WO2022199572A1 - 分光装置、分光系统、无源光网络和光纤故障检测方法 - Google Patents

分光装置、分光系统、无源光网络和光纤故障检测方法 Download PDF

Info

Publication number
WO2022199572A1
WO2022199572A1 PCT/CN2022/082237 CN2022082237W WO2022199572A1 WO 2022199572 A1 WO2022199572 A1 WO 2022199572A1 CN 2022082237 W CN2022082237 W CN 2022082237W WO 2022199572 A1 WO2022199572 A1 WO 2022199572A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
port
fiber
signal
optical fiber
Prior art date
Application number
PCT/CN2022/082237
Other languages
English (en)
French (fr)
Inventor
林华枫
万席锋
李书
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22774228.5A priority Critical patent/EP4300847A1/en
Publication of WO2022199572A1 publication Critical patent/WO2022199572A1/zh
Priority to US18/472,596 priority patent/US20240014896A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to a spectroscopic device, a spectroscopic system, a passive optical network, and an optical fiber fault detection method.
  • a passive optical network consists of an optical line termination (OLT), an optical network unit (ONU) and an optical distribution network (ODN), where the ODN mainly includes optical fibers and beam splitters.
  • ODN optical distribution network
  • an optical time domain reflectometer is used to detect the fault of the optical fiber.
  • the OTDR directly sends a pulsed optical signal for fault detection into the trunk optical fiber, and the pulsed optical signal passes through the optical splitter from the trunk optical fiber.
  • the beamer enters the branch fiber and propagates, and the pulsed optical signal will be scattered and reflected in the propagation process of the main fiber and the branch fiber.
  • the OTDR receives the formed reflected light signal, and outputs the OTDR test curve based on the reflected light signal to identify the OTDR test.
  • the ODN event in the curve realizes optical fiber fault detection, and the ODN event can reflect whether the optical fiber is faulty and the fault type when there is a fault.
  • the pulsed optical signal sent by the OTDR to the trunk fiber will pass through the optical beam splitter, and after passing through the optical beam splitter, the pulsed optical signal will enter multiple branch fibers at the same time, so that the OTDR receives the reflected light from the multiple branch fibers.
  • the reflected optical signal and the superposition of the reflected optical signal lead to inaccurate ODN events identified from the reflected optical signal, resulting in an inability to accurately detect optical fiber faults.
  • the present application provides a spectroscopic device, a spectroscopic system, a passive optical network, and an optical fiber fault detection method.
  • these monitoring ports are in one-to-one correspondence with trunk fibers or branch fibers, so that the OTDR sends out After the pulsed optical signal enters the optical fiber through the monitoring port, the returned reflected optical signal only passes through one optical fiber, avoiding the problems caused by the overlapping of the reflected optical signals, making the identification of ODN events more accurate and the detection of optical fiber faults more accurate.
  • At least one embodiment of the present application provides a light splitting device.
  • the optical splitting device includes a first optical beam splitting unit, a first optical path processing unit and a second optical path processing unit, wherein the number of the first optical path processing units is multiple.
  • the first optical beam splitting unit has a first port and a plurality of second ports, the first ports are respectively connected with the plurality of second ports, the first port is connected to the backbone fiber through the second optical path processing unit, and among the plurality of second ports Any one of the second ports is connected to the branch fiber through a first optical path processing unit, that is to say, there are multiple branch fibers, and each branch fiber is connected to a second port;
  • the first optical path processing unit has a third port, a fourth port port and fifth port, the fifth port communicates with the third port and the fourth port respectively
  • the second optical path processing unit has a sixth port, a seventh port and an eighth port, the sixth port is respectively connected with the seventh port and the eighth port Connected.
  • each first optical path processing unit is connected to the second port through the first optical fiber, the fourth port is connected to the second optical fiber, and the fifth port is connected to the branch optical fiber.
  • Any two of the multiple first optical path processing units The second optical fibers connected to the fourth port of an optical path processing unit are different; the first optical path processing unit transmits the first pulsed optical signal from the second optical fiber to the branch optical fiber, and then transmits the first pulsed optical signal from the branch optical fiber to the branch optical fiber.
  • the first reflected optical signal generated by the signal propagation is transmitted to the second optical fiber, and the first reflected optical signal is used for fault detection of the branch optical fiber.
  • each second optical path processing unit is connected to the backbone optical fiber, the seventh port is connected to the first port through a third optical fiber, and the eighth port is connected to the fourth optical fiber; the second optical path processing unit
  • the second pulsed optical signal is transmitted to the trunk fiber, and then the second reflected optical signal generated by the propagation of the second pulsed optical signal from the trunk fiber is transmitted to the fourth optical fiber, and the second reflected optical signal is used for the transmission of the trunk fiber.
  • the second optical fiber and the fourth optical fiber are used as monitoring ports of the optical splitting device, helping to realize optical fiber fault detection and other monitoring requirements of the optical splitting device.
  • the sixth port of the second optical path processing unit is used for connecting the trunk optical fiber and corresponds to the trunk optical path; the fifth port of the first optical path processing unit is used for connecting the branch optical fiber and corresponds to the branch optical path.
  • the optical splitting device provided by the present application is applied in a PON network.
  • the pulsed optical signal sent by the OTDR enters the trunk fiber through the fourth fiber or enters a branch fiber through the second fiber, and then enters the trunk fiber or a branch fiber.
  • the reflected light signal generated in the optical fiber is then returned to the OTDR via the fourth optical fiber or the second optical fiber to realize optical fiber fault detection.
  • the pulsed optical signal does not pass through the first optical beam splitting unit, but only enters the main optical fiber or a branch optical fiber, so the reflected optical signal returned to the OTDR is only the reflected optical signal generated in one optical fiber.
  • the reflected optical signals are not superimposed, which makes the identification of ODN events more accurate and the detection of fiber faults more accurate.
  • the first optical path processing unit and the second optical path processing unit are implemented by using optical beam splitting devices.
  • the first optical beam splitting unit is a 1 ⁇ N optical beam splitter, and both the first optical path processing unit and the second optical path processing unit are 1 ⁇ 2 optical beam splitters.
  • the third port and the fourth port of the first optical path processing unit are two branch ports of the first optical path processing unit
  • the seventh port and the eighth port of the second optical path processing unit are two branch ports of the second optical path processing unit
  • the branch ports of the optical beam splitter are not connected, so the third port and the fourth port are not connected, and the seventh port and the eighth port are not connected.
  • At least one of the first optical path processing unit and the second optical path processing unit is an unequal ratio beam splitter; the splitting ratio of the fourth port is smaller than the splitting ratio of the third port; or, the splitting ratio of the eighth port Less than the splitting ratio of the seventh port.
  • the intensity of the optical signal used for optical fiber fault detection can be lower than that of the optical signal used to transmit information, so as to ensure the optical fiber
  • the optical signal used for optical fiber fault detection is prevented from interfering with the optical signal used for transmitting information.
  • the wavelengths of the optical signal used for fiber fault detection and the optical signal used to transmit information are different to ensure that the optical signal used to transmit information can be correctly received and analyzed. Ensure the correct transmission of information.
  • the first beam splitting unit is a proportional beam splitter.
  • both the first optical path processing unit and the second optical path processing unit are unequal ratio beam splitters.
  • the light splitting ratio of the first optical path processing unit and the second optical path processing unit is both 1:9.
  • the optical splitting device only includes the first optical beam splitting unit, the first optical path processing unit and the second optical path processing unit, the optical splitting device is only connected to one trunk fiber, corresponding to one trunk optical path, but in some cases, in the PON There is also a situation in which two trunk fibers are required.
  • the optical splitting device further includes a second optical beam splitting unit. Only one is in use at a time.
  • the second optical beam splitting unit has a ninth port, a tenth port and an eleventh port, and the eleventh port is respectively connected with the ninth port and the tenth port; the ninth port is connected to one of the two trunk fibers An optical fiber, the tenth port is connected to the other of the two trunk optical fibers, and the fifth output port is connected to the fourth input port through a fifth optical fiber.
  • the second beam splitting unit is a 5:5 beam splitter.
  • At least one embodiment of the present application provides a spectroscopic system, the spectroscopic system includes a spectroscopic device and an optical layer monitoring device, where the optical layer monitoring device is the spectroscopic device provided in the first aspect; fiber optic connection.
  • the optical layer monitoring device transmits a first pulsed optical signal to a second optical fiber among the plurality of second optical fibers, receives the first reflected optical signal from the second optical fiber, and performs fault detection of the branch optical fiber based on the first reflected optical signal;
  • the second pulsed optical signal is transmitted to the fourth optical fiber, the second reflected optical signal from the fourth optical fiber is received, and the failure detection of the trunk optical fiber is performed based on the second reflected optical signal.
  • the optical layer monitoring device includes an optical time domain reflectometer, an optical switch and a control module.
  • the optical switch is connected between the spectroscopic device and the optical time domain reflectometer, and the control module is connected with the control end of the optical switch.
  • the optical time domain reflectometer is responsible for sending pulsed optical signals, receiving reflected optical signals, and performing fiber fault detection based on the reflected optical signals; the control module is responsible for controlling the optical switch to connect the second optical fiber or the fourth optical fiber to the optical time domain reflectometer.
  • control module is an ONT, which is called a control ONT.
  • an optical time domain reflectometer includes a light source, a photodetector, and a circulator.
  • the circulator has a twelfth port, a thirteenth port and a fourteenth port, the twelfth port is connected with the light source, the thirteenth port is connected with the optical switch, and the fourteenth port is connected with the photodetector.
  • the circulator sends the pulsed optical signal received from the twelfth port from the thirteenth port, and the first reflected optical signal or the second reflected optical signal received from the thirteenth port from the fourteenth port. send out.
  • the pulsed light signal emitted from the light source can be smoothly sent to the optical fiber, and the reflected light signal returned from the optical fiber can be smoothly sent to the photodetector.
  • the photodetector converts the reflected optical signal into an electrical signal, which is used to generate the optical time domain reflectometer test curve
  • the light source is a distributed feedback laser (DFB)
  • the photodetector is an avalanche photodiode (APD).
  • DFB distributed feedback laser
  • APD avalanche photodiode
  • the optical time domain reflectometer further includes two auxiliary photodetectors and two transflective sheets, which are arranged between the optical switch and the circulator in turn, and the light output by the optical switch is Part of the signal enters the circulator through two semi-transparent mirrors in turn, and the other part of the optical signal is reflected when it passes through the two semi-transparent mirrors, and then enters the two auxiliary photodetectors respectively. Detection of light signals.
  • the optical layer monitoring device further includes a third optical beam splitting unit, the third optical beam splitting unit has a fifteenth port, a sixteenth port and a seventeenth port, and the fifteenth port is respectively connected with the sixteenth port. Connected to the seventeenth port.
  • the fifteenth port is connected with the fourth optical fiber
  • the sixteenth port is connected with the optical switch through the sixth optical fiber
  • the seventeenth port is connected with the control module through the seventh optical fiber.
  • the signal transmitted by the backbone fiber connected to the optical splitting device can be simultaneously transmitted to the control module and the optical time domain reflectometer, so that the control module can receive the control command issued by the entire passive optical network, and then execute the control command the corresponding action.
  • the third beam splitting unit is a 5:5 beam splitter.
  • At least one embodiment of the present application provides a passive optical network, where the passive optical network includes an optical line terminal, an optical network terminal, and an optical splitting system.
  • the optical splitting system is the optical splitting system according to any one of the second aspect, and the optical splitting system is respectively connected with the optical line terminal and the optical line terminal.
  • the optical fiber is used for communication between the optical splitting system and the optical line terminal, and between the optical splitting system and the optical line terminal.
  • the optical fiber between the optical splitting system and the optical line terminal is the trunk optical fiber, and the optical fiber between the optical splitting system and the optical line terminal is the branch optical fiber.
  • the passive optical network can also more easily perform the process of port binding and rogue detection:
  • each device in the passive optical network implements port binding in the following ways:
  • the optical splitting system determines the port number of the second port where the uplink optical signal exists by polling the plurality of first optical path processing units, and uploads the port number of the second port to the optical line terminal;
  • the optical line terminal receives the uplink optical signal, and binds the optical network terminal sending the uplink optical signal with the port number of the corresponding second port.
  • each device in the passive optical network implements rogue detection in the following ways:
  • the optical splitting system determines the port number of the second port where the uplink optical signal exists by polling a plurality of first optical path processing units, and uploads the port number of the second port to the optical line terminal;
  • the optical line terminal determines that the optical network terminal corresponding to the port number of the second port is an optical network terminal that emits abnormal light.
  • At least one embodiment of the present application provides an optical fiber fault detection method.
  • the method is applied to the spectroscopic system of the second aspect, and the method includes:
  • the optical layer monitoring device transmits a first pulsed optical signal to a second optical fiber among the plurality of second optical fibers, or transmits a second pulsed optical signal to a fourth optical fiber, and the plurality of second optical fibers respectively pass through the plurality of first optical path processing units
  • a plurality of branch optical fibers are connected, the fourth optical fiber is connected to the trunk optical fiber through the second optical path processing unit, and the multiple branch optical fibers are further connected to the multiple second ports of the first optical beam splitting unit respectively through the multiple first optical path processing units, and the trunk optical fiber is further
  • the first port of the first optical beam splitting unit is connected through the second optical path processing unit, and the first port is respectively connected with a plurality of second ports;
  • the optical layer monitoring device receives the first reflected light signal from the second optical fiber, or receives the second reflected light signal from the fourth optical fiber;
  • the optical layer monitoring device performs fault detection of the branch optical fiber based on the first reflected optical signal, or performs fault detection of the trunk optical fiber based on the second reflected optical signal.
  • the method further includes:
  • the optical layer monitoring device determines the port number of the second port where the uplink optical signal exists by polling the plurality of first optical path processing units;
