WO2008049343A1 - Procédé et système de protection pour dispositif d'intégration de photo-électricité - Google Patents
Procédé et système de protection pour dispositif d'intégration de photo-électricité Download PDFInfo
- Publication number
- WO2008049343A1 WO2008049343A1 PCT/CN2007/070095 CN2007070095W WO2008049343A1 WO 2008049343 A1 WO2008049343 A1 WO 2008049343A1 CN 2007070095 W CN2007070095 W CN 2007070095W WO 2008049343 A1 WO2008049343 A1 WO 2008049343A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- source link
- link
- integrated device
- alternate
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
- H04B10/032—Arrangements for fault recovery using working and protection systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0287—Protection in WDM systems
- H04J14/0297—Optical equipment protection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
- H04J14/0279—WDM point-to-point architectures
Definitions
- the present invention relates to optical communication technologies, and more particularly to a method and system for protecting an optoelectronic integrated device. Background of the invention
- Dense Wave Division (DW DM) technology is the dominant technology for long-haul and regional backbone transmission networks, and is gradually integrated into metropolitan areas.
- Traditional DW DM systems use a separate device package that fabricates boards around one or more optical devices that are connected by fiber optics.
- FIG. 1 is a schematic structural view of the inside of a transmitting end optoelectronic integrated device in the prior art.
- the transmitting end optical integrated device includes: a high-level control unit, a data exchange unit, a light source link control unit, n light source links, and corresponding ones thereof. n data channels, and wavelength combining units.
- 2 is a schematic diagram of data transmission performed by a transmitting end using a data channel and a light source link in the prior art.
- each The light source link mainly includes a light source and a modulator, and further includes an optical path eavesdropping tap module, and the link detecting circuit in the light source link control unit detects each light source link through a Tap module in each light source link.
- the performance enables the light source link control unit to appropriately adjust the light source link according to the detection result, for example, adjusting the optical power level of the light source link.
- FIG. 3 is a schematic structural diagram of a photoelectric integrated device at a receiving end in the prior art.
- the receiving end photoelectric integrated device mainly includes a wavelength decomposing unit, n light receiving units, and an electric data processing unit.
- the light source in the light source link generates an optical signal and outputs it to the modulator, and the corresponding data channel outputs the electrical signal to the modulator, and the modulator pairs the received optical signal.
- the optical signal is output to the wavelength combination module.
- the wavelength combination module combines the optical signals received from all the light source links and outputs them to the optoelectronic integrated device at the receiving end.
- the wavelength de-combining unit de-combines the received optical signals, and outputs the decomposed n optical signals to corresponding optical receiving units, and each optical receiving unit receives the received light. After the signal is converted into an electrical signal, it is output to the electrical data processing unit for corresponding service processing.
- optical signals have a series of advantages in terms of information transmission, such as strong anti-interference and fast transmission speed compared with electrical signals. Therefore, optoelectronic integrated devices have been widely used.
- each light source link acts as the primary link for the actual service transmission, so that any one of the light source integrated links in the optoelectronic integrated device fails. For example, if the light source does not emit light or the modulator fails, the entire optoelectronic integrated device will not work properly, which reduces the reliability of the optoelectronic integrated device. In order to enable the optoelectronic integrated device to work again, the prior art can be solved by replacing the light source link.
- An object of the embodiments of the present invention is to provide a method for protecting an optoelectronic integrated device. Another object of the embodiments of the present invention is to provide a system for protecting an optoelectronic integrated device, thereby providing effective protection for the optoelectronic integrated device. Measures to improve the reliability of optoelectronic integrated equipment.
- a method for protecting a photoelectric integrated device comprising: detecting whether each main light source link in the photoelectric integrated device of the transmitting end is faulty, when detecting When a primary light source link fails, a preset fixed-wavelength alternate light source link and its corresponding backup transmission are selected.
- An optoelectronic integrated device comprising: a main active light source link and a corresponding primary data channel, a wavelength combining unit, the photoelectric integrated device further comprising:
- the protection processing unit detects whether each main light source link is faulty, and after detecting a fault of the primary light source link, selects a preset fixed wavelength standby light source link and its corresponding standby data channel to a fixed wavelength
- the selected alternate light source link sends a start indication, and controls an electrical signal exchange of the primary data channel corresponding to the faulty primary light source link to an alternate data channel corresponding to the selected alternate light source link;
- the selected alternate light source link of the fixed wavelength after receiving the start instruction, modulates the optical signal generated by the own light source by using the electrical signal outputted by the corresponding alternate data channel, and transmits the modulated optical signal to the wavelength combining unit.
- the alternate data channel corresponding to the selected alternate light source link transmits the received electrical signal to the selected alternate light source link.
- a system for protecting an optoelectronic integrated device comprising: a transmitting end optoelectronic integrated device, detecting whether each main light source link is faulty, and when detecting a main light source link failure, selecting a fixed wavelength standby light source
- the link and its corresponding backup data channel complete the service transmission of the faulty primary light source link and its corresponding primary data channel, and transmit the combined optical signals of the wavelengths to the wavelength decombining unit in the optoelectronic integrated device of the receiving end;
- the wavelength de-combining unit in the optoelectronic integrated device of the receiving end is configured to de-combine the received optical signals and respectively send them to the optical integrated device of the receiving end corresponding to different main light source links and selected alternate light source links.
- any one of the receiving end optical integrated devices is configured to convert the received optical signal into an electrical signal and then send the signal to the switching processing unit in the optoelectronic integrated device of the receiving end; the switching processing unit in the optoelectronic integrated device of the receiving end, After detecting that the faulty primary light source link in the transmitting end optoelectronic integrated device is switched to the selected alternate light source link, the electrical signal sent by the light receiving unit corresponding to the selected alternate light source link is switched An electrical signal sent to a light receiving unit corresponding to the faulty primary light source link.
- the fault of any one of the primary light source links can be detected, and the faulty primary light source link can be completed by using the fixed wavelength standby light source link and its corresponding standby data channel. And the service transmission process of the corresponding data channel, therefore, it can ensure that the optoelectronic integrated device can still work normally when the main light source link is faulty, thereby providing effective protection for the optoelectronic integrated device and improving the reliability of the optoelectronic integrated device. .
- the fixed-wavelength backup source link and its corresponding backup data channel can automatically complete the service transmission process of the faulty active light source link and its corresponding data channel without replacing the prior art.
- the entire optoelectronic integrated circuit therefore, reduces the maintenance cost of the optoelectronic integrated device and, because of the involvement of maintenance personnel, reduces the maintenance workload of the maintenance personnel.
- FIG. 1 is a schematic structural view of the inside of a transmitting end optoelectronic integrated device in the prior art. Schematic diagram.
- FIG. 3 is a schematic structural diagram of a photoelectric integrated device at a receiving end in the prior art.
- FIG. 4A is a schematic diagram showing the basic structure of a transmitting end optoelectronic integrated device in an embodiment of the present invention.
- FIG. 4B is a schematic diagram of a specific structure of a transmitting end optoelectronic integrated device in an embodiment of the present invention.
- Fig. 5A is a schematic diagram showing the basic structure of a system for protecting an optoelectronic integrated device in an embodiment of the present invention.
- Fig. 5B is a schematic diagram showing the detailed structure of a system for protecting an optoelectronic integrated device in the embodiment of the present invention.
- FIG. 6 is a flow chart for implementing protection of an optoelectronic integrated device by using the system and the optoelectronic integrated device proposed by the embodiments of the present invention.
- Figure 7A is in this hair ⁇
- FIG. 8 is a schematic diagram of a light combining unit in a transmitting end photoelectric integrated device in an embodiment of the present invention.
- Embodiments of the present invention provide a method for protecting an optoelectronic integrated device.
- a fixed-wavelength alternate light source link and an alternate data channel corresponding to the standby light source link are set in the transmitting-end optoelectronic integrated device; and detecting whether each of the active light source links in the photoelectric integrated device of the transmitting end is faulty, when detecting When a main light source link fails, select a fixed wave.
- the service transmission of the corresponding primary data channel is provided.
- an embodiment of the present invention also provides an optoelectronic integrated device.
- 4A is a schematic diagram showing the basic structure of a transmitting end optoelectronic integrated device in an embodiment of the present invention.
- an internal structure of a transmitting end optical integrated device mainly includes: a protection processing unit, a plurality of active light source links and corresponding primary data channels, and one or more fixed wavelength spares. a light source link and its corresponding alternate data channel, and a wavelength combining unit, wherein
- the protection processing unit detects whether each main light source link is faulty, and after detecting a failure of the primary light source link, selects a fixed-wavelength alternate light source link and its corresponding standby data channel, and selects the reserved wavelength to a fixed wavelength.
