of non-limiting examples, several embodiments of the invention. In the figures:
La figure 1 est une vue en coupe transversale longitudinale à travers un module d'éclairage, La figure 2 est une vue de la face plane arrière d'une lentille de révolution pourvue de motifs ponctuels opaques,FIG. 1 is a longitudinal cross-sectional view through an illumination module; FIG. 2 is a view of the rear plane face of a lens of revolution provided with opaque point patterns;
La figure 3 est une vue schématique de la face arrière de la lentille de la figure 2 visant à montrer le gradient de concentration ou de densité des motifs ponctuels, La figure 4 est une autre vue schématique de la face arrière de la lentille faisant apparaître deux parties distinctes P1 et P2, et Les figures 5a, 5b et 5c sont des vues très fortement agrandies des détails A, B et C respectivement de la figure 4.FIG. 3 is a schematic view of the rear face of the lens of FIG. 2 for showing the concentration or density gradient of the point patterns; FIG. 4 is another schematic view of the rear face of the lens showing two separate parts P1 and P2, and Figures 5a, 5b and 5c are very greatly enlarged views of details A, B and C respectively of Figure 4.
La figure 1 montre un module d'éclairage conventionnel. Celui-ci comprend cinq éléments constitutifs, à savoir un support de lentille 1 , une lentille 2, un réflecteur 3, un porte-lampe 4 et une lampe ou ampoule 5.Figure 1 shows a conventional lighting module. This comprises five constituent elements, namely a lens holder 1, a lens 2, a reflector 3, a lamp holder 4 and a lamp or bulb 5.
Le support de lentille 1 est une pièce présentant une configuration générale en forme de manchon cylindrique ou légèrement conique. Le support 1 comprend un bord 11 en prise avec la lentille 2 et un autre bord opposé 12 en prise avec le réflecteur 3. Dans le cas présent, le support de lentille 1 est surmoulé sur la lentille 2 au niveau de ce bord 11. Sur la figureThe lens holder 1 is a part having a general configuration in the form of a cylindrical or slightly conical sleeve. The support 1 comprises an edge 11 in engagement with the lens 2 and another opposite edge 12 in engagement with the reflector 3. In this case, the lens holder 1 is overmolded on the lens 2 at this edge 11. the figure
1 , il n'a pas été représenté de quelle manière le bord 12 est fixé au réflecteur 3, mais ceci peut être réalisé par tous moyens bien connus dans l'état de l'art. Le support de lentille 1 peut être réalisé en métal, ou de préférence en matière plastique comme c'est le cas ici. La lentille 2 est de préférence réalisée en verre, bien que d'autres matériaux ne soient pas exclus. La lentille 2 présente une face interne plane 22 tournée vers l'intérieur du support 1 et une face externe opposée 21 qui est bombée. En outre, la lentille comprend une couronne périphérique 23 qui est en prise avec le bord 11 du support de lentille 1. Bien que le support 1 soit ici surmoulé sur la lentille 2, d'autres techniques peuvent être envisagées. La lentille peut être une lentille de révolution circulaire. Elle peut être pourvue d'une encoche d'orientation 26 permettant d'orienter angulairement la lentille 2 dans son support 1 , et ainsi par rapport au réflecteur 3. Le réflecteur 3 peut être réalisé en verre ou en métal. Il présente un corps concave 30 dont la surface interne est rendue réfléchissante, par exemple par métallisation. La surface interne réfléchissante est avantageusement de forme parabolique. Le réflecteur 3 comprend d'autre part une ouverture 31 , 32 qui est en prise avec le bord 12 du support 1. La lumière transmise par le réflecteur n'est pas répartie de manière homogène.1, it is not shown how the edge 12 is attached to the reflector 3, but this can be achieved by any means well known in the state of the art. The lens holder 1 can be made of metal, or preferably of plastic as is the case here. The lens 2 is preferably made of glass, although other materials are not excluded. The lens 2 has a flat inner face 22 facing the inside of the support 1 and an opposite outer face 21 which is curved. In addition, the lens comprises a peripheral ring 23 which is engaged with the edge 11 of the lens holder 1. Although the support 1 is here overmolded on the lens 2, other techniques can be envisaged. The lens may be a lens of circular revolution. It can be provided with an orientation notch 26 for angularly orienting the lens 2 in its support 1, and thus with respect to the reflector 3. The reflector 3 can be made of glass or metal. It has a concave body 30 whose inner surface is made reflective, for example by metallization. The reflective inner surface is preferably of parabolic shape. The reflector 3 further comprises an opening 31, 32 which is engaged with the edge 12 of the support 1. The light transmitted by the reflector is not distributed homogeneously.
Le porte-lampe 4 est fixé dans l'ouverture 31 du réflecteur 3 par n'importe quels moyens connus. Le porte-lampe 4 est équipé d'une lampe ou ampoule 5 qui est disposée à l'intérieur du réflecteur 3 au niveau de l'ouverture 31.The lamp holder 4 is fixed in the opening 31 of the reflector 3 by any known means. The lamp holder 4 is equipped with a lamp or bulb 5 which is disposed inside the reflector 3 at the opening 31.
Il s'agit là d'un module d'éclairage tout à fait conventionnel. Les rayons lumineux émis par l'ampoule 5 sont réfléchis par la surface interne réfléchissante du réflecteur 3 et envoyés en direction de la face interne planeThis is a completely conventional lighting module. The light rays emitted by the bulb 5 are reflected by the reflective inner surface of the reflector 3 and sent towards the flat internal face