  • the optical layer monitoring device uploads the port number of the second port to the optical line terminal, and the optical line terminal is used to bind the optical network terminal sending the uplink optical signal with the corresponding branch port number.
  • the method further includes:
  • the optical layer monitoring device determines the port number of the second port where the uplink optical signal exists by polling a plurality of first optical path processing units in response to the alarm instruction that appears.
  • the alarm instruction is used to prompt the existence of an abnormally emitting optical network terminal.
  • Abnormal lighting refers to the fact that the optical network terminal emits light by itself without allocating the upstream bandwidth. This kind of optical network terminal is also called a rogue optical network terminal;
  • the optical layer monitoring device uploads the port number of the second port to the optical line terminal, and the optical line terminal is used to determine that the optical network terminal corresponding to the port number of the second port is an optical network terminal that emits abnormally.
  • FIG. 1 shows a schematic diagram of the optical path during optical fiber fault detection in the related art
  • FIG. 2 shows a schematic structural diagram of a spectroscopic device provided by an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a spectroscopic device provided by an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a spectroscopic system provided by an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a passive optical network provided by an embodiment of the present application
  • FIG. 6 shows a flowchart of an optical fiber fault detection method provided by an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of an optical path during optical fiber fault detection in the related art.
  • the pulsed optical signal A sent by the OTDR enters a plurality of branch fibers through the first optical beam splitting unit 10, and each branch optical fiber has a branch pulsed optical signal a that propagates, and the branched pulsed optical signal a is in the branched optical fiber. Propagated and reflected to form a branched reflected optical signal b.
  • the multiple branched reflected optical signal b is synthesized by the first optical beam splitting unit 10 into one reflected optical signal B and then enters the trunk fiber. Since the reflected optical signal B is reflected by the multiple branches The optical signals are superimposed, resulting in inaccurate ODN events identified by the OTDR from the reflected optical signals, making it impossible to accurately detect fiber faults.
  • FIG. 2 shows a schematic structural diagram of a light splitting device provided by an embodiment of the present application.
  • the optical splitting device 100 has a plurality of monitoring ports 101 .
  • the optical splitting device 100 includes a first optical beam splitting unit 10 , a plurality of first optical path processing units 20 and a second optical path processing unit 30 .
  • the first optical beam splitting unit 10 has a first port 11 and a plurality of second ports 12, the first port 11 is respectively connected with the plurality of second ports 12, and the first port 11 is connected to the trunk fiber 1 through the second optical path processing unit 30, Any second port 12 of the plurality of second ports 12 is connected to the branch fiber 2 through a first optical path processing unit 20 . As shown in FIG.
  • the optical splitting device has a plurality of branch fibers 2, each branch fiber 2 is connected to a second port 12 through a first optical path processing unit 20, and the branch optical fibers 2, the first optical path processing unit 20 and the first optical path processing unit 20 are connected to a second port 12.
  • the two ports 12 and the three are in a one-to-one correspondence.
  • the first optical path processing unit 20 has a third port 22, a fourth port 22 and a fifth port 23, and the fifth port 23 communicates with the third port 21 and the fourth port 22, respectively.
  • the third port 21 is connected to the second port 12 through the first optical fiber 3
  • the fourth port 22 is connected to the second optical fiber 4
  • the fifth port 23 is connected to the branch optical fiber 2;
  • the first optical path processing unit 20 is used to
  • the first pulsed optical signal of the optical fiber 4 is transmitted to the branch optical fiber 2;
  • the first reflected optical signal generated by the propagation of the first pulsed optical signal from the branched optical fiber 2 is transmitted to the second optical fiber 4, and the first reflected optical signal is used It is used for fault detection of branch fiber 2.
  • the second optical path processing unit 30 has a sixth port 31 , a seventh port 32 and an eighth port 33 , and the sixth port 31 communicates with the seventh port 32 and the eighth port 33 , respectively.
  • the sixth port 31 is connected with the backbone fiber 1
  • the seventh port 32 is connected with the first port 11 through the third fiber 5, and the eighth port 33 is connected with the fourth fiber 6;
  • the second optical path processing unit 30 is used to
  • the second pulsed optical signal of the optical fiber 6 is transmitted to the trunk fiber 1;
  • the second reflected optical signal generated by the propagation of the second pulsed optical signal from the trunk optical fiber 1 is transmitted to the fourth optical fiber 6, and the second reflected optical signal is used It is used for fault detection of the backbone fiber 1.
  • the input ends of the second optical fiber 4 and the fourth optical fiber 6 are the monitoring ports 101 of the optical splitting device, which are used to realize optical fiber fault detection and other monitoring requirements of the optical splitting device.
  • the pulsed optical signal A sent by the OTDR passes through the second optical fiber 4 and the first optical path processing unit 20 to become the pulsed optical signal a, and the pulsed optical signal a enters a branch.
  • the optical fiber propagates and reflects to form a reflected optical signal b.
  • the reflected optical signal b passes through the first optical path processing unit 2 to become the reflected optical signal B.
  • the reflected optical signal B passes through the second optical fiber 4 and returns to the OTDR.
  • the reflected light signal B here is only obtained from the reflected light signal b in one branch fiber, the reflected light signal B does not pass through the first optical beam splitting unit 10 and does not involve the superposition of the reflected light signals.
  • the sixth port 31 of the second optical path processing unit 30 is used to connect the trunk optical fiber, corresponding to the trunk optical path; the fifth ports 22 of the plurality of first optical path processing units 20 are used to connect the branch optical fibers, corresponding to branch light path.
  • the optical splitting device 100 provided in this application is applied in a PON network.
  • the pulsed optical signal sent by the OTDR enters the trunk fiber through the fourth fiber or enters a branch fiber through the second fiber, and the pulsed optical signal enters the trunk fiber or a branch fiber through the fourth fiber.
  • the reflected light signal generated in the branch fiber is then returned to the OTDR via the fourth fiber or the second fiber to realize fiber fault detection.
  • the pulsed optical signal does not pass through the first optical beam splitting unit, but only enters the main optical fiber or a branch optical fiber, so the reflected optical signal returned to the OTDR is only the reflected optical signal generated in one optical fiber.
  • the reflected optical signals are not superimposed, which makes the identification of ODN events more accurate and the detection of optical fiber faults more accurate; and, using the optical splitting device for networking, the pulsed optical signal can be coupled into the optical fiber through the optical beam splitter, without using a combiner Combined, low cost.
  • the first optical beam splitting unit 10 is a 1 ⁇ N optical beam splitter, and the first optical path processing unit 20 and the second optical path processing unit 30 are both 1 ⁇ 2 optical beam splitters.
  • Each port of the first optical beam splitting unit 10 corresponds to one monitoring port, and the optical splitting device has N+1 monitoring ports.
  • the third port 21 and the fourth port 22 of the first optical path processing unit 20 are two branch ports of the first optical path processing unit 20, and the seventh port 32 and the eighth port 33 of the second optical path processing unit 30 are the second optical path processing unit Two branch ports of unit 30.
  • At least one of the first optical path processing unit 20 and the second optical path processing unit 30 is an unequal ratio beam splitter; for example, in the first optical path processing unit 20, the splitting ratio of the fourth port 22 is smaller than the The light splitting ratio of the three ports 21 ; In the second optical path processing unit 30 , the light splitting ratio of the eighth port 33 is smaller than that of the seventh port 32 . Since the main function of the monitoring port 101 is to detect optical fiber faults, the intensity of the optical signal used for optical fiber fault detection can be lower than that of the optical signal used to transmit information, so as to ensure normal optical fiber fault detection. On the premise of preventing the optical signal used for optical fiber fault detection from interfering with the optical signal used for transmitting information.
  • the wavelengths of the optical signal used for fiber fault detection and the optical signal used to transmit information are different to ensure that the optical signal used to transmit information can be correctly received and analyzed. Ensure the correct transmission of information.
  • the first beam splitting unit 10 is a proportional beam splitter.
  • both the first optical path processing unit 20 and the second optical path processing unit 30 are unequal ratio beam splitters.
  • the split ratios of the first optical path processing unit 20 and the second optical path processing unit 30 are both 1:9, that is, the first optical path processing unit 20 and the second optical path processing unit 30 both have a 90% branch and a 10% branch .
  • a 1:9 unequal ratio beam splitter (the second optical path processing unit 30) is arranged on the trunk fiber, and 90% of the light of the optical signal passing through the trunk fiber is input to the 1 ⁇ N optical beam splitter through 90% branches , 10% of the light goes through the 10% branch (monitoring port).
  • a 1:9 unequal ratio beam splitter (the first optical path processing unit 20 ) is arranged on the branch fiber, and 90% of the light of the optical signal passing through the branch fiber is input to the 1 ⁇ N beam splitter through 90% branches , 10% of the light goes through the 10% branch (monitoring port).
  • the 10% branch can not only couple the pulsed optical signal of the OTDR into the normal optical signal of the PON to realize fault detection, but also monitor the normal optical signal passing through the unequal ratio optical beam splitter.
  • the optical splitting device 100 When the optical splitting device 100 only includes the first optical beam splitting unit 10, the first optical path processing unit 20 and the second optical path processing unit 30, the optical splitting device 100 is only connected to one trunk fiber, corresponding to one trunk optical path, but in some parts In some cases, there is also a situation where two backbone fibers are required in the PON, and the two backbone fibers are in a primary-backup relationship with each other.
  • FIG. 3 shows a schematic structural diagram of another light splitting device provided by an embodiment of the present application.
  • the light splitting device 100 compared with the light splitting device shown in FIG. 2 , the light splitting device 100 further includes a second light beam splitting unit 40 .
  • the six ports 31 are connected to the two trunk fibers 1 in a master-backup relationship with each other through the second optical beam splitting unit 40 .
  • the second optical beam splitting unit 40 has a ninth port 41, a tenth port 42 and an eleventh port 43, and the eleventh port 43 communicates with the ninth port 41 and the tenth port 42 respectively;
  • the ninth port 41 connects two One of the trunk fibers 1
  • the tenth port 42 is connected to the other trunk fiber 1 of the two trunk fibers 1
  • the eleventh port 43 and the sixth port 31 are connected through the fifth fiber 7 .
  • the two trunk fibers are respectively connected to the ninth port 41 and the tenth port 42, and only one of the two trunk fibers is effective when the optical splitting device is working.
  • the first optical path processing unit 40 is a 5:5 optical beam splitter.
  • the optical splitting device includes a plurality of optical beam splitters, the plurality of optical beam splitters are divided into multiple stages, a first optical path processing unit is provided on the branch fiber of each optical beam splitter, and a first optical path processing unit is arranged on each optical beam splitter.
  • a second optical path processing unit is set on the trunk fiber of the beam splitter; or, a first optical path processing unit is set on the branch fiber of the last-stage optical beam splitter of the multi-stage optical beam splitter, and the A second optical path processing unit is arranged on the backbone optical fiber, and through the above design, fault detection of each optical fiber in the optical splitting device is realized.
  • FIG. 4 shows a schematic structural diagram of a light splitting system provided by an embodiment of the present application.
  • the spectroscopic system 1000 includes a spectroscopic device 100 and an optical layer monitoring device 200 .
  • the spectroscopic device 100 is the spectroscopic device 100 shown in FIG. 2 or FIG. 3 , and the spectroscopic device 100 in FIG. ;
  • the optical layer monitoring device 200 is connected to the second optical fiber 4 and the fourth optical fiber 6 .
  • the optical layer monitoring device 200 transmits the first pulsed optical signal to the second optical fiber 4; receives the first reflected optical signal from the second optical fiber 4, and performs fault detection of the branch optical fiber 2 based on the first reflected optical signal;
  • the optical fiber 6 transmits the second pulsed optical signal; receives the second reflected optical signal from the fourth optical fiber 6, and performs fault detection of the trunk optical fiber 1 based on the second reflected optical signal.
  • the optical layer monitoring device 200 includes an optical time domain reflectometer 50 , an optical switch 60 and a control module 70 .
  • the optical switch 60 is connected between the multiple monitoring ports 101 of the spectroscopic device 100 and the optical time domain reflectometer 50
  • the control module 70 is connected to the control end of the optical switch 60 .
  • the optical time domain reflectometer 50 is responsible for sending the first pulsed optical signal, receiving the first reflected optical signal, and performing fault detection of the branched optical fiber 2 based on the first reflected optical signal; or, sending the second pulsed optical signal and receiving the second reflected optical signal , based on the second reflected optical signal to perform fault detection of the trunk fiber 1; the control module 70 is responsible for controlling the optical switch 60, so as to connect one monitoring port 101 of the multiple monitoring ports 101 with the optical time domain reflectometer 50, that is, the second fiber 4 or the fourth optical fiber 6 is in communication with the optical time domain reflectometer 50 .
  • control module 70 is an ONT, called a control ONT.
  • the optical time domain reflectometer 50 includes a light source 51 , a photodetector 52 and a circulator 53 .
  • the circulator 53 has a twelfth port, a thirteenth port and a fourteenth port.
  • the twelfth port is communicated with the light source 51
  • the thirteenth port is communicated with the optical switch 60
  • the fourteenth port is communicated with the photodetector 52 .
  • the light source 51 generates a pulsed light signal
  • the circulator 53 sends the pulsed light signal received from the twelfth port from the thirteenth port, and the reflected light signal received from the thirteenth port (the first reflected light signal or the second reflected optical signal), sent out from the fourteenth port.
  • the pulsed light signal emitted from the light source 51 can be smoothly sent to the optical fiber
  • the reflected light signal returned from the optical fiber can be smoothly sent to the photodetector 52 .
  • the photodetector 52 converts the reflected optical signal into an electrical signal
  • the electrical signal is used to generate an optical time domain reflectometer test curve, and the reflectometer test curve is used for event detection, diagnosis and localization of the optical fiber, that is, fault detection.
  • the pulsed optical signal generated by the light source 51 enters a second optical fiber 4 to become the aforementioned first pulsed optical signal, and the pulsed optical signal generated by the light source 51 enters the fourth optical fiber 6 to become the aforementioned second pulsed optical signal.
  • the pulsed light signal generated by 51 only enters one second optical fiber 4 or fourth optical fiber 6 at the same time. Which optical fiber the pulsed light signal generated by the light source 51 enters is realized by the control module 70 controlling which optical fiber the optical switch connects to.
  • the light source 51 is a distributed feedback laser (DFB)
  • the photodetector 52 is a photodiode (PD), such as an avalanche photodiode (APD).
  • DFB distributed feedback laser
  • APD avalanche photodiode