- the light source link sends a start indication, and the electrical signal of the primary data channel corresponding to the faulty primary light source link is switched to the alternate data channel corresponding to the selected alternate light source link;
- the selected alternate light source link of the fixed wavelength after receiving the start instruction, modulates the optical signal generated by the own light source by using the electrical signal outputted by the corresponding alternate data channel, and transmits the modulated optical signal to the wavelength combining unit.
- the alternate data channel corresponding to the selected alternate light source link transmits the received electrical signal to the selected alternate light source link.
- FIG. 4B is a schematic diagram of a specific structure of a transmitting end optoelectronic integrated device in an embodiment of the present invention.
- the protection processing unit specifically includes: a high-level control unit, a data exchange unit, a link monitoring unit, and a light source link control unit.
- FIG. 5A is a schematic diagram showing the basic structure of a system for protecting an optoelectronic integrated device in an embodiment of the present invention.
- the system includes: a transmitting end photoelectric integrated device and a receiving end photoelectric integrated device.
- the transmitting end optoelectronic integrated device mainly comprises a fixed wavelength standby light source link and a corresponding standby data channel
- the receiving end photoelectric integrated device comprises a wavelength decomposing unit, corresponding to different main light sources in the transmitting end photoelectric integrated device respectively. a different light receiving unit of the link and the alternate light source link, and a switching processing unit, and
- the transmitting end optoelectronic integrated device detects whether each main light source link is faulty. When detecting a main light source link failure, the selected alternate light source link with a fixed wavelength and its corresponding transmission are used, and the wavelengths are combined. The optical signal is sent to a wavelength decombining unit in the optoelectronic integrated device of the receiving end;
- a wavelength de-combining unit configured to de-combine the received optical signals and respectively transmit to the light receiving units corresponding to the different primary light source links and the selected alternate light source links;
- any one of the light receiving units configured to convert the received optical signal into an electrical signal and send the signal to the switching processing unit;
- the switching processing unit is configured to: after detecting that the faulty primary light source link is switched to the selected alternate light source link, the electrical signal sent by the light receiving unit corresponding to the selected alternate light source link is switched to correspond to the fault main use An electrical signal from a light receiving unit of the light source link.
- Fig. 5B is a schematic diagram showing the detailed structure of a system for protecting an optoelectronic integrated device in the embodiment of the present invention.
- the specific structure of the transmitting end optoelectronic integrated device may be the same as that shown in FIG. 4A and FIG. 4B, and the switching processing unit may be used by the receiving end optoelectronic integrated device.
- the high-level control unit and the electrical data processing unit are composed.
- the light source is mainly included, and the modulator may further be further included, and may further include a detection execution unit and/or a light absorber, wherein The detection execution unit described can be exemplified by a Tap unit.
- FIG. 6 is a flow chart for implementing protection of an optoelectronic integrated device by using the system and the optoelectronic integrated device proposed by the embodiments of the present invention.
- FIG. 7 is a schematic diagram of a data transmission performed by a transmitting end using a data channel and a light source link in the embodiment of the present invention. Referring to FIG. 4A, FIG. 4B, FIG. 5, FIG. 6, FIG. 7A and FIG. 8, in the embodiment of the present invention, one or more fixed-wavelength alternate light source links and alternate data corresponding thereto are set in advance in the optoelectronic integrated device. Channels, and as shown in FIG.
- a detection execution unit is disposed on each of the main light source links, and then the system and the optoelectronic integrated device according to the embodiments of the present invention are used to implement the process of protecting the optoelectronic integrated device, specifically including the following Steps:
- Step 601 In the transmitting end optoelectronic integrated device, the detecting execution unit on each main light source link, such as the Tap unit, receives the optical signal output by the local light source link, and outputs the received optical signal to the link monitoring unit.
- main light source link such as the Tap unit
- the Tap unit may output a part of the received optical signal energy such as 5% of the optical signal to the link monitoring unit.
- Step 602 In the transmitting end optoelectronic integrated device, the link monitoring unit performs performance analysis on the optical signal outputted by the Tap unit on each of the light source links, and detects the performance of each main light source link, and detects each of the detected main uses. The performance monitoring information of the light source link is sent to the light source link control unit.
- Step 603 In the transmitting end optoelectronic integrated device, the light source link control unit determines whether each main light source link is faulty according to the received performance monitoring information of each main light source link, and determines a main light source link, such as After the primary light source link fails, the first primary light source link failure information is sent to the upper control unit.
- the first primary light source link failure is detected in combination with the structure of the transmitting end photoelectric integrated device shown in FIG. 7A. If the structure of the transmitting end optoelectronic integrated device shown in FIG. 7B is combined, that is, the detection execution unit setting After the wavelength combining unit, then the monitoring process of steps 601 to 603 can be replaced by:
- the detecting execution unit is, for example, a Tap unit that receives the wavelength combined optical signal output by the wavelength combining unit, and outputs the received optical signal to the link monitoring unit, wherein, preferably, the detecting execution unit can receive the received optical signal energy.
- a part of the optical signal is output to the link monitoring unit; the link monitoring unit performs spectrum and optical power analysis or optical signal analysis on the optical signal outputted by the detection execution unit on each light source link, and each main light source is used.
- the spectrum and optical power analysis result of the link or the optical sign signal analysis result is sent to the light source link control unit; the light source link control unit analyzes the result according to the received spectrum and optical power analysis result or the optical sign signal of each main light source link, Detecting the performance change of the frequency and optical power of each main light source link, or detecting the performance change of the optical sign signal of each main light source link, thereby determining whether each main light source link is faulty, determining the first main After the light source link is faulty, the first primary light source link failure information is sent.
- High-level control unit wherein, when the optical sign signal mode is adopted, it is necessary to add a cursor signal to the light source in each light source link in advance, for example, adding a low frequency disturbance of a different frequency to the light source in each light source link.
- Step 604 In the transmitting end optoelectronic integrated device, after receiving the first primary light source link failure information, the high layer control unit sends an indication to the light source link control unit to start the first standby light source link.
- Step 605 In the transmitting end optoelectronic integrated device, after receiving the indication of starting the first alternate light source link, the light source link control unit turns off the first active light source link and starts the first standby light source link.
- the light source link control unit may further activate the light absorber in the first primary light source link, and the light absorber in the first primary light source link absorbs the output of the first primary light source link after startup The optical signal ensures that the first primary light source link will not emit any interference optical signals after the fault.
- Step 606 In the transmitting end optoelectronic integrated device, when the first standby light source link is activated, the link monitoring unit detects the performance of the first standby light source link, and performs performance monitoring information of the detected first standby light source link. Send to the light source link control unit.
- Step 607 In the transmitting end optoelectronic integrated device, the light source link control unit determines whether the first standby light source link is stable according to the received performance monitoring information of the first standby light source link, and determines the first standby light source chain. After the road state is stable, the information of the first standby light source link state is sent to the high-level control unit.
- the light source link control unit may send a status unsteady indication to the link monitoring unit, and the link monitoring unit controls the first standby light source of the adjustable wavelength.
- the optical absorber in the link absorbs the optical signal output by the first standby light source link, thereby avoiding interference to other normal links when the first standby light source link is not started, and waits until the first standby light source link state After stabilization, turn on the light absorber.
- Step 608 In the optical integrated device of the transmitting end, after receiving the information that the first standby light source link state is stable, the high-level control unit sends the power of the primary data channel corresponding to the first primary light source link to the data exchange unit. The switching instruction is switched to the alternate data channel corresponding to the first alternate source link.
- the high-level control unit receives the first backup. After the information of the light source link state is stable, the switching indication is sent to the data exchange unit. In an actual service implementation, after receiving the first primary light source link failure information in step 604, the high-level control unit may immediately send the primary data channel corresponding to the first primary light source link to the data exchange unit. The electrical signal is exchanged to a handover indication of the alternate data channel corresponding to the first alternate source link.
- Step 609 In the transmitting end optical integrated device, after receiving the switching instruction, the data switching unit exchanges the electrical signal of the primary data channel corresponding to the first primary light source link to the standby data corresponding to the first standby light source link. aisle.
- Step 610 In the transmitting end optoelectronic integrated device, after the first standby light source link of the fixed wavelength is activated, the optical signal generated by the light source is modulated by using the electrical signal outputted by the corresponding alternate data channel, and the modulated signal is modulated. The optical signal is sent to the wavelength combining unit.
- the wavelength combining unit may include ports corresponding to the respective primary light source links, respectively connected to the corresponding primary light source links; and, the wavelength combining unit Ports corresponding to alternate wavelength links of each fixed wavelength may also be included and connected to respective alternate source links.
- the fixed wavelength first alternate light source link transmits the modulated optical signal to a port of the wavelength combining unit corresponding to the first alternate light source link.