22 de la lentille 2. Les rayons lumineux traversent cette surface 22 pour pénétrer à l'intérieur de la lentille 2. Ensuite, les rayons lumineux traversent la face externe bombée avec une diffraction.22 of the lens 2. The light rays pass through this surface 22 to penetrate inside the lens 2. Then, the light rays pass through the convex outer face with a diffraction.
Dans l'art antérieur, le vernis ou le dépôt multicouches est appliqué sur la face interne plane 22 de la lentille. Il faut rappeler que le vernis ou le dépôt multicouches est transparent à la lumière émise par l'ampoule 5, mais filtre cette lumière du fait qu'il est coloré, conventionnellement en bleu.In the prior art, the varnish or the multilayer deposit is applied to the flat internal face 22 of the lens. It should be remembered that the varnish or the multilayer deposit is transparent to the light emitted by the bulb 5, but filters this light because it is colored, conventionally blue.
Selon l'invention, une surface de transmission de lumière, qui peut être formée par la face externe bombée, mais de préférence par la face interne plane 22, est pourvue d'au moins une zone sensiblement opaque qui s'étend localement seulement sur une partie de la surface de transmission. La zone sensiblement opaque sera désignée dans son ensemble par la référence Zo. Lorsque la zone opaque Zo est continue, on peut parler d'une seule zone. En revanche, on peut parler de plusieurs zones lorsqu'elles sont discrètes et séparées les unes des autres. Dans la suite de la description, on ne parlera que de la zone opaque, bien que cette expression englobe une ou plusieurs zone(s) parfaitement opaque(s) ou sensiblement opaque(s). Selon une caractéristique intéressante de l'invention, la zone opaque est disposée de manière sensiblement ou parfaitement régulière sur au moins une partie de la surface de transmission de lumière, et avantageusement sur la totalité de cette surface. Dans la suite de la description, il sera considéré que la surface de transmission de lumière S est la face interne plane 22. Cependant, la surface de transmission de lumière peut également être formée par la face externe 21 de la lentille, qui est ici bombée. En se référant à la figure 2, on voit la face arrière 22 de la lentille 2 qui forme également la surface de transmission S de la lumière. Cette surface de transmission S est ici pourvue d'une zone opaque Zo qui est répartie de manière non homogène sur sensiblement la totalité de la surface de transmission S. La figure 2 représente la face arrière de la lentille de manière sensiblement réaliste comme on peut la voir à l'œil nu. On peut remarquer que la zone opaque est plus dense sur la majeure partie de la périphérie et moins dense sur une bande allant du centre à un bord de la lentille.According to the invention, a light transmitting surface, which can be formed by the convex outer surface, but preferably by the planar inner surface 22, is provided with at least one substantially opaque zone which extends locally only over a part of the transmission surface. The substantially opaque zone will be designated as a whole by the reference Zo. When the opaque zone Zo is continuous, we can speak of a single zone. On the other hand, one can speak of several zones when they are discrete and separated from each other. In the remainder of the description, only the opaque zone will be discussed, although this expression includes one or more zones that are perfectly opaque or substantially opaque. According to an advantageous characteristic of the invention, the opaque zone is disposed substantially or perfectly regularly over at least a portion of the light transmission surface, and advantageously over the entire surface. In the following description, it will be considered that the light transmission surface S is the flat internal face 22. However, the light transmission surface may also be formed by the outer face 21 of the lens, which is curved here. . Referring to Figure 2, we see the rear face 22 of the lens 2 which also forms the transmission surface S of the light. This transmission surface S is here provided with an opaque zone Zo which is distributed non-homogeneous manner on substantially the entire transmission surface S. Figure 2 shows the rear face of the lens substantially realistically as can be seen with the naked eye. It may be noted that the opaque zone is denser over most of the periphery and less dense on a band from the center to an edge of the lens.
La figure 3 représente la lentille avec plusieurs lignes de gradient LG qui représentent des gradients croissants de concentration ou de densité de la zone opaque Zo de la figure 2. On peut ainsi remarquer que les gradients LG s'étendent radialement ou en éventail dans la partie supérieure de la lentille et de manière alignée et parallèle dans la partie inférieure de la lentille. Ainsi, on peut en déduire que la concentration ou densité de la zone opaque est sensiblement constante ou homogène dans la zone d'origine des lignes de gradient et également sensiblement constante et homogène dans la zone d'arrivée des gradients qui s'étend dans la périphérie de la lentille, alors que la zone d'origine s'étend à partir du centre de la lentille vers un bord de la lentille.FIG. 3 represents the lens with several gradient lines L G which represent increasing concentration or density gradients of the opaque zone Zo of FIG. 2. It may thus be noted that the gradients L G extend radially or in a fan in the upper part of the lens and aligned and parallel in the lower part of the lens. Thus, it can be deduced that the concentration or density of the opaque zone is substantially constant or homogeneous in the zone of origin of the gradient lines and also substantially constant and homogeneous in the arrival zone of the gradients which extends into the region. periphery of the lens, while the area of origin extends from the center of the lens to an edge of the lens.