  • the optical time domain reflectometer 50 further includes two auxiliary photodetectors 54 and two transflective sheets 55 , and the two transflective sheets 55 are arranged between the optical switch 60 and the circulator 53 in sequence. , a part of the optical signal output by the optical switch 60 enters the circulator 53 through the two transflective sheets 55 in turn, and the other part of the optical signal is reflected when passing through the two transflective sheets 55, and then enters the circulator 53 respectively. To the two auxiliary photodetectors 56, the detection of the optical signal is carried out.
  • the auxiliary photodetectors are PDs, and the two auxiliary photodetectors are PDs of different types.
  • the spectroscopic system can not only detect optical fiber faults, but also perform processes such as port binding and rogue detection.
  • the auxiliary photodetector is used to detect optical splitting Whether there is an upstream optical signal on the branch port corresponding to the system.
  • one of the two auxiliary photodetectors is 1310PD and the other is 1270PD, which are respectively used to detect light of 1310nm and 1270nm, which are two common wavelengths in PON systems.
  • control module 70 controls the optical switch to turn on each monitoring port 101 in sequence.
  • the two auxiliary photodetectors 54 both detect the optical signal.
  • the branch fiber corresponding to the monitoring port has upstream optical signals, and port binding or rogue detection is implemented based on the detection result.
  • the optical layer monitoring apparatus 200 further includes a third optical beam splitting unit 80, the third optical beam splitting unit 80 has a fifteenth port 81, a sixteenth port 82 and a seventeenth port 83, and the fifteenth port 81 communicates with the sixteenth port 82 and the seventeenth port 83, respectively.
  • the fifteenth port 81 is connected to the fourth optical fiber 6
  • the sixteenth port 82 is connected to the optical switch 60 through the sixth optical fiber 8
  • the seventeenth port 83 is connected to the control module 70 through the seventh optical fiber 9 .
  • the third optical beam splitting unit 80 transmits the signal of the trunk fiber connected to the optical splitting device 100 to the control module 70 and the optical time domain reflectometer 50 at the same time, so that the control module 70 can receive the control commands issued by the entire passive optical network, and further Execute the corresponding operation of the control instruction.
  • control instructions here include, but are not limited to, instructions for performing operations such as fiber failure detection, port binding, and rogue detection.
  • the third beam splitting unit 80 is a 5:5 beam splitter.
  • the spectroscopic device 100 is a passive device and does not need to be powered.
  • the optical layer monitoring device 200 is an active device and needs to be powered.
  • the optical layer monitoring device 200 can be powered remotely by an optical line terminal at the central office or locally.
  • FIG. 5 shows a schematic structural diagram of a passive optical network provided by an embodiment of the present application.
  • the passive optical network includes an optical line terminal 2000 , an optical network terminal 3000 and an optical splitting system 1000 .
  • the spectroscopic system 1000 is the spectroscopic system 1000 shown in FIG. 4 , that is, a spectroscopic system with an optical layer monitoring function.
  • the optical splitting system 1000 is communicated with the optical line terminal 2000 and the optical line terminal 2000 respectively.
  • optical fibers between the optical splitting system 1000 and the optical line terminal 2000 are all connected through optical fibers.
  • the optical fiber between the optical splitting system 1000 and the optical line terminal 2000 is the trunk optical fiber, and the optical fiber between the optical splitting system 1000 and the optical line terminal 2000 is the branch optical fiber.
  • the passive optical network can also more easily perform the process of port binding and rogue detection:
  • each device in the passive optical network implements port binding in the following ways:
  • the optical splitting system 1000 determines the port number of the second port where the uplink optical signal exists by polling the plurality of first optical path processing units 20, and uploads the port number of the second port to the optical line terminal 2000;
  • the optical switch is connected to a plurality of second optical fibers 4 in turn, and the auxiliary photodetector is used to check whether there is an upward optical signal in each branched optical fiber, and one of the second optical fibers 4 is connected at a time;
  • the optical line terminal 2000 receives the uplink optical signal, and binds the optical network terminal 3000 sending the uplink optical signal with the port number of the corresponding second port.
  • the optical network terminal and the branch port number are bound.
  • the system can timely determine which branch ports are free. In this case, the staff can be notified to remove the branch port connection.
  • the optical fiber can be connected to the new optical network terminal to ensure full utilization of branch ports.
  • the optical line terminal 2000 After the optical network terminal goes offline, the optical line terminal 2000 also cancels the binding relationship between the optical network terminal and the branch port number. Correspondingly, when a new optical network terminal goes online, the optical line terminal 2000 will register the binding relationship between the new optical network terminal and the branch port number for it.
  • going online means that the optical network terminal is just powered on, or when a fault resets and restarts, it registers and goes online
  • going offline means that the optical network terminal is powered off or dropped due to a fault.
  • the optical line terminal 2000 Before the ports are bound, the optical line terminal 2000 first sends a mute instruction to the optical network terminals connected to all branch ports, instructing all the optical network terminals to stop sending uplink optical signals. Then allocate the uplink bandwidth (uplink time slot) to the first optical network terminal, let the first optical network terminal emit light, and the instruction for allocating the uplink bandwidth to the first optical network terminal carries the identifier of the first optical network terminal (for example, the ONT #1), the first optical network terminal here is any optical network terminal in the passive optical network; at the same time, the optical line terminal 2000 notifies the control module in the optical splitting system 1000 to let the control module control the optical switch to perform polling and detection, Determine which branch fiber has the upstream optical signal.
  • the optical line terminal 2000 notifies the control module in the optical splitting system 1000 to let the control module control the optical switch to perform polling and detection, Determine which branch fiber has the upstream optical signal.
  • the control module performs polling detection according to the notification of the optical line terminal.
  • the optical line terminal 2000 After a timeout period (Time Out), the optical line terminal 2000 notifies the first optical network terminal to stop emitting light; then, the optical line terminal 2000 allocates the upstream bandwidth to the control module, and allows the control module to report the detected branch port number, and then gives the The instruction of the optical line terminal to allocate the uplink bandwidth carries the identifier of the optical line terminal. Then, the optical line terminal 2000 can complete the port binding.
  • the port binding can also be performed by the network management system (for example, the network cloud engine fixed access network (NCE-FAN)) .
  • NCE-FAN network cloud engine fixed access network
  • the timeout time is greater than the maximum polling time, which refers to the time required for polling from the first fourth port to the last fourth port.
  • the optical line terminal 2000 can sequentially complete the binding of each optical network terminal in the passive optical network.
  • the port binding is also performed in this manner.
  • each device in the passive optical network implements rogue detection in the following ways:
  • the optical splitting system 1000 determines the port number of the second port where the uplink optical signal exists by polling a plurality of first optical path processing units 20, and uploads the port number of the second port to the optical line terminal 2000, and the alarm instruction It is used to indicate the existence of abnormal light-emitting optical network terminals;
  • the optical line terminal 2000 determines that the optical network terminal 3000 corresponding to the port number of the second port is an optical network terminal that emits light abnormally.
  • An optical network terminal that emits abnormal light refers to an optical network terminal that privately sends uplink optical signals without being allocated an uplink bandwidth.
  • the generation process of the alarm command is as follows: the optical line terminal 2000 sends a silence command to the optical network terminals connected to all branch ports, and instructs all the optical network terminals to stop sending the uplink optical signal. Since the optical splitting system also receives this command, it will Monitoring of branch ports.
  • the optical splitting system 1000 simultaneously turns on each second optical fiber with the optical switch to determine whether there is an uplink optical signal, or the optical splitting system determines whether each branch optical fiber has an uplink optical signal in turn by polling at this time; if When an uplink optical signal is detected, an alarm instruction is generated, and the above-mentioned rogue detection action is performed. If no upstream optical signal is detected, the detection process ends.
  • the optical line terminal 2000 After the rogue optical line terminal is determined, the optical line terminal 2000 sends a power-off instruction to the optical network terminal that emits light abnormally, so that the optical network terminal is powered off.
  • optical network terminals In passive optical networks, optical network terminals are usually powered by a power over ethernet (POE) power supply module.
  • POE power over ethernet
  • the spectroscopic system 1000 can either perform optical fiber fault detection and/or rogue detection in response to a request from the optical line terminal 2000; the optical splitting system can also periodically perform optical fiber fault detection and/or rogue detection.
  • the passive optical network in the embodiment of the present application is a point-to-multiple point (point to multiple point, P2MP) passive optical network.
  • P2MP PON networks including PON systems based on optical power splitters, such as time division multiplexing (TDM) PONs (such as GPON, 10G PON, etc.), also include wavelength division multiplexer/demultiplexer-based Multiplexer (wavelength muxtiplexing/demultiplexing) PON system, such as wavelength division multiplexing (WDM) PON.
  • TDM time division multiplexing
  • WDM wavelength division multiplexing
  • FIG. 6 shows a flowchart of an optical fiber fault detection method provided by an embodiment of the present application. The method is applied to the spectroscopic system shown in FIG. 4, and is performed by the optical layer monitoring device in the spectroscopic system. Referring to FIG. 6, the method includes:
  • the method performs fault detection of each branch fiber and the trunk fiber in sequence.
  • step 501 includes: the control module controls the optical time domain reflectometer to send out a pulsed optical signal; the control module controls the optical switch to connect to the first monitoring port, so that the pulsed optical signal enters the corresponding first optical fiber. After the fault detection of the first optical fiber is completed, the control module controls the optical switch to connect to the second monitoring port, so that the pulsed optical signal enters the corresponding second optical fiber. According to the above method, the optical switch is controlled to connect each monitoring port in sequence.
  • the first optical fiber or the second optical fiber is any one of the aforementioned trunk optical fiber or the multiple branch optical fibers, and the aforementioned first optical fiber and the second optical fiber are two different optical fibers among the multiple branch optical fibers and the trunk optical fiber, and the first monitoring port and the second monitoring port are two different monitoring ports among the plurality of monitoring ports.
  • the pulsed light signal is emitted by the light source in the optical time domain reflectometer, passes through the circulator, the optical switch and the unequal ratio optical beam splitter in sequence, and then propagates in the corresponding optical fiber.
  • the pulsed optical signal propagates in the optical fiber, reflection occurs.
  • a reflected light signal ie, retroreflected light, is generated.
  • the reflected optical signal is based on the principle of reversibility of the optical path. After passing through the unequal ratio optical beam splitter, optical switch and circulator, it is received by the photodetector in the optical time domain reflectometer.
  • the photodetector generates an OTDR reflection curve based on the received reflected light signal, and based on the curve, the detection, diagnosis and positioning of various events on the optical path are realized. Events here include, but are not limited to, splice loss, union, bend loss, and the like.
  • the method further includes:
  • the port number of the second port is uploaded to the optical line terminal, and the optical line terminal is used for binding the optical network terminal sending the uplink optical signal with the port number of the corresponding second port.
  • Polling here refers to making the optical switch connect to multiple second fibers 4 in sequence, checking whether there is an upstream optical signal in each branch fiber by auxiliary photodetectors, and connecting one of the second fibers 4 at a time.
  • any one of the two auxiliary photodetectors detects an optical signal, it means that there is an upward optical signal in the branch optical fiber to which the currently connected second optical fiber 4 is connected. If neither of the two auxiliary photodetectors detects an optical signal, it means that there is no upstream optical signal in the branch optical fiber to which the currently connected second optical fiber 4 is connected.
  • the optical network terminal and the branch port number are bound.
  • the system can timely determine which branch ports are free. In this case, the staff can be notified to remove the branch port connection.
  • the optical fiber can be connected to the new optical network terminal to ensure full utilization of branch ports.
  • the optical line terminal After the optical network terminal goes offline, the optical line terminal also cancels the binding relationship between the optical network terminal and the branch port number. Correspondingly, when a new optical network terminal goes online, the optical line terminal will register a new binding relationship between the optical network terminal and the branch port number for it.
  • the optical line terminal Before the ports are bound, the optical line terminal first sends a mute command to the optical network terminals connected to all branch ports, instructing all the optical network terminals to stop sending uplink optical signals. Then allocate an uplink bandwidth (uplink time slot) to the first optical network terminal, and let the first optical network terminal emit light, where the first optical network terminal is any optical network terminal in the passive optical network; at the same time, the optical line terminal notifies the optical splitter
  • the control module in the system allows the control module to control the optical switch to perform polling and detection to determine which branch fiber has an upstream optical signal.
  • the control module performs polling detection according to the notification of the optical line terminal. After a timeout period, the optical line terminal notifies the first optical network terminal to stop emitting light; then, the optical line terminal allocates the upstream bandwidth to the control module, so that the control module reports the detected branch port number. Then, the optical line terminal can complete the port binding.
  • the port binding can also be performed by the network management system.
  • the optical line terminal can sequentially complete the binding of each optical network terminal in the passive optical network.
  • the port binding is also performed in this manner.
  • the method further includes:
  • the port number of the second port where the uplink optical signal exists is determined, and the alarm instruction is used to prompt the existence of an abnormally luminous optical network terminal;
  • the port number of the second port is uploaded to the optical line terminal, and the optical line terminal is used to determine that the optical network terminal corresponding to the port number of the second port is an optical network terminal that emits abnormal light.
  • the generation process of the alarm instruction is as follows: the optical line terminal sends a silence instruction to all optical network terminals connected to the branch ports, instructing all the optical network terminals to stop sending uplink optical signals.
  • the optical splitting system connects each second optical fiber to the optical switch to determine whether there is an uplink optical signal, or the optical splitting system determines whether each branch optical fiber has an uplink optical signal by polling; When there is an uplink optical signal, an alarm command is generated and the above-mentioned rogue detection action is performed. If no upstream optical signal is detected, the detection process ends.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种分光装置、分光系统、无源光网络和光纤故障检测方法,该分光装置包括第一光分束单元、多个第一光路处理单元和第二光路处理单元,第一光分束单元具有第一端口和多个第二端口,第一端口分别与多个第二端口连通,第一光路处理单元具有第三端口、第四端口和第五端口,第五端口分别与第三端口和第四端口连通,第二光路处理单元具有第六端口、第七端口和第八端口,第六端口分别与第七端口和第八端口连通。第三端口与第二端口通过第一光纤连接,第四端口与第二光纤连接,第五端口与分支光纤连接;第六端口与主干光纤连接,第七端口与第一端口通过第三光纤连接,第八端口与第四光纤连接。