- Step 611 In the transmitting end optoelectronic integrated device, the wavelength combining unit combines the optical signal received on the link port corresponding to the primary light source with the optical signal received on the link port corresponding to the first standby light source. The combined optical signal is sent to the receiving end optoelectronic integrated device.
- Step 612 In the optoelectronic integrated device of the receiving end, the wavelength decomposing unit receives the optical signal sent by the optoelectronic integrated device of the transmitting end, and demultiplexes the optical signal and sends the optical signal to the corresponding main light source link and the first standby light source respectively.
- the light receiving unit of the link In the optoelectronic integrated device of the receiving end, the wavelength decomposing unit receives the optical signal sent by the optoelectronic integrated device of the transmitting end, and demultiplexes the optical signal and sends the optical signal to the corresponding main light source link and the first standby light source respectively.
- the light receiving unit of the link In the optoelectronic integrated device of the receiving end, the wavelength decomposing unit receives the optical signal sent by the optoelectronic integrated device of the transmitting end, and demultiplexes the optical signal and sends the optical signal to the corresponding main light source link and the first standby light source respectively.
- the light receiving unit of the link In the
- the wavelength decomposing unit may include a corresponding a port of each of the primary light source links in the optoelectronic integrated device at the transmitting end and a port corresponding to each of the fixed wavelength auxiliary light source links in the optical integrated device of the transmitting end, and the wavelength decomposing unit will be decomposed and sent
- the optical signals emitted by each of the light source links in the end photoelectric integrated device are respectively sent to the own ports corresponding to the light source links, and each port on the wavelength decombining unit receives a light source corresponding to the transmitting end photoelectric integrated device.
- the optical signal of the link is sent to a light receiving unit corresponding to the light source link.
- Step 613 In the receiving end optoelectronic integrated device, any one of the light receiving units converts the received optical signal into an electrical signal and then sends the signal to the electrical data processing unit in the switching processing unit.
- the high-level control unit in the optoelectronic integrated device of the transmitting end receives the first primary light source link failure information
- the high-level control unit in the optical integrated device of the transmitting end will be the first main
- the switching information that is switched to the first standby light source link by the light source link is sent to the switching processing unit in the optoelectronic integrated device of the downstream receiving end, which may be a high-level control unit sent to the downstream receiving end photoelectric integrated device, and the receiving end is photoelectrically integrated.
- the high-level control unit in the device transmits a switching indication corresponding to the electrical signal of the first standby light source link and the electrical signal of the light receiving unit corresponding to the first primary light source link to the electrical data processing unit.
- the high-level control unit in the transmitting end optoelectronic integrated device may also not send the switching indication to the high-level control unit in the receiving end optoelectronic integrated device.
- the high-level control unit in the optoelectronic integrated device of the receiving end can also monitor the switching information by other means.
- the high-level control unit in the optoelectronic integrated device of the receiving end monitors each of the light receiving units, and detects that the light receiving unit corresponding to the first main light source link does not receive the optical signal, that is, corresponds to the fault in the transmitting end photoelectric integrated device.
- the optical signal of the primary light source link is lost, and after the optical receiving unit corresponding to the first alternate light source link receives the optical signal, it is determined that the first primary light source link is switched to the first standby light source link, thereby a light receiving unit corresponding to the first alternate light source link and a light receiving unit corresponding to the first primary light source link
- the switching indication of the electrical signal being switched is sent to the electrical data processing unit.
- Step 614 In the receiving end optoelectronic integrated device, the electrical data processing unit switches the electrical signal sent by the light receiving unit corresponding to the first standby light source link to correspond to the first primary light source according to the received switching instruction. An electrical signal from the light receiving unit of the link.