En se référant aux figures 4, 5a, 5b et 5c, il sera plus aisé de comprendre la répartition, la disposition, la configuration, la concentration, et la densité de la zone opaque Zo. Par analogie avec les figures 2 et 3, on peut diviser la surface de transmission S (ou face arrière 22) en trois parties distinctes P1 , P2 et P3 qui occupent ici sensiblement toute la surface de transmission. La partie P3 forme l'interface de transition entre P1 et P2. La partie P1 présente grossièrement la forme d'un pouce, d'une borne ou d'une langue de chat et s'étend depuis la zone centrale de la lentille vers une zone de bord périphérique de la lentille. La partie P3 entoure la partie P1 avec une configuration en forme de U renversé. Quant à la partie P2, elle s'étend sur la périphérie de la lentille autour de la partie P3, de sorte qu'elle présente une configuration en forme de croissant de lune, de fer à cheval ou de C couché. Selon l'invention, la concentration ou densité de la zone opaque Zo dans la partie P1 de surface de transmission S est sensiblement homogène ou régulière. Il en est de même pour la partie P2. En revanche, dans la partie P3, la zone opaque est inhomogène, sa concentration croissant de P1 vers P2. Les parties P1 et P2 individuellement homogènes ne sont pas homogènes entre elles, la concentration ou densité des zones opaques Zo variant d'une partie à l'autre. La partie P3 représente très schématiquement la zone de transition ou la concentration de la zone opaque Zo varie de la partie P1 à la partie P2. La transition de concentration dans la partie P3 n'est pas abrupte ou brutale, mais de préférence progressive et douce, et par conséquent inhomogène. C'est d'ailleurs ce que l'on peut remarquer sur la figure 2 et ce que l'on peut comprendre à partir des lignes de gradient de la figure 3. On voit ainsi que la zone opaque Zo est formée par un réseau de motifs ponctuels, sous forme de points 25. Ces points 25 forment des îlots opaques disposés sur une zone nue sensiblement transparente 24. On peut considérer que la surface S est formée par la zone nue 24 et la zone opaque Zo constituée ici par un réseau de points 25. Dans ce mode de réalisation, les points sont de forme sensiblement ronde. D'autres formes sont cependant possibles. La taille des points 25 est ici de l'ordre de 150 μm. Cependant, la taille des points peut également varier : on peut par exemple réaliser des points de 200, 300, voire 500 μm. Etant donné que les points sont de forme ronde ou annulaire, on peut considérer qu'ils présentent un diamètre de l'ordre de 150 μm. Ceci est valable pour les points de la zone P1 ainsi que pour les points de la zone P2 : les points présentent ainsi une taille uniforme sur l'ensemble de la surface de transmission S, mais ceci n'est pas obligatoire. D'autre part, on peut facilement remarquer que la distance séparant les points 25 varie très fortement de la zone P1 à la zone P2. Dans la zone P1 , les points 25 sont séparés d'une distance Dmax qui peut aller jusqu'à 1000 μm (1 mm). Dans la zone P2, la distance Dmin séparant les points 25 peut être de l'ordre de 200 μm. Ainsi, la distance séparant les motifs de la zone opaque peut varier de 200 à 1000 μm. Toujours en référence aux figures 5a et 5b, on peut remarquer que les points 25 sont disposés selon une configuration triangulaire ou hexagonale. Cette configuration peut être obtenue à l'aide de modèles ou programmes mathématiques permettant de faire varier l'écartement des points en influant uniquement sur une distance unique les séparant. En effet, comme on peut le voir sur la figure 5b, chaque point 25 est séparé des points adjacents environnants de la même distance Dmin. Lorsque la concentration de points est constante ou homogène, la distance Dmin est fixe et unique. En revanche, dans la zone de transition de la figure 4 représentée par la ligne en pointillés, cette distance va varier pour passer de Dmin à Dmax progressivement. La configuration triangulaire ou hexagonale s'avère par conséquent très avantageuse, mais d'autres configurations de motifs peuvent également être envisagées comme par exemple carré ou en nid d'abeille. La limite de taille des points et d'espacement des points se situe à la limite de la perception visuelle de l'œil humain. En effet, il faut que le réseau de motifs soit imperceptible à l'œil humain et donne l'impression d'un revêtement continu et régulier. Pour ce faire, il est essentiel que les motifs utilisés soient suffisamment petits pour être imperceptibles à l'œil humain. D'autre part, il faut que les motifs soient disposés de manière sensiblement régulière et homogène dans les parties P1 et P2. Cependant, il ne faut pas que les motifs occupent un pourcentage trop significatif de la surface de transmission, afin de ne pas réduire de manière trop importante la surface de la zone nue à travers laquelle la lumière va passer. Pour ce faire, il faut que la zone opaque Zo n'occupe pas plus de 20% de la surface de transmission, et avantageusement moins de 10%. Avec la configuration représentée sur la figure 2, la zone opaque Zo dans la partie P2 n'occupe que 10 à 12%, ce qui est tout à fait acceptable. Dans la partie P1 , la zone Zo occupe 1 à 2%. Au final, on obtient une lentille 2 qui a un aspect coloré, par exemple bleu, lorsqu'elle est éteinte. En revanche, lorsque le module est allumé, la lentille n'a pas de couleur et ne filtre pas la lumière émise sur une certaine longueur d'ondes. La lentille ne fait que bloquer une partie de la lumière émise correspondant à la surface qu'occupe la zone opaque Zo.Referring to Figures 4, 5a, 5b and 5c, it will be easier to understand the distribution, arrangement, configuration, concentration, and density of the opaque zone Zo. By analogy with FIGS. 2 and 3, the transmission surface S (or rear face 22) can be divided into three distinct parts P1, P2 and P3 which occupy substantially the entire transmission surface. Part P3 