Description

分光装置、分光系统、无源光网络和光纤故障检测方法
本申请要求于2021年3月26日提交中国国家知识产权局、申请号202110328513.5、申请名称为“分光装置、分光系统、无源光网络和光纤故障检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,特别涉及一种分光装置、分光系统、无源光网络和光纤故障检测方法。
背景技术
无源光网络(passive optical network,PON)由光线路终端(optical line termination,OLT)、光网络单元(optical network unit,ONU)和光分配网络(optical distribution network,ODN)组成,其中ODN主要包括光纤和光分束器等器件。为了保证整个PON的正常工作,需要对ODN中的光纤进行故障检测。
相关技术中,采用光时域反射仪(optical time domain reflectometer,OTDR)进行光纤的故障检测工作,OTDR直接向主干光纤内发送用于故障检测的脉冲光信号,脉冲光信号从主干光纤经过光分束器进入到分支光纤中传播,脉冲光信号在主干光纤以及分支光纤内传播过程中会发生散射、反射等,OTDR接收形成的反射光信号,并基于反射光信号输出OTDR测试曲线,识别OTDR测试曲线中的ODN事件实现光纤故障检测,ODN事件能够反映出光纤是否存在故障以及存在故障时的故障类型。
由于相关技术中,OTDR向主干光纤发送的脉冲光信号会经过光分束器,经过光分束器后脉冲光信号会同时进入多根分支光纤中,使得OTDR接收到多根分支光纤反射回来的反射光信号,反射光信号的叠加导致从反射光信号中识别出的ODN事件不准确,造成无法准确实现光纤故障的检测。
发明内容
本申请提供了一种分光装置、分光系统、无源光网络和光纤故障检测方法,通过在分光装置中配置监控端口,这些监控端口是与主干光纤或者分支光纤一一对应的,使得OTDR发出的脉冲光信号经过监控端口进入光纤后,返回的反射光信号仅通过了一根光纤,避免反射光信号叠加带来的问题,使得ODN事件的识别更准确,光纤故障检测更加准确。
第一方面,本申请至少一实施例提供了一种分光装置。该分光装置包括第一光分束单元、第一光路处理单元和第二光路处理单元,其中第一光路处理单元的数量为多个。其中,第一光分束单元具有第一端口和多个第二端口,第一端口分别与多个第二端口连通,第一端口通过第二光路处理单元连接主干光纤,多个第二端口中的任一个第二端口通过一个第一光路处 理单元连接分支光纤,也就是说分支光纤有多根,每根分支光纤都连接到一个第二端口;第一光路处理单元具有第三端口、第四端口和第五端口,第五端口分别与第三端口和第四端口连通,第二光路处理单元具有第六端口、第七端口和第八端口,第六端口分别与第七端口和第八端口连通。
每个第一光路处理单元的第三端口与第二端口通过第一光纤连接,第四端口与第二光纤连接,第五端口与分支光纤连接,多个第一光路处理单元中任两个第一光路处理单元的第四端口连接的第二光纤不同;第一光路处理单元将来自于第二光纤的第一脉冲光信号传输到分支光纤中,再将来自于分支光纤中由第一脉冲光信号传播产生的第一反射光信号传输到第二光纤中,第一反射光信号用于进行分支光纤的故障检测。
每个第二光路处理单元的第六端口与主干光纤连接,第七端口与第一端口通过第三光纤连接,第八端口与第四光纤连接;第二光路处理单元将来自于第四光纤的第二脉冲光信号传输到主干光纤中,再将来自于主干光纤中由第二脉冲光信号传播产生的第二反射光信号传输到第四光纤中,第二反射光信号用于进行主干光纤的故障检测。
其中,第二光纤和第四光纤作为分光装置的监控端口,帮助实现光纤故障检测以及实现分光装置的其他监控需求。
在上述结构的分光装置中,第二光路处理单元的第六端口用于连接主干光纤,对应主干光路;第一光路处理单元的第五端口用于连接分支光纤,对应分支光路。本申请提供的分光装置应用在PON网络中,在进行光纤故障检测时,OTDR发出的脉冲光信号经过第四光纤进入主干光纤或者经过第二光纤进入一根分支光纤,在主干光纤或一根分支光纤中产生的反射光信号再经由第四光纤或第二光纤返回OTDR,实现光纤故障检测。在上述检测过程中,脉冲光信号没有经过第一光分束单元,只进入了主干光纤或一根分支光纤,所以返回到OTDR的反射光信号也仅是一根光纤中产生的反射光信号,反射光信号没有叠加,使得ODN事件的识别更准确,光纤故障检测更加准确。
在本公开实施例中,第一光路处理单元和第二光路处理单元采用光分束器件实现。
示例性地,第一光分束单元为1×N光分束器,第一光路处理单元和第二光路处理单元均为1×2光分束器。第一光路处理单元的第三端口、第四端口为第一光路处理单元的两个分支端口,第二光路处理单元的第七端口、第八端口为第二光路处理单元的两个分支端口,光分束器的分支端口之间不连通,故第三端口和第四端口不连通,第七端口和第八端口不连通。
示例性地,第一光路处理单元和第二光路处理单元中的至少一个为不等比光分束器;第四端口的分光比例小于第三端口的分光比例;或者,第八端口的分光比例小于第七端口的分光比例。
由于第四端口、第八端口的主要作用是进行光纤故障检测,因此,用来进行光纤故障检测的光信号强度相比于用来传输信息的光信号的强度可以更低,这样在能够保证光纤故障检测正常进行的前提下,避免用来进行光纤故障检测的光信号对用来传输信息的光信号产生干扰。
当然,除了从光信号的强度进行干扰控制外,用来进行光纤故障检测的光信号和用来传输信息的光信号的波长不同,保证用来传输信息的光信号能够被正确接收和解析,从而保证信息的正确传输。
示例性地,第一光分束单元为等比光分束器。
示例性地,第一光路处理单元和第二光路处理单元均为不等比光分束器。
例如,第一光路处理单元和第二光路处理单元的分光比均为1:9。
该分光装置在仅包括第一光分束单元、第一光路处理单元和第二光路处理单元的情况下,分光装置只连接一根主干光纤,对应一个主干光路,但在部分情况下,PON中也存在需要有两根主干光纤的情况,此时分光装置还包括第二光分束单元,第六端口通过第二光分束单元连接互为主备份关系的两根主干光纤,两根主干光纤同一时间只有一根投入使用。
其中,第二光分束单元具有第九端口、第十端口和第十一端口,第十一端口分别与第九端口和第十端口连通;第九端口连接两根主干光纤中的一根主干光纤,第十端口连接两根主干光纤中的另一根主干光纤,第五输出端口与第四输入端口通过第五光纤连接。
示例性地,第二光分束单元为5:5光分束器。
第二方面,本申请至少一实施例提供了一种分光系统,该分光系统包括分光装置和光层监控装置,分光装置是第一方面提供的分光装置;光层监控装置与第二光纤及第四光纤连接。
光层监控装置向多根第二光纤中的一根第二光纤发射第一脉冲光信号,接收来自于第二光纤的第一反射光信号,基于第一反射光信号进行分支光纤的故障检测;或者,向第四光纤发射第二脉冲光信号,接收来自于第四光纤的第二反射光信号,基于第二反射光信号进行主干光纤的故障检测。
示例性地,光层监控装置包括光时域反射仪、光开关和控制模块。光开关连接在分光装置和光时域反射仪之间,控制模块与光开关的控制端连接。
光时域反射仪负责发送脉冲光信号,接收反射光信号,以及基于反射光信号进行光纤的故障检测;控制模块负责控制光开关将第二光纤或第四光纤和光时域反射仪连通。
例如,控制模块为ONT,称为控制ONT。
示例性地,光时域反射仪包括光源、光电探测器和环行器。环行器具有第十二端口、第十三端口和第十四端口,第十二端口与光源连接,第十三端口与光开关连接,第十四端口与光电探测器连接。
其中,环行器将从第十二端口接收到的脉冲光信号,从第十三端口发送出去,将从第十三端口接收到的第一反射光信号或第二反射光信号,从十四端口发送出去。这样,就使得从光源射出的脉冲光信号,能够顺利地送到光纤中,而从光纤中返回的反射光信号能够顺利送给光电探测器。光电探测器将反射光信号转换为电信号,电信号用于生成光时域反射仪测试曲线
例如,光源为分布反馈式激光器(distributed feedback laser,DFB),光电探测器为雪崩光电二极管(avalanche photon diode,APD)。
可选地,该光时域反射仪还包括两个辅助光电探测器以及两块半透半反镜片,两块半透半反镜片依次设置在光开关和环行器之间,光开关输出的光信号一部分依次透过两块半透半反镜片进入到环行器中,光信号的另一部分在经过两块半透半反镜片时均被反射,然后分别进入到两个辅助光电探测器中,进行光信号的检测。
可选地,光层监控装置还包括第三光分束单元,该第三光分束单元具有第十五端口、第十六端口和第十七端口,第十五端口分别与第十六端口和第十七端口连通。第十五端口与第四光纤连接,第十六端口与光开关通过第六光纤连接,第十七端口与控制模块通过第七光纤 连接。
通过第三光分束单元能够将分光装置连接的主干光纤传输的信号同时传输给控制模块和光时域反射仪,使得控制模块能够接收到整个无源光网络下发的控制指令,进而执行该控制指令相应的操作。
示例性地,第三光分束单元为5:5光分束器。
第三方面,本申请至少一实施例提供了一种无源光网络,该无源光网络包括光线路终端、光网络终端和分光系统。其中,分光系统是如第二方面任一项的分光系统,该分光系统分别与光线路终端和光线路终端连通。
其中,分光系统与光线路终端之间、分光系统与光线路终端之间都是通过光纤连通的。分光系统与光线路终端之间的光纤为主干光纤,分光系统与光线路终端之间的光纤为分支光纤。
在无源光网络中使用上述结构的分光系统后,除了方便进行光纤故障检测工作,该无源光网络还能够更加容易地进行端口绑定、流氓检测的过程:
例如,该无源光网络中的各个器件通过如下方式实现端口绑定:
分光系统通过轮询多个第一光路处理单元,确定存在上行光信号的第二端口的端口号,将第二端口的端口号上传给光线路终端;
光线路终端接收上行光信号,将发送上行光信号的光网络终端与对应的第二端口的端口号绑定。
再例如,该无源光网络中的各个器件通过如下方式实现流氓检测:
分光系统响应于告警指令,通过轮询多个第一光路处理单元,确定存在上行光信号的第二端口的端口号,将第二端口的端口号上传给光线路终端;
光线路终端确定该第二端口的端口号对应的光网络终端为异常发光的光网络终端。
第四方面,本申请至少一实施例提供了一种光纤故障检测方法,该方法应用于第二方面的分光系统,该方法包括:
光层监控装置向多根第二光纤中的一根第二光纤发射第一脉冲光信号,或者向第四光纤发射第二脉冲光信号,多根第二光纤分别通过多个第一光路处理单元连接多根分支光纤,第四光纤通过第二光路处理单元连接主干光纤,多根分支光纤还分别通过多个第一光路处理单元连接第一光分束单元的多个第二端口,主干光纤还通过第二光路处理单元连接第一光分束单元的第一端口,第一端口分别与多个第二端口连通;
光层监控装置接收来自于第二光纤的第一反射光信号,或者接收来自于第四光纤的第二反射光信号;
光层监控装置基于第一反射光信号进行分支光纤的故障检测,或者基于第二反射光信号进行主干光纤的故障检测。
可选地,该方法还包括:
光层监控装置通过轮询多个第一光路处理单元,确定存在上行光信号的第二端口的端口号;
光层监控装置将该第二端口的端口号上传给光线路终端,光线路终端用于将发送上行光 信号的光网络终端与对应的分支端口号绑定。
可选地,该方法还包括:
光层监控装置响应于出现的告警指令,通过轮询多个第一光路处理单元,确定存在上行光信号的第二端口的端口号,告警指令用于提示存在异常发光的光网络终端,这里的异常发光是指光网络终端在没有分配到上行带宽的情况下自行发光,这种光网络终端也即流氓光网络终端;