- the protection processing unit inside the transmitting end optical integrated device in the embodiment of the present invention uses the existing high-level control unit, data exchange unit, link monitoring unit, and light source link control unit to implement Moreover, the switching processing unit inside the receiving end optoelectronic integrated device is also realized by using an existing high-level control unit and an electric data processing unit.
- the protection processing unit and the switching processing unit may also be newly added functional units in the optoelectronic integrated device of the present invention, which specifically implements the process of protecting the optoelectronic integrated device and the principle of the process described in the foregoing embodiment. It's exactly the same.
- the detection execution unit such as the Tap unit and the link monitoring unit, performs the monitoring of the performance of the main light source link.
- other methods can be used to monitor the main light source chain.
- the process of the road performance is exactly the same as the process of the corresponding process described in the above embodiment.
- the primary data channel and the alternate data channel may be disposed in two separate devices, or may be combined in one device.
- the optical absorber has two functions, one function is the optical power of the entire link through the optical power absorbed by the optical absorber when the light source link where the optical absorber is located is working normally. Monitoring; another function is to add a control signal, usually a voltage signal, to the light absorber when the light source link of the light absorber is faulty, so that the light signal of the light source link is almost completely absorbed, thereby achieving shutdown.
- the light absorber can be an optical switch or a PIN tube or other device. When it is a PIN tube, when a positive voltage is applied to the PIN, the optical power output can be detected. When a negative voltage is applied, To absorb the light signal.
- the wavelength combining unit may be an AWG or N X 1 wavelength multiplexer or the like.
- each of the primary light source links and the alternate light source links may be located on the same integrated circuit board, or may be located on different integrated circuit boards.
- the above embodiment is described in detail by using the optoelectronic integrated device and the system for protecting the optoelectronic integrated device proposed by the embodiment of the present invention.
- equipment and systems that protect optoelectronic integrated equipment.
- the basic implementation process of the embodiment of the present invention is completely the same as the principle of the process described in the foregoing embodiment, except that the optical integrated device at the transmitting end and the optical integrated device at the receiving end do not need to distinguish each functional unit, and the optical integrated device is unified by the transmitting end.
- the receiving end optoelectronic integrated device can perform the corresponding functions in the above embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
- Semiconductor Lasers (AREA)
Description
一种对光电集成设备进行保护的方法和系统
技术领域 本发明涉及光通信技术, 特别是涉及一种对光电集成设备进行保护 的方法和系统。 发明背景
密集波分系统( DW DM )技术是长途和地区主干传输网络的主导技 术, 并且也逐渐融入到城域范围。 传统的 DW DM系统使用的是独立的 器件封装, 围绕一个或多个光器件制作板卡,板卡之间通过光纤来连接。
随着技术的发展, 光器件的价格不断下降, 到目前为止, 只有光器 件的封装成本仍然居高不下, 并且成为制约光器件成本的瓶颈。 一个典 型的例子就是一个激光器的内核只有几个美金, 但是它的封装成本却需 要几百美金。
在过去的几年, 人们一直致力于将多个光器件, 比如激光器和调制 器等集成在同一个半导体基底上 , 从而达到减少光器件各自分立封装成 本的目的。 同时由于减少了封装, 使得 DW DM系统发送、 接收、 监视 等子模块体积大大减少。
光电集成电路是将多个光器件集成在一个共同的半导体基底上 , 并 加上相应的外围控制电路。 图 1是在现有技术中发送端光电集成设备内 部的结构示意图。 参见图 1 , 为了通过光电集成电路实现信息传输, 在 现有技术中, 发送端光电集成设备内部包括: 高层控制单元、 数据交换 单元、 光源链路控制单元、 n个光源链路及其对应的 n个数据通道、 以 及波长组合单元。 图 2是在现有技术中发送端利用数据通道和光源链路 实现数据传输的示意图。 参见图 1和图 2, 在实际的业务实现中, 每一
个光源链路中主要包括光源和调制器, 并可进一步包括光路窃听 Tap模 块, 光源链路控制单元中的链路检测电路通过每一个光源链路中的 Tap 模块, 检测每一个光源链路的性能, 使得光源链路控制单元能够根据检 测结果对光源链路进行适当调整,比如,调整光源链路的光功率大小等。 图 3是在现有技术中接收端光电集成设备的结构示意图。 参见图 3 , 接 收端光电集成设备内部主要包括波长解组合单元、 n个光接收单元和电 数据处理单元。
在进行信息传递时, 在发送端的光电集成设备中, 光源链路中的光 源产生光信号, 并输出至调制器, 对应的数据通道将电信号输出至调制 器, 调制器对接收到的光信号和电信号进行调制后产生光信号输出至波 长组合模块。 波长组合模块对从所有光源链路上接收到的光信号进行组 合后, 输出至接收端的光电集成设备。 在接收端的光电集成设备中, 波 长解组合单元对接收到的光信号进行解组合 , 将解组合出的 n路光信号 分别输出至对应的光接收单元 , 每个光接收单元将接收到的光信号转换 为电信号后, 输出至电数据处理单元进行相应的业务处理。
目前, 光信号在信息传递方面, 相对于电信号具有抗干扰强和传输 速度快等一系列优点, 因此, 光电集成设备得到了广泛的应用。
然而, 在目前, 对光电集成设备并不存在任何有效的保护措施, 每 一条光源链路都会作为主用链路作用于实际业务传输, 这样, 当光电集 成设备中的任意一条光源链路发生故障, 比如, 光源不发光或调制器故 障等, 则会导致整个光电集成设备无法正常工作, 降低了光电集成设备 的可靠性。 为了使得光电集成设备能够重新工作, 现有技术则可以采用 更换光源链路的方式来解决, 然而, 又由于在光电集成设备中各个光源 链路的组成器件集成在一个基底上, 并且统一封装, 无法单独更换故障 的光源链路, 因此, 只能更换整个光电集成电路, 从而大大增加了维护
和维修成本。 发明内容
本发明实施例的一个目的在于提供一种对光电集成设备进行保护的 方法, 本发明实施例的另一目的在于提供一种对光电集成设备进行保护 的系统, 从而对光电集成设备提供有效的保护措施, 提高光电集成设备 的可靠性。
为了达到上述目的 , 本发明实施例的技术方案是这样实现的: 一种对光电集成设备进行保护的方法, 该方法包括: 检测发送端光 电集成设备中各个主用光源链路是否故障, 当检测到一条主用光源链路 故障时, 选择预先设置的一条固定波长的备用光源链路和与其对应的备 传输。
一种光电集成设备, 包括各个主用光源链路和其对应的主用数据通 道, 波长组合单元, 该光电集成设备还包括:
保护处理单元, 检测各个主用光源链路是否故障, 在检测到一个主 用光源链路故障后 , 选择一个预先设置的固定波长的备用光源链路及其 对应的备用数据通道, 向固定波长的所选备用光源链路发送启动指示, 控制所述故障主用光源链路对应的主用数据通道的电信号交换到所选 备用光源链路对应的备用数据通道;
固定波长的所选备用光源链路, 在接收到启动指示后, 利用与其对 应的备用数据通道所输出的电信号对自身光源产生的光信号进行调制, 将调制后的光信号发送至波长组合单元;