forms the transition interface between P1 and P2. The portion P1 roughly has the shape of a thumb, a terminal or a cat's tongue and extends from the central zone of the lens to a peripheral edge area of the lens. Part P3 surrounds portion P1 with an inverted U-shaped configuration. As for the portion P2, it extends on the periphery of the lens around the portion P3, so that it has a crescent-shaped configuration, horseshoe or recumbent C. According to the invention, the concentration or density of the opaque zone Zo in the transmission surface portion P1 S is substantially homogeneous or regular. The same is true for part P2. On the other hand, in the P3 part, the opaque zone is inhomogeneous, its increasing concentration of P1 towards P2. The individually homogeneous portions P1 and P2 are not homogeneous with each other, the concentration or density of the opaque zones Zo varying from one part to the other. The part P3 very schematically represents the transition zone where the concentration of the opaque zone Zo varies from the part P1 to the part P2. The concentration transition in the P3 part is not abrupt or abrupt, but preferably progressive and soft, and therefore inhomogeneous. This is also what can be seen in Figure 2 and what can be understood from the gradient lines of Figure 3. It is thus seen that the opaque zone Zo is formed by a network of These points 25 form opaque islands arranged on a substantially transparent bare zone 24. It can be considered that the surface S is formed by the bare zone 24 and the opaque zone Zo constituted here by a network of pixels. In this embodiment, the dots are substantially round in shape. Other forms are possible, however. The size of the points 25 is here of the order of 150 microns. However, the size of the points may also vary: one can for example achieve points of 200, 300 or 500 microns. Since the points are of round or annular shape, they can be considered to have a diameter of the order of 150 μm. This is valid for the points of the zone P1 as well as for the points of the zone P2: the points thus have a uniform size over the whole of the transmission surface S, but this is not mandatory. On the other hand, it can easily be observed that the distance separating the points 25 varies very strongly from the zone P1 to the zone P2. In the zone P1, the points 25 are separated by a distance D max which can be up to 1000 μm (1 mm). In the zone P2, the distance D min separating the points 25 may be of the order of 200 μm. Thus, the distance separating the patterns of the opaque zone can vary from 200 to 1000 μm. Still with reference to Figures 5a and 5b, it can be seen that the points 25 are arranged in a triangular or hexagonal configuration. This configuration can be obtained using mathematical models or programs to vary the spacing of points by influencing only on a single distance separating them. Indeed, as can be seen in Figure 5b, each point 25 is separated from surrounding adjacent points of the same distance D m i n . When the concentration of points is constant or homogeneous, the distance D m i n is fixed and unique. On the other hand, in the transition zone of FIG. 4 represented by the dashed line, this distance will vary from D min to D max gradually. The triangular or hexagonal configuration is therefore very advantageous, but other pattern configurations can also be envisaged such as square or honeycomb. The limit of point size and spacing of points is at the limit of the visual perception of the human eye. Indeed, it is necessary that the pattern network is imperceptible to the human eye and gives the impression of a continuous and regular coating. To do this, it is essential that the patterns used are small enough to be imperceptible to the human eye. On the other hand, it is necessary that the patterns are arranged substantially uniformly and homogeneously in the parts P1 and P2. However, the patterns must not be too significant a percentage of the transmission area, so as not to excessively reduce the area of the bare area through which the light will pass. To do this, it is necessary that the opaque zone Zo occupies not more than 20% of the transmission area, and advantageously less than 10%. With the configuration shown in Figure 2, the opaque zone Zo in the P2 portion occupies only 10 to 12%, which is quite acceptable. In the P1 part, the zone Zo occupies 1 to 2%. In the end, we obtain a lens 2 which has a colored appearance, for example blue, when it is off. On the other hand, when the module is lit, the lens has no color and does not filter the light emitted over a certain wavelength. The lens only blocks a portion of the emitted light corresponding to the area occupied by the opaque zone Zo.
A la place des points ronds 25, on peut utiliser d'autres motifs ponctuels de forme carrée, polygonale, en étoile, etc.Instead of the round dots 25, other square, polygonal, star, etc. point patterns can be used.
La configuration et la disposition mutuelle des parties P1 et P2 s'expliquent par le fait que le faisceau lumineux issu du réflecteur 3 n'est pas uniforme ou homogène, mais au contraire présente une intensité maximale dans sa zone centrale et basse que dans le reste. Ceci explique par conséquent la forme et la densité de la partie P1 qui s'étend du centre de la lentille vers le bord inférieur de la lentille. Il est donc essentiel d'orienter la lentille 2 dans le support 1 , et par conséquent par rapport au réflecteur 3, ce qui peut se faire grâce à l'encoche d'orientation 26.The configuration and the mutual arrangement of the parts P1 and P2 can be explained by the fact that the light beam coming from the reflector 3 is not uniform or uniform, but on the contrary has a maximum intensity in its central and low zone than in the rest. This therefore explains the shape and density of the portion P1 which extends from the center of the lens to the lower edge of the lens. It is therefore essential to orient the lens 2 in the support 1, and therefore with respect to the reflector 3, which can be done thanks to the orientation notch 26.