光层监控装置将该第二端口的端口号上传给光线路终端,光线路终端用于确定该第二端口的端口号对应的光网络终端为异常发光的光网络终端。
附图说明
图1示出了相关技术中光纤故障检测时的光路示意图;
图2示出了本申请的一实施例提供的一种分光装置的结构示意图;
图3示出了本申请的一实施例提供的一种分光装置的结构示意图;
图4示出了本申请的一实施例提供的一种分光系统的结构示意图;
图5示出了本申请的一实施例提供的一种无源光网络的结构示意图;
图6示出了本申请的一实施例提供的一种光纤故障检测方法的流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
除非另作定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于电性的连接,而是可以包括物理的或者机械的连接,不管是直接的还是间接的。
图1示出了相关技术中光纤故障检测时的光路示意图。参见图1,OTDR发出的脉冲光信号A经过第一光分束单元10进入到多根分支光纤,每根分支光纤中都有一路分支脉冲光信号a传播,分支脉冲光信号a在分支光纤内传播并发生反射,形成分支反射光信号b,这多路分支反射光信号b经过第一光分束单元10合成一路反射光信号B后进入主干光纤,由于反射光信号B是由多路分支反射光信号叠加而成,导致OTDR从反射光信号中识别出的ODN事件不准确,造成无法准确实现光纤故障的检测。
图2示出了本申请的一实施例提供的一种分光装置的结构示意图。参见图2,该分光装置100具有多个监控端口101。
该分光装置100包括第一光分束单元10、多个第一光路处理单元20和第二光路处理单元30。第一光分束单元10具有第一端口11和多个第二端口12,第一端口11分别与多个第 二端口12连通,第一端口11通过第二光路处理单元30连接主干光纤1,多个第二端口12中的任一个第二端口12通过一个第一光路处理单元20连接分支光纤2。如图2所示,该分光装置有多根分支光纤2,每根分支光纤2都通过一个第一光路处理单元20连接一个第二端口12,并且分支光纤2、第一光路处理单元20和第二端口12三者是一一对应的关系。
第一光路处理单元20具有第三端口22、第四端口22和第五端口23,第五端口23分别与第三端口21和第四端口22连通。第三端口21与第二端口12通过第一光纤3连接,第四端口22与第二光纤4连接,第五端口23与分支光纤2连接;第一光路处理单元20用于将来自于第二光纤4的第一脉冲光信号传输到分支光纤2中;将来自于分支光纤2中由第一脉冲光信号传播产生的第一反射光信号传输到第二光纤4中,第一反射光信号用于进行分支光纤2的故障检测。
第二光路处理单元30具有第六端口31、第七端口32和第八端口33,第六端口31分别与第七端口32和第八端口33连通。第六端口31与主干光纤1连接,第七端口32与第一端口11通过第三光纤5连接,第八端口33与第四光纤6连接;第二光路处理单元30用于将来自于第四光纤6的第二脉冲光信号传输到主干光纤1中;将来自于主干光纤1中由第二脉冲光信号传播产生的第二反射光信号传输到第四光纤6中,第二反射光信号用于进行主干光纤1的故障检测。
第二光纤4和第四光纤6的输入端即为分光装置的监控端口101,用来实现光纤故障检测以及实现分光装置的其他监控需求。
以分支光纤的故障检测为例,如图2所示,OTDR发出的脉冲光信号A通过第二光纤4和第一光路处理单元20后成为脉冲光信号a,脉冲光信号a进入到一根分支光纤中传播并发生反射,形成反射光信号b,反射光信号b经过第一光路处理单元2成为反射光信号B,反射光信号B经过第二光纤4回到OTDR。这里的反射光信号B仅由一根分支光纤中的反射光信号b得到,该反射光信号B没有经过第一光分束单元10,不涉及反射光信号的叠加。
在上述结构的分光装置100中,第二光路处理单元30的第六端口31用于连接主干光纤,对应主干光路;多个第一光路处理单元20的第五端口22用于连接分支光纤,对应分支光路。本申请提供的分光装置100应用在PON网络中,在进行光纤故障检测时,OTDR发出的脉冲光信号经过第四光纤进入主干光纤或者经过第二光纤进入一根分支光纤,在主干光纤或一根分支光纤中产生的反射光信号再经由第四光纤或第二光纤返回OTDR,实现光纤故障检测。在上述检测过程中,脉冲光信号没有经过第一光分束单元,只进入了主干光纤或一根分支光纤,所以返回到OTDR的反射光信号也仅是一根光纤中产生的反射光信号,反射光信号没有叠加,使得ODN事件的识别更准确,光纤故障检测更加准确;并且,采用该分光装置进行组网,脉冲光信号通过光分束器就能耦合到光纤中,无需使用合波器合波,成本低。
在该分光装置100中,第一光分束单元10为1×N光分束器,第一光路处理单元20和第二光路处理单元30均为1×2光分束器。第一光分束单元10的每个端口对应一个监控端口,则分光装置具有N+1个监控端口。第一光路处理单元20的第三端口21、第四端口22为第一光路处理单元20的两个分支端口,第二光路处理单元30的第七端口32、第八端口33为第二光路处理单元30的两个分支端口。
示例性地,第一光路处理单元20和第二光路处理单元30中的至少一个为不等比光分束器;例如,在第一光路处理单元20中,第四端口22的分光比例小于第三端口21的分光比例; 在第二光路处理单元30中,第八端口33的分光比例小于第七端口32的分光比例。由于监控端口101的主要作用是进行光纤故障检测,因此,用来进行光纤故障检测的光信号强度相比于用来传输信息的光信号的强度可以更低,这样在能够保证光纤故障检测正常进行的前提下,避免用来进行光纤故障检测的光信号对用来传输信息的光信号产生干扰。
当然,除了从光信号的强度进行干扰控制外,用来进行光纤故障检测的光信号和用来传输信息的光信号的波长不同,保证用来传输信息的光信号能够被正确接收和解析,从而保证信息的正确传输。
示例性地,第一光分束单元10为等比光分束器。
示例性地,第一光路处理单元20和第二光路处理单元30均为不等比光分束器。
例如,第一光路处理单元20和第二光路处理单元30的分光比均为1:9,也即第一光路处理单元20和第二光路处理单元30均具有一个90%分支和一个10%分支。
在主干光纤上设置有1:9不等比光分束器(第二光路处理单元30),经过该主干光纤的光信号的90%的光经过90%分支输入到1×N光分束器,10%的光经过10%分支(监控端口)。在分支光纤上设置有1:9不等比光分束器(第一光路处理单元20),经过该分支光纤的光信号的90%的光经过90%分支输入到1×N光分束器,10%的光经过10%分支(监控端口)。其中,10%分支既可以将OTDR的脉冲光信号耦合进PON正常光信号中,实现故障检测,也可以对经过不等比光分束器的正常光信号进行监控。
该分光装置100在仅包括第一光分束单元10、第一光路处理单元20和第二光路处理单元30的情况下,分光装置100只连接一根主干光纤,对应一个主干光路,但在部分情况下,PON中也存在需要有两根主干光纤的情况,两根主干光纤互为主备份关系。
图3示出了本申请实施例提供的另一种分光装置的结构示意图,参见图3,相比于图2所示的分光装置,该分光装置100还包括第二光分束单元40,第六端口31通过第二光分束单元40连接互为主备份关系的两根主干光纤1。
其中,第二光分束单元40具有第九端口41、第十端口42和第十一端口43,第十一端口43分别与第九端口41和第十端口42连通;第九端口41连接两根主干光纤1中的一根主干光纤1,第十端口42连接两根主干光纤1中的另一根主干光纤1,第十一端口43与第六端口31通过第五光纤7连接。此时,两根主干光纤分别连接在第九端口41和第十端口42上,在该分光装置工作时,两根主干光纤中仅有一根生效。
示例性地,第一光路处理单元40为5:5光分束器。
在图2和图3所示的结构中,示出了分光装置包括一个光分束器的情况。在其他实施例中,分光装置包括多个光分束器,这多个光分束器分为多级,在每个光分束器的分支光纤上设置第一光路处理单元,在每个光分束器的主干光纤上设置第二光路处理单元;或者,在多级光分束器的最后一级光分束器的分支光纤上设置第一光路处理单元,在每个光分束器的主干光纤上设置第二光路处理单元,通过上述设计从而实现对分光装置中每根光纤的故障检测。
图4示出了本申请的一实施例提供的一种分光系统的结构示意图。参见图4,该分光系统1000包括分光装置100和光层监控装置200,分光装置100是图2或图3所示的分光装置100,图4中的分光装置100以图2中的分光装置为例;光层监控装置200与第二光纤4及第四光纤6连接。
光层监控装置200向第二光纤4发射第一脉冲光信号;接收来自于第二光纤4的第一反射光信号,基于第一反射光信号进行分支光纤2的故障检测;或者,向第四光纤6发射第二脉冲光信号;接收来自于第四光纤6的第二反射光信号,基于第二反射光信号进行主干光纤1的故障检测。
示例性地,光层监控装置200包括光时域反射仪50、光开关60和控制模块70。光开关60连接在分光装置100的多个监控端口101和光时域反射仪50之间,控制模块70与光开关60的控制端连接。
光时域反射仪50负责发送第一脉冲光信号,接收第一反射光信号,基于第一反射光信号进行分支光纤2的故障检测;或者,发送第二脉冲光信号,接收第二反射光信号,基于第二反射光信号进行主干光纤1的故障检测;控制模块70负责控制光开关60,从而将多个监控端口101中的一个监控端口101和光时域反射仪50连通,也即将第二光纤4或第四光纤6和光时域反射仪50连通。
例如,控制模块70为ONT,称为控制ONT。
示例性地,光时域反射仪50包括光源51、光电探测器52和环行器53。环行器53具有第十二端口、第十三端口和第十四端口,第十二端口与光源51连通,第十三端口与光开关60连通,第十四端口与光电探测器52连通。
其中,光源51产生脉冲光信号,环行器53将从第十二端口接收到的脉冲光信号,从第十三端口发送出去,将从第十三端口接收到的反射光信号(第一反射光信号或第二反射光信号),从第十四端口发送出去。这样,就使得从光源51射出的脉冲光信号,能够顺利地送到光纤中,而从光纤中返回的反射光信号能够顺利送给光电探测器52。光电探测器52将反射光信号转换为电信号,电信号用于生成光时域反射仪测试曲线,该反射仪测试曲线用于进行光纤的事件检测、诊断及定位,也即故障检测。
在本申请实施例中,光源51产生的脉冲光信号进入一根第二光纤4成为前述第一脉冲光信号,光源51产生的脉冲光信号进入第四光纤6成为前述第二脉冲光信号,光源51产生的脉冲光信号同一时间只会进入一根第二光纤4或者第四光纤6。光源51产生的脉冲光信号进入哪根光纤是由控制模块70控制光开关连通哪一根光纤实现的。
例如,光源51为分布反馈式激光器(distributed feedback laser,DFB),光电探测器52为光电检测二极管(photo diode,PD),比如雪崩光电二极管(avalanche photon diode,APD)。
可选地,该光时域反射仪50还包括两个辅助光电探测器54以及两块半透半反镜片55,两块半透半反镜片55依次设置在光开关60和环行器53之间,光开关60输出的光信号一部分依次透过两块半透半反镜片55进入到环行器53中,光信号的另一部分在经过两块半透半反镜片55时均被反射,然后分别进入到两个辅助光电探测器56中,进行光信号的检测。