所选备用光源链路对应的备用数据通道, 将接收到的电信号发送至 所选备用光源链路。
一种对光电集成设备进行保护的系统, 该系统包括: 发送端光电集 成设备, 检测各个主用光源链路是否故障, 当检测到一条主用光源链路 故障时, 选择一条固定波长的备用光源链路和其对应的备用数据通道完 成故障主用光源链路和其对应的主用数据通道的业务传输, 并将波长组 合后的光信号发送至接收端光电集成设备中的波长解组合单元;
接收端光电集成设备中的波长解组合单元 , 用于将接收到的光信号 进行解组合后, 分别发送至接收端光电集成设备中对应于不同主用光源 链路和所选备用光源链路的不同光接收单元;
接收端光电集成设备中的任意一个光接收单元, 用于将接收到的光 信号转换为电信号后发送至接收端光电集成设备中的倒换处理单元; 接收端光电集成设备中的倒换处理单元, 用于监测到所述发送端光 电集成设备中所述故障主用光源链路切换到所选备用光源链路后, 将对 应于所选备用光源链路的光接收单元发来的电信号 , 倒换为对应于所述 故障主用光源链路的光接收单元发来的电信号。
由此可见, 在本发明实施例中, 能够检测到任意一条主用光源链路 的故障, 并能够使用固定波长的备用光源链路和其对应的备用数据通道 来完成该故障主用光源链路和其对应数据通道的业务传输过程 , 因此, 能够保证在主用光源链路故障时, 光电集成设备仍然能够正常工作, 从 而对光电集成设备提供了有效的保护, 提高了光电集成设备的可靠性。
另外, 在本发明实施例中, 由于固定波长的备用光源链路和其对应 的备用数据通道能够自动完成故障主用光源链路和其对应数据通道的 业务传输过程, 而无需现有技术中更换整个光电集成电路, 因此, 降低 了光电集成设备的维护成本, 并且, 由于无需维护人员的参与, 因此, 降低了维护人员的维护工作量。
附图简要说明
图 1是在现有技术中发送端光电集成设备内部的结构示意图。 的示意图。
图 3是在现有技术中接收端光电集成设备的结构示意图。
图 4A是在本发明实施例中发送端光电集成设备的基本结构示意图。 图 4B是在本发明实施例中发送端光电集成设备的具体结构示意图。 图 5A是在本发明实施例中对光电集成设备进行保护的系统基本结 构示意图。
图 5B是在本发明实施例中对光电集成设备进行保护的系统具体结 构示意图。
图 6是利用本发明实施例所提出的系统和光电集成设备实现对光电 集成设备进行保护的流程图。
图 7A是在本发^
据传输的第一种结构示意图
图 7B是在本发^
据传输的第二种结构示意图。
图 8是在本发明实施例中发送端光电集成设备中光组合单元的示意
实施本发明的方式
本发明实施例提出了一种对光电集成设备进行保护的方法。 在该方 法中, 在发送端光电集成设备中设置固定波长的备用光源链路以及备用 光源链路对应的备用数据通道; 检测发送端光电集成设备中各个主用光 源链路是否故障, 当检测到一条主用光源链路故障时, 选择一条固定波
和其对应的主用数据通道的业务传输。
相应地, 本发明实施例还提出了一种光电集成设备。 图 4A是在本 发明实施例中发送端光电集成设备的基本结构示意图。 参见图 4A, 在 本发明实施例中, 发送端光电集成设备的内部结构主要包括: 保护处理 单元、 多个主用光源链路及其对应的主用数据通道、 一个或一个以上固 定波长的备用光源链路及其对应的备用数据通道、 以及波长组合单元, 其中,
保护处理单元, 检测各个主用光源链路是否故障, 在检测到一个主 用光源链路故障后 , 选择一个固定波长的备用光源链路及其对应的备用 数据通道, 向固定波长的所选备用光源链路发送启动指示, 控制故障主 用光源链路对应的主用数据通道的电信号交换到所选备用光源链路对 应的备用数据通道;
固定波长的所选备用光源链路, 在接收到启动指示后, 利用与其对 应的备用数据通道所输出的电信号对自身光源产生的光信号进行调制, 将调制后的光信号发送至波长组合单元;
所选备用光源链路对应的备用数据通道, 将接收到的电信号发送至 所选备用光源链路。
图 4B是在本发明实施例中发送端光电集成设备的具体结构示意图。 参见图 4A和图 4B, 在本发明实施例中的发送端光电集成设备, 所述的 保护处理单元具体包括: 高层控制单元、 数据交换单元、 链路监测单元 和光源链路控制单元。
相应地,本发明提出了一种对光电集成设备进行保护的系统。 图 5A 是在本发明实施例中对光电集成设备进行保护的系统基本结构示意图。 参见图 5A, 该系统包括: 发送端光电集成设备和接收端光电集成设备,
其中, 发送端光电集成设备中主要包括固定波长的备用光源链路和与其 对应的备用数据通道, 接收端光电集成设备中包括波长解组合单元, 分 别对应于发送端光电集成设备中不同主用光源链路和备用光源链路的 不同光接收单元, 以及倒换处理单元, 并且,
发送端光电集成设备, 检测各个主用光源链路是否故障, 当检测到 一条主用光源链路故障时, 使用固定波长的所选备用光源链路和其对应 务传输 , 并将波长组合后的光信号发送至接收端光电集成设备中的波长 解组合单元;
波长解组合单元, 用于将接收到的光信号进行解组合分别发送至对 应于不同主用光源链路和所选备用光源链路的光接收单元;
任意一个光接收单元, 用于将接收到的光信号转换为电信号后发送 至倒换处理单元;
倒换处理单元, 用于监测到故障主用光源链路切换到所选备用光源 链路后, 将对应于所选备用光源链路的光接收单元发来的电信号, 倒换 为对应于故障主用光源链路的光接收单元发来的电信号。
图 5B是在本发明实施例中对光电集成设备进行保护的系统具体结 构示意图。 参见图 5A和图 5B, 在本发明实施例的系统中, 发送端光电 集成设备的具体结构可以与图 4A和图 4B所示的结构相同, 并且,倒换 处理单元可以由接收端光电集成设备中的高层控制单元和电数据处理 单元组成。
在本发明实施例中, 在每一条主用光源链路上和备用光源链路上 , 主要包括光源, 并可进一步调制器, 以及可以进一步包括检测执行单元 和 /或光吸收器, 其中, 所述的检测执行单元可以举例为 Tap单元。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面结合附
图及具体实施例对本发明实施例作进一步地详细描述。
图 6是利用本发明实施例所提出的系统和光电集成设备实现对光电 集成设备进行保护的流程图。 图 7是在本发明实施例中发送端利用数据 通道和光源链路实现数据传输的示意图。参见图 4A、图 4B、 图 5、图 6、 图 7A和图 8, 在本发明实施例中, 预先在光电集成设备中设置一个或 多个固定波长的备用光源链路和与其对应的备用数据通道,并且如图 7A 所示, 在每一个主用光源链路上设置检测执行单元, 之后, 利用本发明 实施例提出的系统和光电集成设备, 实现对光电集成设备进行保护的过 程具体包括以下步骤:
步骤 601 : 在发送端光电集成设备中, 每一个主用光源链路上的检 测执行单元比如 Tap单元接收本路光源链路输出的光信号, 将接收到的 光信号输出至链路监测单元。
这里, Tap单元可以将接收到的光信号能量的一部分如 5 %的光信号 输出至链路监测单元。
步骤 602: 在发送端光电集成设备中, 链路监测单元对每一个光源 链路上 Tap单元输出的光信号进行性能分析, 检测各个主用光源链路的 性能, 将所检测出的各个主用光源链路的性能监测信息发送至光源链路 控制单元。
步骤 603: 在发送端光电集成设备中, 光源链路控制单元根据接收 到的各个主用光源链路的性能监测信息确定各个主用光源链路是否故 障, 在确定一条主用光源链路比如第一主用光源链路故障后, 将第一主 用光源链路故障信息发送至高层控制单元。
需要说明的是,在上述步骤 601至步骤 603的过程中,是结合图 7A 所示的发送端光电集成设备的结构来监测出第一主用光源链路故障。 如 果结合图 7B所示的发送端光电集成设备的结构, 即检测执行单元设置
在波长组合单元之后, 那么, 步骤 601至步骤 603的监测过程则可以替 换为:
检测执行单元比如为 Tap单元接收波长组合单元输出的波长组合后 的光信号, 将接收到的光信号输出至链路监测单元, 其中, 较佳地, 检 测执行单元可以将接收到的光信号能量的一部分如 5 %的光信号输出至 链路监测单元; 链路监测单元对每一个光源链路上检测执行单元输出的 光信号进行频谱和光功率分析或进行光标志信号分析 , 将各个主用光源 链路的频谱和光功率分析结果或光标志信号分析结果发送至光源链路 控制单元; 光源链路控制单元根据接收到的各个主用光源链路的频谱和 光功率分析结果或光标志信号分析结果, 检测出各个主用光源链路的频 语和光功率的性能变化, 或检测出各个主用光源链路的光标志信号的性 能变化, 从而确定各个主用光源链路是否故障, 在确定第一主用光源链 路故障后, 将第一主用光源链路故障信息发送至高层控制单元。 其中, 当采用光标志信号方式时, 需要预先给每一路光源链路中的光源加光标 志信号 , 比如给每一路光源链路中的光源加不同频率的低频扰动。
步骤 604: 在发送端光电集成设备中, 高层控制单元在接收到第一 主用光源链路故障信息后 , 向光源链路控制单元发送启动第一备用光源 链路的指示。
这里, 如果预先在光电集成设备中设置了多个固定波长的备用光源 链路和与其对应的备用数据通道; 那么, 此处以及以下所述的第一备用 光源链路和对应的备用数据通道, 是由高层控制单元根据预先为各个备 用光源链路和对应的备用数据通道所设置的优先级选择出的; 或者, 是 由高层控制单元从所设置的各个备用光源链路和对应的备用数据通道 中任意选择出的; 或者, 是由高层控制单元根据预先设置的其他规则, 从所设置的各个备用光源链路和对应的备用数据通道中选择出的。
步骤 605: 在发送端光电集成设备中, 光源链路控制单元在接收到 启动第一备用光源链路的指示后, 关闭第一主用光源链路并启动第一备 用光源链路。
这里, 光源链路控制单元还可以进一步启动第一主用光源链路中的 光吸收器, 第一主用光源链路中的光吸收器, 在启动后吸收第一主用光 源链路输出的光信号, 从而保证第一主用光源链路在故障后, 不会再发 出任何干扰光信号。
步骤 606: 在发送端光电集成设备中, 在第一备用光源链路启动时, 链路监测单元检测第一备用光源链路的性能 , 将所检测出的第一备用光 源链路的性能监测信息发送至光源链路控制单元。
步骤 607: 在发送端光电集成设备中, 光源链路控制单元根据接收 到的第一备用光源链路的性能监测信息 , 确定第一备用光源链路是否达 到状态稳定, 在确定第一备用光源链路状态稳定后, 将第一备用光源链 路状态稳定的信息发送至高层控制单元。
在步骤 607中, 在确定第一备用光源链路状态已经达到稳定之前, 光源链路控制单元可以将状态未稳定指示发送至链路监测单元 , 链路监 测单元控制可调波长的第一备用光源链路中的光吸收器吸收该第一备 用光源链路输出的光信号, 从而避免第一备用光源链路刚开始启动没有 稳定时对其它正常链路产生干扰, 等到第一备用光源链路状态稳定后 , 再开启光吸收器。
步骤 608: 在发送端光电集成设备中, 高层控制单元在接收到第一 备用光源链路状态稳定的信息后, 向数据交换单元发送将第一主用光源 链路对应的主用数据通道的电信号交换到第一备用光源链路对应的备 用数据通道的切换指示。
需要说明的是, 在上述过程中, 高层控制单元是在接收到第一备用
光源链路状态稳定的信息后, 才向数据交换单元发送所述切换指示。 在 实际的业务实现中 , 高层控制单元在上述步骤 604接收到第一主用光源 链路故障信息后, 可以立即执行向数据交换单元发送将第一主用光源链 路对应的主用数据通道的电信号交换到第一备用光源链路对应的备用 数据通道的切换指示。
步骤 609: 在发送端光电集成设备中, 数据交换单元在接收到切换 指示后, 将第一主用光源链路对应的主用数据通道的电信号交换到第一 备用光源链路对应的备用数据通道。
步骤 610: 在发送端光电集成设备中, 固定波长的第一备用光源链 路在启动后, 利用与其对应的备用数据通道所输出的电信号对自身光源 产生的光信号进行调制, 将调制后的光信号发送至波长组合单元。