La zone opaque Zo est de préférence appliquée sur la face interne 22, parce qu'elle est plane et perpendiculaire aux rayons de lumière incidents provenant de l'ampoule. Il est ainsi plus facile de disposer la zone opaque Zo de manière régulière et homogène. Toutefois, il est également possible d'appliquer la zone opaque Zo sur la face externe 21 , mais cela demande plus de technicité.The opaque zone Zo is preferably applied to the inner face 22, because it is flat and perpendicular to the incident light rays coming from the bulb. It is thus easier to arrange the opaque zone Zo in a regular and homogeneous manner. However, it is also possible to apply the opaque zone Zo on the outer face 21, but this requires more technicality.
Selon l'invention, la zone opaque Zo est réalisée à partir d'un matériau opaque, sensiblement opaque ou légèrement transparent qui est appliqué sur la surface de transmission S. Un exemple de matériau avantageux est l'émail, car il est facilement colorable pour le rendre opaque, présente une bonne adhérence sur le verre et une très bonne tenue en température. L'émail peut par exemple être utilisé sous forme de poudre ou de suspension. L'émail peut être appliqué sur la totalité de la surface de transmission S de manière régulière. Ensuite, à l'aide d'un laser on parcourt la surface S revêtue d'émail pour faire fondre localement l'émail qui va adhérer à la surface S. Le laser va parcourir le réseau de motifs souhaité, par exemple sous forme de points, ou de lignes. Une fois l'opération de fusion au laser terminée, on débarrasse la surface S de l'émail qui n'a pas été fondue. Au final, la surface S est pourvue d'un réseau de motifs formant une zone opaque Zo. Une autre technique pour déposer l'émail est la tampographie ou la sérigraphie. Le réseau de motifs est alors appliqué sur la surface S, laissant une grande partie de la surface S exempte d'émail. Ensuite, il faut passer les lentilles dans un four de cuisson pour faire fondre l'émail qui va se fixer à la surface S. D'autres techniques d'application peuvent également être utilisées. La disposition des points sur la surface de transmission peut avantageusement être déterminée à l'aide d'un modèle mathématique utilisant une disposition triangulaire, avantageusement isocèle, des points les uns par rapport aux autres. Ce modèle mathématique permet par exemple de guider le laser ou encore de guider l'appareil de tampographie ou de sérigraphie.According to the invention, the opaque zone Zo is made from an opaque, substantially opaque or slightly transparent material which is applied to the transmission surface S. An example of an advantageous material is enamel, since it is easily colorable for make it opaque, has good adhesion to the glass and very good temperature resistance. The enamel can for example be used in the form of powder or suspension. The enamel can be applied to the entire transmission surface S on a regular basis. Then, using a laser, the enamel-coated surface S is scanned to locally melt the enamel that will adhere to the surface S. The laser will travel through the desired pattern network, for example in the form of dots. , or lines. Once the laser melting operation is complete, the surface S is freed from enamel that has not been melted. Finally, the surface S is provided with an array of patterns forming an opaque zone Zo. Another technique for depositing enamel is pad printing or screen printing. The array of patterns is then applied to the surface S, leaving a large part of the surface S free of enamel. Then you have to pass the lenses in a baking oven to melt the enamel that will attach to the surface S. Other application techniques can also be used. The arrangement of the points on the transmission surface can advantageously be determined using a mathematical model using a triangular arrangement, advantageously isosceles, points with respect to each other. This mathematical model makes it possible, for example, to guide the laser or to guide the tampography or screen printing apparatus.
Sur les figures 2 à 5b, la surface de transmission S comprend globalement deux parties P1 et P2 respectivement sensiblement homogènes séparées par une zone de transition inhomogène. Selon un autre mode de réalisation non représenté, la surface de transmission peut être entièrement ou partiellement pourvue d'une zone opaque unique formée de motifs ponctuels répartis de manière homogène. La face arrière 22 peut être entièrement et régulièrement revêtue de points espacés de manière homogène. Grâce à l'invention, on peut réaliser des lentilles ayant un aspect coloré à moindre coût sans filtrer la lumière, seulement en la bloquant partiellement et localement. Les zones opaques, avantageusement ponctuelles, sont réparties de manière homogène dans différentes parties de la surface de transmission, sans pour autant être homogènes entre elles. In FIGS. 2 to 5b, the transmission surface S generally comprises two substantially homogeneous portions P1 and P2 each separated by an inhomogeneous transition zone. According to another embodiment not shown, the transmission surface may be wholly or partially provided with a single opaque zone formed of uniformly distributed point patterns. The rear face 22 may be entirely and regularly coated with points spaced homogeneously. Thanks to the invention, it is possible to produce lenses having a colored appearance at a lower cost without filtering the light, only by blocking it partially and locally. The opaque areas, advantageously punctual, are distributed homogeneously in different parts of the transmission surface, without being homogeneous with each other.