例如,辅助光电探测器为PD,两个辅助光电探测器为不同型号的PD。通过设置这两个辅助光电探测器,分光系统除了可以进行光纤故障检测,还可以用来执行端口绑定、流氓检测等过程,在端口绑定和流氓检测过程中,辅助光电探测器用于检测分光系统对应的分支端口是否存在上行光信号。
如两个辅助光电探测器中的一个为1310PD,另一个为1270PD,分别用来检测1310nm和1270nm的光,这两种波长是PON系统常见的两种波长。
示例性地,控制模块70控制光开关依次接通各个监控端口101,在每接通一个监控端口101时,两个辅助光电探测器54都进行光信号的探测,如果检测到光信号,说明该监控端口对应的分支光纤存在上行光信号,基于该检测结果实现端口绑定或流氓检测。
可选地,光层监控装置200还包括第三光分束单元80,该第三光分束单元80具有第十五端口81、第十六端口82和第十七端口83,第十五端口81分别与第十六端口82和第十七端口83连通。第十五端口81与第四光纤6连接,第十六端口82与光开关60通过第六光纤8连接,第十七端口83与控制模块70通过第七光纤9连接。
通过第三光分束单元80将分光装置100连接的主干光纤的信号同时传输给控制模块70和光时域反射仪50,使得控制模块70能够接收到整个无源光网络下发的控制指令,进而执行该控制指令相应的操作。
示例性地,这里的控制指令包括但不限于执行光纤故障检测、执行端口绑定、执行流氓检测等操作的指令。
示例性地,第三光分束单元80为5:5光分束器。
在该分光系统中,分光装置100属于无源设备,无需进行供电。而光层监控装置200为有源设备,需要进行供电,光层监控装置200可由局端的光线路终端远程供电,或者由本地进行供电。
图5示出了本申请的一实施例提供的一种无源光网络的结构示意图。参见图5,该无源光网络包括光线路终端2000、光网络终端3000和分光系统1000。其中,分光系统1000是图4所示的分光系统1000,也即是具有光层监控功能的分光系统。该分光系统1000分别与光线路终端2000和光线路终端2000连通。
其中,分光系统1000与光线路终端2000之间、分光系统1000与光线路终端2000之间都是通过光纤连通的。分光系统1000与光线路终端2000之间的光纤为主干光纤,分光系统1000与光线路终端2000之间的光纤为分支光纤。
在无源光网络中使用上述结构的分光系统1000后,除了方便进行光纤故障检测工作,该无源光网络还能够更加容易地进行端口绑定、流氓检测的过程:
例如,该无源光网络中的各个器件通过如下方式实现端口绑定:
分光系统1000通过轮询多个第一光路处理单元20,确定存在上行光信号的第二端口的端口号,将该第二端口的端口号上传给光线路终端2000;这里的轮询是指让光开关依次和多个第二光纤4接通,通过辅助光电探测器检查各个分支光纤是否存在上行光信号,每次接通其中一根第二光纤4;
光线路终端2000接收上行光信号,将发送上行光信号的光网络终端3000与对应的第二端口的端口号绑定。
在无源光网络中,将光网络终端和分支端口号进行绑定,在光网络终端下线时,系统能够及时确定哪些分支端口空闲,这种情况下,可以通知工作人员拆除该分支端口连接的光纤,进而可以连接到新的光网络终端上,保证分支端口的充分利用。
在光网络终端下线后,光线路终端2000还会注销该光网络终端和分支端口号的绑定关系。相应地,当有新的光网络终端上线,光线路终端2000则会为其注册新的光网络终端和分支端口号的绑定关系。这里,上线是指光网络终端刚上电、或出现故障复位重启时注册上线, 下线是指光网络终端掉电或因故障掉线。
在端口绑定之前,光线路终端2000先向所有分支端口连接的光网络终端发送静默指令,命令所有光网络终端停止上行光信号的发送。然后给第一光网络终端分配上行带宽(上行时隙),让第一光网络终端发光,在给第一光网络终端分配上行带宽的指令中携带有该第一光网络终端的标识(例如ONT#1),这里的第一光网络终端是该无源光网络中的任一光网络终端;同时,光线路终端2000通知分光系统1000中的控制模块,让控制模块控制光开关进行轮询、检测,确定哪一根分支光纤存在上行光信号。
在端口绑定过程中,控制模块按照光线路终端的通知进行轮询检测。在一个超时时间(Time Out)之后,光线路终端2000通知第一光网络终端停止发光;然后,光线路终端2000将上行带宽分配给控制模块,让控制模块上报检测到的分支端口号,在给光线路终端分配上行带宽的指令中携带有该光线路终端的标识。然后,光线路终端2000即可完成端口的绑定,当然该端口的绑定也可以由网管系统(例如网络云化引擎固定接入网系统(network cloud engine fixed access network,NCE-FAN))执行。
这里的超时时间大于最大轮询时间,最大轮询时间是指从第一个第四端口轮询到最后一个第四端口所需的时间。
按照上述过程光线路终端2000可以依次完成无源光网络中各个光网络终端的绑定,当有新的光网络终端入网,同样采用该方式进行端口绑定。
再例如,该无源光网络中的各个器件通过如下方式实现流氓检测:
分光系统1000响应于告警指令,通过轮询多个第一光路处理单元20,确定存在上行光信号的第二端口的端口号,将该第二端口的端口号上传给光线路终端2000,告警指令用于提示存在异常发光的光网络终端;
光线路终端2000确定第二端口的端口号对应的光网络终端3000为异常发光的光网络终端。异常发光的光网络终端是指在没有分配到上行带宽的情况下,私自发送上行光信号的光网络终端。
其中,告警指令的产生过程如下:光线路终端2000向所有分支端口连接的光网络终端发送静默指令,命令所有光网络终端停止上行光信号的发送,由于分光系统也接收到了该指令,因此会进行分支端口的监控。分光系统1000同时将各根第二光纤都与光开关接通,确定是否有上行光信号,或者,分光系统在这时通过轮询的方式,依次确定各根分支光纤是否有上行光信号;如果检测到有上行光信号,则产生告警指令,则执行上述流氓检测动作。如果没有检测到上行光信号,则结束该检测过程。
在确定出流氓光线路终端后,光线路终端2000向该异常发光的光网络终端发送断电指令,让该光网络终端进行断电。在无源光网络中,光网络终端通常由有源以太网(power over ethernet,POE)供电模块供电。
在本申请实施例中,分光系统1000既可以是响应光线路终端2000的请求,执行光纤故障检测和/或流氓检测;分光系统也可以周期性地执行光纤故障检测和/或流氓检测。
本申请实施例中的无源光网络为点对多点(point to multiple point,P2MP)的无源光网络。P2MP PON网络,包括基于光功率分光器(power splitter)的PON系统,例如时分复用技术(time division multiplexing,TDM)PON(如GPON、10G PON等),也包括基于波分复用器/解复用器(wavelength muxtiplexing/demultiplexing)的PON系统,如波分复用 (wavelength division multiplexing,WDM)PON。
图6示出了本申请的一实施例提供的一种光纤故障检测方法的流程图。该方法应用于图4所示的分光系统中,由分光系统中的光层监控装置执行,参见图6,该方法包括:
501:向多根第二光纤中的一根第二光纤发射第一脉冲光信号,或者向第四光纤发射第二脉冲光信号。
在一种可能的实现方式中,该方法依次进行各根分支光纤和主干光纤的故障检测。
相应地,步骤501包括:控制模块控制光时域反射仪发出脉冲光信号;控制模块控制光开关连通第一监控端口,使得脉冲光信号进入对应的第一光纤中。在完成第一光纤的故障检测后,控制模块控制光开关连通第二监控端口,使得脉冲光信号进入对应的第二光纤中。按照上述方法,控制光开关依次连通各个监控端口。第一光纤或第二光纤为前述主干光纤或多根分支光纤中的任一光纤,且前述第一光纤和第二光纤是多根分支光纤和主干光纤中两根不同的光纤,第一监控端口和第二监控端口是多个监控端口中两个不同的监控端口。
502:接收来自于第二光纤的第一反射光信号,或者接收来自于第四光纤的第二反射光信号。
脉冲光信号由光时域反射仪中的光源发出,依次经过环行器、光开关和不等比光分束器,然后在对应的光纤中传播,脉冲光信号在光纤中传播时出现反射现象,产生反射光信号,也即后向反射光。反射光信号基于光路可逆原理,经过不等比光分束器、光开关和环行器之后,被光时域反射仪中的光电探测器接收。
503:基于第一反射光信号进行分支光纤的故障检测,或者基于第二反射光信号进行主干光纤的故障检测。
光电探测器基于接收到的反射光信号产生OTDR反射曲线,基于该曲线实现对光路上的各种事件的检测、诊断与定位。这里的事件包括但不限于熔接头损耗、活接头、弯曲损耗等。
可选地,该方法还包括:
通过轮询多个第一光路处理单元,确定存在上行光信号的第二端口的端口号;
将该第二端口的端口号上传给光线路终端,光线路终端用于将发送上行光信号的光网络终端与对应的第二端口的端口号绑定。
这里轮询是指让光开关依次和多个第二光纤4接通,通过辅助光电探测器检查各个分支光纤是否存在上行光信号,每次接通其中一根第二光纤4。
例如,若两个辅助光电探测器中的任一个探测到光信号,则说明当前接通的第二光纤4所连接到的分支光纤存在上行光信号。若两个辅助光电探测器均未探测到光信号,则说明当前接通的第二光纤4所连接到的分支光纤不存在上行光信号。
在无源光网络中,将光网络终端和分支端口号进行绑定,在光网络终端下线时,系统能够及时确定哪些分支端口空闲,这种情况下,可以通知工作人员拆除该分支端口连接的光纤,进而可以连接到新的光网络终端上,保证分支端口的充分利用。
在光网络终端下线后,光线路终端还会注销该光网络终端和分支端口号的绑定关系。相应地,当有新的光网络终端上线,光线路终端则会为其注册新的光网络终端和分支端口号的绑定关系。
在端口绑定之前,光线路终端先向所有分支端口连接的光网络终端发送静默指令,命令 所有光网络终端停止上行光信号的发送。然后给第一光网络终端分配上行带宽(上行时隙),让第一光网络终端发光,这里的第一光网络终端是该无源光网络中的任一光网络终端;同时,光线路终端通知分光系统中的控制模块,让控制模块控制光开关进行轮询、检测,确定哪一根分支光纤存在上行光信号。
在端口绑定过程中,控制模块按照光线路终端的通知进行轮询检测。在一个超时时间之后,光线路终端通知第一光网络终端停止发光;然后,光线路终端将上行带宽分配给控制模块,让控制模块上报检测到的分支端口号。然后,光线路终端即可完成端口的绑定,当然该端口的绑定也可以由网管系统执行。
按照上述过程光线路终端可以依次完成无源光网络中各个光网络终端的绑定,当有新的光网络终端入网,同样采用该方式进行端口绑定。
可选地,该方法还包括:
响应于出现的告警指令,通过轮询多个第一光路处理单元,确定存在上行光信号的第二端口的端口号,告警指令用于提示存在异常发光的光网络终端;
将第二端口的端口号上传给光线路终端,光线路终端用于确定该第二端口的端口号对应的光网络终端为异常发光的光网络终端。
其中,告警指令的产生过程如下:光线路终端向所有分支端口连接的光网络终端发送静默指令,命令所有光网络终端停止上行光信号的发送。分光系统同时将各根第二光纤都与光开关接通,确定是否有上行光信号,或者,分光系统在这时通过轮询的方式,依次确定各根分支光纤是否有上行光信号;如果检测到有上行光信号,则产生告警指令,执行上述流氓检测动作。如果没有检测到上行光信号,则结束该检测过程。
以上所述仅为本申请的可选实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (14)