这里, 参见图 8, 在本发明实施例中, 较佳地, 波长组合单元中可 以包括对应于各个主用光源链路的端口, 分别与对应的主用光源链路相 连; 并且, 波长组合单元中还可以包括对应于每一个固定波长的备用光 源链路的端口, 并分别与对应的备用光源链路相连。这样,在本步骤中, 固定波长的第一备用光源链路是将调制后的光信号发送至波长组合单 元中对应于该第一备用光源链路的端口。
步骤 611 : 在发送端光电集成设备中, 波长组合单元将在对应于主 用光源链路端口上接收到的光信号和在对应于第一备用光源链路端口 上接收到的光信号进行组合 , 将组合后的光信号发送至接收端光电集成 设备。
步骤 612: 在接收端光电集成设备中, 波长解组合单元接收发送端 光电集成设备发来的光信号 , 对该光信号进行解组合分别发送至对应于 不同主用光源链路和第一备用光源链路的光接收单元。
这里, 在接收端光电集成设备中, 波长解组合单元中可以包括对应
于发送端光电集成设备中每一个主用光源链路的端口和对应于发送端 光电集成设备中每一个固定波长的备用光源链路的端口, 并且, 波长解 组合单元将解组合后的、 发送端光电集成设备中每一个光源链路发出的 光信号分别发送至对应于该光源链路的自身端口, 波长解组合单元上的 每一个端口将接收到的对应于发送端光电集成设备中一条光源链路的 光信号发送至对应于该光源链路的光接收单元。
步骤 613: 在接收端光电集成设备中, 任意一个光接收单元将接收 到的光信号转换为电信号后发送至倒换处理单元中的电数据处理单元。
需要说明的是, 在上述步骤 603后, 在发送端光电集成设备中的高 层控制单元接收到第一主用光源链路故障信息后 , 该发送端光电集成设 备中的高层控制单元将第一主用光源链路切换到第一备用光源链路的 切换信息发送至下游接收端光电集成设备中的倒换处理单元, 具体可以 为发送到下游接收端光电集成设备中的高层控制单元, 接收端光电集成 设备中的高层控制单元将对应于第一备用光源链路的光接收单元与对 应于第一主用光源链路的光接收单元的电信号进行倒换的倒换指示发 送至电数据处理单元。
或者, 在上述实现过程中, 发送端光电集成设备中的高层控制单元 也可以不向接收端光电集成设备中的高层控制单元发送切换指示。 这 样 , 接收端光电集成设备中的高层控制单元也可以通过其他方式监测到 该切换信息。 比如, 接收端光电集成设备中的高层控制单元监测每一个 光接收单元, 在监测到对应于第一主用光源链路的光接收单元未接收到 光信号即对应于发送端光电集成设备中故障主用光源链路的光信号丢 失, 并监测到对应于第一备用光源链路的光接收单元接收到光信号后, 确定第一主用光源链路切换到了第一备用光源链路, 从而将对应于第一 备用光源链路的光接收单元与对应于第一主用光源链路的光接收单元
的电信号进行倒换的倒换指示发送至电数据处理单元。
步骤 614: 在接收端光电集成设备中, 电数据处理单元根据接收到 的倒换指示, 将对应于第一备用光源链路的光接收单元发来的电信号, 倒换为对应于第一主用光源链路的光接收单元发来的电信号。
至此, 则完成了对光电集成设备进行保护的过程。
需要说明的是, 在上述实现过程中, 本发明实施例中发送端光电集 成设备内部的保护处理单元利用现有的高层控制单元、 数据交换单元、 链路监测单元和光源链路控制单元来实现; 并且, 接收端光电集成设备 内部的倒换处理单元也是利用现有的高层控制单元和电数据处理单元 来实现。 在实际的业务实现中, 保护处理单元和倒换处理单元也可以是 本发明在光电集成设备内部新增的功能单元, 其具体实现对光电集成设 备进行保护的过程与上述实施例所述过程的原理完全相同。
并且, 在上述实施例中, 是由检测执行单元比如 Tap单元和链路监 测单元共同完成监测主用光源链路性能, 在实际的业务实现中, 也可以 采用其他方式来实现监测主用光源链路性能的过程, 其具体实现过程与 上述实施例所述相应过程的原理完全相同。
在本发明实施例中 , 主用数据通道和备用数据通道可以设置在分开 的两个器件中, 也可以合成在一个器件中。
另外, 在本发明实施例中, 光吸收器有两个作用, 一个作用就是当 光吸收器所在的光源链路正常工作时, 通过光吸收器吸收的光功率大小 来对整个链路的光功率进行监测; 另外一个作用就是当光吸收器所在的 光源链路故障时, 在光吸收器上加入控制信号, 一般是电压信号, 使得 该光源链路的光信号几乎全部被吸收, 从而达到关断整个故障链路光源 的作用。 光吸收器可以是光开关或 PIN管或其他器件。 当为 PIN管时, 当给该 PIN加上正电压时, 可以检测光功率输出, 当加上负电压时, 可
以吸收掉光信号。
另夕卜,在本发明实施例中, 波长组合单元可以是 AWG或 N X 1波长 复用器等。
另外, 在本发明实施例中, 各主用光源链路与备用光源链路可以位 于同一集成电路板, 也可以位于不同集成电路板。
另外, 上述实施例是利用本发明实施例提出的光电集成设备和对光 电集成设备进行保护的系统来进行伴细描述的。 在实际的业务实现中 , 设备和对光电集成设备进行保护的系统。 此时, 本发明实施例的基本实 现流程与上述实施例所述过程的原理完全相同, 只是发送端光电集成设 备和接收端光电集成设备内部无需区分各个功能单元, 而统一由发送端 光电集成设备和接收端光电集成设备执行上述实施例中相应功能即可。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本发 明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、一种对光电集成设备进行保护的方法,其特征在于,该方法包括: 检测发送端光电集成设备中各个主用光源链路是否故障, 当检测到一条 主用光源链路故障时, 选择预先设置的一条固定波长的备用光源链路和 与其对应的备用数
据通道的业务传输。
2、根据权利要求 1所述的方法, 其特征在于, 所述检测发送端光电 集成设备中各个主用光源链路是否故障的步骤包括:
接收所述各个主用光源链路输出的光信号, 并对接收的光信号进行 性能分析, 检测所述各个主用光源链路是否故障;
或者, 对波长组合后的光信号进行频谱和光功率分析, 通过检测所 述各个主用光源链路的频谱和光功率的性能变化来确定所述各个主用 光源链路是否故障;
或者, 预先为每一个主用光源链路的光源设置光标志信号, 对波长 组合后的光信号进行光标志信号分析, 通过检测所述各个主用光源链路 的光标志信号的性能变化来确定所述各个主用光源链路是否故障。
3、根据权利要求 1或 2所述的方法, 其特征在于, 所述完成故障主 用光源链路及其对应的主用数据通道的业务传输的步骤包括:
启动固定波长的所选备用光源链路, 将所述故障主用光源链路对应 的主用数据通道的数据交换到所选备用光源链路对应的备用数据通道 上; 利用所选备用光源链路对应的备用数据通道所输出的电信号对所选 备用光源链路中光源产生的光信号进行调制 , 利用该调制后的光信号进 行波长组合处理。
4、根据权利要求 3所述的方法, 其特征在于, 所述利用该调制后的
光信号进行波长组合处理的步骤包括: 将调制后的光信号发送至波长组 合单元中预先设置的对应于所选备用光源链路的端口; 波长组合单元将 在对应于所选备用光源链路的端口上接收到的光信号和在对应于主用 光源链路的端口上所接收到的光信号进行组合。
5、根据权利要求 4所述的方法, 其特征在于, 在检测到一条主用光 源链路故障后, 进一步包括: 将所述故障主用光源链路切换到所选备用 光源链路的切换信息发送至接收端光电集成设备;
该方法进一步包括: 所述接收端光电集成设备将接收到的光信号解 组合后, 转换为对应于每一个光源链路的电信号, 所述接收端光电集成 设备根据接收到的切换信息, 将对应于所选备用光源链路的电信号倒换 为对应于所述故障主用光源链路的电信号。
6、根据权利要求 1或 2所述的方法, 其特征在于, 该方法进一步包 括: 接收端光电集成设备接收所述发送端光电集成设备发来的波长信 号, 检测到对应于所述故障主用光源链路的光信号丢失, 并检测到对应 于所选备用光源链路的光信号, 则将对应于所选备用光源链路的电信号 倒换为对应于所述故障主用光源链路的电信号。
个备用光源链路和对应的备用数据通道所设置的优先级选择出的; 或者 , 所述所选备用光源链路和对应的备用数据通道是从所设置的 各个备用光源链路和对应的备用数据通道中任意选择出的。
8、一种光电集成设备, 包括各个主用光源链路和其对应的主用数据 通道, 波长组合单元, 其特征在于, 该光电集成设备还包括:
保护处理单元, 检测各个主用光源链路是否故障, 在检测到一个主 用光源链路故障后 , 选择一个预先设置的固定波长的备用光源链路及其 对应的备用数据通道, 向固定波长的所选备用光源链路发送启动指示, 控制所述故障主用光源链路对应的主用数据通道的电信号交换到所选 备用光源链路对应的备用数据通道;
固定波长的所选备用光源链路, 在接收到启动指示后, 利用与其对 应的备用数据通道所输出的电信号对自身光源产生的光信号进行调制, 将调制后的光信号发送至波长组合单元;
所选备用光源链路对应的备用数据通道, 将接收到的电信号发送至 所选备用光源链路。
9、根据权利要求 8所述的光电集成设备, 其特征在于, 所述波长组 合单元包括对应于所述各个主用光源链路的端口和对应于每一个固定 波长的备用光源链路的端口;
固定波长的所选备用光源链路, 将调制后的光信号发送至所述波长 组合单元中对应于该所选备用光源链路的端口。
10、 根据权利要求 8或 9所述的光电集成设备, 其特征在于, 所述 保护处理单元包括:
链路监测单元, 检测所述各个主用光源链路的监控信息, 将所检测 出的所述各个主用光源链路的监控信息结果发送至光源链路控制单元; 光源链路控制单元, 根据接收到的所述各个主用光源链路的监控信 息结果确定所述各个主用光源链路是否故障, 在确定一条主用光源链路 故障后, 将该主用光源链路故障信息发送至高层控制单元, 在接收到启 动所选备用光源链路的指示后 , 关闭所述故障主用光源链路并启动所选 备用光源链路;
高层控制单元, 在接收到主用光源链路故障信息后, 向所述光源链
路控制单元发送启动所选备用光源链路的指示, 并向数据交换单元发送 将故障主用光源链路对应的主用数据通道的电信号交换到所选备用光 源链路对应的备用数据通道的切换指示;
数据交换单元, 在接收到切换指示后, 将所述故障主用光源链路对 应的主用数据通道的电信号交换到所选备用光源链路对应的备用数据 通道。
11、根据权利要求 10所述的光电集成设备, 其特征在于, 每一条光 源链路中包括检测执行单元, 用于接收所在光源链路输出的光信号, 将 该光信号输出至所述链路监测单元;
其中, 所述链路监测单元, 通过对每一个光源链路上所述检测执行 单元发来的光信号进行性能分析, 完成所述的检测各个主用光源链路的 监控信息的过程。
12、根据权利要求 10所述的光电集成设备, 其特征在于, 该光电集 成设备中进一步包括检测执行单元, 用于接收所述波长组合单元输出的 波长组合后的光信号, 将该光信号输出至所述链路监测单元;
其中, 所述链路监测单元, 通过对检测执行单元输出的光信号进行 频谱和光功率分析或进行光标志信号分析, 完成所述的检测各个主用光 源链路的监控信息的过程。
13、根据权利要求 10所述的光电集成设备, 其特征在于, 所述每一 条光源链路中包括光吸收器, 所述故障主用光源链路中的光吸收器用于 在所述光源链路控制单元的控制下吸收所述故障主用光源链路输出的 光信号;
其中, 所述光源链路控制单元, 进一步用于在接收到启动所选备用 光源链路的指示后 , 所述控制故障主用光源链路中的光吸收器吸收光信 号。
14、根据权利要求 10所述的光电集成设备, 其特征在于, 所述链路 监测单元, 进一步用于在所选备用光源链路启动时, 检测所选备用光源 链路的性能, 将所检测出的所选备用光源链路的性能监测信息发送至所 述光源链路控制单元;
其中, 光源链路控制单元, 进一步用于根据接收到的所选备用光源 链路的性能监测信息, 确定所选备用光源链路是否达到状态稳定, 在确 定所选备用光源链路状态稳定后, 将所选备用光源链路状态稳定的信息 发送至所述高层控制单元;
所述高层控制单元, 用于在接收到所选备用光源链路状态稳定的信 息后, 发送所述的切换指示。