Claims

Revendications claims
1.- Lentille (2) de module d'éclairage pour véhicules automobiles comprenant une surface de transmission de lumière S destinée à être éclairée par une source lumineuse (5) du module d'éclairage, cette surface étant localement pourvue d'au moins une zone sensiblement opaque (Zo) adjacente à au moins une zone nue sensiblement transparente (24), les zones opaque(s) et transparente(s) étant réparties de manière sensiblement inhomogène sur au moins une partie (P1 , P2, P3) de la surface S, ladite zone opaque (Zo) occupant moins de 20% de la surface S, et formant un réseau de motifs, caractérisée en ce que lesdits motifs (25) sont sensiblement ponctuels, présentent une taille de l'ordre de 100 à 300 μm, de préférence 150 μm, et sont séparés les uns des autres par une distance variant de 200 à 1000 μm.1.- lens (2) for lighting module for motor vehicles comprising a light transmission surface S intended to be illuminated by a light source (5) of the lighting module, this surface being locally provided with at least one substantially opaque zone (Zo) adjacent to at least one substantially transparent bare zone (24), the opaque (s) and transparent (s) zones being distributed substantially inhomogeneously over at least a portion (P1, P2, P3) of the surface S, said opaque zone (Zo) occupying less than 20% of the surface S, and forming an array of patterns, characterized in that said patterns (25) are substantially punctual, have a size of the order of 100 to 300 μm, preferably 150 μm, and are separated from each other by a distance ranging from 200 to 1000 microns.
2.- Lentille selon la revendication 1 , dans laquelle les motifs ponctuels sont disposés selon une configuration triangulaire les uns par rapport aux autres.2. A lens according to claim 1, wherein the point patterns are arranged in a triangular configuration with respect to each other.
3.- Lentille selon l'une quelconques des revendications précédentes, dans laquelle les motifs ponctuels (25) sont formés par un matériau sensiblement opaque appliqué sur la surface S.3. A lens according to any one of the preceding claims, wherein the point patterns (25) are formed by a substantially opaque material applied to the surface S.
4.- Lentille selon la revendication 3, dans laquelle le matériau est de l'émail, déposé sur la surface, puis fondu.4. A lens according to claim 3, wherein the material is enamel, deposited on the surface, and then melted.
5.- Lentille selon l'une quelconques des revendications précédentes, dans laquelle ladite au moins une zone sensiblement opaque (Zo) est colorée, de sorte que la couleur de la zone est visible lorsque la source lumineuse (5) du module d'éclairage est éteinte. 5. A lens according to any one of the preceding claims, wherein said at least one substantially opaque zone (Zo) is colored, so that the color of the zone is visible when the light source (5) of the lighting module is off.
6.- Lentille selon l'une quelconques des revendications précédentes, comprenant une face interne sensiblement plane (22) destinée à être orientée vers la source lumineuse (5) et une face externe (21 ), avantageusement bombée, destinée à être orientée en éloignement de la source lumineuse, la surface de transmission S étant formée par la face interne (22).6. A lens according to any one of the preceding claims, comprising a substantially flat inner face (22) intended to be oriented towards the light source (5) and an outer face (21), advantageously convex, intended to be oriented away from of the light source, the transmission surface S being formed by the inner face (22).
7.- Lentille selon l'une quelconque des revendications précédentes, dans laquelle la surface de transmission S comprend plusieurs parties (P1 , P2) pourvues de zones sensiblement opaque et transparente, les zones opaque et transparente dans chaque partie de surface étant réparties de manière sensiblement homogène, les zones opaque et transparente étant réparties de manière non homogène d'une partie (P1 ) à une autre partie (P2).7. A lens according to any one of the preceding claims, wherein the transmission surface S comprises a plurality of portions (P1, P2) provided with substantially opaque and transparent areas, the opaque and transparent areas in each surface portion being distributed substantially. substantially homogeneous, the opaque and transparent areas being unequally distributed from one part (P1) to another part (P2).
8.- Lentille selon la revendication 7, dans laquelle la surface de transmission S comprend une première partie de répartition sensiblement homogène (P1 ) s'étendant à partir d'une zone centrale de la surface de transmission vers une zone de bord de la surface de transmission et une seconde partie de répartition sensiblement homogène (P2) s'étendant en forme de croissant ou de fer à cheval autour de la première partie, les zones opaques de la première partie étant moins denses que celles de la deuxième partie.8. A lens according to claim 7, wherein the transmission surface S comprises a substantially homogeneous first portion of distribution (P1) extending from a central area of the transmission surface to an edge area of the surface. transmission member and a second portion of substantially homogeneous distribution (P2) extending crescent-shaped or horseshoe-shaped around the first portion, the opaque areas of the first portion being less dense than those of the second portion.
9.- Lentille selon la revendication 8, dans laquelle les parties homogènes (P1 , P2) sont séparées par une partie de transition inhomogène (P3).9. The lens of claim 8, wherein the homogeneous portions (P1, P2) are separated by an inhomogeneous transition portion (P3).
10.- Lentille selon la revendication 8 ou 9, dans laquelle les motifs ponctuels (25) dans les parties (P1 , P2, P3) présentent une taille sensiblement identique, seule la distance entre les motifs variant d'une partie à l'autre. 10. A lens according to claim 8 or 9, wherein the point patterns (25) in the parts (P1, P2, P3) have a substantially identical size, only the distance between the patterns varying from one part to another .
11.- Module d'éclairage de véhicule automobile comprenant une source lumineuse (5) et une lentille (2) selon l'une quelconque des revendications 8, 9 ou 10, la source 5 comprenant un réflecteur délivrant un faisceau lumineux ayant une intensité maximale traversant la lentille dans la partie (P1 ) de densité inférieure. 11. A motor vehicle lighting module comprising a light source (5) and a lens (2) according to any one of claims 8, 9 or 10, the source 5 comprising a reflector delivering a light beam having a maximum intensity passing through the lens in the lower density portion (P1).
PCT/FR2007/052280 2006-11-02 2007-10-30 Lens for a lighting module for a motor vehicle and lighting module comprising such a lens WO2008053124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0654683A FR2908179B1 (en) 2006-11-02 2006-11-02 LIGHT MODULE LENS FOR MOTOR VEHICLES AND LIGHTING MODULE COMPRISING SUCH A LENS
FR0654683 2006-11-02

Publications (1)

Publication Number Publication Date
WO2008053124A1 true WO2008053124A1 (en) 2008-05-08

Family

ID=37726612

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2007/052277 WO2008053122A1 (en) 2006-11-02 2007-10-30 Lens for a lighting module for motor vehicles and lighting module comprising such a lens
PCT/FR2007/052280 WO2008053124A1 (en) 2006-11-02 2007-10-30 Lens for a lighting module for a motor vehicle and lighting module comprising such a lens

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/052277 WO2008053122A1 (en) 2006-11-02 2007-10-30 Lens for a lighting module for motor vehicles and lighting module comprising such a lens

Country Status (2)

Country Link
FR (1) FR2908179B1 (en)
WO (2) WO2008053122A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057355A1 (en) * 2008-11-14 2010-05-20 Osram Gesellschaft mit beschränkter Haftung Optical lens

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB113603A (en) * 1917-02-23 1918-09-05 Macbeth Evans Glass Co Improvements in Lantern Fronts for Automobile Lamps.
US2260736A (en) * 1940-09-06 1941-10-28 Crowe Name Plate & Mfg Co Road light
GB548133A (en) * 1941-11-07 1942-09-25 Gen Electric Improvements in and relating to vehicle headlamps
US4855877A (en) * 1987-12-01 1989-08-08 Koito Seisakusho Co., Ltd. Combination lamp assembly of monochromatic appearance capable of glowing in different colors
US5287258A (en) * 1990-04-04 1994-02-15 Robert Bosch Gmbh Headlamp for motor vehicles
EP0768491A1 (en) * 1995-10-12 1997-04-16 Osram Sylvania Inc. Colored and decorative lighting
FR2759765A1 (en) * 1997-02-18 1998-08-21 Valeo Vision ELLIPTICAL PROJECTOR, PARTICULARLY FOR MOTOR VEHICLE
US5872656A (en) * 1996-09-26 1999-02-16 Oakmoore Pty. Ltd. Vehicle body accessories
US6132074A (en) * 1998-09-11 2000-10-17 Robert Bosch Gmbh Headlight for a vehicle
FR2836538A1 (en) * 2002-02-25 2003-08-29 Renault Formation of patterns on the surface of a motor vehicle light, uses a mesh of screens distributed over the surface of the front cover of the light to control illumination and screen the internal parts of the light

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB113603A (en) * 1917-02-23 1918-09-05 Macbeth Evans Glass Co Improvements in Lantern Fronts for Automobile Lamps.
US2260736A (en) * 1940-09-06 1941-10-28 Crowe Name Plate & Mfg Co Road light
GB548133A (en) * 1941-11-07 1942-09-25 Gen Electric Improvements in and relating to vehicle headlamps
US4855877A (en) * 1987-12-01 1989-08-08 Koito Seisakusho Co., Ltd. Combination lamp assembly of monochromatic appearance capable of glowing in different colors
US5287258A (en) * 1990-04-04 1994-02-15 Robert Bosch Gmbh Headlamp for motor vehicles
EP0768491A1 (en) * 1995-10-12 1997-04-16 Osram Sylvania Inc. Colored and decorative lighting
US5872656A (en) * 1996-09-26 1999-02-16 Oakmoore Pty. Ltd. Vehicle body accessories
FR2759765A1 (en) * 1997-02-18 1998-08-21 Valeo Vision ELLIPTICAL PROJECTOR, PARTICULARLY FOR MOTOR VEHICLE
US6132074A (en) * 1998-09-11 2000-10-17 Robert Bosch Gmbh Headlight for a vehicle
FR2836538A1 (en) * 2002-02-25 2003-08-29 Renault Formation of patterns on the surface of a motor vehicle light, uses a mesh of screens distributed over the surface of the front cover of the light to control illumination and screen the internal parts of the light

Also Published As

Publication number Publication date
WO2008053122A1 (en) 2008-05-08
FR2908179B1 (en) 2008-12-26
FR2908179A1 (en) 2008-05-09

Similar Documents

Publication Publication Date Title
EP1857732B1 (en) Lighting and/or signalling device for an automobile
EP0208569B1 (en) Lighting fixture, especially a stage light projector provided with means for simultaneously adjusting all the projector's parameters
EP2476947B1 (en) Lighting or signalling device with an optical guide for an automobile vehicle
FR2858042A1 (en) LUMINAIRE-FREE ELLIPTICAL LIGHTING MODULE COMPRISING A CUT-OFF LIGHTING BEAM AND PROJECTOR COMPRISING SUCH A MODULE
EP1288562A1 (en) Lighting or signalling device for motor vehicle
FR2920517A1 (en) PROJECTION MODULE OF A VEHICLE HEADLIGHT
EP2529151A1 (en) Optical device for a motor vehicle including a surface light source
FR2925656A1 (en) Lighting module's lens for e.g. motor vehicle, has plane rear side and bulged front side defining clarity zone presenting smooth and/or less diffusing state of surface to define net power outage line in range of blurred power outage
EP2999919B1 (en) Optical waveguide with a reflective pattern for propagating a light beam
EP3214364A1 (en) Improved lens for a lighting device of a motor vehicle
EP2751475A1 (en) Optical device, in particular for a motor vehicle
FR2708334A1 (en) Element of style or optics, of shiny appearance and neutral tint, for lighting or automotive signaling.
WO2008053124A1 (en) Lens for a lighting module for a motor vehicle and lighting module comprising such a lens
EP0549423B1 (en) Lens for signalling optical device equipped with pseudo-catadioptric elements
EP0274325B1 (en) Coloured light-emitting signal lamp with a colourless lens, especially for motor vehicles
EP0451039B1 (en) Intermediate lens for rear lamps and method of fabrication
EP1366954A1 (en) Vehicle lighting and/or signalling device with a mask
EP0828112B1 (en) Signal light producing the required color light by additive synthesis
FR2898662A1 (en) Motor vehicle dippable-beam light design procedure uses lens with output surface that can be linked to smooth surface of adjacent modules
FR3008770A1 (en) MODULAR LIGHTING SYSTEM, IN PARTICULAR FOR A MOTOR VEHICLE LIGHTING ARRANGEMENT
EP0404629A1 (en) Signalling lights for road vehicles
FR2867257A1 (en) Lighting and/or signalling device for motor vehicle, has dioptric unit whose rear side is divided into angular sectors, where each sector is limited towards back side by elementary rotational surface
FR2607081A1 (en) Set of two signalling lights with beams of different colours and similar appearance when they are switched off, particularly for cars
FR2758874A1 (en) Vehicle warning lights with additive synthesis
FR2905321A1 (en) Lighting device e.g. stoplight, for signaling motor vehicle, has disk shaped mask, whose hour-glass shaped holes traverse mask and permits passage of light rays issued from light source, where holes have same dimensions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07866522

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07866522

Country of ref document: EP

Kind code of ref document: A1