  1. 一种分光装置,其特征在于,所述分光装置(100)包括:第一光分束单元(10)、多个第一光路处理单元(20)、第二光路处理单元(30);
    所述第一光分束单元(10)具有第一端口(11)和多个第二端口(12),所述第一端口(11)分别与所述多个第二端口(12)连通;所述第一端口(11)通过所述第二光路处理单元(30)连接主干光纤(1),所述多个第二端口(12)中的任一个第二端口(12)通过一个第一光路处理单元(20)连接分支光纤(2);
    所述第一光路处理单元(20)具有第三端口(21)、第四端口(22)和第五端口(23),所述第五端口(23)分别与所述第三端口(21)和所述第四端口(22)连通;所述第三端口(21)与所述第二端口(12)通过第一光纤(3)连接,所述第四端口(22)与第二光纤(4)连接,所述第五端口(23)与所述分支光纤(2)连接,所述多个第一光路处理单元(20)中任两个第一光路处理单元(20)的第四端口(22)连接的第二光纤(4)不同;所述第一光路处理单元(20)用于将来自于所述第二光纤(4)的第一脉冲光信号,传输到所述分支光纤(2)中;将来自于所述分支光纤(2)中由所述第一脉冲光信号传播产生的第一反射光信号传输到所述第二光纤(4)中,所述第一反射光信号用于进行所述分支光纤(2)的故障检测;
    所述第二光路处理单元(30)具有第六端口(31)、第七端口(32)和第八端口(33),所述第六端口(31)分别与所述第七端口(32)和所述第八端口(33)连通;所述第六端口(31)与所述主干光纤(1)连接,所述第七端口(32)与所述第一端口(11)通过第三光纤(5)连接,所述第八端口(33)与第四光纤(6)连接;所述第二光路处理单元(30)用于将来自于所述第四光纤(6)的第二脉冲光信号传输到所述主干光纤(1)中;将来自于所述主干光纤(1)中由所述第二脉冲光信号传播产生的第二反射光信号传输到所述第四光纤(6)中,所述第二反射光信号用于进行所述主干光纤(1)的故障检测。
  2. 根据权利要求1所述的分光装置,其特征在于,所述第一光路处理单元(20)和所述第二光路处理单元(30)中的至少一个为不等比光分束器;
    所述第四端口(22)的分光比例小于所述第三端口(21)的分光比例;或者,所述第八端口(33)的分光比例小于所述第七端口(32)的分光比例。
  3. 根据权利要求1或2所述的分光装置,其特征在于,所述分光装置(100)还包括第二光分束单元(40),所述第六端口(31)通过所述第二光分束单元(40)连接互为主备份关系的两根主干光纤(1);
    所述第二光分束单元(40)具有第九端口(41)、第十端口(42)和第十一端口(43),所述第十一端口(43)分别与所述第九端口(41)和所述第十端口(42)连通;所述第九端口(41)连接所述两根主干光纤(1)中的一根主干光纤(1),所述第十端口(42)连接所述两根主干光纤(1)中的另一根主干光纤(1),所述第十一端口(43)与所述第六端口(31)通过第五光纤(7)连接。
  4. 根据权利要求2所述的分光装置,其特征在于,所述不等比光分束器的分光比为1:9。
  5. 一种分光系统,其特征在于,所述分光系统(1000)包括:如权利要求1至4任一项所述的分光装置(100)以及光层监控装置(200);
    所述光层监控装置(200)与所述第二光纤(4)及所述第四光纤(6)连接,用于向所述第二光纤(4)发射所述第一脉冲光信号;接收来自于所述第二光纤(4)的第一反射光信号,基于所述第一反射光信号进行所述分支光纤(2)的故障检测;或者,向所述第四光纤(6)发射所述第二脉冲光信号;接收来自于所述第四光纤(6)的第二反射光信号,基于所述第二反射光信号进行所述主干光纤(1)的故障检测。
  6. 根据权利要求5所述的分光系统,其特征在于,所述光层监控装置(200)包括:
    光时域反射仪(50),用于发送所述第一脉冲光信号,接收所述第一反射光信号,基于所述第一反射光信号进行所述分支光纤(2)的故障检测;或者,发送所述第二脉冲光信号,接收所述第二反射光信号,基于所述第二反射光信号进行所述主干光纤(1)的故障检测;
    光开关(60),连接在所述分光装置(100)和所述光时域反射仪(50)之间;
    控制模块(70),与所述光开关(60)的控制端连接,用于控制所述光开关(60)将所述第二光纤(4)或所述第四光纤(6)和所述光时域反射仪(50)连通。
  7. 根据权利要求6所述的分光系统,其特征在于,所述光时域反射仪(50)包括:
    光源(51),用于产生脉冲光信号,所述脉冲光信号进入所述第二光纤(4)成为所述第一脉冲光信号,所述脉冲光信号进入所述第四光纤(6)成为所述第二脉冲光信号;
    光电探测器(52),用于接收所述第一反射光信号或所述第二反射光信号,并将所述第一反射光信号或所述第二反射光信号转换为电信号,所述电信号用于生成光时域反射仪测试曲线;
    环行器(53),具有第十二端口、第十三端口和第十四端口,所述第十二端口与所述光源(51)连接,所述第十三端口与所述光开关(60)连接,所述第十四端口与所述光电探测器(52)连接;
    所述环行器(53)用于将从所述第十二端口接收到的脉冲光信号,从所述第十三端口发送出去,将从所述第十三端口接收到的所述第一反射光信号或所述第二反射光信号,从所述十四端口发送出去。
  8. 根据权利要求6或7所述的分光系统,其特征在于,所述光层监控装置(200)还包括:
    第三光分束单元(80),具有第十五端口(81)、第十六端口(82)和第十七端口(83),所述第十五端口(81)分别与所述第十六端口(82)和所述第十七端口(83)连通;所述第十五端口(81)与所述第四光纤(6)连接,所述第十六端口(82)与所述光开关(60)通过第六光纤(8)连接,所述第十七端口(83)与所述控制模块(70)通过第七光纤(9)连接。
  9. 一种无源光网络,其特征在于,所述无源光网络包括:
    光线路终端(2000);
    光网络终端(3000);
    如权利要求5至8任一项所述的分光系统(1000),分别与所述光线路终端(2000)和所述光线路终端(2000)连通。
  10. 根据权利要求9所述的无源光网络,其特征在于,所述分光系统(1000),用于通过轮询所述多个第一光路处理单元(20),确定存在上行光信号的第二端口(12)的端口号,将所述第二端口(12)的端口号上传给所述光线路终端(2000);
    所述光线路终端(2000),用于接收所述上行光信号,将发送所述上行光信号的光网络 终端(3000)与对应的所述第二端口(12)的端口号绑定。
  11. 根据权利要求9所述的无源光网络,其特征在于,所述分光系统(1000),用于响应于告警指令,通过轮询所述多个第一光路处理单元(20),确定存在上行光信号的第二端口(12)的端口号,将所述第二端口(12)的端口号上传给所述光线路终端(2000),所述告警指令用于提示存在异常发光的光网络终端;
    所述光线路终端(2000),用于确定所述第二端口(12)的端口号对应的光网络终端(3000)为异常发光的光网络终端。
  12. 一种光纤故障检测方法,其特征在于,所述方法包括:
    向多根第二光纤中的一根第二光纤发射第一脉冲光信号,或者向第四光纤发射第二脉冲光信号,所述多根第二光纤分别通过多个第一光路处理单元连接多根分支光纤,所述第四光纤通过第二光路处理单元连接主干光纤,所述多根分支光纤还分别通过所述多个第一光路处理单元连接第一光分束单元的多个第二端口,所述主干光纤还通过所述第二光路处理单元连接所述第一光分束单元的第一端口,所述第一端口分别与所述多个第二端口连通;
    接收来自于所述第二光纤的第一反射光信号,或者接收来自于所述第四光纤的第二反射光信号;
    基于所述第一反射光信号进行所述分支光纤的故障检测,或者基于所述第二反射光信号进行所述主干光纤的故障检测。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    通过轮询所述多个第一光路处理单元,确定存在上行光信号的第二端口的端口号;
    将所述第二端口的端口号上传给光线路终端,所述光线路终端用于将发送所述上行光信号的光网络终端与对应的所述第二端口的端口号绑定。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    响应于告警指令,通过轮询所述多个第一光路处理单元,确定存在上行光信号的第二端口的端口号,所述告警指令用于提示存在异常发光的光网络终端;
    将所述第二端口的端口号上传给光线路终端,所述光线路终端用于确定所述第二端口的端口号对应的光网络终端为异常发光的光网络终端。
PCT/CN2022/082237 2021-03-26 2022-03-22 分光装置、分光系统、无源光网络和光纤故障检测方法 WO2022199572A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22774228.5A EP4300847A1 (en) 2021-03-26 2022-03-22 Light-splitting apparatus, light-splitting system, passive optical network and optical fiber fault detection method
US18/472,596 US20240014896A1 (en) 2021-03-26 2023-09-22 Optical splitting apparatus, optical splitting system, passive optical network, and optical fiber fault detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110328513.5A CN115133982A (zh) 2021-03-26 2021-03-26 分光装置、分光系统、无源光网络和光纤故障检测方法
CN202110328513.5 2021-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/472,596 Continuation US20240014896A1 (en) 2021-03-26 2023-09-22 Optical splitting apparatus, optical splitting system, passive optical network, and optical fiber fault detection method