15、根据权利要求 10所述的光电集成设备, 其特征在于, 所述高层 控制单元, 进一步用于将所述故障主用光源链路切换到所选备用光源链 路的切换信息发送至下游接收端的光电集成设备。
16、 根据权利要求 8或 9所述的光电集成设备, 其特征在于, 所述 主用光源链路与所述备用光源链路位于同一集成电路板或位于不同集 成电路板。
17、 一种对光电集成设备进行保护的系统, 其特征在于, 该系统包 括:
发送端光电集成设备, 检测各个主用光源链路是否故障, 当检测到 一条主用光源链路故障时 , 选择一条固定波长的备用光源链路和其对应 务传输 , 并将波长组合后的光信号发送至接收端光电集成设备中的波长 解组合单元;
接收端光电集成设备中的波长解组合单元 , 用于将接收到的光信号 进行解组合后 , 分别发送至接收端光电集成设备中对应于不同主用光源
链路和所选备用光源链路的不同光接收单元;
接收端光电集成设备中的任意一个光接收单元, 用于将接收到的光 信号转换为电信号后发送至接收端光电集成设备中的倒换处理单元; 接收端光电集成设备中的倒换处理单元, 用于监测到所述发送端光 电集成设备中所述故障主用光源链路切换到所选备用光源链路后, 将对 应于所选备用光源链路的光接收单元发来的电信号 , 倒换为对应于所述 故障主用光源链路的光接收单元发来的电信号。
18、根据权利要求 17所述的系统, 其特征在于, 所述波长解组合单 元中包括: 对应于所述发送端光电集成设备中每一个主用光源链路的端 口和对应于所述发送端光电集成设备中每一个固定波长的备用光源链 路的端口, 并且,
所述波长解组合单元将解组合后的、 所述发送端光电集成设备中每 一个光源链路发出的光信号发送至对应于该光源链路的自身端口, 所述 波长解组合单元上的每一个端口将接收到的对应于所述发送端光电集 成设备中一条光源链路的光信号发送至对应于该光源链路的光接收单 元。
19、根据权利要求 17所述的系统, 其特征在于, 所述倒换处理单元 包括:
高层控制单元, 用于监测到所述发送端光电集成设备中故障主用光 源链路切换到所选备用光源链路后 , 将对应于所选备用光源链路的光接 收单元与对应于故障主用光源链路的光接收单元的电信号进行倒换的 倒换指示发送至电数据处理单元;
电数据处理单元, 用于根据接收到的倒换指示, 将对应于所选备用 光源链路的光接收单元发来的电信号 , 倒换为对应于故障主用光源链路 的光接收单元发来的电信号。
20、根据权利要求 19所述的系统, 其特征在于, 所述发送端光电集 成设备, 进一步用于将所述故障主用光源链路切换到所选备用光源链路 的切换信息发送至所述接收端光电集成设备中的高层控制单元;
所述接收端光电集成设备中的高层控制单元, 根据所述发送端光电 集成设备发来的切换信息, 确定已监测到所述发送端光电集成设备中故 障主用光源链路切换到所选备用光源链路。
21、根据权利要求 19所述的系统, 其特征在于, 所述接收端光电集 成设备中的高层控制单元, 用于监测所述的各个光接收单元, 在监测到 对应于故障主用光源链路的光接收单元未接收到光信号 , 并监测到对应 于所选备用光源链路的光接收单元接收到光信号后, 确定已监测到所述 发送端光电集成设备中故障主用光源链路切换到所选备用光源链路。
22、 根据权利要求 17至 21中任意一项所述的系统, 其特征在于, 所述发送端光电集成设备包括:
保护处理单元, 检测所述各个主用光源链路是否故障, 在检测到一 个主用光源链路故障后 , 选择一个固定波长的备用光源链路及其对应的 备用数据通道, 向固定波长的所选备用光源链路发送启动指示, 控制故 障主用光源链路对应的主用数据通道的电信号交换到所选备用光源链 路对应的备用数据通道;
所选的固定波长备用光源链路, 在接收到启动指示后, 由光源产生 光信号并与其对应备用数据通道发来的电信号调制为光信号后, 发送至 波长组合单元;
所选备用光源链路对应的备用数据通道, 将接收到的电信号发送至 所选备用光源链路。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009533645A JP4965661B2 (ja) | 2006-10-27 | 2007-06-11 | 集積光電子デバイスを保護するための方法とシステム |
EP20070721716 EP2077627B1 (en) | 2006-10-27 | 2007-06-11 | A method and system for protecting a photo-electricity integrating device |
US12/398,684 US8606099B2 (en) | 2006-10-27 | 2009-03-05 | Method and system for protecting integrated optoelectronic devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610142657.7 | 2006-10-27 | ||
CNB2006101426577A CN100411392C (zh) | 2006-10-27 | 2006-10-27 | 一种对光电集成设备进行保护的方法和系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/398,684 Continuation US8606099B2 (en) | 2006-10-27 | 2009-03-05 | Method and system for protecting integrated optoelectronic devices |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008049343A1 true WO2008049343A1 (fr) | 2008-05-02 |
Family
ID=37954235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/070095 WO2008049343A1 (fr) | 2006-10-27 | 2007-06-11 | Procédé et système de protection pour dispositif d'intégration de photo-électricité |
Country Status (5)
Country | Link |
---|---|
US (1) | US8606099B2 (zh) |
EP (1) | EP2077627B1 (zh) |
JP (1) | JP4965661B2 (zh) |
CN (1) | CN100411392C (zh) |
WO (1) | WO2008049343A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100411392C (zh) | 2006-10-27 | 2008-08-13 | 华为技术有限公司 | 一种对光电集成设备进行保护的方法和系统 |
CN100488071C (zh) * | 2006-10-27 | 2009-05-13 | 华为技术有限公司 | 一种对光电集成设备进行保护的方法和光电集成设备 |
CN101212254A (zh) * | 2006-12-27 | 2008-07-02 | 华为技术有限公司 | 一种光源链路传输装置和方法 |
CN102468991B (zh) * | 2010-11-15 | 2015-04-08 | 北京意科通信技术有限责任公司 | 一种信息传输方法和系统 |
JP5776330B2 (ja) * | 2011-05-25 | 2015-09-09 | 富士通株式会社 | 波長再配置方法及びノード装置 |
EP3079274B1 (en) | 2013-12-31 | 2018-08-01 | Huawei Technologies Co., Ltd. | Optical transmitter, transmission method, optical receiver and reception method |
US9692511B1 (en) * | 2016-03-28 | 2017-06-27 | Mellanox Technologies, Ltd. | Redundant and reconfigurable optical transceiver |
CN108270479A (zh) * | 2016-12-30 | 2018-07-10 | 中兴通讯股份有限公司 | 一种光背板系统和光通道控制方法 |
CN112034564B (zh) | 2019-06-03 | 2022-04-05 | 华为技术有限公司 | 光源切换方法和装置 |
EP4096118A1 (en) * | 2021-05-28 | 2022-11-30 | ADVA Optical Networking SE | Method for determining actual values of one or more characteristics of a phase-modulated optical signal |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5612968A (en) | 1995-04-20 | 1997-03-18 | Bell Communications Research, Inc. | Redundant multi-wavelength laser arrays |
US6172782B1 (en) | 1997-05-15 | 2001-01-09 | Nec Corporation | Output port switching device in N-WDM system |
US20010046074A1 (en) * | 2000-05-25 | 2001-11-29 | Sunao Kakizaki | Protection switching apparatus for 1 + 1 optical transmission lines |
US20010050928A1 (en) | 2000-02-10 | 2001-12-13 | Ian Cayrefourcq | MEMS-based selectable laser source |
WO2003003424A1 (en) | 2001-06-29 | 2003-01-09 | Xanoptix, Inc. | Multi-wavelength semiconductor laser arrays and applications thereof |
WO2003032021A2 (en) | 2001-10-09 | 2003-04-17 | Infinera Corporation | TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPIC) AND OPTICAL TRANSPORT NETWORKS EMPLOYING TxPICs |
CN1416234A (zh) * | 2001-10-29 | 2003-05-07 | 上海贝尔有限公司 | 用于波分复用光网的双纤双向通道/复用段倒换环系统 |
CN1505283A (zh) * | 2002-11-29 | 2004-06-16 | 上海叶鑫贸易有限公司 | 光纤通信网络保护系统 |
EP1450509A2 (en) | 2003-02-18 | 2004-08-25 | Tyco Telecommunications (US) Inc. | Protection switching architecture and method of use |
CN2641926Y (zh) * | 2003-07-09 | 2004-09-15 | 武汉光迅科技有限责任公司 | 动态光线路同步切换保护装置 |