Publications (1)

Publication Number Publication Date
WO2022199572A1 true WO2022199572A1 (zh) 2022-09-29

Family

ID=83373791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082237 WO2022199572A1 (zh) 2021-03-26 2022-03-22 分光装置、分光系统、无源光网络和光纤故障检测方法

Country Status (4)

Country Link
US (1) US20240014896A1 (zh)
EP (1) EP4300847A1 (zh)
CN (1) CN115133982A (zh)
WO (1) WO2022199572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333616A (zh) * 2022-10-17 2022-11-11 中兴通讯股份有限公司 光纤错连的检测方法、装置、存储介质及电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291176A (zh) * 2007-04-18 2008-10-22 华为技术有限公司 一种光分布网络的故障检测方法、系统及装置
JP2010185762A (ja) * 2009-02-12 2010-08-26 Sumitomo Electric Ind Ltd 光線路監視システム
CN102111218A (zh) * 2009-12-25 2011-06-29 华为技术有限公司 分支光纤故障检测方法、装置及系统
CN102377486A (zh) * 2011-11-23 2012-03-14 烽火通信科技股份有限公司 一种监测pon光链路中非反射型故障的系统和方法
CN103222206A (zh) * 2012-10-31 2013-07-24 华为技术有限公司 分支光纤的故障检测方法、装置及系统
CN105871457A (zh) * 2016-05-10 2016-08-17 中国科学院半导体研究所 光时域反射计系统及其测量使用方法
US20180109313A1 (en) * 2012-06-27 2018-04-19 Centurylink Intellectual Property Llc Use of Dying Gasp to Locate Faults in Communications Networks
CN110661569A (zh) * 2018-06-28 2020-01-07 中兴通讯股份有限公司 光纤故障定位的方法、设备和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291176A (zh) * 2007-04-18 2008-10-22 华为技术有限公司 一种光分布网络的故障检测方法、系统及装置
JP2010185762A (ja) * 2009-02-12 2010-08-26 Sumitomo Electric Ind Ltd 光線路監視システム
CN102111218A (zh) * 2009-12-25 2011-06-29 华为技术有限公司 分支光纤故障检测方法、装置及系统
CN102377486A (zh) * 2011-11-23 2012-03-14 烽火通信科技股份有限公司 一种监测pon光链路中非反射型故障的系统和方法
US20180109313A1 (en) * 2012-06-27 2018-04-19 Centurylink Intellectual Property Llc Use of Dying Gasp to Locate Faults in Communications Networks
CN103222206A (zh) * 2012-10-31 2013-07-24 华为技术有限公司 分支光纤的故障检测方法、装置及系统
CN105871457A (zh) * 2016-05-10 2016-08-17 中国科学院半导体研究所 光时域反射计系统及其测量使用方法
CN110661569A (zh) * 2018-06-28 2020-01-07 中兴通讯股份有限公司 光纤故障定位的方法、设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333616A (zh) * 2022-10-17 2022-11-11 中兴通讯股份有限公司 光纤错连的检测方法、装置、存储介质及电子装置
CN115333616B (zh) * 2022-10-17 2023-02-24 中兴通讯股份有限公司 光纤错连的检测方法、装置、存储介质及电子装置

Also Published As

Publication number Publication date
CN115133982A (zh) 2022-09-30
EP4300847A1 (en) 2024-01-03
US20240014896A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
CN102714545B (zh) 光收发模块、无源光网络系统、光纤检测方法和系统
US8948589B2 (en) Apparatus and method for testing fibers in a PON
KR100663462B1 (ko) 수동형 광 가입자 망
TWI406526B (zh) 用於光網路監控及錯誤檢測之光信號切換模組
CN101442691B (zh) 基于无源光网络系统的光缆监测系统
CN105451840B (zh) 一种光时域反射仪实现装置及系统
TWI466466B (zh) 具雙向性之多波長路由與放大模組
EP2602946B1 (en) Single-fiber bi-directional optical module and passive optical network system
WO2012097554A1 (zh) 光线路终端、无源光网络系统及光信号的传输方法
WO2012065459A1 (zh) 无源光网络光纤故障的检测系统和方法
CN101964682A (zh) 分布式光纤故障定位方法和系统
WO2013097785A1 (zh) 一种光纤故障检测方法及装置
US20240014896A1 (en) Optical splitting apparatus, optical splitting system, passive optical network, and optical fiber fault detection method
CN102684779A (zh) 集中测量装置、故障监控方法和系统
WO2014067094A1 (zh) 分支光纤的故障检测方法、装置及系统
CN102388549B (zh) 无源光网络中光纤链路的检测方法、系统和装置
CN104205676B (zh) 光线路终端、光收发模块、系统以及光纤检测方法
CN107078793B (zh) 一种光纤故障诊断方法、装置及系统
Urban et al. OTM-and OTDR-based cost-efficient fiber fault identification and localization in passive optical network
CN104009794A (zh) 无源光网络光纤的故障检测方法及装置
WO2011153840A1 (zh) 长距无源光网络中实现光线路检测的方法及装置
CN104009796B (zh) 一种无源光网络光纤故障检测方法及系统
WO2013082771A1 (zh) 光纤链路检测方法、光线路终端和无源光网络系统
CN202050416U (zh) Olt模块用单光纤双向光收发一体组件
KR102093444B1 (ko) 반사 손실 측정을 이용한 광통신 회선 검사기 및 검사 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022774228

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022774228

Country of ref document: EP

Effective date: 20230925

NENP Non-entry into the national phase

Ref country code: DE