US20060045520A1 (en) | 2004-08-31 | 2006-03-02 | Hiroyuki Nakano | Wavelength-division multiplexing optical transmitter |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5394489A (en) * | 1993-07-27 | 1995-02-28 | At&T Corp. | Wavelength division multiplexed optical communication transmitters |
WO1999067609A1 (en) * | 1998-06-23 | 1999-12-29 | Ditech Corporation | Optical network monitor |
JP2000151514A (ja) * | 1998-11-13 | 2000-05-30 | Nec Corp | 光波長多重送信器、光波長多重受信器、光波長多重伝送装置、および光伝送方法 |
JP2001085798A (ja) * | 1999-09-10 | 2001-03-30 | Hitachi Ltd | 半導体レーザモジュールおよび波長分割多重光伝送システム |
JP4402844B2 (ja) * | 2000-02-15 | 2010-01-20 | 株式会社日立コミュニケーションテクノロジー | ネットワーク構成装置 |
US7680364B2 (en) * | 2001-10-09 | 2010-03-16 | Infinera Corporation | Wavelength locking and power control systems for multi-channel photonic integrated circuits (PICS) |
US7372804B2 (en) * | 2002-01-11 | 2008-05-13 | Nec Corporation | Multiplex communication system and method |
CN1642060A (zh) * | 2004-01-05 | 2005-07-20 | 华为技术有限公司 | 波分复用传输系统及传输通道的保护方法 |
JP2006042155A (ja) * | 2004-07-29 | 2006-02-09 | Fujitsu Ltd | 冗長構成された光波長分割多重伝送装置及び、予備系光出力の波長制御方法 |
US20060133804A1 (en) * | 2004-12-17 | 2006-06-22 | Tellabs Operations, Inc. | Method and apparatus for protecting optical signals within a wavelength division multiplexed environment |
CN100488071C (zh) * | 2006-10-27 | 2009-05-13 | 华为技术有限公司 | 一种对光电集成设备进行保护的方法和光电集成设备 |
CN100411392C (zh) | 2006-10-27 | 2008-08-13 | 华为技术有限公司 | 一种对光电集成设备进行保护的方法和系统 |
-
2006
- 2006-10-27 CN CNB2006101426577A patent/CN100411392C/zh active Active
-
2007
- 2007-06-11 EP EP20070721716 patent/EP2077627B1/en active Active
- 2007-06-11 WO PCT/CN2007/070095 patent/WO2008049343A1/zh active Application Filing
- 2007-06-11 JP JP2009533645A patent/JP4965661B2/ja active Active
-
2009
- 2009-03-05 US US12/398,684 patent/US8606099B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5612968A (en) | 1995-04-20 | 1997-03-18 | Bell Communications Research, Inc. | Redundant multi-wavelength laser arrays |
US6172782B1 (en) | 1997-05-15 | 2001-01-09 | Nec Corporation | Output port switching device in N-WDM system |
US20010050928A1 (en) | 2000-02-10 | 2001-12-13 | Ian Cayrefourcq | MEMS-based selectable laser source |
US20010046074A1 (en) * | 2000-05-25 | 2001-11-29 | Sunao Kakizaki | Protection switching apparatus for 1 + 1 optical transmission lines |
WO2003003424A1 (en) | 2001-06-29 | 2003-01-09 | Xanoptix, Inc. | Multi-wavelength semiconductor laser arrays and applications thereof |
WO2003032021A2 (en) | 2001-10-09 | 2003-04-17 | Infinera Corporation | TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPIC) AND OPTICAL TRANSPORT NETWORKS EMPLOYING TxPICs |
CN1416234A (zh) * | 2001-10-29 | 2003-05-07 | 上海贝尔有限公司 | 用于波分复用光网的双纤双向通道/复用段倒换环系统 |
CN1505283A (zh) * | 2002-11-29 | 2004-06-16 | 上海叶鑫贸易有限公司 | 光纤通信网络保护系统 |
EP1450509A2 (en) | 2003-02-18 | 2004-08-25 | Tyco Telecommunications (US) Inc. | Protection switching architecture and method of use |
CN2641926Y (zh) * | 2003-07-09 | 2004-09-15 | 武汉光迅科技有限责任公司 | 动态光线路同步切换保护装置 |
US20060045520A1 (en) | 2004-08-31 | 2006-03-02 | Hiroyuki Nakano | Wavelength-division multiplexing optical transmitter |
Non-Patent Citations (1)
Title |
---|
See also references of EP2077627A4 * |
Also Published As
Publication number | Publication date |
---|---|
US8606099B2 (en) | 2013-12-10 |
CN100411392C (zh) | 2008-08-13 |
EP2077627B1 (en) | 2013-07-17 |
EP2077627A1 (en) | 2009-07-08 |
JP2010507940A (ja) | 2010-03-11 |
CN1936630A (zh) | 2007-03-28 |
JP4965661B2 (ja) | 2012-07-04 |
EP2077627A4 (en) | 2009-10-14 |
US20090226161A1 (en) | 2009-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008049343A1 (fr) | Procédé et système de protection pour dispositif d'intégration de photo-électricité | |
WO2008052471A1 (fr) | Procédé pour protéger un dispositif photoélectrique intégré et dispositif photoélectrique intégré | |
CN101800599B (zh) | 一种光纤线路保护设备及系统 | |
WO2008083575A1 (fr) | Dispositif et procédé de transmission sur une liaison de source optique | |
JP5490517B2 (ja) | 光通信システム、光通信方法およびolt | |
CN208508943U (zh) | 一种光纤线路监测系统 | |
WO2022032961A1 (zh) | 通信站点、光通信系统、数据传输方法及存储介质 | |
KR20160031544A (ko) | 광 버스트 교환 환형 망에 있어서 자동 보호 스위칭을 실현하는 방법, 시스템 및 노드 | |
KR100785943B1 (ko) | 광학 트랜스폰더 | |
TW200814551A (en) | Broken line protection apparatus and method for passive optical network | |
WO2022199572A1 (zh) | 分光装置、分光系统、无源光网络和光纤故障检测方法 | |
CN102265640B (zh) | 光线路传输保护系统和方法 | |
JP2009206565A (ja) | 光伝送システム、光伝送方法、光スイッチ装置、センター装置、光カプラ装置、加入者装置及び光通信システム | |
WO2016061782A1 (zh) | 一种光纤故障诊断方法、装置及系统 | |
CN210093235U (zh) | 一种wdm的半有源olp的新系统 | |
JP2005286803A (ja) | スター型光ネットワークにおける加入者端局装置及び異常光検出遮断装置 | |
CN1863026B (zh) | 采用多波长激光器的波分复用终端设备 | |
WO2022054228A1 (ja) | 光通信監視装置 | |
JP2009212668A (ja) | 光伝送システム | |
JP5655019B2 (ja) | 光通信システム | |
KR20100100399A (ko) | 배전보호협조 정보전송을 위한 wdm 기반의 배전자동화 시스템 | |
Premadi et al. | Application of PIC microcontroller for online monitoring and fiber fault identification | |
CN118695139A (zh) | 状态通告方法、装置、光通信系统以及相关设备 | |
KR100966042B1 (ko) | 자가진단 기능이 구비된 광송수신 모듈 및 그 방법 | |
KR101004669B1 (ko) | 다중화 트래픽 경로를 위한 네트워크 콘텐츠 보안 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07721716 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007721716 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2009533645 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |