WO2008047914A1 - Agent anticancéreux comprenant un anticorps anti-hb-egf en tant qu'ingrédient actif - Google Patents

Agent anticancéreux comprenant un anticorps anti-hb-egf en tant qu'ingrédient actif Download PDF

Info

Publication number
WO2008047914A1
WO2008047914A1 PCT/JP2007/070466 JP2007070466W WO2008047914A1 WO 2008047914 A1 WO2008047914 A1 WO 2008047914A1 JP 2007070466 W JP2007070466 W JP 2007070466W WO 2008047914 A1 WO2008047914 A1 WO 2008047914A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
seq
egf
chain
amino acid
Prior art date
Application number
PCT/JP2007/070466
Other languages
English (en)
French (fr)
Inventor
Naoki Kimura
Original Assignee
Forerunner Pharma Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forerunner Pharma Research Co., Ltd. filed Critical Forerunner Pharma Research Co., Ltd.
Priority to CA002666809A priority Critical patent/CA2666809A1/en
Priority to US12/311,950 priority patent/US9023993B2/en
Priority to EP07830200.7A priority patent/EP2093237B1/en
Priority to AU2007311946A priority patent/AU2007311946A1/en
Priority to JP2008539888A priority patent/JP5676849B2/ja
Publication of WO2008047914A1 publication Critical patent/WO2008047914A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • Cancer therapeutic agent containing anti-HB-EGF antibody as active ingredient containing anti-HB-EGF antibody as active ingredient
  • the present invention relates to a method for treating cancer and an anticancer agent.
  • H mark-HGF-EGF Heparin-binding epidermal growth factor-like growth factor
  • EGF ligand family Knockout mice lacking the HB-EGF gene exhibit extremely severe phenotypes such as cardiac dysfunction with cardiac hypertrophy, and die immediately after birth (Non-patent Document 1). This indicates that HB-EGF is deeply involved in the formation of the embryonic heart.
  • Non-patent Document 2 Even in adults, its expression is distributed in a relatively wide range of tissues such as lung, heart, brain, and skeletal muscle, and HB-EGF is strong in fetal life. Even adults play an extremely important role in the maintenance of biological functions!
  • HB-EGF is a membrane type HB-EGF (hereinafter referred to as proHB-EGF) expressed on the cell surface of cells that express HB-EGF, and cells. It exists as two different structures of secreted HB-EGF (hereinafter referred to as sHB-EGF or active HB-EGF) that are released from the body.
  • Figure 1 shows a schematic diagram of the structures of proHB-EGF and sHB-EGF.
  • the pro-HB-EGF precursor protein consists of 208 amino acids, and is composed of N-terminal signal peptide, propeptide, heparin-binding domain, EGF-like domain, Jackson membrane domain, transmembrane domain, and intracellular domain.
  • proHB-EGF is expressed as a type 1 membrane protein.
  • proHB-EGF is then subjected to protease digestion called ectodomain shedding and excised extracellularly as sHB-EGF consisting of 73 to 87 amino acid residues.
  • This sHB-EGF is composed of only two domains, a heparin-binding domain and an EGF-like domain, and binds to EGF receptor (Herl) and EGF receptor 4 (Her4) as active ligands.
  • Non-Patent Document 4 Cells that have been mutated at the site undergoing ectodomain shedding and expressed only proHB-EGF are markedly reduced in proliferative capacity.
  • Transgenic mice that express only proHB-EGF show the same expression system as HB-EGF knockout mice. It is considered that these functions and the function of HB-EGF as a growth factor are mainly V-secreted HB-EGF! / (Non-patent Documents 5 and 6).
  • proHB-EGF also has a unique function different from sHB-EGF in vivo.
  • proHB-EGF functions as a receptor for diphtheria toxin (DT) (Non-patent Documents 7 and 8).
  • DT diphtheria toxin
  • HB-EGF as a ligand for EGFR is known to transmit the exact opposite signal between proHB-EGF, which is a membrane type, and sHB-EGF, which is a secreted type! / (Non-Patent Documents 5 and 8).
  • HB-EGF has an activity of strongly promoting cell proliferation, cell motility, and invasion against various cell lines such as cancer cells. Furthermore, the expression of HB-EGF has increased in a wide range of cancer types such as presumptive cancer, liver cancer, esophageal cancer, melanoma, colon cancer, stomach cancer, ovarian cancer, bladder cancer, and brain tumor compared to normal tissues, From this, HB-EGF is strongly involved in the growth / malignant transformation of cancer! /, And its ability to be revealed S /! (Non-patent Documents 4 and 10).
  • Non-patent Document 11 the effect of suppressing DNA synthesis on 3T3 cells
  • Non-patent Document 12 the effect of inhibiting proliferation of keratinocytes
  • Non-patent Document 13 Dario Proliferation inhibitory effects on single cells
  • Non-patent Documents 14 DNA synthesis inhibitory effects on myeloma cells
  • CRM197 attenuated diphtheria toxin
  • Xenodara transplanted with ovarian cancer cell line In a drug efficacy test using a mouse model (xenograft), a superior tumor reduction effect was confirmed in the CRM197 administration group (Non-patent Document 15), and clinical trials using CRM 197 were also conducted in cancer patients. ! /, Ru (non-patent document 6).
  • HB-EGF is useful as a target molecule for anticancer agents, and in fact, pharmaceutical efficacy tests of HB-EGF inhibitor molecules such as CRM197 have been conducted so far!
  • CRM197 is a toxin that does not exist in the human body. Therefore, in the clinical use of CRM197 itself, not only its toxic power but also antigenicity is considered to be a very big issue.
  • neutralizing antibodies that can inhibit the activity of HB-EGF have actually existed for a long time, but they are polyclonal antibodies purified from goat antiserum and are not clinically used. Is possible. Therefore, there is a need in the medical field for HB-EGF-neutralizing monoclonal antibodies that have high neutralizing activity and can achieve humanization and high productivity necessary for clinical application.
  • HB-EG F is proHB-EGF, which is an HB-EGF protein on the cell surface of cells expressing HB-EGF. also expressed in a wide variety of normal tissues in vivo! /, from Rukoto, antibody and antibody-dependent cellular cytotoxicity by the action of effector cells (antibody dependent cell-mediated Cytoto xicity 0 hereinafter referred ADCC activity and fingers.)
  • ADCC activity and fingers antibody dependent cell-mediated Cytoto xicity 0 hereinafter referred ADCC activity and fingers.
  • ADCC activity and fingers There are concerns about toxicity such as complement-dependent cytotoxic activity (Complement Dentent Cytotoxicity 0 or less, referred to as CDC activity).
  • CDC activity complement-dependent cytotoxic activity
  • problems such as a decrease in blood concentration caused by antibody absorption in normal tissues and a decrease in antibody tumor accumulation efficiency are issues to be cleared.
  • Patents l3 ⁇ 4 l Iwamoto R, Yamazaki S, Asakura M et al. Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc Natl Acad Sci USA 2003; 100: 3221-6.
  • Non-Patent Document 2 Abraham JA, Damm D, Bajardi A, Miller J, lagsbrun M, Ezekowitz RA.Heparin-binding EGF_like growth factor: characterization of rat and mouse cDNA clones, rotein domain conservation across species, and transcript expr ession in tissues.Biochem Biophys Res Commun 1993; 190: 125—33.
  • Non-Patent Document 3 Karen M., Frontiers in Bioscinece 3,288-299, 1998
  • Non-Patent Document 4 Raab G, lagsbrun M. Heparin-binding EGF-like growth factor. Biochem Biophys Acta 1997; 1333: F179_99.
  • Non-Patent Document 5 Yamazaki S, Iwamoto R, Saeki et al. Mice with defects in HB- EGF ectodomain shedding show severe developmental abnormalities. J Cell Biol 2003; 163: 469-75.
  • Non-Patent Document 6 Ongusaha P., Cancer Res (2004) 64,5283-5290.
  • Non-Patent Document 7 Iwamoto R., Higashiyama S., EMBO J. 13, 2322-2330. (1994)
  • Non-Patent Document 8 Naglich JG., Metherall JE., Cell 69, 1051-1061. (1992)
  • Non-Patent Document 9 Iwamoto R, Handa, Mekada E. Contact-dependent growth inhibit ion and apoptosis of epidermal growth factor (EGF) receptor-expressing cell s by the membrane-anchored form of heparin-binding EGF-like growth facto rJ Biol Chem 1999; 274: 25906-12.
  • EGF epidermal growth factor
  • Non-Patent Document 10 Miyamoto S, Cancer Sci. 97, 341-347 (2006)
  • Non-patent literature l l Blotnick S., Proc. Natl. Acad. Sci. USA (1994) 91, 2890-2894
  • Non-patent literature 12 Hashimoto., J. Biol. Chem. (1994) 269, 20060-20066.
  • Non-Patent Document 13 Mishima., Act Neuropathol. (1998) 96,322-328
  • Non-Patent Document 14 Wang YD. Oncogene (2002) 21,2584-2592.
  • Non-Patent Document 15 Miyamoto S., Cancer Res. (2004) 64,5720- Non-Patent Document 16: Buzzi S., Cancer Immunol Immunother (2004) 53, 1041-1048. Disclosure of the Invention
  • An object of the present invention is to provide an anti-HB-EGF antibody and its use. More specifically, the present invention provides a novel method for treating cancer using an anti-HB-EGF antibody, a novel cell growth inhibitor and anticancer agent containing an anti-HB-EGF antibody, and a novel anti-HB-EGF antibody. the purpose And
  • the present inventor has found that an antibody having neutralizing activity against HB-EGF highly expressed in cancer cells significantly inhibits the proliferation activity of cancer cells. Furthermore, it has been found that the antibody having neutralizing activity does not bind to the HB-EGF protein on the cell surface of cells expressing HB-EGF. Furthermore, based on the above findings, the present inventor has found that anti-HB-EGF antibodies are effective for the treatment of ovarian cancer and other cancers in which expression of HB-EGF is enhanced, and completed the present invention. .
  • the present inventors immunized mice with HB-EGF protein, and obtained monoclonal antibodies that inhibit the ability of HB-EGF to induce cell proliferation, which has been reported so far.
  • the inventor did not bind to proHB-EGF, which is an HB-EGF protein on the cell surface of cells that express the neutralizing antibody strength HB-EGF obtained, but from cells expressing HB-EGF. It was clarified that only the secreted HB-EGF (sHB-EGF) present in free form has binding activity.
  • the problems to be solved such as toxicity, such as ADCC activity and CDC activity caused by the antibody, and blood concentration (decrease in the tumor accumulation rate), which were the conventional problems, have been solved. It was.
  • the present application provides the monoclonal antibody described in any of [1] to [29] below and a low molecular weight antibody thereof.
  • An antibody comprising an H chain having the amino acid sequence shown in SEQ ID NO: 2 as CDR1, the amino acid sequence shown in SEQ ID NO: 4 as CDR2, and the amino acid sequence shown in SEQ ID NO: 6 as CDR3,
  • An antibody comprising an H chain having the amino acid sequence IJ described in SEQ ID NO: 22 as CDR1, the amino acid sequence described in SEQ ID NO: 24 as CDR2, and the amino acid sequence described in SEQ ID NO: 26 as CDR3,
  • An antibody comprising an L chain having the amino acid sequence shown in SEQ ID NO: 30 as CDR1, the amino acid sequence shown in SEQ ID NO: 32 as CDR2, and the amino acid sequence shown in SEQ ID NO: 34 as CDR3,
  • An antibody comprising an H chain having the amino acid sequence of SEQ ID NO: 36 as CDR1, the amino acid sequence of SEQ ID NO: 38 as CDR2, and the amino acid sequence of SEQ ID NO: 40 as CDR3,
  • An antibody comprising an L chain having the amino acid sequence shown in SEQ ID NO: 42 as CDR1, the amino acid sequence shown in SEQ ID NO: 44 as CDR2, and the amino acid sequence shown in SEQ ID NO: 46 as CDR3,
  • an antibody comprising the L chain according to [22], wherein the L chain has the amino acid sequence of SEQ ID NO: 20 as CL;
  • the present invention relates to the monochroma according to the above [1] to [29], which is an antibody that does not bind to the HB-EGF protein on the cell surface of the cell expressing HB-EGF represented by SEQ ID NO: 59 Antibody.
  • the cell expressing HB-EGF represented by SEQ ID NO: 59 is selected from RMG-1 or any of Ba / F3, DG44 or SKOV-3 that recombinantly express HB-EGF represented by SEQ ID NO: 59.
  • the monoclonal antibody according to the above [1] to [29] which is an antibody that does not bind to the cell.
  • the present invention provides a cancer therapeutic agent comprising as an active ingredient an antibody that binds to HB-EGF protein.
  • the antibody that binds to the HB-EGF protein is an antibody having neutralizing activity. More preferably, the antibody having neutralizing activity is an antibody that does not bind to cells expressing HB-EGF.
  • the cancer is spleen cancer, liver cancer, esophageal cancer, melanoma. Noroma, colon cancer, stomach cancer, ovarian cancer, bladder cancer or brain tumor. Particularly preferred is ovarian cancer.
  • the present invention provides a method for inhibiting the growth of a cell expressing HB-EGF protein by contacting the HB-EGF-expressing cell with an antibody that binds to HB-EGF protein.
  • the antibody that binds to the HB-EGF protein is an antibody having neutralizing activity.
  • the cell expressing HB-EGF protein is a cancer cell.
  • HB-EGF protein By using the antibody specific for HB-EGF protein according to the present invention, not only ovarian cancer that expresses HB-EGF protein, but also spleen cancer cells, liver cancer cells, and esophagus that express HB-EGF protein. It can be used as a cytotoxic agent or cytostatic agent for various cancer cells such as cancer cells, melanoma cells, colon cancer cells, gastric cancer cells, bladder cancer cells or brain tumor cells.
  • the anti-HB-EGF antibody having cytotoxic activity according to the present invention may be used for various cancers such as ovarian cancer, spleen cancer, liver cancer, esophageal cancer, melanoma, colon cancer, stomach cancer, bladder cancer or brain tumor. It can be used as a therapeutic drug for
  • the gene encoding the antibody according to the present invention and the recombinant cell transformed with the gene may be used to produce a recombinant antibody exhibiting the effects described above and more preferable effects. Can be used.
  • FIG. 1 is a diagram schematically showing the structures of proHB-EGF, sHB-EGF and HB-EGF-Fc used as an immunogen.
  • FIG. 2a is a diagram schematically showing the effect of HB-EGF binding to EGFR-BaF3 cells on the cells.
  • FIG. 2b is a graph showing concentration-dependent proliferation of EGFR-BaF3 cells against HB-EGF.
  • FIG. 3a Neutralizing activity of various HB-EGF antibodies (HA-1, HA-3, HA-9, HA-10 and HA-20) against HB-EGF-dependent proliferation of EGFR—Ba / F3 cells It is a graph to show.
  • Figure 3b Various HB-EGF antibodies against HB-EGF-dependent proliferation of EGFR—Ba / F3 cells (HB
  • FIG. 4 is a comparison of the sequence of the variable region of each HB-EGF neutralizing antibody.
  • FIG. 5 is a graph showing the binding activity of antibodies HA-20, HB-20 and HC15 to active HB-EGF.
  • FIG. 6 is a histogram showing the binding activity of antibodies HA-20, HB-20 and HC15 to proHB-EGF.
  • FIG. 7 is a diagram schematically showing a state in which the binding of HB-EGF and EGFR is inhibited on the solid phase by the HB-EGF antibody.
  • FIG. 8 is a diagram schematically showing an analysis model of the binding mode of EGFR and HB-EGF by ELISA.
  • FIG. 9 is a graph showing a concentration curve of HB-EGF detected by an analysis model of the binding mode between EGFR and HB-EGF by ELISA.
  • FIG. 10 is a graph showing inhibition of HB-EGF binding to EGFR by antibodies HA-20, HB-20, and HC15.
  • FIG. 11 is a graph comparing the growth inhibition of EGFR-Ba / F3 cells by antibodies HA-20, HB-20 and HC15.
  • FIG. 12a is a graph showing growth inhibition of ovarian cancer cell line RMG-1 by antibodies HA-20, HB-20 and HC15 in a medium in the presence of 8% FCS.
  • FIG. 12b is a graph showing growth inhibition of ovarian cancer cell line RMG-1 by antibodies HA-20, HB-20 and HC15 in a medium in the presence of 2% FCS.
  • HB-EGF is a growth factor belonging to the EGF ligand family, and the gene sequence encoding human HB-EGF and the amino acid sequence of HB-EGF are GenBank accession numbers NM 001945 (SEQ ID NO: 59) and NP 001936 ( SEQ ID NO: 60). Book In the invention, the HB-EGF protein is meant to include both the full-length protein and fragments thereof. In the present invention, a fragment is a polypeptide containing an arbitrary region of HB-EGF protein in a broad sense, and may not have the function of natural HB-EGF protein.
  • the sHB-E GF used herein is expressed in vivo on the cell surface of a cell that expresses HB-EGF, and proHB-EGF is called ectodomain shedding It is a molecule consisting of 73 to 87 amino acid residues, produced as a result of protease digestion.
  • the 149th proline residue in the proHB-EGF molecule consisting of 208 amino acids represented by SEQ ID NO: 60 is used as the carboxyl terminus, the 63rd asparagine residue, the 73rd arginine residue, the 74th A plurality of sHB-EGF molecules having a palin residue or a 77th serine residue as an amino terminal in the structure are known.
  • the anti-HB-EGF antibody of the present invention is not particularly limited as long as it is a monoclonal antibody that specifically binds to the HB-EGF protein.
  • monoclonal antibodies derived from non-human animals eg, mouse antibodies, rat antibodies, camel antibodies
  • human antibodies that can be obtained by genetic engineering techniques
  • chimeric antibodies humanized antibodies, and the like
  • the anti-HB-EGF monoclonal antibody of the present invention can be obtained using known means.
  • a monoclonal antibody derived from a mammal is particularly preferable.
  • Mammal-derived monoclonal antibodies include those produced by Hypridoma and those produced by a host transformed with an expression vector containing an antibody gene by genetic engineering techniques.
  • Monoclonal Antibody-Producing Hybridoma Force Basically, a known technique can be used to produce a hybridoma.
  • HB-EGF protein is used as a sensitizing antigen and immunized according to the usual immunization method.
  • Immune cells obtained from the immunized animal are fused with known parental cells by a conventional cell fusion method to obtain cells and hybridomas.
  • a hybridoma producing an anti-HB-EGF antibody can be selected by screening cells producing the target antibody by a usual screening method.
  • the production of a monoclonal antibody is performed, for example, as shown below.
  • an HB-EGF protein used as a sensitizing antigen for antibody acquisition can be obtained.
  • the base sequence of the human HB-EGF gene is disclosed in GenBank accession number NM-001945 (SEQ ID NO: 59). That is, after inserting a gene sequence encoding HB-EGF into a known expression vector to transform an appropriate host cell, the target human HB-EGF protein is known from the host cell or culture supernatant. It can be purified by this method. Purified natural HB-EGF protein can also be used in the same manner.
  • a fusion protein obtained by fusing a desired partial polypeptide of HB-EGF protein with a different polypeptide can also be used as an immunogen.
  • an Fc fragment of an antibody, a peptide tag, or the like can be used.
  • a vector that expresses a fusion protein can be prepared by fusing genes encoding two or more desired polypeptide fragments in-frame and inserting the fusion gene into an expression vector as described above. it can.
  • a method for producing the fusion protein is described in Molecular Cloning 2nd ed. (Sambrookj. Et al., Molecular Cloning 2 ed., 9.47-9.58, Cold Spring Harbor Lab. Press, 1989).
  • the HB-EGF protein thus purified can be used as a sensitizing antigen used for immunization against mammals.
  • a partial peptide of HB-EGF can also be used as a sensitizing antigen.
  • the following peptides can be sensitized antigens:
  • Peptides obtained by degrading human HB-EGF protein with proteolytic enzymes are obtained by degrading human HB-EGF protein with proteolytic enzymes.
  • the region and size of HB-EGF used as a partial peptide are not limited.
  • the region is the amino acid sequence constituting the extracellular domain of HB-EGF (SEQ ID NO: 60 Amino acid sequence! /, 22-149th) You can choose your power.
  • the number of amino acids constituting the peptide to be sensitized antigen is at least 3 or more, for example, 5 or more, or 6 or more. More specifically, it is determined by using a peptide having 8 to 50, preferably 10 to 30 residues as a sensitizing antigen.
  • the mammal to be immunized with the sensitizing antigen is not particularly limited.
  • an immunized animal in consideration of compatibility with the parent cell used for cell fusion.
  • rodent animals are preferred as immunized animals. Specifically, it is possible to make mice, rats, mice, mussters, or rabbits immune animals. In addition, monkeys and the like can be used as immunized animals.
  • the animal can be immunized with the sensitizing antigen according to a known method.
  • a sensitizing antigen is administered to mammals several times every 4 to 21 days.
  • the sensitizing antigen is diluted with PBS (Phosphate-Buffered Saline) or physiological saline at an appropriate dilution ratio and used for immunization.
  • a sensitizing antigen can be administered with an adjuvant.
  • it can be mixed with Freund's complete adjuvant, emulsified, and used as a sensitizing antigen.
  • An appropriate carrier can be used for immunization with the sensitizing antigen.
  • a partial peptide having a small molecular weight is used as a sensitizing antigen, it is desirable to immunize the sensitizing antigen peptide by binding it to albumin or keyhole limpet with a carrier protein such as mosocyanin.
  • immune cells are collected from the mammal and subjected to cell fusion.
  • spleen cells can be used as preferred immune cells.
  • Mammalian myeloma cells are used as cells to be fused with the immune cells.
  • Myeloma cells preferably have an appropriate selectable marker for screening.
  • a selectable marker refers to a form that can (or cannot) survive under certain culture conditions.
  • Known selection markers include hypoxanthine-guanine phosphoribosyltransferase deficiency (hereinafter abbreviated as HGPRT deficiency) or thymidine kinase deficiency (hereinafter abbreviated as TK deficiency).
  • HGPRT deficiency hypoxanthine-guanine phosphoribosyltransferase deficiency
  • TK deficiency thymidine kinase deficiency
  • HAT sensitivity N
  • HGPRT-deficient and TK-deficient cells can be selected in a medium containing 6-thioguanine, 8-azaguanine (hereinafter abbreviated as 8AG), or 5 'bromodeoxyuridine, respectively.
  • 8AG 8-azaguanine
  • Normal cells take up these pyrimidine analogs in their DNA and therefore die.
  • Cells lacking these enzymes cannot take up these pyrimidine analogs and can survive in selective media.
  • a selectable marker called G418 resistance confers resistance to 2-deoxystreptamine antibiotics (gentamicin analogs) by neomycin resistance gene.
  • Various myeloma cells suitable for cell fusion are known. For example, the following myeloma cells can be used for the production of the monoclonal antibody of the present invention:
  • the cell fusion can be carried out in a normal nutrient culture medium in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) or the like can be used.
  • an auxiliary agent such as dimethyl sulfoxide can be added if desired.
  • the use ratio of immune cells and myeloma cells can be arbitrarily set. For example, the number of immune cells is preferably 1 to 10 times that of myeloma cells.
  • RPMI1640 culture solution suitable for the growth of the myeloma cell line MEM culture solution, and other normal culture solutions used for this kind of cell culture can be used. it can.
  • serum supplements such as fetal calf serum (FCS) can be added to the culture medium.
  • FCS fetal calf serum
  • Cell fusion is performed by mixing a predetermined amount of the immune cells and myeloma cells in the culture medium and mixing a PEG solution that has been heated to about 37 ° C in advance. (Nobridoma) is formed.
  • PEG having an average molecular weight of 1000 force and about 6000 can be added usually at a concentration of 30 to 60% (w / v).
  • cell fusion agents and the like unfavorable for the growth of the hyperidoma are removed by repeating the operation of adding the appropriate culture solution mentioned above successively, centrifuging and removing the supernatant.
  • the hyperidoma obtained as described above can be selected by using a selective culture solution corresponding to the selection marker possessed by the myeloma used for cell fusion.
  • a selective culture solution corresponding to the selection marker possessed by the myeloma used for cell fusion.
  • cells having HGPRT or TK deficiency can be selected by culturing in a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). That is, when HAT-sensitive myeloma cells are used for cell fusion, cells that have succeeded in cell fusion with normal cells can be selectively proliferated in the HAT medium. Cultivation using the HAT medium is continued for a sufficient period of time to kill cells (non-fusion cells) other than the desired hybridoma.
  • the desired hyperidoma can be selected by culturing for several days or several weeks. Subsequently, by carrying out a normal limiting dilution method, screening of a hybridoma producing the target antibody and single cloning can be performed.
  • an antibody that recognizes HB-EGF can be prepared by the method described in International Publication WO 03/104453.
  • Screening and single cloning of the target antibody can be preferably carried out by a screening method based on a known antigen-antibody reaction.
  • the antigen is bound to a carrier such as beads made of polystyrene or the like, or a commercially available 96-well microtiter plate, and reacted with the culture supernatant of the hybridoma.
  • a secondary antibody labeled with an enzyme is reacted. If it is intended to react with the sensitizing antigen in the culture supernatant When the body is included, the secondary antibody binds to the carrier via this antibody.
  • HB-EGF proteins that are practically homogeneous, including those used for immunization, can be preferably used as the antigen.
  • an extracellular domain of HB-EGF or an oligopeptide consisting of a partial amino acid sequence constituting the region can be used as an antigen.
  • a target antibody can be obtained by sensitizing human lymphocytes with an antigen.
  • human lymphocytes are first sensitized with HB-EGF protein in vitro.
  • the immunized lymphocytes are then fused with an appropriate fusion partner.
  • the fusion partner for example, a myeloma cell derived from a human and having a permanent division ability can be used (see Japanese Patent Publication No. 1-59878).
  • the anti-HB-EGF antibody obtained by this method is a human antibody having binding activity to HB-EG F protein.
  • an anti-HB-EGF human antibody can be obtained by administering an HB-EGF protein as an antigen to a transgenic animal having all repertoires of human antibody genes.
  • Antibody-producing cells of the immunized animal can be immortalized by treatment such as cell fusion with an appropriate fusion partner or Epstein-Barr virus infection.
  • Human antibodies against the HB-EGF protein can also be isolated from the immortalized cells thus obtained (see International Publications W094 / 25585, W093 / 12227, WO92 / 03918, WO94 / 0 2602). Further, by cloning the immortalized cells, it is possible to clone cells that produce an antibody having the desired reaction specificity.
  • the immune system of the animal recognizes human HB-EGF as a foreign substance. Therefore, a human antibody against human HB-EGF can be easily obtained.
  • the hyperidoma producing the monoclonal antibody thus produced can be subcultured in a normal culture solution.
  • the hybridoma can be stored for a long time in liquid nitrogen.
  • the hypridoma is cultured according to a usual method, and the desired product is obtained from the culture supernatant.
  • hyperpridoma can be administered to a mammal that is compatible therewith to proliferate, and monoclonal antibodies can be obtained as its ascites.
  • the former method is suitable for obtaining a highly pure antibody.
  • an antibody encoded by an antibody gene cloned from an antibody-producing cell can also be used.
  • the cloned antibody gene can be expressed as an antibody by inserting it into a suitable vector and introducing it into a host. Methods for isolating antibody genes, introducing them into vectors, and transforming host cells have already been established (eg, Vandamme, A. Met al., Eur. J. Biochem. (1990) 192,767 -775).
  • cDNA encoding a variable region (V region) of an anti-HB-EGF antibody can be obtained from a hybridoma cell that produces the anti-HB-EGF antibody.
  • total RNA is first extracted from the hyperidoma.
  • a method for extracting mRNA from cells for example, the following method can be used:
  • the extracted mRNA can be purified using an mRNA Purification Kit (manufactured by GE Healthcare Bioscience) or the like.
  • kits for extracting total mRNA directly from cells such as QuickPrep mRNA Purification it (manufactured by GE Healthcare Bioscience), are also commercially available. Using such a kit, total mRNA can also be obtained from Hypridoma. It is possible to synthesize cDNA encoding the antibody V region from the obtained mRNA using reverse transcriptase. cDNA can be synthesized by AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (manufactured by Seikagaku Corporation).
  • the target cDNA fragment is purified from the obtained PCR product and linked to the vector DNA using the following! / Tied.
  • a recombinant vector is produced, introduced into Escherichia coli or the like and a colony is selected, a desired recombinant vector can be prepared from Escherichia coli that has formed the colony.
  • Whether or not the recombinant vector has the target cDNA base sequence can be confirmed by a known method such as the dideoxynucleotide chain termination method.
  • a PCR method using primers for variable region gene amplification can also be used.
  • cDNA is synthesized using the extracted mRNA as a saddle shape to obtain a cDNA library. It is convenient to use a commercially available kit for the synthesis of the cDNA library. Actually, the amount of mRNA obtained from only a few cells is extremely small, and the yield is low if it is purified directly. Therefore, it is usually purified after adding carrier RNA that is apparently free of antibody genes. Alternatively, if a certain amount of RNA can be extracted, it is possible to efficiently extract only the RNA of antibody-producing cells. For example, carrier RNA may not be required for RNA extraction from 10 or more, or 30 or more, preferably 50 or more antibody-producing cells.
  • An antibody gene is amplified by PCR using the obtained cDNA library as a saddle.
  • Primers for amplifying antibody genes by PCR are known.
  • primers for human antibody gene amplification can be designed based on the disclosure of a paper (J. Mol. Biol. (1991) 222, 581-597). These primers have different nucleotide sequences for each immunoglobulin subclass. Therefore, when using a cDNA library whose subclass is unknown as a vertical type, PCR should be performed in consideration of all possibilities.
  • a ply capable of amplifying genes encoding ⁇ 1 to ⁇ 5 as the heavy chain and ⁇ chain and ⁇ chain as the light chain. Mer can be used.
  • a primer that anneals to the region corresponding to the hinge region is generally used as the 3 'primer.
  • primers suitable for each subclass can be used as the 5 ′ primer.
  • PCR products using primers for gene amplification of each subclass of heavy chain and light chain should be independent libraries.
  • library synthesized in this way heavy chain and light chain Immunoglobulin consisting of the combination can be reconstituted.
  • binding activity of the reconstituted immunoglobulin to HB-EGF as an index the ability to screen for the antibody of interest is determined by S.
  • the binding of the antibody of the present invention to HB-EGF is more preferably specific.
  • Antibodies that bind to HB-EG F can be screened, for example, as follows.
  • Methods for detecting the binding between an antibody and HB-EGF are known. Specifically, the test antibody is reacted with HB-EGF immobilized on a carrier, and then a labeled antibody that recognizes the antibody is reacted. If the labeled antibody on the carrier is detected after washing, the binding of the test antibody to HB-EGF can be proved.
  • an enzyme active protein such as peroxidase or / 3-galactosidase, or a fluorescent substance such as FITC can be used.
  • a fixed specimen of cells expressing HB-EGF can also be used.
  • a vanning method using a phage vector can also be used.
  • the antibody gene is obtained as a library of heavy and light chain subclasses as described above, a screening method using a phage vector is advantageous.
  • a gene encoding the variable region of the heavy chain and light chain can be made into a single chain Fv (scFv) by ligating with an appropriate linker sequence. If a gene encoding scFv is inserted into a phage vector, a phage that expresses scFv on the surface can be obtained.
  • the DNA encoding scFv having the target binding activity can be recovered.
  • scFv having the desired binding activity can be concentrated.
  • the polynucleotide encoding the antibody may encode the full length of the antibody, or may encode a part of the antibody.
  • a part of an antibody refers to any part of an antibody molecule.
  • an antibody fragment may be used as a term indicating a part of an antibody. is there.
  • a preferred antibody fragment in the present invention contains a complementarity determination region (CDR) of an antibody. More preferably, the antibody fragment of the present invention comprises all three CDRs constituting the variable region.
  • CDR complementarity determination region
  • the cDNA is digested with a restriction enzyme that recognizes restriction enzyme sites inserted at both ends of the cDNA.
  • a preferred restriction enzyme recognizes and digests a base sequence that is unlikely to appear in the base sequence constituting the antibody gene.
  • a restriction enzyme that provides a sticky end is preferred.
  • An antibody expression vector can be obtained by inserting a cDNA encoding the V region of the anti-HB-EGF antibody digested as described above into an appropriate expression vector.
  • a chimeric antibody can be obtained by fusing the gene encoding the antibody constant region (C region) and the gene encoding the V region in-frame.
  • the chimeric antibody means that the organism derived from the constant region and the variable region are different.
  • a heterologous chimeric antibody such as mouse-human
  • a human mono-human homologous chimeric antibody is also included in the chimeric antibody of the present invention.
  • a chimeric antibody expression vector is constructed by inserting the V region gene into an expression vector having a constant region in advance.
  • a restriction enzyme recognition sequence of a restriction enzyme that digests the V region gene is placed on the 5 'side of an expression vector holding a DNA encoding a desired antibody constant region (C region) IJ. Can be placed.
  • a chimeric antibody expression vector is constructed by digesting the two with the same combination of restriction enzymes and fusing them in an in-frame.
  • an antibody gene can be incorporated into an expression vector so as to be expressed under the control of an expression control region.
  • An expression control region for expressing an antibody includes, for example, an enhancer promoter. Subsequently, by transforming an appropriate host cell with this expression vector, a recombinant yarn-encapsulating bag expressing DNA encoding the anti-HB-EGF antibody is obtained with the ability S.
  • DNAs encoding an antibody heavy chain (H chain) and a light chain (L chain) can be incorporated into separate expression vectors. By co-transfecting the same host cell with a beta-incorporated vector containing H and L chains, the H and L chains are transformed. The provided antibody molecule can be expressed. Alternatively, host cells may be transformed by incorporating DNAs encoding H and L chains into a single expression vector (see International Publication W 094/11523).
  • a host and an expression vector for producing an antibody by once isolating an antibody gene and introducing it into a suitable host are known. Any of these expression systems can be applied to the present invention.
  • animal cells, plant cells, or fungal cells can be used.
  • animal cells that can be used in the present invention include the following cells:
  • Mammalian cells CHO, COS, myeloma, BH (baby hamster kidney), Hela, Vero, etc .;
  • a plant cell an antibody gene expression system using cells derived from the genus Nicotiana such as Nicotiana tabacum is known. Callus cultured cells can be used for transformation of plant cells.
  • fungal cells the following cells can be used:
  • Yeast Pichiafe such as Saccharomyces serevisiae (Saccharomyces serevisiae), Saccharomyces J ⁇ , Phenoa pastoris;
  • Filamentous fungi Aspergill us, such as Aspergillus niger.
  • antibody gene expression systems utilizing prokaryotic cells are also known.
  • bacterial cells such as E. coli and Bacillus subtilis can be used in the present invention.
  • promoter / enhancer can be exemplified by human cytomegalovirus immediate early promoter / enhancer.
  • promoters / enhancers that can be used for the expression of the antibody of the present invention include viral promoters / enhancers or promoters / hennos derived from mammalian cells such as human longion factor 1a (HEF1 ⁇ ), Sensor etc.
  • viruses that can use the promoter / enhancer include retrovirus, poliovirus, adenovirus, and simian virus 40 (SV40).
  • the method of Mulligan et al. (Nature (197 9) 277, 108) can be used.
  • the HEF1 ⁇ promoter / enhancer can be easily used for the expression of the target gene by the method of Mizushima et al. (Nucleic Acids Res. (1990) 18,5322).
  • the gene can be expressed by functionally combining a useful promoter commonly used, a signal sequence for antibody secretion, and an antibody gene to be expressed.
  • promoters include lacZ promoter and araB promoter.
  • the method of Ward et al. (Nature (1989) 341, 544-546; FA SEBJ. (1992) 6,2422-2427) can be used.
  • the araB promoter can be used to express the target gene by the method of Better et al. (Science (1988) 240, 1041-1043).
  • a pelB signal sequence (Lei, S.P. et al. J. Bacteriol. (1987) 169, 4379) may be used when it is produced in the periplasm of E. coli. Then, after separating the antibody produced in the periplasm, the structure of the antibody is refolded so as to have the desired binding activity by using a protein denaturant such as guanidine hydrochloride of urea.
  • replication origin inserted into the expression vector those derived from SV40, poliovirus, adenovirus, ushipapilloma virus (BPV) and the like can be used. Furthermore, it is possible to insert a selection marker into the expression vector to amplify the gene copy number in the host cell system. Specifically, the following selection markers can be used. Aminoglycoside transferase (APH) gene,
  • Thymidine kinase (TK) gene Thymidine kinase (TK) gene, E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase (dhfr) gene, etc.
  • TK Thymidine kinase
  • Ecogpt E. coli xanthine guanine phosphoribosyltransferase
  • dhfr dihydrofolate reductase
  • These expression vectors are introduced into host cells, and the transformed host cells are cultured in vitro or in vivo to produce the desired antibody.
  • Host cells are cultured according to known methods. For example, DMEM, MEM, RPMI1640, IMDM can be used as the culture medium, and serum supplements such as fetal calf serum (FCS) can be used in combination.
  • FCS fetal calf serum
  • the antibody expressed and produced as described above can be purified by using a known method used in normal protein purification alone or in combination as appropriate. For example, Afi two Tee columns such as protein A column, chromatography column, filtration, ultrafiltration, salting out, appropriately selecting the dialysis, by combining the antibody separation, can be force s purified (in Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988).
  • transgenic animals can also be used for production of recombinant antibodies. That is, the antibody can be obtained from an animal into which a gene encoding the target antibody has been introduced.
  • an antibody gene can be constructed as a fusion gene by inserting it in-frame into a gene encoding a protein produced specifically in milk.
  • a protein secreted in milk for example, goat 13 casein can be used.
  • the DNA fragment containing the fusion gene inserted with the antibody gene is injected into a goat embryo, and the injected embryo is introduced into a female goat.
  • the desired antibody can be obtained as a fusion protein with milk protein from the milk produced by Transgenic goats (and their descendants) born from the goat that received the embryo.
  • hormones can be used as appropriate in Transgene goats to increase the amount of milk containing the desired antibody produced from transgenic goats (Ebert, K. Met al., Bio / Technology (1994) 12 699-702).
  • An animal antibody-derived C region can be used as the C region of the recombinant antibody of the present invention.
  • C ⁇ 1, C ⁇ 2a, C ⁇ 2b, C ⁇ 3, C ⁇ , C ⁇ , C ⁇ 1, C ⁇ 2, C ⁇ force L chain C region C ⁇ and C ⁇ can be used.
  • animal antibodies such as rat, rabbit, goat, hidge, latada, monkey and the like can be used as animal antibodies other than mouse antibodies.
  • an antibody when administered to a human, it can be a gene recombinant antibody that has been artificially modified for the purpose of, for example, reducing the heterologous antigenicity to humans.
  • the recombinant antibody includes, for example, a chimeric antibody and a humanized antibody.
  • modified antibodies can be produced using known methods.
  • a chimeric antibody refers to an antibody in which different variable regions and constant regions derived from each other are linked. For example, a mouse antibody heavy chain and light chain variable region and a human antibody heavy chain and light chain constant region antibody are mouse-human-heterologous chimeric antibodies.
  • a recombinant vector that expresses a chimeric antibody can be produced by linking DNA encoding the variable region of a mouse antibody to DNA encoding the constant region of a human antibody and incorporating it into an expression vector.
  • the chimeric antibody produced in the culture can be obtained by culturing recombinant cells transformed with the vector and expressing the incorporated DNA.
  • human antibodies are used for the C region of chimeric and humanized antibodies.
  • human antibodies are used in the H chain.
  • 1, 2, 3, C y 4, C ⁇ , C a 1, C a 2, and C ⁇ can be used as a C region for IJ.
  • C ⁇ and C ⁇ can be used as the C region.
  • the amino acid arrangement IJ of these C regions and the base sequences encoding them are known.
  • the human antibody C region can be modified to improve the antibody itself or the stability of antibody production.
  • a chimeric antibody is composed of a V region of an antibody derived from a non-human animal and a C region derived from a human antibody.
  • humanized antibodies are derived from complementarity determining regions (CDRs) of non-human animal-derived antibodies, framework regions (FR) and human antibody-derived framework regions derived from rabbit antibodies. C area and force. Since humanized antibodies have reduced antigenicity in the human body, they are useful as the active ingredient of the therapeutic agent of the present invention.
  • mouse-human chimeric antibodies are preferred as the monoclonal antibodies in the present invention. That is, the present invention provides a mouse-human chimeric monoclonal antibody comprising an H chain and an L chain comprising the following amino acid sequences.
  • H chain amino acid sequence of positions 1 to 330 in the amino acid sequence described in SEQ ID NO: 10
  • L chain amino acid sequence of positions 1 to 107 in the amino acid sequence described in SEQ ID NO: 20
  • variable region of an antibody is usually three complementarity-determining regions sandwiched between four frames (FR)
  • CDR complementarity-determining region
  • Humanized antibodies are also referred to as reshaped human antibodies.
  • non-human animals for example, humanized antibodies obtained by grafting mouse antibody CDRs to human antibodies are known.
  • General genetic recombination techniques for obtaining humanized antibodies are also known.
  • Overlap Extension PCR is known as a method for transplanting CDRs of mouse antibodies into human FRs.
  • the base sequence encoding the CDR of the mouse antibody to be transplanted is added to the primer for synthesizing the FR of the human antibody.
  • Primers are prepared for each of the four FRs.
  • selection of human FRs with high homology to mouse FRs is considered free in maintaining CDR function. That is, generally, it is preferable to use human FR comprising an amino acid sequence highly homologous to the FR amino acid sequence adjacent to the mouse CDR to be transplanted.
  • the base sequences to be linked are designed to be connected in-frame to each other.
  • Human FRs are synthesized individually with each primer.
  • a product in which DNA encoding mouse CDR is added to each FR is obtained.
  • the nucleotide sequences encoding mouse CDRs of each product are designed to overlap each other.
  • the complementary CDR synthesis reaction is carried out by annealing the overlapping CDR portions of the products synthesized with the human antibody gene as a saddle type. This reaction results in ligation via the human FR force S mouse CDR sequence.
  • a vector for human-type antibody expression can be prepared by inserting the DNA obtained as described above and DNA encoding the human antibody C region into an expression vector so as to be fused in frame. After introducing the integration vector into a host to establish a recombinant cell, the recombinant cell is cultured, and a DNA encoding the humanized antibody is expressed, whereby the humanized antibody becomes a culture of the cultured cell. (See European Patent Publication EP239400, International Publication WO96 / 02576).
  • the CDR is a good antigen when linked via CDR.
  • FRs of human antibodies that form a binding site can be suitably selected. If necessary, FR amino acid residues can be substituted so that the CDRs of the reshaped human antibody form an appropriate antigen-binding site.
  • the amino acid sequence mutation can be introduced into FR by applying the PCR method used for transplantation of mouse CDR into human FR. Specifically, partial nucleotide sequence mutations can be introduced into a primer that anneals to FR. Base sequence mutations are introduced into FR synthesized with such primers.
  • a mutant FR sequence having a desired property can be selected by measuring and evaluating the binding activity of the mutant antibody substituted with an amino acid to the antigen by the above method (Sato, K. et al., Cancer Res, 1993, 53, 851). -856).
  • a method for obtaining a human antibody is also known.
  • human lymphocytes are sensitized in vitro with the desired antigen or cells expressing the desired antigen.
  • a desired human antibody having an antigen-binding activity can be obtained by fusing sensitized lymphocytes with human myeloma cells (see Japanese Patent Publication No. 1-59878).
  • U266 can be used as a human myeloma cell that is a fusion partner.
  • a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen (International Publication W093 / 12227, W09 2/03918, WO94 / 02602, WO94 / 25585, WO96 / 34096, WO96 / 33735).
  • a technique for obtaining a human antibody by panning using a human antibody library is also known.
  • a human antibody V region can be expressed as a single-chain antibody (scFv) on the surface of the phage by the phage display method, and a phage that binds to the antigen can be selected.
  • the V region of the human antibody that binds to the antigen is copied.
  • the DNA sequence to be loaded can be determined.
  • the V region sequence is fused in-frame with the desired human antibody C region sequence, and then inserted into an appropriate expression vector to produce an expression vector.
  • the human antibody can be obtained by introducing the expression vector into a suitable expression cell as described above and expressing the gene encoding the human antibody.
  • the antibody of the present invention includes a monovalent antibody represented only by a divalent antibody represented by IgG, or a multivalent antibody represented by IgM as long as it binds to the HB-EGF protein.
  • the multivalent antibody of the present invention includes multivalent antibodies that all have the same antigen-binding site, or multivalent antibodies that have partially or completely different antigen-binding sites.
  • the antibody of the present invention is not limited to the full-length antibody molecule, and may be a low molecular weight antibody or a modified product thereof as long as it binds to the HB-EGF protein.
  • the low molecular weight antibody includes an antibody fragment in which a part of a full-length antibody (whole antibody such as whole IgG) is missing. As long as it has the ability to bind to the HB-EGF antigen, partial deletion of the antibody molecule is allowed.
  • the antibody fragment in the present invention preferably contains either or both of a heavy chain variable region (VH) and a light chain variable region (VL).
  • VH heavy chain variable region
  • VL light chain variable region
  • the amino acid sequence of VH or VL can include substitutions, deletions, additions and / or insertions.
  • VH or VL a part of both can be deleted.
  • the variable region may be chimerized or humanized.
  • antibody fragments include, for example, Fab, Fab ′, F (ab ′) 2, and Fv.
  • Specific examples of the low molecular weight antibody include, for example, Fab, Fab ′, F (ab ′) 2, Fv, scFv (single chain Fv), Diabody, sc (Fv) 2 (single chain). (Fv) 2). Multimers (for example, dimers, trimers, tetramers, polymers) of these antibodies are also included in the low molecular weight antibody of the present invention.
  • Antibody fragments can be obtained by treating antibodies with enzymes to generate antibody fragments.
  • enzymes that generate antibody fragments include, for example, papain, pepsin, and plasmin.
  • construct genes encoding these antibody fragments This can be introduced into an expression vector and then expressed in a suitable host cell (eg, Co, MS. Et al. J. Immunol. (1994) 152, 2968-2976, Better, M. & Horwitz, AHMeth ods in Enzymology (1989) 178,476-496, Plueckthun, A.
  • the digestive enzyme cleaves a specific position of the antibody fragment to give an antibody fragment having the following specific structure.
  • any part of the antibody can be deleted:
  • Papain digest F (ab) 2 or Fab
  • Diapodes refer to bivalent antibody fragments constructed by gene fusion (Holliger P et al., Proc. Natl. Acad. Sci. USA 90: 6444- 6448 (1993), EP404, 097). No., W 093/11161 etc.). Dipodies are dimers composed of two polypeptide chains. Usually, in the polypeptide chain constituting the dimer, VL and VH are linked by a linker in the same chain. The linker in a diapody is generally so short that VL and VH cannot bond to each other. Specifically, the number of amino acid residues constituting the linker is, for example, about 5 residues. Therefore, VL and VH encoded on the same polypeptide chain cannot form a single chain variable region fragment but form a dimer with another single chain variable region fragment. As a result, the diapody has two antigen binding sites.
  • scFv is obtained by linking the H chain V region and L chain V region of an antibody.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston JSet al., Proc. Natl. Acad. Sci. USA, 1988, 85, 5879. -5,883.)
  • H chain V region and L chain V region that put in 0 scFv, although herein described as antibodies! / may be derived from the deviation of the antibody.
  • the peptide linker that links the V regions.
  • any single chain peptide consisting of about 3 to 25 residues can be used as the linker.
  • V regions can be ligated by, for example, the PCR method as described above.
  • the DNA encoding the desired partial amino acid sequence is used as a cage in the following DNA:
  • a DNA sequence encoding the L chain or L chain V region of the antibody is provided.
  • DNAs encoding the V regions of the H chain and the L chain are each amplified by PCR using a pair of primers having sequences corresponding to the sequences at both ends of the DNA to be amplified.
  • DNA encoding a part of the peptide linker is prepared.
  • DNA encoding a peptide linker can also be synthesized using PCR.
  • a PCR reaction is performed using each DNA of [H chain V region DNA] — [peptide linker DNA] — [L chain V region DNA] and a primer for assembly PCR.
  • One primer for assembly PCR consists of a combination of a primer annealing on the 5 ′ side of the [H chain V region DNA] and a primer annealing on the 3 ′ side of the [L chain V region DNA]. That is, the assembly PCR primer is a primer set that can amplify DNA encoding the full-length sequence of scFv to be synthesized. On the other hand, a base sequence that can be linked to each V region DNA is added to [peptide linker DNA]. As a result, these DNAs are ligated, and the full length of scFv is finally produced as an amplification product by the primer for assembly and PCR.
  • an expression vector containing them and a recombinant cell transformed with the expression vector can be obtained according to a conventional method. Further, the scFv can be obtained by culturing the resulting recombinant cells and expressing the DNA encoding the scFv.
  • sc (Fv) 2 is a low molecular weight antibody in which two VHs and two VLs are combined with a linker to form a single chain (Hudson et alj Immunol. Methods 1999; 231: 177-189 ). sc (Fv) 2 can be prepared, for example, by linking scFv with a linker.
  • VH and 2 VL forces VH, VL, VH, VL ([VH] Linker 1 [VL] Linker 1 [VH] Linker 1 [VL] ))), And an antibody characterized by [0094]
  • the order of the two VHs and the two VLs is not particularly limited to the above arrangement, and can be arranged in any order! /, Or! /. For example, the following arrangements can also be mentioned.
  • any peptide linker that can be introduced by genetic engineering, or a synthetic compound linker for example, see Protein Engineering, 9 (3), 299-305, 1996. 1 can be used.
  • a peptide linker is preferred.
  • the length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose.
  • the amino acid residues constituting the peptide linker are 1 to 100 amino acids, preferably 3 to 50 amino acids, more preferably 5 to 30 amino acids, and particularly preferably 12 to 18 amino acids (for example, 15 amino acids).
  • the amino acid sequence constituting the peptide linker can be any sequence as long as the binding action of scFv is not inhibited.
  • the following amino acid coordination IJ can be used.
  • n which determines the length of the peptide linker, is usually;! -5, preferably 1-3
  • sc (Fv) 2 As an embodiment of sc (Fv) 2 that is particularly preferable in the present invention, for example, the following sc (Fv) 2 can be given by the force S:
  • the V regions can be linked using a synthetic chemical linker (chemical cross-linking agent).
  • a cross-linking agent that is usually used for cross-linking of peptide compounds and the like can be used in the present invention.
  • the following chemical crosslinking agents are known. These crosslinking agents are commercially available.
  • DSP Dithiobis (succinimidyl propionate)
  • DTSSP Dithiobis (sulfosuccinimidyl propionate)
  • Ethylene glycol bis (succinimidyl succinate) (EGS)
  • Ethylene glycol bis (sulfosuccinimidyl succinate) (sulfo EGS), disuccinimidyl tartrate (DST),
  • the low molecular weight antibody is preferably Diabody or sc (Fv) 2.
  • the antibody is treated with an enzyme such as papain or pepsin to generate antibody fragments, or DNA encoding these antibody fragments is constructed and expressed. After introduction into a vector, expression in an appropriate host cell may be performed (for example, Co, MS et al. J. Immunol.
  • any antibody that recognizes HB-EGF can be used as the antibody of the present invention.
  • the antibodies described in (1) to (29) below can be exemplified as preferred antibodies. These antibodies may be, for example, full-length antibodies, low molecular weight antibodies, animal antibodies, chimeric antibodies, humanized antibodies, human antibodies, and the like.
  • An antibody comprising an H chain having the amino acid sequence shown in SEQ ID NO: 2 as CDR1, the amino acid sequence shown in SEQ ID NO: 4 as CDR2, and the amino acid sequence shown in SEQ ID NO: 6 as CDR3,
  • An antibody comprising an amino acid sequence IJ described in SEQ ID NO: 12 as CDR1, an amino acid sequence described in SEQ ID NO: 14 as CDR2, and an L chain having the amino acid sequence described in SEQ ID NO: 16 as CDR3 ,
  • an antibody comprising an L chain having the amino acid sequence set forth in SEQ ID NO: 30 as CDR1, the amino acid sequence set forth in SEQ ID NO: 32 as CDR2, and the amino acid sequence set forth in SEQ ID NO: 34 as CDR3;
  • an antibody comprising an H chain having the amino acid sequence set forth in SEQ ID NO: 36 as CDR1, the amino acid sequence set forth in SEQ ID NO: 38 as CDR2, and the amino acid sequence set forth in SEQ ID NO: 40 as CDR3;
  • VH in the “H chain having an acid sequence” include VH having the amino acid sequence set forth in SEQ ID NO: 48.
  • amino acid sequence IJ described in SEQ ID NO: 12 as CDR1 the amino acid sequence IJ described in SEQ ID NO: 14 as CDR2, and the SEQ ID NO: 16 as CDR3 described in (4) above
  • VL in the “L chain having the amino acid sequence” examples include the VL having the amino acid sequence set forth in SEQ ID NO: 50.
  • amino acid sequence IJ described in SEQ ID NO: 22 as CDR1 and the amino acid sequence IJ described in SEQ ID NO 24 as CDR2 and CDR3 in SEQ ID NO 26 as described in (12) above examples of VH in the “H chain having the described amino acid sequence” include VH having the amino acid sequence set forth in SEQ ID NO: 52.
  • amino acid sequence IJ described in SEQ ID NO: 30 as CDR1 the amino acid sequence IJ described in SEQ ID NO: 32 as CDR2
  • the SEQ ID NO: 34 as CDR3 described in (15) above Record Examples of the VL in the “L chain having the amino acid sequence” include the VL having the amino acid sequence set forth in SEQ ID NO: 54.
  • amino acid sequence lj described in SEQ ID NO: 36 as CDR2 the amino acid sequence lj described in SEQ ID NO: 38 as CDR2
  • VH in the “H chain having the described amino acid sequence” include VH having the amino acid sequence set forth in SEQ ID NO: 56.
  • amino acid sequence IJ described in SEQ ID NO: 42 as CDR1 the amino acid sequence IJ described in SEQ ID NO: 44 as CDR2, and the SEQ ID NO: 46 as CDR3 described in (26) above
  • VL in the “L chain having the described amino acid sequence” examples include the VL having the amino acid sequence set forth in SEQ ID NO: 58.
  • “equivalent activity” means that the inhibitory effect on HB-EGF-dependent proliferation of EGFR—Ba / F3 cells is at least an EC50 value of 50 nM or less.
  • a preferred embodiment of the antibody described in (28) above is an antibody having a modification in a region other than CDR.
  • an antibody in which one or more amino acids are substituted, deleted, added and / or inserted in the antibody described in (1) has “an activity equivalent to that of the antibody described in (1), wherein one or a plurality of amino acids are present in the antibody described in (1).
  • Substituted, deleted, added and / or inserted antibodies CDR1 as amino acid sequence IJ described in SEQ ID NO: 2, CDR2 as amino acid sequence IJ described in SEQ ID NO: 4, and CDR3
  • an antibody having the same activity as that of the antibody By appropriately introducing a mutation into this antibody, it is possible to prepare an antibody having the same activity as that of the antibody. Amino acid mutations can also occur in nature. Thus, an antibody having an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence of the antibody of the present invention and having an activity equivalent to that of the antibody is also included in the antibody of the present invention. In such mutants, the number of amino acids to be mutated is usually within 50 amino acids, preferably within 30 amino acids, and more preferably within 10 amino acids (for example, within 5 amino acids).
  • the amino acid residue to be mutated is preferably mutated to another amino acid in which the properties of the amino acid side chain are conserved. For example, the following classification has been established based on the properties of amino acid side chains.
  • Amino acids with aliphatic side chains (G, A, V, L, I, P),
  • Amino acids with side chains containing carboxylic acids and amides (D, N, E, Q),
  • a polypeptide having an amino acid sequence modified by deletion, addition and / or substitution by another amino acid of one or more amino acid residues to a certain amino acid sequence maintains its biological activity.
  • amino acids classified into each group are substituted with each other.
  • the activity of the polypeptide is likely to be maintained.
  • substitution between amino acids in the group of amino acids is referred to as conservative substitution.
  • the present invention also provides an antibody that binds to the same epitope as described in (29) above, to which the anti-HB-EGF antibody disclosed in the present invention binds. That is, the present invention relates to an antibody that recognizes the same epitope as that recognized by HA-20, HB-20, and HC-15 antibodies, and uses thereof. Such an antibody can be obtained, for example, by the following method.
  • test antibody shares an epitope with a certain antibody can be confirmed by competition for the same epitope.
  • Competition between antibodies is detected by a cross-blocking assay or the like.
  • a competitive ELISA assay is a preferred cross-blocking assay.
  • the cross-blocking assay the HB-EGF protein coated on the microtiter plate wells is preincubated in the presence or absence of candidate competitor antibodies, and then The anti-HB-EGF antibody of the invention is added.
  • the amount of the anti-HB-EGF antibody of the present invention bound to the HB-EGF protein in the well is indirectly correlated with the binding ability of a candidate competitive antibody (test antibody) that competes for binding to the same epitope.
  • the amount of antibody bound to the well can be easily measured by labeling the antibody in advance.
  • a biotin-labeled antibody can be measured by using an avidin peroxidase conjugate and an appropriate substrate.
  • Cross-blocking assays using enzyme labels such as peroxidase are called competitive ELISA assays.
  • the antibody can be labeled with other labeling substances that can be detected or measured. Specifically, there are known radiolabels! /, Fluorescent labels and the like.
  • the amount of the antibody bound to the well is labeled to recognize the constant region of the antibody. It can also be measured by antibodies. Or even if the antibody is from the same species, the class is different If this is the case, measure the amount of antibody bound to the well with an antibody that identifies each class.
  • the candidate antibody is at least 20%, preferably at least 20-50%, more preferably at least 50, compared to the binding activity obtained in a control test performed in the absence of the candidate competing antibody. %, If the binding of the anti-HB-EGF antibody can be blocked, the candidate competing antibody will compete for binding to or binding to substantially the same epitope as the anti-HB-EGF antibody of the present invention. Antibody.
  • Examples of the antibody that binds to the same epitope as that to which the anti-HB-EGF antibody binds include, but are not limited to, the antibody described in (29) above.
  • the antibodies described in (1) to (29) include multivalent antibodies that are not limited to monovalent antibodies.
  • the multivalent antibody of the present invention includes multivalent antibodies that all have the same antigen-binding site, or multivalent antibodies that have some or all different antigen-binding sites.
  • the following antibodies can be exemplified as multivalent antibodies having different antigen-binding sites.
  • the antibodies of the present invention are not limited to these antibodies.
  • HL pair An antibody comprising the H chain and L chain pair described in (7) above (hereinafter referred to as HL pair) and the HL pair described in (16) or (25) above.
  • the antibody of the present invention can also be used as a modified antibody conjugated with various molecules such as polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • Such a modified antibody can be obtained by chemically modifying the antibody of the present invention. Antibody modification methods have already been established in this field.
  • the antibody of the present invention may be a bispecific antibody.
  • a bispecific antibody is an antibody having variable regions that recognize different epitopes in the same antibody molecule, but the epitope may exist in different molecules or in the same molecule. You may do it. That is, in the present invention, the bispecific antibody can have an antigen-binding site that recognizes a different epitope on the HB-E GF molecule. Such a bispecific antibody can bind two antibody molecules to one molecule of HB-EGF. As a result, a more powerful cytotoxic effect can be expected. These antibodies are also included in the “antibody” in the present invention.
  • a bispecific antibody that recognizes an antigen other than HB-EGF can also be combined.
  • a bispecific antibody that recognizes an antigen that is specifically expressed on the cell surface of the target cancer cell and is different from HB-EGF can be combined.
  • bispecific antibodies can be produced by combining two types of antibodies with different recognition antigens.
  • the antibody to be bound may be a half molecule each having an H chain and an L chain, or may be a 1/4 molecule consisting of only an H chain.
  • hybridomas producing different monoclonal antibodies can be fused to produce bispecific antibody-producing fused cells.
  • Bispecific antibodies can be produced by genetic engineering techniques.
  • ELISA enzyme-linked immunosorbent assay
  • EIA enzyme immunoassay
  • RI A radioimmunoassay
  • fluorescent immunoassay can be used.
  • a technique for measuring the binding activity of an antibody to an antigen expressed in a cell for example, the method described on pages 359-420 in the Antibodies A Laboratory Manual can be mentioned.
  • a method using a flow cytometer is particularly preferably used. I can do it.
  • the flow cytometer used include FACSCantot (registered trademark) ILFACSAria (registered trademark), FACSArray (registered trademark), FACSVantage (registered trademark) SE, FACSCalibur (registered trademark) (above, BD Biosciences), EPICS ALTRA HyPerSort , Cytomics FC 500, EPICS XL-MCL ADC EPICS XL ADC, Ce 11 Lab Quanta / Cell Lab Quanta SC (Beckman Coulter).
  • the fluorescence intensity is obtained by analysis using CELL QUEST Software.
  • the value of Geometric mean (test Geo-Mean value) obtained is determined based on the binding activity of a commercially available antibody (eg R & D, AF-259-NA) or an antibody that reacts strongly with membrane-type HB-EGF such as HC15 (control Geo- It can be judged by comparing with (mean value). That is, in this specification, If the test Geo-Mean value is at least 10%, preferably 5%, more preferably less than 2% of the control Geo-Mean value, then the test antibody is ⁇ HB-EGF on the cell surface of cells expressing HB-EGF. It does not bind to EGF protein ".
  • the calculation formula to obtain Geo-Mean value is described in CELL QUEST Software User's Guide (BD biosciences).
  • the antibody of the present invention is preferably an antibody having neutralizing activity.
  • neutralizing activity refers to activity that inhibits the biological activity of a ligand that has biological activity against cells, such as viruses and toxins. That is, the substance having neutralizing activity refers to a substance that binds to the ligand or a receptor to which the ligand binds and inhibits the binding between the ligand and the receptor. Receptors that have been blocked from binding to the ligand by neutralizing activity will not be able to exert biological activity through the receptor.
  • An antibody having such neutralizing activity is generally called a neutralizing antibody.
  • the neutralizing activity of a test substance is measured by comparing the biological activity in the presence of a ligand between conditions in the presence or absence of the test substance.
  • the EGF receptor is considered as the main receptor of HB-EGF according to the present invention.
  • a dimer is formed by binding of the ligand, and tyrosine kinase, which is a domain existing in the cell, is activated.
  • tyrosine kinases form peptides containing phosphorylated tyrosine by autophosphorylation and associate them with accessory molecules for various signal transduction. They are mainly PLC ⁇ (phosphilipase C y ), Sh c, Grb2, etc. Of these accessory molecules, the former two are further phosphorylated by tyrosine kinases of the EGF receptor.
  • the major pathways in signal transduction from the EGF receptor are pathways in which phosphorylation is transmitted in the order of Shc, Grb2, Sos, Ras, and Raf / MAPK kinase / MAP kinase.
  • the PLC ⁇ force which is a secondary route, is thought to have a route to PKC. Since such intracellular signal cascades are different for each cell type, target molecules can be appropriately set for each target cell, and are not limited to the above factors.
  • a commercially available kit for measuring in vivo signal activation can be used appropriately (for example, a protein kinase C activity measurement system (GE Healthcare Care Bioscience Co., Ltd.)).
  • In vivo signal activation can also be detected using the transcription-inducing action on a target gene existing downstream of the in-vivo signal cascade as an index.
  • Changes in the transcription activity of the target gene can be detected by the principle of reporter assembly. Specifically, by placing a reporter gene such as GFP (Green Fluorescence Protein) luciferase downstream of the transcription factor or promoter region of the target gene and measuring the reporter activity, the change in transcriptional activity is taken as the reporter activity. It can be measured.
  • GFP Green Fluorescence Protein
  • the neutralization activity of the antibody of the present invention is evaluated by measuring the proliferation activity of the target cells. Can do.
  • the ability to evaluate the neutralizing activity of the neutralizing antibody of the present invention by evaluating the cell growth activity of the latter and the latter in the following examples Appropriate target cells that are not limited to this method Adopt and evaluate the methods listed above as appropriate for each time.
  • the following method is preferably used. It is a method for evaluating or measuring the cell proliferation inhibiting activity in vitro, a method of measuring the uptake by viable cells of thymidine and [3 H] label was added in the medium as an index of DNA replication ability is used. As a simpler method, a dye exclusion method in which the ability to exclude a dye such as trypan blue outside the cell is measured under a microscope, or an MTT method is used.
  • Tetorazoriumu salt (3- (4,5-dimeth y lthiazol -2-yl) -2,5-diphenyl tetrazolium bromide) to a blue Honoremazan product
  • MTT solution is added to the culture medium and allowed to stand for a certain time to incorporate MTT into the cell. Make it.
  • the yellow compound MTT is converted into a blue compound by succinate dehydrogenase in the mitochondria in the cell.
  • the blue product is dissolved and colored, and the absorbance is measured to obtain an index of the number of viable cells.
  • Reagents are also commercially available (such as nacalai tesque) and can be suitably used.
  • a binding antibody that has the same isotype as the anti-HB-EGF antibody and has no cytostatic activity as a control antibody is used in the same manner as the anti-HB-EGF antibody.
  • the ability to judge the activity of the EGF antibody by showing a stronger cytostatic activity than that of the control antibody can be determined by S.
  • a cell for evaluating activity as a cell whose proliferation is promoted by HB-EGF, an RMG-1 cell line which is an ovarian cancer cell, or a sequence number HEGFR / mG-CSFR, a fusion protein in which the extracellular domain of human EGFR whose polypeptide sequence is shown in 78 and the intracellular domain of mouse GCSF receptor whose polypeptide sequence is shown in SEQ ID NO: 84 are fused in frame
  • Mouse Ba / F3 cells transformed with a vector linked to express the gene encoding SEQ ID NO: 86
  • the cells for evaluating the activity are not limited to these cells, and any cell can be suitably used as long as its proliferation is promoted by HB-EGF.
  • a tumor-carrying mouse model can be used as a method for evaluating or measuring cell growth inhibitory activity in vivo. For example, after transplanting cancer cells whose growth is promoted by HB-EGF intradermally or subcutaneously in a non-human test animal, the test antibody is administered intravenously or intraperitoneally every day or every few days from that day or the next day. .
  • the cytostatic activity can be evaluated by measuring the size of the tumor over time.
  • a control antibody having the same isotype was administered, and the tumor size in the anti-HB-EGF antibody administration group was significantly smaller than the tumor size in the control antibody administration group. Inhibitory activity can be determined.
  • nude (nu / nu) mouse in which the thymus is genetically deleted and the function of the T lymphocyte is deleted can be preferably used.
  • this mouse it is possible to eliminate the involvement of T lymphocytes in the test animal in the evaluation and measurement of the cytostatic activity of the administered antibody.
  • an antibody having no effector activity such as ADCC activity or CDC activity can be mentioned.
  • the effector activity This can be controlled by the isotype and subtype of the antibody, and the origin of the Fc region used when the antibody is a chimeric antibody or a humanized antibody. It has no ADCC activity! /
  • the antibody isotype is a human antibody
  • the IgM antibody power subtype includes IgG4 antibody (Clinical Aspects of Immunology, 5th Ed., 1799-1830, 1993). ).
  • an IgG4 antibody or the like is preferably used as a subtype of an antibody that does not have CDC activity. The ability to list the IgG4 antibody as a more suitable antibody!
  • IgGl antibodies have ADCC activity and CDC activity.
  • V has no deviation! /, Can be used as an antibody.
  • a chimeric antibody or a humanized antibody can be obtained using a genetic engineering technique according to the method described above.
  • an antibody capable of regulating the effector activity is appropriately selected. It is possible to produce.
  • the present invention provides a method for inhibiting the proliferation of cells by contacting the cells whose proliferation is promoted by HB-EGF with an antibody that binds to HB-EGF protein.
  • the antibody that binds to the HB-EGF protein is as described above as the antibody that binds to the HB-E GF protein contained in the cell growth inhibitor of the present invention.
  • the cell to be contacted with the anti-HB-EGF antibody is not particularly limited as long as it is a cell expressing HB-EGF, but preferably cancerous, liver, esophageal, melanoma, colon, stomach, ovarian, Bladder cancer or brain tumor.
  • “contact” is performed, for example, by adding an antibody to a culture solution of HB-EGF-expressing cells cultured in a test tube.
  • a solid or the like obtained by solution or lyophilization can be used as appropriate.
  • an aqueous solution it may be an aqueous solution containing pure antibody alone, for example, surfactants, excipients, coloring agents, flavoring agents, preservatives, stabilizers, buffering agents, It may be a solution containing a suspending agent, an isotonic agent, a binder, a disintegrant, a lubricant, a fluidity promoter, a corrigent and the like.
  • the concentration to be added is not particularly limited, but the final concentration in the culture solution Thus, it is preferably in the range of lpg / ml to lg / ml, more preferably lng / ml to lmg / ml, and even more preferably 1 g / ml to lmg / ml.
  • contact is further administered to a non-human animal in which HB-EGF-expressing cells are transplanted in the body or an animal having cancer cells that endogenously express HB-EGF in another embodiment.
  • the administration method can be carried out either orally or parenterally. Particularly preferred is parenteral administration, and specific examples of such administration include injection administration, nasal administration, pulmonary administration, and transdermal administration.
  • the pharmaceutical composition cell growth inhibitor and anticancer agent of the present invention can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the test animal.
  • the dosage When administered as an aqueous solution, it may be an aqueous solution containing pure antibody alone, for example, a surfactant, excipient, coloring agent, flavoring agent, preservative, stabilizer, buffering agent. , Suspensions, tonicity agents, binders, disintegrants, lubricants, fluidity promoters, corrigents and the like.
  • the dosage can be selected in the range of O.OOlmg to 100 Omg per kg body weight per administration.
  • the dose can be selected in the range of 0.001 to 100000 mg / body per patient.
  • the antibody dose of the present invention is not limited to these doses.
  • the invention features a pharmaceutical composition containing as an active ingredient an antibody that binds to an HB-EGF protein.
  • the present invention is characterized by a cell growth inhibitor, particularly an anticancer agent, which contains an antibody that binds to HB-EGF protein as an active ingredient.
  • a cell growth inhibitor particularly an anticancer agent, which contains an antibody that binds to HB-EGF protein as an active ingredient.
  • the light cytostatics and anti-cancer agents are preferably administered to subjects who have cancer! /, Or who have or may be affected! / ,.
  • the cell growth inhibitor containing an antibody that binds to HB-EGF protein as an active ingredient is a cell comprising a step of administering an antibody that binds to HB-EGF protein to a subject. It can also be expressed as a method for suppressing proliferation or the use of an antibody that binds to HB-EGF protein in the production of a cytostatic agent.
  • the anticancer agent containing an antibody that binds to the HB-EGF protein as an active ingredient prevents cancer including a step of administering an antibody that binds to the HB-EGF protein to the subject.
  • it can be expressed as a method of treatment or the use of an antibody that binds to HB-EGF protein in the manufacture of an anticancer agent.
  • containing an antibody that binds to HB-EGF as an active ingredient means that an anti-H B-EGF antibody is contained as a main active ingredient! Yes, it does not limit the content of anti-HB-EGF antibody.
  • the antibodies contained in the pharmaceutical composition of the present invention are exemplified in the present specification as long as they bind to HB-EGF protein. / An offset antibody can also be used.
  • the pharmaceutical composition of the present invention can be administered either orally or parenterally. Particularly preferred is an administration method by parenteral administration. Specific examples of such administration methods include injection administration, nasal administration, pulmonary administration, and transdermal administration.
  • injection administration the pharmaceutical composition of the present invention can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dosage for example, the dosage can be selected in the range of O.OOOlmg to lOOOmg per kg of body weight per administration. Alternatively, for example, the dose can be selected within the range of 0.001 to 100000 mg / body per patient.
  • the pharmaceutical composition of the present invention is not limited to these doses.
  • the pharmaceutical composition of the present invention can be formulated according to a conventional method (for example, Remington's Pharmaceutical Science, latest edition, Mark Pubiisning Company aston, USA), and a pharmaceutically acceptable carrier or additive. May be included.
  • a pharmaceutically acceptable carrier or additive for example, the world Surfactant, excipient, coloring agent, flavoring agent, preservative, stabilizer, buffering agent, suspending agent, tonicity agent, binder, disintegrant, lubricant, fluidity promoter, flavoring agent, etc.
  • a conventional method for example, Remington's Pharmaceutical Science, latest edition, Mark Pubiisning Company aston, USA
  • a pharmaceutically acceptable carrier or additive May be included.
  • it is not limited to these, and other commonly used carriers can be used
  • Specific examples include light anhydrous carboxylic acid, lactose, crystalline cellulose, mannitol, starch, carmellose calcium, carmellose sodium cetaletylaminoacetate, polybulur pyrrolidone, gelatin, medium chain fatty acid tridalylide, polyoxyethylene hardened castor Examples thereof include oil 60, sucrose, carboxymethyl cellulose, corn starch, and inorganic salts.
  • HB-EGF gene was first cloned as follows. First, RT-PCR was performed using Pyrobest Taq polymerase (Takara) under the following conditions using human heart cDNA (Clontech) as a saddle, and the full-length HB-EGF gene was cloned.
  • EGF-1 ATGAAGCTGCTGCCGTCGGTG (SEQ ID NO: 69)
  • EGF-2 TCAGTGGGAATTAGTCATGCCC (SEQ ID NO: 70)
  • PCR product was made into a saddle shape and PCR was performed again under the following conditions to obtain a full-length HB-EGF cDNA fragment with Sall and Notl cleavage sequences added to the 5 'end and 3' end, respectively.
  • TAGTCATGCCCAAC SEQ ID NO: 72
  • a fusion protein (HB-EGF-Fc) of an extracellular region of HB-EGF and a mouse IgG2a Fc region was used.
  • Figure 1 shows the structure of the fusion protein for immunization.
  • the expression vector of the fusion protein of mouse Fc region and HB-EGF was constructed as follows. First, an HB-EGF expression vector (pMCN—HB-EGF) was converted into a saddle type and PCR was performed using Pyrobest Taq polymerase (Takara) under the following conditions.
  • PCR product was cleaved with EcoRI and Cpol.
  • This DNA fragment was inserted between EcoRI and Cpol of an expression vector for animal cells (pMCDN_mIgG2a_Fc) having mouse IgG2a-Fc to construct an HB-EGF-Fc expression vector (pMCDN-HB-EGF-Fc).
  • the HB-EGF-Fc protein was purified from the culture supernatant of the resulting HB-EGF-Fc producing strain using Hi Trap Protein G HP lmL column (Amersham Biosciences # 17-0404-01).
  • the culture supernatant was adsorbed at a flow rate of ImL / min, washed with 20 mL of 20 mM phosphate buffer (pH 7.0), and then eluted with 3.5 mL of 0.1 M Glycine-HCl (pH 2.7).
  • the elution fractions were collected in an amount of 0.5 mL each in an Eppendorf tube to which 50 L each of 1 M Tris_HCl (pH 9.0) was added. Measure OD, collect fractions containing the target protein, and add PBS (-)
  • the total volume was adjusted to 2.5 mL, and the buffer was replaced with PBS ( ⁇ ) using a PD-10 column (Amersham Biosciences # 17-0851-01).
  • the purified protein was stored at 4 ° C through a 0.22 m filter (MILLI PORE # SLGV033RS).
  • an HB-EGF-Fc protein emulsion was prepared using COMPLETE ADJUBANT (DIFCO: DF263810) and the second and subsequent IM COMPLETE ADJUBANT (DIFCO: DF263910), and each mouse ((MRL / lpr, male, 4 weeks old) (balb, female, 6 weeks old): all purchased from Nippon Chisuriba Co.]
  • Three mice were immunized by subcutaneous injection (Terumo syringe lmL, needle 26G). Two weeks after the first immunization, the second immunization was performed, and immunization was performed 4 to 5 times every other week thereafter.
  • HB-EGF-Fc 50 g was suspended in 100 111 PBS, immunized by tail vein injection, and cell fusion was performed 3 days later.
  • Cell fusion was performed as follows. The spleen was aseptically removed from the mouse and ground in medium 1 (RP MI1640 + PS) to give a single cell suspension. This was passed through a 70 ⁇ m nylon mesh (Falcon) to remove adipose tissue and the like, and the number of cells was counted. The resulting B cells are mixed with mouse myeloma cells (P3U1 cells) so that the cell number ratio is approximately 2: 1, and 1 mL of 50% PEG (Roche, cat #: 783 641) is added to perform cell fusion. Went.
  • medium 1 RP MI1640 + PS
  • the fused cells were medi urn 2 [RPMI1640 + PS, 10% FCS, HAT (Sigma, H0262), 5% BM condimed HI (Roche: # 1088947)], and dispensed onto a suitable number (10) of 96-well plates at 200 L / well and cultured at 37 ° C. One week later, the culture supernatant was used to screen for hyperidoma.
  • Hypridoma derived from two Balb mice were designated as HA series and HB series, respectively.
  • Hypridoma derived from one Mrl / lpr mouse was designated as HC series, and fibrosis was performed.
  • a DG44 cell line expressing HB-EGF was performed as follows. First, 15 ⁇ g of the HB-EGF expression vector (pMCN—HB-EGF) constructed in 1-1-1 was cleaved with pvul, and introduced into DG44 cells by electoporation using the same method as 1-1-3. . Subsequently, G418 resistant strain was picked up, and each cell was stained with goat anti-HB-EGF antibody (R & D) and FITC-labeled anti-goat IgG antibody. FACS carrier (Bettaton Dickinson) analyzed HB-E GF expressed on the cell surface and selected clones with high expression level.
  • a Ba / F3 cell line expressing HB-EGF on the cell membrane was established as follows. It is known that HB-EGF expressed on the cell membrane is processed by protease and excised into the culture medium. Therefore, first, a proHB-EGF expression vector having a mutation at the protease cleavage site was constructed.
  • a Ba / F3 cell line expressing proHB-EGF was established as follows. First, 15 ⁇ g of the constructed proHB-EGF expression vector (pMCN-MHB-EGF) was cleaved with pvul and suspended in PBS (-) Ba / F3 cells (lxlO 7 cells / mL, 800 ⁇ L). It was introduced at 0.33 kV, 950 ⁇ FD by means of an electrification (Gene Pulser; BioRad).
  • SKOV-3 cell line expressing HB-EGF was established as follows.
  • SKOV_3 purchased from ATCC
  • an ovarian cancer cell line was cultured in a growth medium (Mc'Coy 5A medium, invitrogen) containing 10% FCS and penicillin / streptomycin (P / S).
  • the HB-EGF expression vector constructed in 1-1-1 15 ⁇ g was digested with pvul. Then, add 1.5kV, 25 ⁇ F to SKOV-3 cells (lxlO 7 cells / 01 800 ⁇ L) suspended in PBS (-). In the condition of D, it was introduced by Elect Mouth Position (Gene Pulser; BioRad). After dilution to an appropriate number of cells with the above growth medium, the cells were seeded on 96-well plates. The next day, G418 (geneticin, invitrogen) was added to 500 ⁇ g / mL. About two weeks later, a G418 resistant single clone was selected, and a cell line expressing HB-EGF was screened by Western blot. The strain with the highest production was selected and used for later experiments.
  • a vector expressing a chimeric receptor (hEGFR / mG-CSFR) in the extracellular region of human EGFR and the intracellular region of mouse G-CSFR was constructed.
  • Fig. 2a schematically shows the effect of HB-EGF on cells expressing this chimeric receptor.
  • EGFR epidermal growth factor receptor
  • EGFR-1 ATGCGACCCTCCGGGACGGC (SEQ ID NO: 79)
  • EGFR-2 CAGTGGCGATGGACGGGATCT (SEQ ID NO: 80)
  • the amplified cDNA (about 2 Kb) was excised from an agarose gel and inserted into a pCR-TOPO vector (invitrogen). The base sequence of the fragment inserted into this plasmid was analyzed, and it was confirmed that the obtained EGFR gene had the correct sequence. Next, the plasmid obtained above was made into a saddle shape, and PCR was performed using the following primer set.
  • GCCCATTCGT (SEQ ID NO: 82)
  • the expression plasmid vector pCV was constructed by replacing the poly (A) addition signal of pCOSl (International Patent Publication No. W098 / 13388) with that derived from human G-CSF.
  • pEF-BOS (Mizushima S. et al. (1990) Nuc. Acid Res. 18,5322) was cleaved with Eco RI and Xba I to obtain a poly (A) -added signal fragment derived from human G-CSF. This fragment was inserted into pBacPAK8 (CLONTECH) at the Eco RI / X ba I site. After cutting this with Eco RI, both ends were smoothed and erased with Bam HI.
  • pCV—mG-CSFR contains from the 623th asparagine residue to the C-terminus of cytoplasmic region of mouse G-CSF receptor on pCV.
  • the nucleotide sequence of the mouse G-CSF receptor (M5828 8) is shown in SEQ ID NO: 83, and the amino acid sequence number (AAA37673) is shown in SEQ ID NO: 84.
  • the restriction enzyme site B ⁇ HI site was created in the cDNA sequence encoded in the N-terminal region of the inserted sequence of pCV—mG-CSFR, the 632rd glycine residue in SEQ ID NO: 84 was It is substituted with a glutamic acid residue.
  • pCV Confirms the base sequence of the gene fragment inserted in mGCSFR and expresses the chimeric receptor (hEGFR / mG-CSFR) in the extracellular region of human EGFR and the intracellular region of mouse G-CSFR Construction of the vector (pCV—hEGFR / mG-CSFR) was completed.
  • SEQ ID NOs: 85 and 86 show the protein expressed by this expression vector, that is, the base sequence and amino acid sequence of the human EGFR / mouse G-CSFR chimeric receptor, respectively.
  • Electroreposition of chimeric receptor (hEGFR / mG-CSFR) expression vector (pCV—hEGFR / mG-CSFR) 15ug linearized by cleavage with pvul into Ba / F3 cells at 0.33 kV, 950 FD (Gene Pulser; BioRad). These cells were cultured for 2 weeks in a medium containing 10 ng / ml HB-EGF, 500 11 g / ⁇ G418 (RPMI1640, 10% FCS, PS). [0170] Next, it was confirmed by the following experiment that the obtained cell line proliferated depending on the concentration of HB-EGF.
  • EGFR—Ba / F3 cells were seeded on 96-well plates at 1 ⁇ 10 3 cells / well in the presence of 0-100 ng / ml of HB-EGF (R & D, 259-HE) and cultured for 3 days. Thereafter, the number of cells was counted using WST-8 reagent (cell counting kit_8, Dojin) according to the attached document.
  • the antibody binding to HB-EGF was first screened.
  • ELISA and FACS were used for screening of the bound antibody.
  • the culture supernatant of Hyperidoma was reacted with an ELISA plate (NUNC) coated with 1 ⁇ g / ml of HB-EGF protein (R & D, 259-HE) and incubated for 1 hour. Then, after reacting with alkaline phosphatase (AP) -labeled anti-mouse IgG (ZYMED: # 62-6622) for 1 hour, lmg / ml substrate (SIGMA: S0942-50TAB) was added to cause color development. OD was measured with a plate reader (BioRad), and ELISA positive wells were selected.
  • NUNC alkaline phosphatase
  • AP alkaline phosphatase
  • SIGMA S0942-50TAB
  • Hybridoma culture supernatant was added to HB-EGF—Ba / F3 cells (about lxlO 5 cells) and incubated at 4 ° C. for 1 hour. Thereafter, a FITC-labeled anti-mouse IgG antibody (BECKMAN COULTER: PN IM0819) was added and incubated at 4 ° C for 30 minutes. Thereafter, the binding activity of each hybridoma culture supernatant to HB-EGF on the cell surface was analyzed by FACS (Betaton Dickinson).
  • limiting dilution was performed. The number of positive wells was measured and seeded on a 96 well plate at 3 cells / well. After culturing for about 10 days, the binding activity of the culture supernatant of the well in which colonies appeared was analyzed again by ELISA or FACS. Through this series of operations, the HA series has 5 types, the HB series has 4 types, and the HC In the series, 5 single clones with HB-EGF binding activity were obtained.
  • Antibody subtypes were determined using IsoStrip (Roche # 1 493 027). The subtype was determined using the culture supernatant of high-pridoma diluted 10-fold with PBS (-).
  • the antibody was purified from 80 mL of the culture supernatant of the obtained single clone Hypridoma using a Hi Trap Protein G HP 1 mL column (Amersham Biosciences # 17-0 4 0 4 _01). Neubridoma supernatant was adsorbed at a flow rate of 1 mL / min, washed with 20 mL of 20 mM Phosphate buffer (pH 7.0), and eluted with 3.5 mL of 0.1 M Glycine_HCl (pH 2.7). The elution fractions were collected in an amount of 0.5 ml each in an Eppendorf tube to which 50 L each of 1 M Tris_HCl (pH 9.0) was added. Measure OD, collect fractions containing antibody, add PBS (-) to total volume
  • the buffer was replaced with PBS (-) using a PD-10 column (Amersham Biosciences # 17-0851-01).
  • the purified antibody was passed through a 0.22 ⁇ filter (MILLIPORE # SLGV033 RS), and the properties of each purified antibody were examined in detail below.
  • the number of cells was measured using WST-8 (cell counting kit_8).
  • HA-20 has strong neutralizing activity in the HA series, HB-20 in the HB series, and HC-15 in the HC series (Fig. 3a-c).
  • HB-EGF neutralizing antibodies (HA-20, HB-20, HC_15)
  • RNA was purified. Full length cDNA was synthesized from the obtained total RNA l ⁇ ug using SMART RACE cDNA Amplification it (CLONTECH # PT3269-1) according to the attached manual. The resulting cDNA is made into a cage and the Advantage 2 PCR Enzyme System (CLO).
  • CLO Advantage 2 PCR Enzyme System
  • VH variable regions of the heavy chain
  • VL variable chain
  • VL-k GCT CAC TGG ATG GTG GGA AGA TG (SEQ ID NO: 91)
  • VH-G1 GGG CCA GTG GAT AGA CAG ATG (SEQ ID NO: 92)
  • VH-2a CAG GGG CCA GTG GAT AGA CCG ATG (SEQ ID NO: 93)
  • the gene fragment amplified by the above procedure was TA-cloned into pCRII-TOPO Onvitrogen TOPO TA-cloning kit, # 45-0640), and then the base sequence IJ was confirmed for each insert.
  • the confirmed variable region sequence is shown in FIG. [0182] 3-2. Analysis of binding activity to active HB-EGF
  • HA_20, HB_20, and HC-15 antibodies were reacted at various concentrations on ELISA plates (NUNC) coated with 1 ⁇ g / ml of HB-EGF protein (R & D, 259-HE). Then, after reacting with alkaline phosphatase (AP) -labeled anti-mouse Ig G (ZYMED: # 62-6622) for 1 hour, lmg / ml substrate (SIGMA: S0942_50TAB) was added to develop color. Thereafter, OD405 was measured with a plate reader, and the antibody concentration (ED) showing 50% binding was calculated based on the obtained binding curve of each antibody. As a result, activated HB-E
  • the binding activity to GF has an ED value of 0.2 to 1.4.
  • the ovarian cancer cell line RMG1 cells purchased from the Human Science Promotion Foundation) that express HB-EGF endogenously! / Are known to grow in 10% FCS growth medium (Ham's F12 medium, invitrogen).
  • Ba / F3 cells (HB-EGF—Ba / F3), HB-EGF expressing DG44 cells (HB-EGF—DG44), and SKOV-3 cells (HB-EGF), which are cells forcibly expressing HB-EGF — SKOV-3) and RMG1 cells that express HB-EGF are reacted with each antibody (10 g / ml) at 4 ° C for 1 hour, followed by FITC-labeled anti-mouse IgG antibody (BECKMAN CO Staining was performed with ULTER: PN IM0819). Thereafter, the binding of each antibody to HB-EGF on the cell surface was analyzed by FACS (Betaton Dickinson).
  • Figure 6 shows the proHB-EGF, which was compulsorily expressed in Ba / F3, DG44 and SKOV-3 cells of antibodies HA-20, HB-20 and HC15, and proHB-EGF endogenously expressed in RMG1 cells.
  • the histogram which compared the binding activity with respect to by FACS analysis is shown.
  • the staining pattern (control) in the absence of the primary antibody is indicated by a gray waveform, and the staining pattern in the presence of each antibody is indicated by a solid line.
  • the horizontal axis represents the staining intensity, and the vertical axis represents the number of cells. As shown in Fig.
  • HB-20 and HC-15 recognized HB-EGF on the cell membrane that was forcibly expressed and HB-EGF on the cell membrane that was endogenously expressed in ovarian cancer lines.
  • HA-20 showed no or very weak binding. This revealed that HA-20 is an antibody that binds strongly to active HB-EGF but does not recognize proHB-EGF.
  • Fig. 7 schematically shows the state in which the binding of HB-EGF and EGFR is inhibited by the HB-EGF antibody on the solid phase.
  • an EGFR-Fc expression vector was constructed.
  • the pCV-h EGFR / mG-CSFR constructed in Example 2_3_1. was converted into a saddle type, and PCR was performed using the following primers.
  • the gene fragment encoding the amplified EGFR extracellular region was cleaved with BstEII and Hindlll and inserted between BstEII-Hindlll of pMCDN2-Fc.
  • the base sequence of the inserted gene fragment was confirmed, and the construction of a vector (pMCDN2_EGFR-Fc) expressing a fusion protein (EGFR-Fc) of the extracellular region of human EGFR and the Fc region of human IgG1 was completed.
  • the nucleotide sequence and amino acid sequence of the protein expressed by this expression vector, ie, EGFR-Fc are shown in SEQ ID NOs: 96 and 97, respectively.
  • an EGFR-Fc protein-producing cell line was established as follows. First EGFR-F c 15 ⁇ g of the expression vector (pMCDN2_EGFR-Fc) was cleaved with pvul and introduced into DG44 cells by electoporation. Thereafter, EGFR-Fc protein produced in the culture supernatant of the G418 resistant strain was analyzed by Western blot. That is, each culture supernatant 101 was separated by SDS-PAGE, this was PVDF membrane blotted, and the target protein was detected with an HRP-labeled anti-HgG antibody (Amersham, NA933V). The clone with the highest production amount was selected, and this was expanded and the culture supernatant was collected.
  • EGFR-Fc protein was purified as follows. For cultivation of the obtained EGFR-Fc producing strain, blue was adsorbed onto a Hi Trap Protein G HP lmL column (Amersham Biosciences # 17-0404-01) at a flow rate of 1 mL / min. This was washed with 20 mL of 20 mM phosphate buffer ( ⁇ 7.0) and then eluted with 3.5 mL of 0.1 M glycine-HCl (pH 2.7). 10 1 of the collected fractions were separated by SDS-PAGE, and the fraction containing the target protein was confirmed by Western blotting and Coomassie brilliant blue (CBB) staining. The buffer was replaced with PBS ( ⁇ ) using Amersham Biosciences # 17-0851-01). The purified protein was stored at 4 ° C through a 0.22 am filter (MILLIPORE # SLGV033RS).
  • ELISA plate coated with anti-human IgG antibody was reacted with purified EGFR-Fc for 0.5 g / mrei time. This was reacted with HB-EGF (R & D, 259-HE) for 0-250 ng / mrCl hours, and then biotin-labeled anti-HB-EGF antibody (R & D, BAF259) and AP-labeled streptavidin (Z YMED, # 43- 8322) detected HB-EGF protein bound to EGFR_Fc.
  • Fig. 8 shows the analysis model of the binding mode between EGFR and HB-EGF by ELISA. As a result, it was found that this solid phase system can detect HB-EGF binding to EGFR from a concentration of approximately 4 ng / ml (Fig. 9).
  • HB_EGF (5 Ong / ml) and each antibody were added to an ELISA plate on which EGFR-Fc was immobilized, and reacted at room temperature for 1 hour. The plate was washed with TBS-T and bound to EGF R! /, And HB-EGF was detected by the above method (FIG. 10).
  • any antibody showed a concentration-dependent binding inhibitory activity.
  • strong binding inhibitory activity was confirmed with HA-20, HB-20, and HC_15.
  • HA-20, HB-20, and HC-15 were compared for their neutralizing activity against HB-EGF-dependent proliferation of EGFR-Ba / F3 cells.
  • EGFR- the Ba / F3 cells with HB-EGF (80ng / ml) in the presence 2Xl0 4 cells / Ueru seeded in 96 ⁇ El plate was added each purified antibody. After culturing for 3 days, the number of cells was measured using WST-8 (cell counting kit_8), and a growth curve was prepared. Based on this result, the antibody concentration (EC value) of 50% of the maximum inhibitory effect was calculated.
  • RMG-1 cells were 96 ⁇ el plates, in 6Xl0 3 cells / Ueru, plated on Ham's F12 in medium containing 8% or 2% FCS, were added to each antibody thereto. After culturing for 1 week, the number of cells was measured with WST-8 reagent.
  • HA-20 inhibited the proliferation of RMG-1 cells in an antibody concentration-dependent manner (FIG. 12). This growth inhibitory activity was particularly prominent when the FCS concentration was 2%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

明 細 書
抗 HB-EGF抗体を有効成分として含む癌治療剤
技術分野
[0001] 本発明は、癌の治療方法および抗癌剤に関する。
背景技術
[0002] へパリン結合上皮成長因子様成長因子(H印 arin-binding epidermal growth fact or-like growth factor; HB-EGF)は、 EGFリガンドファミリーに属する増殖因子であ る。 HB-EGF遺伝子を欠失させたノックアウトマウスは、心臓肥大を伴う心機能不全な ど極めて重篤な表現形を呈し、生後すぐに死亡する(非特許文献 1)。このことから HB -EGFは胎生期の心臓の形成に深く関与していることが示されている。一方、成人に おいても、その発現は、肺、心臓、脳、骨格筋など比較的広範な組織に分布しており (非特許文献 2)、 HB-EGFは胎生期ば力、りでなぐ成人においても生体機能の維持 に極めて重要な役割を担って!/、る (非特許文献 3)。
[0003] HB-EGFは、生体内にぉレ、ては、 HB-EGFを発現する細胞の細胞表面上に発現す る膜型 HB-EGF (以下 proHB-EGFと指称する。)と、細胞から遊離して存在する分泌 型 HB-EGF (以下 sHB-EGFまたは活性型 HB-EGFと指称する。)の 2つの異なる構造 体として存在する。図 1に、 proHB-EGFおよび sHB-EGFの構造の模式図を示す。 pro HB-EGFの前駆体タンパク質は 208アミノ酸から成り、 N末からシグナルペプチド、プロ ペプチド、へパリン結合ドメイン、 EGF様ドメイン、ジャクスタ膜ドメイン、膜貫通ドメイン 、細胞内ドメインによって構成される。 proHB-EGFの前駆体タンパク質のシグナルぺ プチドが切断された後に、 proHB-EGFが 1型膜タンパク質として発現する。 proHB-E GFはその後ェクトドメインシェデイングと呼ばれるプロテアーゼ消化を受け、 73〜87個 のアミノ酸残基からなる sHB-EGFとして細胞外に切り出される。この sHB-EGFは、 2 つのドメイン、すなわちへパリン結合ドメインと EGF様ドメインだけから構成されており 、活性型リガンドとして EGF受容体 (Herl)、および、 EGF受容体 4(Her4)に結合する。 その結果、その下流にある ERK/MAPKシグナル経路を介して、 MH3T3細胞、平滑 筋細胞、上皮細胞、ケラチノサイト、腎尿細管細胞など様々な細胞に対し増殖を誘導 する(非特許文献 4)。ェクトドメインシェデイングを受ける部位に変異を入れ、 proHB- EGFだけを発現させた細胞は、増殖能が著しく低下する。また proHB-EGFしか発現 しないトランスジエニックマウスは、 HB-EGFノックアウトマウスと同様の表現系を示す。 これらのこと力、ら HB-EGFの増殖因子としての機能は、分泌型 HB-EGFが主に担って V、ると考えられて!/、る (非特許文献 5及び 6)。
[0004] 一方、 proHB-EGFも生体内において sHB-EGFとは異なるユニークな機能を担って いること力 S知られている。当初、 proHB-EGFはジフテリア毒素 (DT)の受容体として機 能していることが知られていた (非特許文献 7及び 8)。しかし、その後の研究により、 pr oHB-EGFは細胞表面で DRAP27/CD9、さらにはインテグリン(integrin) α β 、へパ
3 1 リンサルフェートなどの分子と複合体を形成し、細胞接着や移動 (migration)に関与し ていることが明らかにされた。また、 proHB-EGFは、ジャタスタクライン機構により、 EG F受容体(以下、 EGFRと指称する)を介して、近隣の細胞の増殖抑制および細胞死 を誘導することが明らかにされている。このように、 EGFRに対するリガンドとしての HB -EGFは、膜型である proHB-EGFと分泌型である sHB-EGFで、まったく正反対のシグ ナルを伝えて!/、ることが知られて!/、る (非特許文献 5及び 8)。
[0005] HB-EGFは、癌細胞など様々な細胞株に対し、細胞増殖、細胞運動、浸潤を強く促 進する活性を有する。さらに、 HB-EGFの発現力 正常組織に比べて勝臓癌、肝臓 癌、食道癌、メラノーマ、大腸癌、胃癌、卵巣癌、膀胱癌、および、脳腫瘍など広範な 癌種で上昇してレ、ることが報告されており、このことから HB-EGFが癌の増殖 ·悪性化 に強く関与して!/、ること力 S明らかにされて!/、る (非特許文献 4及び 10)。
[0006] 従って、これらの知見をもとに、 HB-EGFの活性を阻害することにより、癌細胞の増 殖を抑制する試みがなされている。抗 HB-EGF中和抗体を利用した HB-EGFの作用 を抑制する試みは、 3T3細胞に対する DNA合成の抑制効果(非特許文献 11)、ケラ チノサイトに対する増殖抑制効果 (非特許文献 12)、ダリオ一マ細胞に対する増殖抑 制効果(非特許文献 13)、ミエローマ細胞に対する DNA合成抑制効果 (非特許文献 1 4)、などがすでに報告されている。
[0007] 一方、 HB-EGFに特異的に結合する弱毒化ジフテリア毒素(CRM197)を HB-EGF 阻害剤として利用した試みもなされている。実際、卵巣癌細胞株を移植したゼノダラ フト(xenograft)マウスモデルを用いた薬効試験では、 CRM197投与群において優位 な腫瘍縮小効果が確認されており(非特許文献 15)、さらに、癌患者においても CRM 197を用いた臨床試験がなされて!/、る(非特許文献 6)。
[0008] このように HB-EGFが抗癌剤の標的分子として有用であることは明らかであり、実際 に CRM197のような HB-EGF阻害分子の薬効試験もこれまで実施されて!/、る。しかし ながら、 CRM197はヒトの体内には本来存在しない毒素であり、従って CRM197そのも のの臨床利用においては、その毒性ば力、りでなく抗原性の問題が極めて大きな課題 であると考えられる。
[0009] 一方、前述したとおり HB-EGFの活性を阻害しうる中和抗体は古くから実際に存在 するものの、いずれもャギの抗血清より精製したポリクローナル抗体であり、臨床での 使用は不可能である。そのため、高い中和活性を持ち、臨床応用に必要なヒト型化と 高い生産性が実現可能な HB-EGF中和モノクローナル抗体が医療の場で求められ ている。
[0010] しかしながら、抗 HB-EGF中和抗体の臨床応用を考えた場合、前述のとおり HB-EG Fは HB-EGFを発現する細胞の細胞表面上の HB-EGFタンパク質である proHB-EGF として生体内で広範な正常組織にも発現して!/、ることから、抗体とエフェクター細胞の 作用による抗体依存性細胞障害活性(Antibody Dependent Cell-mediated Cytoto xicity0以下、 ADCC活性と指称する。 )、補体依存性細胞障害活性(Complement D ependent Cytotoxicity0以下、 CDC活性と指称する。)といった毒性が懸念される。さ らに、正常組織における抗体の吸収作用によって起こる血中濃度の低下、および抗 体の腫瘍集積効率の低下といった問題がクリアすべき課題として挙げられる。
[0011] 本明細書において引用される参考文献は以下のとおりである。これらの文献に記載 される内容はすべて本明細書の一部としてここに引用する。これらの文献のいずれか 力 s、本明細書に対する先行技術であると認めるものではない。
^特許文 l¾ l: Iwamoto R,Yamazaki S,Asakura M et al.Heparin-binding EGF-li ke growth factor and ErbB signaling is essential for heart function. Proc Na tl Acad Sci USA 2003; 100:3221-6.
非特許文献 2 : Abraham JA,Damm D,Bajardi A, Miller J, lagsbrun M,Ezekowitz RA.Heparin-binding EGF_like growth factor: characterization of rat and mouse cDNA clones, rotein domain conservation across species, and transcript expr ession in tissues. Biochem Biophys Res Commun 1993; 190: 125—33.
非特許文献 3 : Karen M., Frontiers in Bioscinece 3,288-299, 1998
非特許文献 4 : Raab G, lagsbrun M.Heparin-binding EGF-like growth factor. Bi ochim Biophys Acta 1997; 1333:F179_99.
非特許文献 5 : Yamazaki S, Iwamoto R,Saeki et al.Mice with defects in HB- EGF ectodomain shedding show severe developmental abnormalities. J Cell Bi ol 2003; 163:469-75.
非特許文献 6 : Ongusaha P., Cancer Res (2004) 64,5283-5290.
非特許文献 7 : Iwamoto R.,Higashiyama S.,EMBO J.13,2322-2330.(1994) 非特許文献 8 : Naglich JG.,Metherall JE.,Cell 69, 1051-1061.(1992)
非特許文献 9 : Iwamoto R,Handa ,Mekada E. Contact-dependent growth inhibit ion and apoptosis of epidermal growth factor (EGF) receptor-expressing cell s by the membrane-anchored form of heparin-binding EGF-like growth facto r.J Biol Chem 1999;274:25906-12.
非特許文献 10 : Miyamoto S,Cancer Sci.97, 341-347 (2006)
非特許文献 l l : Blotnick S. ,Proc.Natl.Acad.Sci.USA (1994) 91,2890-2894 非特許文献 12 : Hashimoto .,J.Biol.Chem.(1994) 269,20060-20066.
非特許文献 13 : Mishima .,Act Neuropathol.(1998) 96,322-328·
非特許文献 14 : Wang YD. Oncogene (2002) 21,2584-2592.
非特許文献 15 : Miyamoto S., Cancer Res. (2004) 64,5720- 非特許文献 16 : Buzzi S., Cancer Immunol Immunother (2004) 53, 1041-1048. 発明の開示
発明が解決しょうとする課題
本発明は、抗 HB-EGF抗体とその用途を提供することを課題とする。より詳細には、 抗 HB-EGF抗体を用いた癌を治療する新規方法、抗 HB-EGF抗体を含む新規な細 胞増殖抑制剤および抗癌剤、ならびに新規な抗 HB-EGF抗体を提供することを目的 とする。
課題を解決するための手段
[0013] 本発明者は癌細胞で高発現している HB-EGFに対する中和活性を有する抗体が 癌細胞の増殖活性を有意に阻害することを見出した。さらに、当該中和活性を有す る抗体が HB-EGFを発現する細胞の細胞表面上の HB-EGFタンパク質には結合しな いことを見出した。更には以上の知見により、本発明者は、抗 HB-EGF抗体が卵巣癌 をはじめとした HB-EGFが発現亢進する癌の治療に有効であることを見出して、本発 明を完成させた。
[0014] 本発明者らは、 HB-EGFタンパク質をマウスに免疫し、これまでまったく報告のなか つた HB-EGFによる細胞増殖誘導能を阻害するモノクローナル抗体を得た。また、発 明者は得られた中和抗体力 HB-EGFを発現する細胞の細胞表面上の HB-EGFタン パク質である proHB-EGFには結合せず、 HB-EGFを発現する細胞から遊離して存在 する分泌型 HB-EGF(sHB-EGF)にしか結合活性を有さないことを明らかにした。本発 明に係る抗体に特有の性質により、従来の課題であった、抗体による ADCC活性や C DC活性などの毒性、および、血中濃度'腫瘍集積率の低下といった解決すべき課題 が解決された。
[0015] すなわち、本願は以下の〔1〕〜〔29〕のいずれかに記載のモノクローナル抗体とそ の低分子化抗体を提供するものである。
〔 1〕 CDR1として配列番号: 2に記載のアミノ酸配列、 CDR2として配列番号: 4に記 載のアミノ酸配列、および CDR3として配列番号: 6に記載のアミノ酸配列を有する H 鎖を含む抗体、
〔2〕〔1〕に記載の H鎖であって、 CHとして配列番号: 8に記載のアミノ酸配列を有す る H鎖を含む抗体、
〔3〕〔1〕に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を有す る H鎖を含む抗体、
〔4〕CDR1として配列番号: 12に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 14に 記載のアミノ酸配列、および CDR3として配列番号: 16に記載のアミノ酸配列を有す る L鎖を含む抗体、 〔5〕〔4〕に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有す る L鎖を含む抗体、
〔6〕〔4〕に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有す る L鎖を含む抗体、
〔7〕〔1〕に記載の H鎖、および〔4〕に記載の L鎖を含む抗体、
〔8〕〔2〕に記載の H鎖、および〔5〕に記載の L鎖を含む抗体、
〔9〕〔3〕に記載の H鎖、および〔6〕に記載の L鎖を含む抗体、
〔10〕 CDR1として配列番号: 22に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 24 に記載のアミノ酸配列、および CDR3として配列番号: 26に記載のアミノ酸配列を有 する H鎖を含む抗体、
[11]〔10〕に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
〔12〕〔10〕に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
〔13〕 CDR1として配列番号: 30に記載のアミノ酸配列、 CDR2として配列番号: 32 に記載のアミノ酸配列、および CDR3として配列番号: 34に記載のアミノ酸配列を有 する L鎖を含む抗体、
〔14〕〔13〕に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有 する L鎖を含む抗体、
〔15〕〔13〕に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
[16]〔10〕に記載の H鎖、および〔13〕に記載の L鎖を含む抗体、
[17]〔11〕に記載の H鎖、および〔14〕に記載の L鎖を含む抗体、
〔18〕〔12〕に記載の H鎖、および〔15〕に記載の L鎖を含む抗体、
〔19〕 CDR1として配列番号: 36に記載のアミノ酸配列、 CDR2として配列番号: 38 に記載のアミノ酸配列、および CDR3として配列番号: 40に記載のアミノ酸配列を有 する H鎖を含む抗体、
〔20〕〔19〕に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
〔21〕〔19〕に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
〔22〕 CDR1として配列番号: 42に記載のアミノ酸配列、 CDR2として配列番号: 44 に記載のアミノ酸配列、および CDR3として配列番号: 46に記載のアミノ酸配列を有 する L鎖を含む抗体、
〔23〕〔22〕に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有 する L鎖を含む抗体、
〔24〕〔22〕に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
〔25〕〔19〕に記載の H鎖、および〔22〕に記載の L鎖を含む抗体、
〔26〕〔20〕に記載の H鎖、および〔23〕に記載の L鎖を含む抗体、
〔27〕〔21〕に記載の H鎖、および〔24〕に記載の L鎖を含む抗体、
〔28〕〔1〕から〔27〕のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、〔1〕から〔27〕のいずれか に記載の抗体と同等の活性を有する抗体、
〔29〕〔1〕から〔27〕のいずれかに記載の抗体が結合する HB-EGFタンパク質のェピト ープと同じェピトープに結合する抗体。
[0016] さらに本発明は、配列番号 59に記載の HB-EGFを発現する細胞の細胞表面上の H B-EGFタンパク質に結合しない抗体である上記〔1〕から〔29〕に記載のモノクローナ ル抗体を提供する。特に、配列番号 59に記載の HB-EGFを発現する細胞が RMG-1 又は配列番号 59に記載の HB-EGFを組換え発現する Ba/F3、 DG44若しくは SKOV- 3のいずれ力、から選択される細胞であって当該細胞に結合しない抗体である上記〔1 〕から〔29〕に記載のモノクローナル抗体を提供する。
[0017] さらに、本発明は HB-EGFタンパク質に結合する抗体を有効成分として含有する癌 治療剤を提供する。好ましくは、 HB-EGFタンパク質に結合する抗体は中和活性を有 する抗体である。更に好ましくは、当該中和活性を有する抗体は HB-EGFを発現する 細胞には結合しない抗体である。また好ましくは、癌は瞵臓癌、肝臓癌、食道癌、メラ ノーマ、大腸癌、胃癌、卵巣癌、膀胱癌または脳腫瘍である。特に好ましくは卵巣癌 である。
[0018] 別の態様においては、本発明は、 HB-EGF発現細胞と HB-EGFタンパク質に結合 する抗体とを接触させることにより HB-EGFタンパク質を発現する細胞の増殖を抑制 する方法を提供する。好ましくは、 HB-EGFタンパク質に結合する抗体は中和活性を 有する抗体である。また好ましくは、 HB-EGFタンパク質を発現する細胞は癌細胞で ある。
発明の効果
[0019] 本発明に係る HB-EGFタンパク質に特異的な抗体を用いれば、 HB-EGFタンパク質 を発現する卵巣癌のみならず、 HB-EGFタンパク質を発現する勝臓癌細胞、肝臓癌 細胞、食道癌細胞、メラノーマ細胞、大腸癌細胞、胃癌細胞、膀胱癌細胞または脳 腫瘍細胞などの各種の癌細胞の細胞障害剤又は細胞増殖抑制剤として使用するこ と力 Sできる。
[0020] 更に、本発明に係る細胞障害活性を有する抗 HB-EGF抗体は、卵巣癌や勝臓癌、 肝臓癌、食道癌、メラノーマ、大腸癌、胃癌、膀胱癌または脳腫瘍などの各種の癌に 対する治療薬として使用することができる。
[0021] 加えて、本発明に係る抗体をコードする遺伝子及び当該遺伝子により形質転換さ れた組換え細胞は、上記記載の効果、及びより好適な効果を奏する組換え抗体を作 製するために使用することができる。
図面の簡単な説明
[0022] [図 l]proHB-EGF、 sHB-EGF及び免疫原として使用した HB-EGF— Fcの構造を模式 的に示した図である。
[図 2a]HB-EGFの EGFR-BaF3細胞に対する結合により当該細胞に及ぼす影響を模 式的に示した図である。
[図 2b]EGFR-BaF3細胞の HB-EGFに対する濃度依存的な増殖を示したグラフである
[図 3a]EGFR— Ba/F3細胞の HB-EGF依存的な増殖に対する各種 HB-EGF抗体(HA -1、 HA-3、 HA-9、 HA-10及び HA-20)の中和活性を示すグラフである。 [図 3b]EGFR— Ba/F3細胞の HB-EGF依存的な増殖に対する各種 HB-EGF抗体(HB
-10、 HB-13、 HB-20, HB-22及び HC-74)の中和活性を示すグラフである。
[図 3c]EGFR— Ba/F3細胞の HB-EGF依存的な増殖に対する各種抗体(HC_15、 HC
-19、 HC-26及び HC-42)の中和活性を示すグラフである。
[図 4]各 HB-EGF中和抗体の可変領域の配列の比較である。
[図 5]抗体 HA-20、 HB-20及び HC15の活性型 HB-EGFに対する結合活性を示すダラ フである。
[図 6]抗体 HA-20、 HB-20及び HC15の proHB-EGFに対する結合活性を示すヒストグ ラムである。
[図 7]HB-EGFと EGFRとの結合を HB-EGF抗体が固相上で阻害する状態を模式的に 示した図である。
[図 8]ELISAによる EGFRと HB-EGFとの結合様式の解析モデルを模式的に示す図で ある。
[図 9]ELISAによる EGFRと HB-EGFとの結合様式の解析モデルにより検出される HB- EGFの濃度曲線を示したグラフである。
[図 10]抗体 HA-20、 HB-20及び HC15による EGFRに対する HB-EGFの結合阻害を示 したグラフである。
[図 11]抗体 HA-20、 HB-20及び HC15による EGFR— Ba/F3細胞に対する増殖抑制を 比較したグラフである。
[図 12a]8%FCS存在下の培地における抗体 HA-20、 HB-20及び HC15による卵巣癌 細胞株 RMG-1に対する増殖抑制を示したグラフである。
[図 12b]2%FCS存在下の培地における抗体 HA-20、 HB-20及び HC15による卵巣癌 細胞株 RMG-1に対する増殖抑制を示したグラフである。
発明を実施するための最良の形態
HB-EGFの分子型
HB-EGFは、 EGFリガンドファミリーに属する増殖因子であり、ヒト HB-EGFをコード する遺伝子配列および HB-EGFのアミノ酸配列は、それぞれ GenBank登録番号 NM 001945 (配列番号: 59)、及び NP 001936 (配列番号: 60)に開示されている。本 発明において、 HB-EGFタンパク質とは、全長タンパク質およびその断片の両方を含 むことを意味する。本発明において、断片とは、広義の意味においては HB-EGFタン パク質の任意の領域を含むポリペプチドであり、天然の HB-EGFタンパク質の機能を 有していなくてもよい。特定の断片の一態様として、本明細書中で用いられる sHB-E GFは、生体内において、 HB-EGFを発現する細胞の細胞表面上に発現する proHB- EGFが、ェクトドメインシェデイングと呼ばれるプロテアーゼ消化を受けた結果生成さ れる、 73〜87個のアミノ酸残基からなる分子である。
[0024] 配列番号 60で示される 208アミノ酸から成る proHB-EGF分子中の 149番目のプロリ ン残基をカルボキシル末端として、及び 63番目のァスパラギン残基、 73番目のアルギ ニン残基、 74番目のパリン残基又は 77番目のセリン残基をァミノ末端としてその構造 中に有する複数の sHB-EGF分子が知られている。
[0025] 杭 HB-EGF杭体の作製
本発明の抗 HB-EGF抗体は、 HB-EGFタンパク質に特異的に結合するモノクローナ ル抗体であればよぐその由来、種類および形状は問われない。具体的には、非ヒト 動物に由来するモノクローナル抗体 (例えば、マウス抗体、ラット抗体、ラクダ抗体)、 ならびに、遺伝子工学的手法により取得しうるヒト抗体、キメラ抗体、ヒト化抗体などが 使用できる。
[0026] 本発明の抗 HB-EGFモノクローナル抗体は、公知の手段を用いて取得できる。本 発明の抗 HB-EGF抗体として、特に哺乳動物由来のモノクローナル抗体が好ましい。 哺乳動物由来のモノクローナル抗体は、ハイプリドーマにより産生されるもの、および 遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主により 産生されるもの等を含む。
[0027] モノクローナル抗体産生ハイブリドーマ力 基本的には公知技術を使用し、以下の ようにして作製できる。まず、 HB-EGFタンパク質を感作抗原として使用して、これを 通常の免疫方法にしたがって免疫する。免疫動物から得られる免疫細胞を通常の細 胞融合法によって公知の親細胞と融合させて、ノ、イブリドーマを得る。更に、このハイ プリドーマから、通常のスクリーニング法により、 目的とする抗体を産生する細胞をスク リーユングすることによって抗 HB-EGF抗体を産生するハイブリドーマが選択できる。 [0028] 具体的には、モノクローナル抗体の作製は例えば以下に示すように行われる。まず 、 HB-EGF遺伝子を発現することによって、抗体取得の感作抗原として使用される HB -EGFタンパク質が取得できる。ヒト HB-EGF遺伝子の塩基配列は、 GenBank登録番 号 NM— 001945 (配列番号: 59)などに開示されている。すなわち、 HB-EGFをコード する遺伝子配列を公知の発現ベクターに揷入して適当な宿主細胞を形質転換させ た後、その宿主細胞中または培養上清中から目的のヒト HB-EGFタンパク質が公知 の方法で精製できる。また、精製した天然の HB-EGFタンパク質も同様に使用できる 。生成は通常のイオンクロマトグラフィゃァフィニテイク口マトグラフィなどの複数のクロ マトグラフィを単数回又は複数回、組み合わせて又は単独で使用することにより生成 すること力 Sできる。また、本発明で用いられるように、 HB-EGFタンパク質の所望の部 分ポリペプチドを異なるポリペプチドと融合した融合タンパク質を免疫原として利用す ることもできる。免疫原とする融合タンパク質を製造するために、例えば抗体の Fc断 片ゃペプチドタグ等を利用することができる。融合タンパク質を発現するベクターは 所望の二種類又はそれ以上のポリペプチド断片をコードする遺伝子をインフレーム で融合させ、当該融合遺伝子を前記の様に発現ベクターに揷入することにより作製 すること力 Sできる。融合タンパク質の作製方法は Molecular Cloning 2nd ed.(Sambr ookj.et al., Molecular Cloning 2 ed., 9.47-9.58, Cold Spring Harbor Lab. Press, 1989)に記載されている。
[0029] このようにして精製された HB-EGFタンパク質を哺乳動物に対する免疫に使用する 感作抗原として使用できる。 HB-EGFの部分ペプチドもまた感作抗原として使用でき る。たとえば、次のようなペプチドを感作抗原とすることができる:
ヒト HB-EGFのアミノ酸配列より化学合成によって取得されたペプチド;
ヒト HB-EGF遺伝子の一部を発現ベクターに組込んで発現させることによって取得さ れたペプチド;
ヒト HB-EGFタンパク質をタンパク質分解酵素により分解することによって取得された ペプチド。
[0030] 部分ペプチドとして用いる HB-EGFの領域および大きさは限定されるものではない 。好ましレ、領域は HB-EGFの細胞外ドメインを構成するアミノ酸配列(配列番号: 60の アミノ酸配列にお!/、て 22— 149番目 )力、ら選択すること力 Sできる。感作抗原とするぺ プチドを構成するァミノの数は、少なくとも 3以上、たとえば、 5以上、あるいは 6以上で あること力 S好ましい。より具体的には、 8〜50、好ましくは 10〜30残基のペプチドを感 作抗原とすること力でさる。
[0031] 該感作抗原で免疫される哺乳動物は、特に限定されない。モノクローナル抗体を細 胞融合法によって得るためには、細胞融合に使用する親細胞との適合性を考慮して 免疫動物を選択するのが好ましい。一般的には、げっ歯類の動物が免疫動物として 好ましい。具体的には、マウス、ラット、ノ、ムスター、あるいはゥサギを免疫動物とする こと力 Sできる。その他、サル等を免疫動物とすることもできる。
[0032] 公知の方法にしたがって上記の動物が感作抗原により免疫できる。例えば、一般 的方法として、感作抗原を腹腔内または皮下に注射することにより哺乳動物を免疫 すること力 Sできる。具体的には、該感作抗原が哺乳動物に 4から 21日毎に数回投与さ れる。感作抗原は、 PBS (Phosphate-Buffered Saline)や生理食塩水等で適当な希釈 倍率で希釈して免疫に使用される。更に、感作抗原をアジュバントとともに投与するこ とができる。例えばフロイント完全アジュバントと混合し、乳化して、感作抗原とするこ と力 Sできる。また、感作抗原の免疫時には適当な担体が使用できる。特に分子量の 小さい部分ペプチドが感作抗原として用いられる場合には、該感作抗原ペプチドを アルブミン、キーホールリンペットへモシァニン等の担体タンパク質と結合させて免疫 することが望ましい。
[0033] このように哺乳動物が免疫され、血清中における所望の抗体量の上昇が確認され た後に、哺乳動物から免疫細胞が採取され、細胞融合に付される。好ましい免疫細 胞としては、特に脾細胞が使用できる。
[0034] 前記免疫細胞と融合される細胞として、哺乳動物のミエローマ細胞が用いられる。ミ エローマ細胞は、スクリーニングのための適当な選択マーカーを備えていることが好 ましい。選択マーカーとは、特定の培養条件の下で生存できる(あるいはできない)形 質を指す。選択マーカーには、ヒポキサンチンーグァニン ホスホリボシルトランスフ エラーゼ欠損(以下 HGPRT欠損と省略する)、あるいはチミジンキナーゼ欠損(以下 T K欠損と省略する)などが公知である。 HGPRTや TKの欠損を有する細胞は、ヒポキサ ンチン—アミノプテリン—チミジン感受性(以下 HAT感受性と省略する)を有する。 HA T感受性の細胞は HAT選択培地中で DNA合成を行うことができず死滅する力 正常 な細胞と融合すると正常細胞のサルベージ回路を利用して DNAの合成を継続するこ とができるため HAT選択培地中でも増殖するようになる。
[0035] HGPRT欠損や TK欠損の細胞は、それぞれ 6チォグァニン、 8ァザグァニン(以下 8A Gと省略する)、あるいは 5'ブロモデォキシゥリジンを含む培地で選択することができる 。正常な細胞はこれらのピリミジンアナログを DNA中に取り込んでしまうので死滅する 力 これらの酵素を欠損した細胞は、これらのピリミジンアナログを取り込めないので 選択培地の中で生存することができる。この他 G418耐性と呼ばれる選択マーカーは 、ネオマイシン耐性遺伝子によって 2-デォキシストレプタミン系抗生物質(ゲンタマイ シン類似体)に対する耐性を与える。細胞融合に好適な種々のミエローマ細胞が公 知である。例えば、以下のようなミエローマ細胞を、本発明におけるモノクローナル抗 体の製造に利用することができる:
P3 (P3x63Ag8.653) (J.Immunol. (1979) 123, 1548-1550)
P3xo Ag8U. l (Current Topics in Microbiology and Immunology、丄978) 8丄,1_
NS-l ( ohler.G.and Milstein,C.Eur.J.Immunol. (1976) 6,511-519)
MPC-11 (Margulies.D.H.et al.,Cell (1976) 8,405-415)
SP2/0 (Shulman,M.et al., Nature (1978) 276,269-270)
FO (de St.Groth,S.F.etal.,J.Immunol.Methods (1980) 35, 1-21)
S194 (Trowbridge,I.S.J.Exp.Med. (1978) 148,313-323) ,
R210 (Galfre,G.et al. , Nature (1979) 277, 131—133)等。
[0036] 基本的には公知の方法、たとえば、ケーラーとミルスティンらの方法(Kohler.G.and
Milstein,C.、 Methods EnzymoL (1981) 73,3-46)等に準じて、前記免疫細胞とミエ ローマ細胞との細胞融合が行われる。
[0037] より具体的には、例えば細胞融合促進剤の存在下で通常の栄養培養液中で、前 記細胞融合が実施できる。融合促進剤としては、例えばポリエチレングリコール (PEG )、センダイウィルス(HVJ)等を使用することができる。更に融合効率を高めるために 所望によりジメチルスルホキシド等の補助剤を加えることもできる。 [0038] 免疫細胞とミエローマ細胞との使用割合は任意に設定できる。例えば、ミエローマ 細胞に対して免疫細胞を 1から 10倍とするのが好ましい。前記細胞融合に用いる培 養液としては、例えば、前記ミエローマ細胞株の増殖に好適な RPMI1640培養液、 ME M培養液、その他、この種の細胞培養に用いられる通常の培養液を利用することが できる。さらに、牛胎児血清 (FCS)等の血清補液を培養液に添加することができる。
[0039] 細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混 合し、予め 37°C程度に加温した PEG溶液を混合することによって目的とする融合細 胞 (ノヽイブリドーマ)が形成される。細胞融合法においては、例えば平均分子量 1000 力、ら 6000程度の PEGを、通常 30から 60% (w/v)の濃度で添加することができる。続い て、上記に挙げた適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り 返すことにより、ハイプリドーマの生育に好ましくない細胞融合剤等が除去される。
[0040] このようにして得られたハイプリドーマは、細胞融合に用いられたミエローマが有す る選択マーカーに応じた選択培養液を利用することによって選択することができる。 例えば HGPRTや TKの欠損を有する細胞は、 HAT培養液(ヒポキサンチン、アミノプ テリンおよびチミジンを含む培養液)で培養することにより選択できる。すなわち、 HA T感受性のミエローマ細胞を細胞融合に用いた場合、 HAT培養液中で、正常細胞と の細胞融合に成功した細胞が選択的に増殖させることができる。 目的とするハイプリ ドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、上記 HAT培養液を用 いた培養が継続される。具体的には、一般に、数日力 数週間の培養によって、 目 的とするハイプリドーマを選択することができる。ついで、通常の限界希釈法を実施 することによって、 目的とする抗体を産生するハイブリドーマのスクリーニングおよび 単一クローユングが実施できる。あるいは、 HB-EGFを認識する抗体を国際公開 WO 03/104453に記載された方法によって作成することもできる。
[0041] 目的とする抗体のスクリーニングおよび単一クローニングは、公知の抗原抗体反応 に基づくスクリーニング方法によって好適に実施できる。例えば、ポリスチレン等でで きたビーズや市販の 96ゥエルのマイクロタイタープレート等の担体に抗原を結合させ 、 ノ、イブリドーマの培養上清と反応させる。次いで担体を洗浄した後に酵素で標識し た二次抗体等を反応させる。もしも培養上清中に感作抗原と反応する目的とする抗 体が含まれる場合、二次抗体はこの抗体を介して担体に結合する。最終的に担体に 結合する二次抗体を検出することによって、 目的とする抗体が培養上清中に存在し ているかどうかが決定できる。抗原に対する結合能を有する所望の抗体を産生する ハイプリドーマを限界希釈法等によりクローニングすることが可能となる。この際、抗 原としては免疫に用いたものを始め、実施的に同質な HB-EGFタンパク質が好適に 使用できる。たとえば HB-EGFの細胞外ドメイン、あるいは当該領域を構成する部分 アミノ酸配列からなるオリゴペプチドを、抗原として利用することができる。
[0042] また、ヒト以外の動物に抗原を免疫することによって上記ハイプリドーマを得る方法 以外に、ヒトリンパ球を抗原感作して目的とする抗体を得ることもできる。具体的には 、まずインビトロにおいてヒトリンパ球を HB-EGFタンパク質で感作する。次いで免疫 感作されたリンパ球を適当な融合パートナーと融合させる。融合パートナーには、た とえばヒト由来であって永久分裂能を有するミエローマ細胞を利用することができる( 特公平 1-59878号公報参照)。この方法によって得られる抗 HB-EGF抗体は、 HB-EG Fタンパク質への結合活性を有するヒト抗体である。
[0043] さらに、ヒト抗体遺伝子の全てのレパートリーを有するトランスジエニック動物に対し て抗原となる HB-EGFタンパク質を投与することによって、抗 HB-EGFヒト抗体を得る こともできる。免疫動物の抗体産生細胞は、適当な融合パートナーとの細胞融合や ェプスタインバーウィルスの感染などの処理によって不死化させることができる。この ようにして得られた不死化細胞から HB-EGFタンパク質に対するヒト抗体を単離するこ とによってもできる(国際公開 W094/25585、 W093/12227、 WO92/03918、 WO94/0 2602参照)。更に不死化された細胞をクローニングすることにより、 目的の反応特異 性を有する抗体を産生する細胞をクローニングすることもできる。トランスジエニック動 物を免疫動物とするときには、当該動物の免疫システムは、ヒト HB-EGFを異物と認 識する。したがって、ヒト HB-EGFに対するヒト抗体を容易に得ることができる。このよう にして作製されるモノクローナル抗体を産生するハイプリドーマは、通常の培養液中 で継代培養すること力できる。また、該ハイブリドーマを液体窒素中で長期にわたつ て保存することあでさる。
[0044] 当該ハイプリドーマを通常の方法に従い培養し、その培養上清から目的とするモノ クローナル抗体を得ること力 Sできる。あるいはハイプリドーマをこれと適合性がある哺 乳動物に投与して増殖させ、その腹水としてモノクローナル抗体を得ることもできる。 前者の方法は、高純度の抗体を得るのに適している。
[0045] 本発明においては、抗体産生細胞からクローニングされた抗体遺伝子によってコー ドされる抗体を利用することもできる。クローユングした抗体遺伝子は、適当なベクタ 一に組み込んで宿主に導入することによって、抗体として発現させること力 Sできる。抗 体遺伝子の単離と、ベクターへの導入、そして宿主細胞の形質転換のための方法は 既に確立されている(例えば、 Vandamme,A.Met al.,Eur.J.Biochem. (1990) 192,767 -775参照)。
[0046] たとえば、抗 HB-EGF抗体を産生するハイブリドーマ細胞から、抗 HB-EGF抗体の 可変領域 (V領域)をコードする cDNAを得ることができる。そのためには、通常、まず ハイプリドーマから全 RNAが抽出される。細胞から mRNAを抽出するための方法として 、たとえば次のような方法を利用することができる:
グァニジン超遠心法(ChirgwinJ.Met al., Biochemistry (1979) 18,5294-5299); AGPC法(Chomczynski,P.et al.,Anal.Biochem. (1987) 162,156-159)。
[0047] 抽出された mRNAは、 mRNA Purification Kit (GEヘルスケアバイオサイエンス製) 等を使用して精製することができる。あるいは、 QuickPrep mRNA Purification it ( GEヘルスケアバイオサイエンス製)などのように、細胞から直接全 mRNAを抽出する ためのキットも市販されている。このようなキットを用いて、ハイプリドーマから全 mRNA を得ることもできる。得られた mRNAから逆転写酵素を用いて抗体 V領域をコードする cDNAを合成すること力 Sできる。 cDNAは、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業社製)等によって合成することができる。また、 c DNAの合成および増幅のために、 5'_Ampli FINDER RACE Kit (Clontech製)およ び PCRを用いた 5'-RACE法(Frohman,MA.et al.,Proc.Natl.Acad.Sci.USA(1988) 85 ,8998-9002、 Belyavsky,A.et al., Nucleic Acids Res. (1989) 17,2919-2932)を利用 すること力 Sできる。更にこうした cDNAの合成の過程において cDNAの両末端に後述す る適切な制限酵素サイトが導入できる。
[0048] 得られた PCR産物から目的とする cDNA断片が精製され、次!/、でベクター DNAと連 結される。このように組換えベクターが作製され、大腸菌等に導入されコロニーが選 択された後に、該コロニーを形成した大腸菌から所望の組換えベクターが調製できる 。そして、該組換えベクターが目的とする cDNAの塩基配列を有しているか否かにつ いて、公知の方法、例えば、ジデォキシヌクレオチドチェインターミネーシヨン法等に より確言忍でさる。
[0049] 可変領域をコードする遺伝子を得るために、可変領域遺伝子増幅用のプライマー を使った PCR法を利用することもできる。まず抽出された mRNAを铸型として cDNAを 合成し、 cDNAライブラリーを得る。 cDNAライブラリーの合成には市販のキットを用い るのが便利である。実際には、少数の細胞のみから得られる mRNAは極めて微量な ので、それを直接精製すると収率が低い。したがって通常は、抗体遺伝子を含まない ことが明らかなキャリア RNAを添加した後に精製される。あるいは一定量の RNAを抽 出できる場合には、抗体産生細胞の RNAのみでも効率よく抽出することができる。た とえば 10以上、あるいは 30以上、好ましくは 50以上の抗体産生細胞からの RNA抽 出には、キャリア RNAの添加は必要でない場合がある。
[0050] 得られた cDNAライブラリーを铸型として、 PCR法によって抗体遺伝子が増幅される 。抗体遺伝子を PCR法によって増幅するためのプライマーが公知である。たとえば、 論文 (J.Mol.Biol.(1991)222,581-597)などの開示に基づいて、ヒト抗体遺伝子増幅用 のプライマーをデザインすることができる。これらのプライマーは、ィムノグロブリンの サブクラスごとに異なる塩基配列となる。したがって、サブクラスが不明の cDNAライブ ラリーを铸型とするときには、あらゆる可能性を考慮して PCR法を行う。
[0051] 具体的には、たとえばヒ HgGをコードする遺伝子の取得を目的とするときには、重 鎖として γ 1〜 γ 5、軽鎖として κ鎖と λ鎖をコードする遺伝子の増幅が可能なプライ マーを利用することができる。 IgGの可変領域遺伝子を増幅するためには、一般に 3' 側のプライマーにはヒンジ領域に相当する部分にァニールするプライマーが利用さ れる。一方 5'側のプライマーには、各サブクラスに応じたプライマーを用いることがで きる。
[0052] 重鎖と軽鎖の各サブクラスの遺伝子増幅用プライマーによる PCR産物は、それぞれ 独立したライブラリーとする。こうして合成されたライブラリーを利用して、重鎖と軽鎖 の組み合せからなるィムノグロブリンを再構成することができる。再構成されたィムノグ ロブリンの、 HB-EGFに対する結合活性を指標として、 目的とする抗体をスクリーニン グすること力 Sでさる。
[0053] 本発明の抗体の HB-EGFへの結合は、特異的であることがさらに好ましい。 HB-EG Fに結合する抗体は、たとえば次のようにしてスクリーニングすることができる。
(1)ハイプリドーマから得られた cDNAによってコードされる V領域を含む抗体を HB-E GFに接触させる工程、
(2) HB-EGFと抗体との結合を検出する工程、および
(3) HB-EGFに結合する抗体を選択する工程。
[0054] 抗体と HB-EGFとの結合を検出する方法は公知である。具体的には、担体に固定 した HB-EGFに対して被験抗体を反応させ、次に抗体を認識する標識抗体を反応さ せる。洗浄後に担体上の標識抗体が検出されれば、当該被験抗体の HB-EGFへの 結合を証明できる。標識には、ペルォキシダーゼや /3—ガラクトシダーゼ等の酵素活 性タンパク質、あるいは FITC等の蛍光物質を利用することができる。抗体の結合活 性を評価するために HB-EGFを発現する細胞の固定標本を利用することもできる。
[0055] 結合活性を指標とする抗体のスクリーニング方法として、ファージベクターを利用し たバニング法を用いることもできる。上記のように抗体遺伝子を重鎖と軽鎖のサブクラ スのライブラリ一として取得した場合には、ファージベクターを利用したスクリーニング 方法が有利である。重鎖と軽鎖の可変領域をコードする遺伝子は、適当なリンカ一配 列で連結することによってシングルチェイン Fv(scFv)とすることができる。 scFvをコード する遺伝子をファージベクターに揷入すれば、 scFvを表面に発現するファージを得る こと力 Sできる。このファージを目的とする抗原と接触させて、抗原に結合したファージ を回収すれば、 目的の結合活性を有する scFvをコードする DNAを回収することがで きる。この操作を必要に応じて繰り返すことにより、 目的とする結合活性を有する scFv を濃縮すること力できる。
[0056] 本発明において抗体をコードするポリヌクレオチドは、抗体の全長をコードしていて もよいし、あるいは抗体の一部をコードしていてもよい。抗体の一部とは、抗体分子の 任意の部分を言う。以下、抗体の一部を示す用語として、抗体断片を用いる場合が ある。本発明における好ましい抗体断片は、抗体の相補鎖決定領域 (complementarit y determination region;CDR)を含む。更に好ましくは、本発明の抗体断片は、可変 領域を構成する 3つの CDRの全てを含む。
[0057] 目的とする抗 HB-EGF抗体の V領域をコードする cDNAが得られた後に、該 cDNAの 両末端に揷入した制限酵素サイトを認識する制限酵素によって該 cDNAが消化され る。好ましい制限酵素は、抗体遺伝子を構成する塩基配列に出現する可能性が低い 塩基配列を認識して消化する。更に 1コピーの消化断片をベクターに正しい方向で 揷入するためには、付着末端を与える制限酵素が好ましい。上記のように消化された 抗 HB-EGF抗体の V領域をコードする cDNAを適当な発現ベクターに揷入することに よって、抗体発現ベクターを得ることができる。このとき、抗体定常領域 (C領域)をコ ードする遺伝子と、前記 V領域をコードする遺伝子とをインフレームで融合させること によって、キメラ抗体を得ること力 Sできる。ここで、キメラ抗体とは、定常領域と可変領 域の由来の生物が異なることを言う。したがって、マウスーヒトなどの異種キメラ抗体に 加え、ヒト一ヒト同種キメラ抗体も、本発明におけるキメラ抗体に含まれる。予め定常領 域を有する発現ベクターに、前記 V領域遺伝子を揷入して、キメラ抗体発現ベクター を構築することあでさる。
[0058] 具体的には、たとえば、所望の抗体定常領域 (C領域)をコードする DNAを保持した 発現ベクターの 5'側に、前記 V領域遺伝子を消化する制限酵素の制限酵素認識配 歹 IJを配置しておくことができる。両者を同じ組み合わせの制限酵素で消化し、インフ レームで融合させることによって、キメラ抗体発現ベクターが構築される。
[0059] 本発明の抗 HB-EGF抗体を製造するために、抗体遺伝子を発現制御領域による制 御の下で発現するように発現ベクターに組み込むことができる。抗体を発現するため の発現制御領域とは、例えば、ェンハンサーゃプロモーターを含む。次いで、この発 現ベクターで適当な宿主細胞を形質転換することによって、抗 HB-EGF抗体をコード する DNAを発現する組換免糸则包を得ること力 Sでさる。
[0060] 抗体遺伝子の発現にあたり、抗体重鎖 (H鎖)および軽鎖 (L鎖)をコードする DNAは 、それぞれ別の発現ベクターに組み込むことができる。 H鎖と L鎖を組み込まれたベタ ターを、同じ宿主細胞に同時に形質転換 (co-transfect)することによって、 H鎖と L鎖を 備えた抗体分子を発現させることができる。あるいは H鎖および L鎖をコードする DNA を単一の発現ベクターに組み込んで宿主細胞を形質転換させてもよい(国際公開 W 094/11523参照)。
[0061] 抗体遺伝子を一旦単離し、適当な宿主に導入して抗体を作製するための宿主と発 現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明 に応用することができる。真核細胞を宿主として使用する場合、動物細胞、植物細胞 、あるいは真菌細胞が使用できる。具体的には、本発明に利用することができる動物 細胞としては、次のような細胞を例示することができる:
(1)哺乳類細胞、: CHO、 COS,ミエローマ、 BH (baby hamster kidney)、 Hela、 Ve roなど;
(2)両生類細胞:アフリカッメガエル卵母細胞など;
(3)昆虫細胞: si9、 si21、 Tn5など。
[0062] あるいは植物細胞としては、ニコティアナ.タバカム(Nicotiana tabacum)などのニコ ティアナ(Nicotiana)属由来の細胞による抗体遺伝子の発現系が公知である。植物細 胞の形質転換には、カルス培養した細胞を利用することができる。
[0063] 更に真菌細胞としては、次のような細胞を利用することができる:
酵母:サッカロミセス'セレビシェ (Saccharomyces serevisiae)などのサッカロミセス(Sa ccharomyces) J禹、メタノーノレ資ィ匕醉母 (Pichia pastoris)などの Pichiafe;
糸状菌:アスペスギルス'二ガー(Aspergillus niger)などのァスペルギルス (Aspergill us)属。
[0064] あるいは原核細胞を利用した抗体遺伝子の発現系も公知である。たとえば、細菌細 胞を用いる場合、大腸菌(E. coli)、枯草菌などの細菌細胞を本発明に利用すること ができる。
[0065] 哺乳類細胞を用いる場合、常用される有用なプロモーター、発現させる抗体遺伝 子、その 3 '側下流にポリ Aシグナルを機能的に結合させた発現ベクターを構築する こと力 Sできる。例えばプロモーター/ェンハンサーとしては、ヒトサイトメガロウィルス前 期フ口モーター/エノノヽノサ一 (human cytomegalovirus immediate early promot er/enhancer)を挙げること力 Sできる。 [0066] また、その他に本発明の抗体の発現に使用できるプロモーター/ェンハンサ一とし て、ウィルスプロモーター/ェンハンサー、あるいはヒトェロンゲーシヨンファクター 1 a (HEF1 α )などの哺乳類細胞由来のプロモーター/ェンノ、ンサ一等が挙げられる 。プロモーター/ェンハンサーを利用することができるウィルスとして、具体的には、 レトロウイルス、ポリオ一マウィルス、アデノウイルス、シミアンウィルス 40 (SV40)等を 示すことができる。
[0067] SV40プロモーター/ェンハンサーを使用する場合は Mulliganらの方法(Nature ( 19 79) 277, 108)を利用することができる。また、 HEF1 αプロモーター/ェンハンサ一は Mizushimaらの方法(Nucleic Acids Res. ( 1990) 18,5322)により、容易に目的とする 遺伝子発現に利用することができる。
[0068] 大腸菌の場合、常用される有用なプロモーター、抗体分泌のためのシグナル配列 および発現させる抗体遺伝子を機能的に結合させて当該遺伝子が発現できる。プロ モーターとしては、例えば lacZプロモーター、 araBプロモーターを挙げることができる
。 lacZプロモーターを使用する場合は Wardらの方法(Nature ( 1989) 341,544-546;FA SEBJ. ( 1992) 6,2422-2427)を利用すること力 Sできる。あるいは araBプロモーターは Bet terらの方法(Science ( 1988) 240,1041-1043)により、 目的とする遺伝子の発現に利用 すること力 Sでさる。
[0069] 抗体分泌のためのシグナル配列としては、大腸菌のペリブラズムに産生させる場合 、 pelBシグナル配列(Lei,S.P.et al. J.Bacteriol. ( 1987) 169,4379)を使用すればよい 。そして、ペリブラズムに産生された抗体を分離した後、尿素のグァニジン塩酸塩の 様なタンパク質変性剤を使用することによって所望の結合活性を有するように、抗体 の構造が組み直される(refolded)。
[0070] 発現ベクターに揷入される複製起源としては、 SV40、ポリオ一マウィルス、アデノウ ィルス、ゥシパピローマウィルス(BPV)等の由来のものを用いることができる。さらに、 宿主細胞系で遺伝子コピー数増幅のため、発現ベクター中に、選択マーカー揷入 すること力 Sできる。具体的には、次のような選択マーカーを利用することができる。 アミノグリコシドトランスフェラーゼ (APH)遺伝子、
チミジンキナーゼ(TK)遺伝子、 大腸菌キサンチングァニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、 ジヒドロ葉酸還元酵素(dhfr)遺伝子等
[0071] これらの発現ベクターを宿主細胞に導入し、形質転換された宿主細胞をインビトロ またはインビボで培養して目的とする抗体を産生させる。宿主細胞の培養は公知の 方法に従い行う。例えば、培養液として、 DMEM, MEM, RPMI1640, IMDMを使用す ることができ、牛胎児血清 (FCS)等の血清補液を併用することもできる。
[0072] 前記のように発現、産生された抗体は、通常のタンパク質の精製で使用されている 公知の方法を単独で使用することによって又は適宜組み合わせることによって精製 できる。例えば、プロテイン Aカラムなどのァフィ二ティーカラム、クロマトグラフィーカラ ム、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせることにより、抗体 を分離、精製すること力 sできる(Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)。
[0073] また、組換え型抗体の産生には、上記宿主細胞に加えて、トランスジエニック動物を 禾 IJ用することもできる。すなわち目的とする抗体をコードする遺伝子を導入された動 物から、当該抗体を得ることができる。例えば、抗体遺伝子は、乳汁中に固有に産生 されるタンパク質をコードする遺伝子の内部にインフレームで揷入することによって融 合遺伝子として構築できる。乳汁中に分泌されるタンパク質として、たとえば、ャギ 13 カゼインなどを利用することができる。抗体遺伝子が揷入された融合遺伝子を含む D NA断片はャギの胚へ注入され、該注入胚が雌のャギへ導入される。胚を受容した ャギから生まれるトランスジエニックャギほたはその子孫)が産生する乳汁からは、所 望の抗体を乳汁タンパク質との融合タンパク質として取得できる。また、トランスジェニ ックャギから産生される所望の抗体を含む乳汁量を増加させるために、ホルモンがト ランスジエニックャギに適宜使用できる(Ebert,K.Met al., Bio/Technology (1994) 12, 699-702)。本発明の組み換え抗体の C領域として、動物抗体由来の C領域を使用で きる。例えばマウス抗体の H鎖 C領域としては、 C γ 1、 C γ 2a、 C γ 2b、 C γ 3、 C〃、 C δ、 C α 1、 C α 2、 C ε力 L鎖 C領域としては C κ、 C λが使用できる。また、マウス抗 体以外の動物抗体としてラット、ゥサギ、ャギ、ヒッジ、ラタダ、サル等の動物抗体が使 用できる。これらの配列は公知である。また、抗体またはその産生の安定性を改善す るために、 c領域を修飾すること力 sできる。本発明において、抗体がヒトに投与される 場合、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺 伝子組換え型抗体とすることができる。遺伝子組換え型抗体とは、例えば、キメラ(Ch imeric)抗体、ヒト化(Humanized)抗体などを含む。これらの改変抗体は、公知の方法 を用いて製造することができる。キメラ抗体は、互いに由来の異なる可変領域と定常 領域を連結した抗体を言う。例えば、マウス抗体の重鎖、軽鎖の可変領域と、ヒト抗体 の重鎖、軽鎖の定常領域からなる抗体は、マウスーヒトー異種キメラ抗体である。マウ ス抗体の可変領域をコードする DNAをヒト抗体の定常領域をコードする DNAと連結さ せ、これを発現ベクターに組み込むことによって、キメラ抗体をを発現する組換えべク ターが作製できる。該ベクターにより形質転換された組換え細胞を培養し、組み込ま れた DNAを発現させることによって、培養中に生産される該キメラ抗体を取得できる。 キメラ抗体およびヒト化抗体の C領域には、ヒト抗体のものが使用される。例えば H鎖 においては、 1、 2、 3、 C y 4、 、 C δ、 C a 1、 C a 2、および C εを C領 域として禾 IJ用すること力できる。また L鎖においては C κ、および C λを C領域として使 用できる。これらの C領域のアミノ酸配歹 IJ、ならびにそれをコードする塩基配列は公知 である。また、抗体そのもの、あるいは抗体の産生の安定性を改善するために、ヒト抗 体 C領域を修飾することができる。
[0074] 一般にキメラ抗体は、ヒト以外の動物由来抗体の V領域とヒト抗体由来の C領域とか ら構成される。これに対してヒト化抗体は、ヒト以外の動物由来抗体の相補性決定領 ¾½ (CDR; complementarity determining region)と、ヒ卜抗体由来のフレームワーク領 域(FR ; framework region)およびヒト抗体由来の C領域と力、ら構成される。ヒト化抗体 はヒト体内における抗原性が低下しているため、本発明の治療剤の有効成分として 有用である。
[0075] たとえば本発明に基づいて作成された抗 HB-EGFマウスモノクローナル抗体 HA-20 、 HB-20又は HC- 15の可変領域と、ヒト定常領域を構成するアミノ酸配列と連結する ことによって得られるマウスーヒトキメラ抗体は、本発明におけるモノクローナル抗体と して好ましい。すなわち本発明は、次のアミノ酸配列を含む H鎖と L鎖とを含む、マウ スーヒトキメラモノクローナル抗体を提供する。 H鎖:配列番号: 10に記載のアミノ酸配列中 1〜330位のアミノ酸配列 L鎖:配列番号: 20に記載のアミノ酸配列中 1〜 107位のアミノ酸配列
[0076] 抗体の可変領域は、通常、 4つのフレーム (FR)にはさまれた 3つの相補性決定領域
(complementarity-determining region;CDR)で構成されている。 CDRは、実質的に、 抗体の結合特異性を決定してレ、る領域である。 CDRのアミノ酸配列は多様性に富む 。一方 FRを構成するアミノ酸配列は、異なる結合特異性を有する抗体の間でも、高い 相同性を示すことが多い。そのため、一般に、 CDRの移植によって、ある抗体の結合 特異性を、他の抗体に移植することができるとされて!/、る。
[0077] ヒト化抗体は、再構成 (reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物 、たとえばマウス抗体の CDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化 抗体を得るための一般的な遺伝子組換え手法も知られている。
[0078] 具体的には、マウスの抗体の CDRをヒトの FRに移植するための方法として、たとえ ば Overlap Extension PCRが公知である。 Overlap Extension PCRにおいては、ヒト 抗体の FRを合成するためのプライマーに、移植すべきマウス抗体の CDRをコードす る塩基配列が付加される。プライマーは 4つの FRのそれぞれについて用意される。一 般に、マウス CDRのヒト FRへの移植においては、マウスの FRと相同性の高いヒト FRを 選択するのが、 CDRの機能の維持において遊離であるとされている。すなわち、一般 に、移植すべきマウス CDRに隣接している FRのアミノ酸配列と相同性の高いアミノ酸 配列からなるヒト FRを利用するのが好ましい。
[0079] また連結される塩基配列は、互いにインフレームで接続されるようにデザインされる 。それぞれのプライマーによってヒト FRが個別に合成される。その結果、各 FRにマウ ス CDRをコードする DNAが付加された産物が得られる。各産物のマウス CDRをコード する塩基配列は、互いにオーバーラップするようにデザインされている。続いて、ヒト 抗体遺伝子を铸型として合成された産物のオーバーラップした CDR部分を互いにァ ニールさせて相補鎖合成反応が行われる。この反応によって、ヒト FR力 Sマウス CDRの 配列を介して連結される。
[0080] 最終的に 3つの CDRと 4つの FRが連結された V領域遺伝子は、その 5'末端と 3'末端 にァニールし適当な制限酵素認識配列を付加されたプライマーによってその全長が 増幅される。上記のように得られた DNAとヒト抗体 C領域をコードする DNAとをインフレ ームで融合するように発現ベクター中に揷入することによって、ヒト型抗体発現用べク ターが作成できる。該組込みベクターを宿主に導入して組換え細胞を樹立した後に 、該組換え細胞を培養し、該ヒト化抗体をコードする DNAを発現させることによって、 該ヒト化抗体が該培養細胞の培養物中に産生される(欧州特許公開 EP239400、国際 公開 WO96/02576参照)。
[0081] 上記のように作製されたヒト化抗体の抗原への結合活性を定性的又は定量的に測 定し、評価することによって、 CDRを介して連結されたときに該 CDRが良好な抗原結 合部位を形成するようなヒト抗体の FRが好適に選択できる。必要に応じ、再構成ヒト 抗体の CDRが適切な抗原結合部位を形成するように FRのアミノ酸残基を置換するこ ともできる。たとえば、マウス CDRのヒト FRへの移植に用いた PCR法を応用して、 FRに アミノ酸配列の変異を導入することができる。具体的には、 FRにアニーリングするブラ イマ一に部分的な塩基配列の変異を導入することができる。このようなプライマーによ つて合成された FRには、塩基配列の変異が導入される。アミノ酸を置換した変異型 抗体の抗原への結合活性を上記の方法で測定し評価することによって所望の性質 を有する変異 FR配列が選択できる(Sato, K.et al., Cancer Res, 1993,53,851-856)。
[0082] また、ヒト抗体の取得方法も知られている。例えば、ヒトリンパ球をインビトロで所望の 抗原または所望の抗原を発現する細胞で感作する。次いで、感作リンパ球をヒトミエ ローマ細胞融合させることによって、抗原への結合活性を有する所望のヒト抗体が取 得できる(特公平 1-59878参照)。融合パートナーであるヒトミエローマ細胞には、例え ば U266などを利用することができる。
[0083] また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジエニック動物を所望の 抗原で免疫することにより所望のヒト抗体が取得できる(国際公開 W093/12227,W09 2/03918, WO94/02602,WO94/25585, WO96/34096,WO96/33735参照)。さらに、ヒ ト抗体ライブラリーを用いて、パンユングによりヒト抗体を取得する技術も知られている 。例えば、ヒト抗体の V領域を一本鎖抗体(scFv)としてファージディスプレイ法により ファージの表面に発現させ、抗原に結合するファージを選択することができる。選択 されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体の V領域をコ ードする DNA配列が決定できる。抗原に結合する scFvの DNA配列を決定した後、当 該 V領域配列を所望のヒト抗体 C領域の配列とインフレームで融合させた後に適当な 発現ベクターに揷入することによって発現ベクターが作製できる。該発現ベクターを 上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発 現させることにより該ヒト抗体が取得できる。これらの方法は既に公知である(国際公
438,W095/15388)。
[0084] 本発明の抗体には、 HB-EGFタンパク質に結合する限り、 IgGに代表される二価抗 体だけでなぐ一価抗体、若しくは IgMに代表される多価抗体も含まれる。本発明の 多価抗体には、全て同じ抗原結合部位を有する多価抗体、または、一部もしくは全 て異なる抗原結合部位を有する多価抗体が含まれる。本発明の抗体は、抗体の全 長分子に限られず、 HB-EGFタンパク質に結合する限り、低分子化抗体またはその 修飾物であってもよい。
[0085] 低分子化抗体は、全長抗体 (whole antibody,例えば whole IgG等)の一部分が欠 損している抗体断片を含む。 HB-EGF抗原への結合能を有する限り、抗体分子の部 分的な欠損は許容される。本発明における抗体断片は、重鎖可変領域 (VH)および 軽鎖可変領域 (VL)のいずれか、または両方を含んでいることが好ましい。 VHまたは VLのアミノ酸配列は、置換、欠失、付加及び/又は揷入を含むことができる。さらに HB-EGF抗原への結合能を有する限り、 VHおよび VLのいずれ力、、または両方の一 部を欠損させることもできる。又、可変領域はキメラ化ゃヒト化されていてもよい。抗体 断片の具体例としては、例えば、 Fab、 Fab'、 F(ab')2、 Fvなどを挙げること力 Sできる。ま た、低分子化抗体の具体例としては、例えば、 Fab、 Fab'、 F(ab')2、 Fv、 scFv (single chain Fv)、ディアボディー(Diabody)、 sc(Fv)2 (single chain(Fv)2)などを挙げること ができる。これら抗体の多量体(例えば、ダイマー、トリマー、テトラマー、ポリマー)も、 本発明の低分子化抗体に含まれる。
[0086] 抗体の断片は、抗体を酵素で処理して抗体断片を生成させることによって得ること ができる。抗体断片を生成する酵素として、、例えばパパイン、ペプシン、あるいはプ ラスミンなどが公知である。あるいは、これら抗体断片をコードする遺伝子を構築し、 これを発現ベクターに導入した後、適当な宿主細胞で発現させることができる(例え ば、 Co,MS.et al. J.Immunol. (1994) 152,2968-2976、 Better,M.&Horwitz,A.H.Meth ods in Enzymology (1989) 178,476-496、 Plueckthun, A. &Skerra,A.lV[ethods in Enz ymology (1989) 178,476-496、 Lamoyi,E., Methods in Enzymology (1989) 121,652-6 63、 RousseauxJ.et al., Methods in Enzymology (1989) 121,663— 669、 Bird, R.E.et al.,TIBTECH (1991) 9, 132-137参照)。
[0087] 消化酵素は、抗体断片の特定の位置を切断し、次のような特定の構造の抗体断片 を与える。このような酵素的に得られた抗体断片に対して、遺伝子工学的手法を利 用すると、抗体の任意の部分を欠失させることができる:
パパイン消化: F(ab)2または Fab;
ペプシン消化: F(ab ' )2または Fab ';
プラスミン消化: Facb。
[0088] ダイアポディーは、遺伝子融合により構築された二価 (bivalent)の抗体断片を指す( Holliger P et al.,Proc.Natl.Acad.Sci.USA 90:6444- 6448(1993)、 EP404, 097号、 W 093/11161号等)。ダイアポディーは、 2本のポリペプチド鎖から構成されるダイマーで ある。通常、ダイマーを構成するポリペプチド鎖は、各々、同じ鎖中で VL及び VHがリ ンカーにより結合されている。ダイアポディーにおけるリンカ一は、一般に、 VLと VHが 互いに結合できない位に短い。具体的には、リンカ一を構成するアミノ酸残基は、例 えば、 5残基程度である。そのため、同一ポリペプチド鎖上にコードされる VLと VHとは 、単鎖可変領域フラグメントを形成できず、別の単鎖可変領域フラグメントと二量体を 形成する。その結果、ダイアポディーは 2つの抗原結合部位を有することとなる。
[0089] scFvは、抗体の H鎖 V領域と L鎖 V領域とを連結することにより得られる。 scFvにおい て、 H鎖 V領域と L鎖 V領域は、リンカ一、好ましくはペプチドリンカ一を介して連結さ れる (Huston J.S.et al.,Proc.Natl.Acad.Sci.U.S.A, 1988,85,5879-5883.)0 scFvにおけ る H鎖 V領域および L鎖 V領域は、本明細書に抗体として記載されたものの!/、ずれの 抗体由来であってもよい。 V領域を連結するペプチドリンカ一には、特に制限はない 。例えば 3から 25残基程度からなる任意の一本鎖ペプチドをリンカ一として用いること 力できる。具体的には、たとえば後述のペプチドリンカ一等を用いることができる。 [0090] V領域は、たとえば上記のような PCR法によって連結することができる。 PCR法による V領域の連結のために、まず次の DNAのうち、全部あるいは所望の部分アミノ酸配列 をコードする DNAが铸型として利用される:
前記抗体の H鎖または H鎖 V領域をコードする DNA酉己列、および
前記抗体の L鎖または L鎖 V領域をコードする DNA配列。
[0091] 増幅すべき DNAの両端の配列に対応する配列を有するプライマーの一対を用いた PCR法によって、 H鎖と L鎖の V領域をコードする DNAがそれぞれ増幅される。次いで 、ペプチドリンカ一部分をコードする DNAを用意する。ペプチドリンカ一をコードする D NAも PCRを利用して合成することができる。このとき利用するプライマーの 5'側に、別 に合成された各 V領域の増幅産物と連結できる塩基配列を付加しておく。次いで、 [ H鎖 V領域 DNA]— [ペプチドリンカ一 DNA]— [L鎖 V領域 DNA]の各 DNAと、ァセン ブリー PCR用のプライマーを利用して PCR反応を行う。アセンブリ一 PCR用のプライマ 一は、 [H鎖 V領域 DNA]の 5'側にァニールするプライマーと、 [L鎖 V領域 DNA]の 3' 側にァニールするプライマーとの組み合わせからなる。すなわちアセンブリー PCR用 プライマーとは、合成すべき scFvの全長配列をコードする DNAを増幅することができ るプライマーセットである。一方 [ペプチドリンカ一 DNA]には各 V領域 DNAと連結でき る塩基配列が付加されている。その結果、これらの DNAが連結され、さらにアセンブリ 一 PCR用のプライマーによって、最終的に scFvの全長が増幅産物として生成される。 一旦 scFvをコードする DNAが作製されると、それらを含有する発現ベクター、および 該発現べクタ一により形質転換された組換え細胞が常法に従って取得できる。また、 その結果得られる組換え細胞を培養して該 scFvをコードする DNAを発現させることに より、該 scFvが取得できる。
[0092] sc(Fv)2は、 2つの VH及び 2つの VLをリンカ一等で結合して一本鎖にした低分子化 抗体である(Hudson et alj Immunol.Methods 1999; 231: 177-189)。 sc(Fv)2は、 例えば、 scFvをリンカ一で結ぶことによって作製できる。
[0093] また 2つの VH及び 2つの VL力 一本鎖ポリペプチドの N末端側を基点として VH、 V L、 VH、 VL ( [VH]リンカ一 [VL]リンカ一 [VH]リンカ一 [VL] )の)噴に並んで!/、ることを 特徴とする抗体が好ましい。 [0094] 2つの VHと 2つの VLの順序は特に上記配置に限定されず、どのような順序で並べら れて!/、てもよ!/、。例えば以下のような配置も挙げることができる。
[VL]リンカ一 [VH]リンカ一 [VH]リンカ一 [VL]
[VH]リンカ一 [VL]リンカ一 [VL]リンカ一 [VH]
[VH]リンカ一 [VH]リンカ一 [VL]リンカ一 [VL]
[VL]リンカ一 [VL]リンカ一 [VH]リンカ一 [VH]
[VL]リンカ一 [VH]リンカ一 [VL]リンカ一 [VH]
[0095] 抗体の可変領域を結合するリンカ一としては、遺伝子工学により導入し得る任意の ペプチドリンカ一、または合成化合物リンカ一(例えば、 Protein Engineering,9(3),299 -305, 1996参照)に開示されるリンカ一等を用いることができる。本発明においてはぺ プチドリンカ一が好ましい。ペプチドリンカ一の長さは特に限定されず、 目的に応じて 当業者が適宜選択することができる。通常、ペプチドリンカ一を構成するアミノ酸残基 は、 1から 100アミノ酸、好ましくは 3から 50アミノ酸、更に好ましくは 5から 30アミノ酸、特 に好ましくは 12から 18アミノ酸 (例えば、 15アミノ酸)である。
[0096] ペプチドリンカ一を構成するアミノ酸配列は、 scFvの結合作用を阻害しない限り、任 意の配列とすることができる。例えば、ペプチドリンカ一の場合次のようなアミノ酸配 歹 IJを利用することができる。
Ser
Gly- - Ser
Gly- -Gly- - Ser
Ser- -Gly- -Gly
Gly- -Gly- - Gly-Ser (配列番号: 61)
Ser- -Gly- -Gly-Gly (配列番号: 62)
Gly- -Gly- - Gly-Gly-Ser (配列番号: 63)
Ser- -Gly- -Gly-Gly-Gly (配列番号: 64)
Gly- -Gly- -Gly-Gly-Gly-Ser (配列番号: 65)
Ser- -Gly- -Gly-Gly-Gly-Gly (配列番号: 66)
Gly- -Gly- -Gly-Gly-Gly-Gly-Ser (配列番号:67) Ser-Gly-Gly-Gly-Gly-Gly-Gly (配列番号: 68)
(Gly-Gly-Gly-Gly-Ser (配列番号: 63) )n
(Ser-Gly-Gly-Gly-Gly (配列番号: 64) )n
[nは 1以上の整数である]
[0097] ペプチドリンカ一のアミノ酸配列は、 目的に応じて当業者が適宜選択することができ る。たとえば前記ペプチドリンカ一の長さを決定する nは、通常;!〜 5、好ましくは 1〜3
、より好ましくは 1または 2である。
[0098] 本発明において特に好ましい sc(Fv)2の態様としては、例えば、以下の sc(Fv)2を挙 げること力 Sでさる:
[VH]ペプチドリンカ一 (15アミノ酸) [VL]ペプチドリンカー (15アミノ酸) [VH]ペプチド リンカ一 (15アミノ酸) [VL]
[0099] あるいは、合成化学物リンカ一(化学架橋剤)を利用して V領域を連結することもで きる。ペプチド化合物などの架橋に通常用いられている架橋剤を本発明に利用する こと力 Sできる。例えば次のような化学架橋剤が公知である。これらの架橋剤は市販さ れている。
N-ヒドロキシスクシンイミド(NHS)、
ジスクシンィミジルスべレート(DSS)、
ビス(スルホスクシンィミジル)スべレート(BS3)、
ジチォビス(スクシンィミジルプロピオネート) (DSP)、
ジチォビス(スルホスクシンィミジルプロピオネート) (DTSSP)、
エチレングリコールビス(スクシンイミジルスクシネート) (EGS)、
エチレングリコールビス(スルホスクシンィミジルスクシネート)(スルホー EGS)、 ジスクシンィミジル酒石酸塩 (DST)、
ジスルホスクシンィミジル酒石酸塩(スルホー DST)、
ビス [2- (スクシンイミドォキシカルボニルォキシ)ェチノレ]スルホン(BSOCOES)、およ び
ビス [2- (スルホスクシンイミドォキシカルボニルォキシ)ェチル]スルホン(スルホ -BSO COES)など。 [0100] 4つの抗体可変領域を結合する場合には、通常、 3つのリンカ一が必要となる。複数 のリンカ一は、同じでもよいし、異なるリンカ一を用いることもできる。本発明において 好ましレ、低分子化抗体は Diabody又は sc(Fv)2である。このような低分子化抗体を得る には、抗体を酵素、例えば、パパイン、ペプシンなどで処理し、抗体断片を生成させ る力、、又はこれら抗体断片をコードする DNAを構築し、これを発現ベクターに導入し た後、適当な宿主細胞で発現させればよい(例えば、 Co,M.S.et al.J.Immunol.(1994 )152,2968-2976;Better,M.and Horwitz,A.H. , Methods Enzymol.(1989)178,476_496 ; Pluckthun,A.and Skerra, A., Methods Enzymol.(1989)178,497-515;Lamoyi,E.,Meth ods Enzymol.(1986)121,652-663;Rousseaux,J.et al., Methods Enzymol.(1986)121, 663-669;Bird,R.E.and Walker, B.W., Trends Biotechnol.(1991)9,132- 137参照)。
[0101] 本発明の抗体としては HB-EGFを認識する任意の抗体を利用することができる。た とえば、以下(1)から(29)に記載の抗体が好ましい抗体として例示できる。これらの 抗体は、例えば、全長抗体、低分子化抗体、動物抗体、キメラ抗体、ヒト化抗体、ある いはヒト抗体等であってもよレ、。
( 1 ) CDR1として配列番号: 2に記載のアミノ酸配列、 CDR2として配列番号: 4に記 載のアミノ酸配列、および CDR3として配列番号: 6に記載のアミノ酸配列を有する H 鎖を含む抗体、
(2) (1 )に記載の H鎖であって、 CHとして配列番号: 8に記載のアミノ酸配列を有す る H鎖を含む抗体、
(3) (1 )に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を有す る H鎖を含む抗体、
(4) CDR1として配列番号: 12に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 14に 記載のアミノ酸配列、および CDR3として配列番号: 16に記載のアミノ酸配列を有す る L鎖を含む抗体、
(5) (4)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有す る L鎖を含む抗体、
(6) (4)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有す る L鎖を含む抗体、 (7) (1)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(8) (2)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(9) (3)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(10) CDR1として配列番号: 22に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 24 に記載のアミノ酸配列、および CDR3として配列番号: 26に記載のアミノ酸配列を有 する H鎖を含む抗体、
(11) (10)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(12) (10)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(13) CDR1として配列番号: 30に記載のアミノ酸配列、 CDR2として配列番号: 32 に記載のアミノ酸配列、および CDR3として配列番号: 34に記載のアミノ酸配列を有 する L鎖を含む抗体、
(14) (13)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有 する L鎖を含む抗体、
(15) (13)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(16) (10)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(17) (11)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(18) (12)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(19) CDR1として配列番号: 36に記載のアミノ酸配列、 CDR2として配列番号: 38 に記載のアミノ酸配列、および CDR3として配列番号: 40に記載のアミノ酸配列を有 する H鎖を含む抗体、
(20) (19)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(21) (19)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(22) CDR1として配列番号: 42に記載のアミノ酸配列、 CDR2として配列番号: 44 に記載のアミノ酸配列、および CDR3として配列番号: 46に記載のアミノ酸配列を有 する L鎖を含む抗体、
(23) (22)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有 する L鎖を含む抗体、
(24) (22)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(25) (19)に記載の H鎖、および(22)に記載の L鎖を含む抗体、
(26) (20)に記載の H鎖、および(23)に記載の L鎖を含む抗体、
(27) (21)に記載の H鎖、および(24)に記載の L鎖を含む抗体、
(28) (1)から(27)のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、(1)から(27)のいずれか に記載の抗体と同等の活性を有する抗体、
(29) (1)から(27)のいずれかに記載の抗体が結合する HB-EGFタンパク質のェピト ープと同じェピトープに結合する抗体。
[0102] 上記(1)に記載の「CDR1として配列番号: 2に記載のアミノ酸酉己列、 CDR2として 配列番号: 4に記載のアミノ酸配歹 IJ、および CDR3として配列番号: 6に記載のァミノ 酸配列を有する H鎖」における VHとしては、配列番号: 48に記載のアミノ酸配列を 有する VHが例示できる。
[0103] また、上記(4)に記載の「CDR1として配列番号: 12に記載のアミノ酸酉己列、 CDR2 として配列番号: 14に記載のアミノ酸配歹 IJ、および CDR3として配列番号: 16に記載 のアミノ酸配列を有する L鎖」における VLとしては、配列番号: 50に記載のアミノ酸配 列を有する VLが例示できる。
[0104] また、上記(12)に記載の「CDR1として配列番号: 22に記載のアミノ酸酉己列、 CDR 2として配列番号: 24に記載のアミノ酸配歹 IJ、および CDR3として配列番号: 26に記 載のアミノ酸配列を有する H鎖」における VHとしては、配列番号: 52に記載のァミノ 酸配列を有する VHが例示できる。
[0105] また、上記(15)に記載の「CDR1として配列番号: 30に記載のアミノ酸酉己列、 CDR 2として配列番号: 32に記載のアミノ酸配歹 IJ、および CDR3として配列番号: 34に記 載のアミノ酸配列を有する L鎖」における VLとしては、配列番号: 54に記載のアミノ酸 配列を有する VLが例示できる。
[0106] また、上記(23)に記載の「CDR1として配列番号: 36に記載のアミノ酸酉己列、 CDR 2として配列番号: 38に記載のアミノ酸配歹 lj、および CDR3として配列番号: 38に記 載のアミノ酸配列を有する H鎖」における VHとしては、配列番号: 56に記載のァミノ 酸配列を有する VHが例示できる。
[0107] また、上記(26)に記載の「CDR1として配列番号: 42に記載のアミノ酸酉己列、 CDR 2として配列番号: 44に記載のアミノ酸配歹 IJ、および CDR3として配列番号: 46に記 載のアミノ酸配列を有する L鎖」における VLとしては、配列番号: 58に記載のアミノ酸 配列を有する VLが例示できる。
[0108] 上記(28)に記載の抗体において、「同等の活性」とは、 EGFR— Ba/F3細胞の HB- EGF依存的な増殖に対する抑制効果が少なくとも EC50値で 50nM以下であり、 HB-E GFと EGFRとの結合を、抗体濃度 50 g/ml添加時で少なくとも 80%以上阻害する活性 をいう。上記(28)に記載の抗体の好ましい態様は、 CDR以外の領域に改変を有す る抗体である。一例として、上記(28)に記載の抗体のうち、「(1)に記載の抗体にお いて 1若しくは複数のアミノ酸が置換、欠失、付加および/または揷入された抗体で あって、(1)に記載の抗体と同等の活性を有する抗体」の好ましい態様は、「(1)に記 載の抗体と同等の活性を有し、 (1)に記載の抗体において 1若しくは複数のアミノ酸 が置換、欠失、付加および/または揷入された抗体であって、 CDR1として配列番号 : 2に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 4に記載のアミノ酸配歹 IJ、および C DR3として配列番号: 6に記載のアミノ酸配列を有する H鎖を含む抗体」である。上記 (28)に記載の抗体のうち、その他の抗体の好ましい態様も同様に表現することがで きる。
[0109] あるポリペプチドと機能的に同等なポリペプチドを調製するための、当業者によく知 られた方法としては、ポリペプチドに変異を導入する方法が知られている。例えば、 当業者であれば、部位特異的変異誘発法(Hashimoto-Gotoh,T.et al.(1995)Gene 152,271-275、 Zoller,MJ,and Smith,M.(1983)Methods Enzymol.100,468-500、 ram er,W.et al.(1984)Nucleic Acids Res.12,9441- 9456、 Kramer W,and Fritz HJ(198 7)Methods. Enzymol. 154, 350-367 , unkel,TA(1985)Proc Natl Acad Sci USA.82, 488-492、 unkel(1988)Methods Enzymol.85, 2763-2766)などを用いて、本発明の 抗体に適宜変異を導入することにより、該抗体と同等の活性を有する抗体を調製す ること力 Sできる。また、アミノ酸の変異は自然界においても生じうる。このように、本発 明の抗体のアミノ酸配列において 1もしくは複数のアミノ酸が変異したアミノ酸配列を 有し、該抗体と同等の活性を有する抗体もまた本発明の抗体に含まれる。このような 変異体における、変異するアミノ酸数は、通常、 50アミノ酸以内であり、好ましくは 30 アミノ酸以内であり、さらに好ましくは 10アミノ酸以内(例えば、 5アミノ酸以内)であると 考えられる。
[01 10] 変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ 酸に変異されることが望ましい。例えばアミノ酸側鎖の性質に基づいて、次のような分 類が確立している。
疎水性アミノ酸(A、 I、レ M、 F、 P、 W、 Y、 V)、
親水性アミノ酸(R、 D、 N、 C、 E、 Q、 G、 H、 K、 S、 T)、
脂肪族側鎖を有するアミノ酸 (G、 A、 V、 L、 I、 P)、
水酸基含有側鎖を有するアミノ酸 (S、 Τ、 Υ)、
硫黄原子含有側鎖を有するアミノ酸 (C、 M)、
カルボン酸及びアミド含有側鎖を有するアミノ酸 (D、 N、 E、 Q)、
塩基含有側鎖を有するアミノ酸 (R、 K、 Η)、
芳香族含有側鎖を有するアミノ酸 (H、 F、 Y、 W)
(括弧内は!/、ずれもアミノ酸の一文字標記を表す)。
[01 1 1] あるアミノ酸配列に対する 1又は複数個のアミノ酸残基の欠失、付加及び/又は他 のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物 学的活性を維持することはすでに知られている(Mark, D .F.et al. ,Proc.Natl.Acad. Sci . USA(1984)81 , 5662-5666 , Zoller,M.J.and Smith,M. , Nucleic Acids Research(1982) 10,6487- 6500、 Wang, A.et al. , Science 224, 1431- 1433、 Dalbadie- McFarland,G.et al.,Pro Natl.Acad. Sci.USA(1982)79,6409-6413)。すなわち、一般に、あるポリぺプ チドを構成するアミノ酸配列中、各群に分類されたアミノ酸は、相互に置換したときに 、当該ポリペプチドの活性が維持される可能性が高いとされている。本発明において 、上記アミノ酸群の群内のアミノ酸間の置換を保存的置換と言う。
[0112] また本発明は、上記(29)に記載の、本発明で開示された抗 HB-EGF抗体が結合 するェピトープと同じェピトープに結合する抗体もまた提供する。すなわち本発明は 、 HA-20、 HB-20、 HC-15抗体が認識するェピトープと同一のェピトープを認識する 抗体と、その用途に関する。このような抗体は、例えば、以下の方法により得ることが できる。
[0113] 被検抗体が、ある抗体とェピトープを共有することは、両者の同じェピトープに対す る競合によって確認することができる。抗体間の競合は、交叉ブロッキングアツセィな どによって検出される。例えば競合 ELISAアツセィは、好ましい交叉ブロッキングアツ セィである。具体的には、交叉ブロッキングアツセィにおいては、マイクロタイタープレ 一トのゥエル上にコートした HB-EGFタンパク質を、候補の競合抗体の存在下、また は非存在下でプレインキュペートした後に、本発明の抗 HB-EGF抗体が添加される。 ゥエル中の HB-EGFタンパク質に結合した本発明の抗 HB-EGF抗体の量は、同じェ ピトープへの結合に対して競合する候補競合抗体 (被検抗体)の結合能に間接的に 相関している。すなわち同一ェピトープに対する被検抗体の親和性が大きくなれば なる程、本発明の抗 HB-EGF抗体の HB-EGFタンパク質をコートしたゥエルへの結合 量は低下し、被検抗体の HB-EGFタンパク質をコートしたゥエルへの結合量は増加す
[0114] ゥエルに結合した抗体量は、予め抗体を標識しておくことによって、容易に測定す ること力 Sできる。たとえば、ビォチン標識された抗体は、アビジンペルォキシダーゼコ ンジュゲートと適切な基質を使用することにより測定できる。ペルォキシダーゼなどの 酵素標識を利用した交叉ブロッキングアツセィを、特に競合 ELISAアツセィと言う。抗 体は、検出あるいは測定が可能な他の標識物質で標識することができる。具体的に は、放射標識ある!/、は蛍光標識などが公知である。
[0115] 更に被検抗体が本発明の抗 HB-EGF抗体と異なる種に由来する定常領域を有す る場合には、ゥエルに結合した抗体の量を、その抗体の定常領域を認識する標識抗 体によって測定することもできる。あるいは同種由来の抗体であっても、クラスが相違 する場合には、各クラスを識別する抗体によって、ゥエルに結合した抗体の量を測定 すること力 Sでさる。
[0116] 候補の競合抗体非存在下で実施されるコントロール試験において得られる結合活 性と比較して、候補抗体が、少なくとも 20%、好ましくは少なくとも 20-50%、さらに好 ましくは少なくとも 50%、抗 HB-EGF抗体の結合をブロックできるならば、該候補競合 抗体は本発明の抗 HB-EGF抗体と実質的に同じェピトープに結合する力、、又は同じ ェピトープへの結合に対して競合する抗体である。
[0117] 抗 HB-EGF抗体が結合するェピトープと同じェピトープに結合する抗体としては、 例えば、上記(29)に記載の抗体が挙げられる力 これに限定されるものではない。
[0118] また、上記(1)から(29)に記載の抗体には、上述の通り、一価抗体だけでなぐ多 価抗体も含まれる。本発明の多価抗体には、全て同じ抗原結合部位を有する多価抗 体、または、一部もしくは全て異なる抗原結合部位を有する多価抗体が含まれる。
[0119] 異なる抗原結合部位を有する多価抗体として、以下の抗体が例示できる力 本発 明の抗体は、これら抗体に限定されるものではない。
(A)上記(7)に記載の H鎖と L鎖の対(以下、 HL対と称する)、および、上記(16)又 は(25)に記載の HL対を含む抗体
(B)上記(8)に記載の HL対、および、上記(17)又は(26)に記載の HL対を含む抗 体
(C)上記(9)に記載の HL対、および、上記(18)又は(27)に記載の HL対を含む抗 体
(D)上記(7)に記載の HL対、および、上記(28)に記載の HL対を含む抗体
(E)上記(8)に記載の HL対、および、上記(28)に記載の HL対を含む抗体
(F)上記(9)に記載の HL対、および、上記(28)に記載の HL対を含む抗体
(G)上記(7)に記載の HL対、および、上記(29)に記載の HL対を含む抗体
(H)上記(8)に記載の HL対、および、上記(29)に記載の HL対を含む抗体
(I)上記(9)に記載の HL対、および、上記(29)に記載の HL対を含む抗体
(J)上記(16)に記載の HL対、および、上記(25)に記載の HL対を含む抗体
(K)上記(17)に記載の HL対、および、上記(26)に記載の HL対を含む抗体 (L)上記(18)に記載の HL対、および、上記(27)に記載の HL対を含む抗体 (M)上記(16)に記載の HL対、および、上記(28)に記載の HL対を含む抗体 (N)上記(17)に記載の HL対、および、上記(28)に記載の HL対を含む抗体 (O)上記(18)に記載の HL対、および、上記(28)に記載の HL対を含む抗体 (P)上記(16)に記載の HL対、および、上記(29)に記載の HL対を含む抗体 (Q)上記(17)に記載の HL対、および、上記(29)に記載の HL対を含む抗体 (R)上記(18)に記載の HL対、および、上記(29)に記載の HL対を含む抗体
[0120] さらに、本発明の抗体は、ポリエチレングリコール (PEG)等の各種分子と結合させた 抗体修飾物として使用することもできる。このような抗体修飾物は、本発明の抗体に 化学的な修飾を施すことによって得ることができる。抗体の修飾方法はこの分野にお V、てすでに確立されて!/、る。
[0121] さらに、本発明の抗体は二重特異性抗体(bispecific antibody)であってもよい。二 重特異性抗体とは、異なるェピトープを認識する可変領域を同一の抗体分子内に有 する抗体をいうが、当該ェピトープは異なる分子中に存在していてもよいし、同一の 分子中に存在していてもよい。すなわち本発明において、二重特異性抗体は HB-E GF分子上の異なるェピトープを認識する抗原結合部位を有することができる。このよ うな二重特異性抗体は、 1分子の HB-EGFに対して 2分子の抗体分子が結合できる。 その結果、より強力な細胞障害作用を期待できる。本発明における「抗体」にはこれ らの抗体も包含される。
[0122] また本発明にお!/、ては、 HB-EGF以外の抗原を認識する二重特異性抗体を組み 合わせることもできる。たとえば、 HB-EGFと同様に標的とする癌細胞の細胞表面に 特異的に発現する抗原であって、 HB-EGFとは異なる抗原を認識するような二重特 異性抗体を組み合わせることができる。
[0123] 二重特異性抗体を製造するための方法は公知である。たとえば、認識抗原が異な る 2種類の抗体を結合させて、二重特異性抗体を作製することができる。結合させる 抗体は、それぞれが H鎖と L鎖を有する 1/2分子であっても良いし、 H鎖のみからな る 1/4分子であっても良い。あるいは、異なるモノクローナル抗体を産生するハイブ リドーマを融合させて、二重特異性抗体産生融合細胞を作製することもできる。さらに 、遺伝子工学的手法により二重特異性抗体が作製できる。
[0124] 杭体の結合活+生、中禾 W †生及び增¾ 制活件
抗体の抗原結合活性の測定には公知の手段を使用することができる (Antibodies A Laboratory Manual. Εα Harlow, David Lane, Cold Spring Harbor Laboratory ,1988)。例えば、 ELISA (酵素結合免疫吸着検定法)、 EIA (酵素免疫測定法)、 RI A (放射免疫測定法)あるいは蛍光免疫法などを用いることができる。更に、細胞に発 現する抗原に対する抗体の結合活性を測定する手法としては、例えば、前記 Antibo dies A Laboratory Manual中の 359-420ページに記載されている方法が挙げられる
[0125] また、緩衝液等に懸濁した細胞表面上に発現している抗原と当該抗原に対する抗 体との結合を測定する方法として、特にフローサイトメーターを使用した方法を好適 に用いることが出来る。使用するフローサイトメーターとしては例えば、 FACSCantot ( 登録商標) ILFACSAria (登録商標) ,FACSArray (登録商標) ,FACSVantage (登録 商標) SE,FACSCalibur (登録商標)(以上、 BD Biosciences社)や、 EPICS ALTRA HyPerSort, Cytomics FC 500, EPICS XL-MCL ADC EPICS XL ADC, Ce 11 Lab Quanta/Cell Lab Quanta SC (以上、 Beckman Coulter社)などを挙げるこ と力 Sできる。
[0126] 被検 HB-EGF抗体の抗原に対する結合活性の好適な測定方法の一例として、 HB- EGFを発現する細胞と反応させた被検抗体を認識する FITC標識した二次抗体で染 色後、 FACSCalibur(BD社)により測定を行い、その蛍光強度を CELL QUEST Softw are(BD社)を用いて解析する方法を挙げることができる。本方法によれば、「HB_EGF を発現する細胞の細胞表面上の HB-EGFタンパク質に結合しな!/、」とは、 HB-EGFを 発現する細胞の膜型 HB-EGFに対して結合した被検抗体を認識する抗体を認識す る FITC標識した二次抗体で染色後、 FACSCaliburにより測定を行った場合にお!/、て 、その蛍光強度を CELL QUEST Softwareを用いて解析する方法によって得られる Geometric meanの値(被検 Geo-Mean値)を、市販の抗体(例えば R&D社、 AF-259- NA)あるいは HC15などの膜型 HB-EGFに強く反応する抗体の結合活性(対照 Geo- Mean値)と比較することによって判断することが出来る。即ち、本明細書においては、 被検 Geo-Mean値が対照 Geo-Mean値の少なくとも 10%、好ましくは 5%、更に好ましくは 2%より小さければ、被検抗体は「HB-EGFを発現する細胞の細胞表面上の HB-EGF タンパク質に結合しない」ものとする。 Geo-Mean値 (Geometric means)を求める計算 式は、 CELL QUEST Software User's Guide(BD biosciences社)に記載されてい
[0127] 本発明の抗体は、好ましくは中和活性を有する抗体である。一般的に、中和活性と は、ウィルスや毒素など、細胞に対して生物学的活性を有するリガンドの当該生物学 的活性を阻害する活性を言う。即ち、中和活性を有する物質とは、当該リガンド又は 当該リガンドが結合する受容体に結合し、当該リガンドと受容体の結合を阻害する物 質を指す。中和活性によりリガンドとの結合を阻止された受容体は、当該受容体を通 じた生物学的活性を発揮することができなくなる。このような中和活性を有する抗体 は一般に中和抗体と呼ばれる。ある被検物質の中和活性は、リガンドの存在下にお ける生物学的活性をその被検物質の存在又は非存在下条件間で比較することにより 測定すること力でさる。
[0128] 本発明に係る HB-EGFの主要な受容体として考えられているものは EGFレセプター である。この場合、リガンドの結合により二量体を形成し、細胞内に存在する自らのド メインであるチロシンキナーゼを活性化する。活性化されたチロシンキナーゼは自己 リン酸化によりリン酸化チロシンを含むペプチドを形成し、それらに様々なシグナル伝 達のアクセサリー分子を会合させる。それらは主に PLC γ (ホスフオリパーゼ C y )、 Sh c、 Grb2などである。これらのアクセサリー分子のうち、前二者は更に EGFレセプター のチロシンキナーゼによりリン酸化を受ける。 EGFレセプターからのシグナル伝達に おける主要な経路は Shc、 Grb2、 Sos、 Ras、 Raf/MAPKキナーゼ /MAPキナーゼの順 にリン酸化が伝達される経路である。更に副経路である PLC γ力も PKCへの経路が 存在すると考えられている。こうした細胞内のシグナルカスケードは細胞種毎に異な るため、 目的とする標的細胞毎に適宜標的分子を設定することができ、上記の因子 に限定されるものではない。生体内シグナルの活性化を測定することにより、中和活 性を評価すること力 Sできる。生体内シグナルの活性化の測定キットは市販のものを適 宜使用することができる(例えば、プロテインキナーゼ C活性測定システム(GEヘルス ケアバイオサイエンス株式会社)等)。
[0129] また、生体内シグナルカスケードの下流に存在する標的遺伝子に対する転写誘導 作用を指標として、生体内シグナルの活性化を検出することもできる。標的遺伝子の 転写活性の変化は、レポーターアツセィの原理によって検出することができる。具体 的には、標的遺伝子の転写因子又はプロモーター領域の下流に GFP (Green Fluor escence Protein)ゃルシフェラーゼなどのレポーター遺伝子を配し、そのレポーター 活性を測定することにより、転写活性の変化をレポーター活性として測定することが できる。
[0130] 更に、 EGFレセプターを介するシグナル伝達は、通常は細胞増殖を促進する方向 に働くため、標的とする細胞の増殖活性を測定することによって、本発明の抗体の中 和活性を評価することができる。以下の実施例にぉレ、ては後者の細胞増殖活性を評 価することによって本発明の中和抗体の中和活性を評価している力 本方法に限定 されるものではなぐ適当な標的細胞毎に前記に挙げた方法を適宜採用し評価する こと力 Sでさる。
[0131] その増殖が HB-EGFによって促進される細胞の増殖に対する、抗 HB-EGF抗体の 中和活性に基づく抑制効果を評価又は測定する方法として、以下の方法が好適に 使用される。試験管内において該細胞増殖抑制活性を評価又は測定する方法とし ては、培地中に添加した [3H]ラベルしたチミジンの生細胞による取り込みを DNA複 製能力の指標として測定する方法が用いられる。より簡便な方法としてトリパンブルー 等の色素を細胞外に排除する能力を顕微鏡下で計測する色素排除法や、 MTT法 が用いられる。後者は、生細胞がテトラゾリゥム塩である MTT (3-(4,5-dimethylthiazol -2-yl) -2,5-diphenyl tetrazolium bromide)を青色のホノレマザン産物へ転換する能 力を有することを利用している。より具体的には、被検細胞の培養液にリガンドと共に 被検抗体を添加して一定時間を経過した後に、 MTT溶液を培養液に加えて一定時 間静置することにより MTTを細胞に取り込ませる。その結果、黄色の化合物である M TTが細胞内のミトコンドリア内のコハク酸脱水素酵素により青色の化合物に変換され る。この青色生成物を溶解し呈色させた後にその吸光度を測定することにより生細胞 数の指標とするものである。 MTT以外に、 MTS、 XTT、 WST- 1 , WST— 8等の 試薬も市販されており(nacalai tesqueなど)好適に使用することができる。活性の測 定に際しては、対照抗体として抗 HB-EGF抗体と同一のアイソタイプを有する抗体で 該細胞増殖抑制活性を有しない結合抗体を、抗 HB-EGF抗体と同様に使用して、抗 HB-EGF抗体が対照抗体よりも強い細胞増殖抑制活性を示すことにより活性を判定 すること力 Sでさる。
[0132] 本明細書の実施例においては、活性を評価するための細胞として、その増殖が HB -EGFによって促進される細胞としては、卵巣癌細胞である RMG-1細胞株や、配列番 号 78でそのポリペプチド配列が示されるヒト EGFRの細胞外ドメインと配列番号 84で そのポリペプチド配列が示されるマウス GCSF受容体の細胞内ドメインをインフレーム で融合した融合タンパク質である hEGFR/mG-CSFR (配列番号 86)をコードする遺伝 子を発現する様に結合したベクターによって形質転換されたマウス Ba/F3細胞が例 示されている。しかし、活性を評価するための細胞は、これらに限定されるものではな ぐその増殖が HB-EGFによって促進される細胞であればいずれの細胞も好適に使 用できる。
[0133] また、生体内で細胞増殖抑制活性を評価又は測定する方法として、腫瘍担持マウ スモデルを用いることができる。例えば、その増殖が HB-EGFによって促進される癌 細胞を非ヒト被検動物の皮内又は皮下に移植後、当日又は翌日から毎日又は数日 間隔で被検抗体を静脈又は腹腔内に投与する。腫瘍の大きさを経日的に測定する ことにより細胞増殖抑制活性を評価することができる。試験管内での評価と同様に同 一のアイソタイプを有する対照抗体を投与し、抗 HB-EGF抗体投与群における腫瘍 の大きさが対照抗体投与群における腫瘍の大きさよりも有意に小さいことにより細胞 増殖抑制活性を判定することができる。非ヒト被検動物としてマウスを用いる場合には 、胸腺を遺伝的に欠損してその Tリンパ球の機能を欠失したヌード (nu/nu)マウスを 好適に用いること力できる。当該マウスを使用することにより、投与された抗体による 細胞増殖抑制活性の評価 ·測定に当たって被検動物中の Tリンパ球の関与を除くこ と力 Sできる。
[0134] また、本発明で用いられる抗体のより好ましい態様として、 ADCC活性や CDC活性 などのエフェクター活性を有さない抗体を挙げることができる。当該エフェクター活性 の制御は、抗体のアイソタイプやサブタイプ、更には抗体がキメラ抗体ゃヒト型化抗 体の場合では使用する Fc領域の由来によって制御することが可能である。 ADCC活 性を有さな!/、抗体のアイソタイプとしてはヒト抗体であれば IgM抗体力 サブタイプとし ては IgG4抗体等が挙げられる(Clinical Aspects of Immunology, 5th Ed.,1799-183 0, 1993)。 CDC活性を有しない抗体のサブタイプとしては、 IgG4抗体等が好適に用い られる。 ADCC活性及び CDC活性の!/、ずれも有しな!/、IgG4抗体をより好適な抗体とし て挙げること力 Sでさる。
[0135] また、マウス抗体及びラット抗体であれば IgGl抗体が ADCC活性及び CDC活性の
V、ずれも有しな!/、抗体として使用すること力 Sできる。
[0136] また、前記記載の方法によってキメラ抗体やヒト型化抗体を遺伝子工学的手法を用
V、て作製する際に、使用する Fc領域として上記記載の抗体のアイソタイプ又はサブ タイプから由来する Fc領域をコードする抗体遺伝子を使用することにより、ェフエクタ 一活性を調節することができる抗体を適宜作製することが可能である。
[0137] 娜應麵吝 II
本発明は、その増殖が HB-EGFによって促進される細胞と HB-EGFタンパク質に結 合する抗体とを接触させることにより当該細胞の増殖を抑制する方法を提供する。 H B-EGFタンパク質に結合する抗体は、本発明の細胞増殖抑制剤に含有される HB-E GFタンパク質に結合する抗体として上述したとおりである。抗 HB-EGF抗体と接触さ せる細胞は HB-EGFが発現している細胞であれば特に限定されないが、好ましくは 勝臓癌、肝臓癌、食道癌、メラノーマ、大腸癌、胃癌、卵巣癌、膀胱癌または脳腫瘍 である。
[0138] 本発明において「接触」は、例えば、試験管内で培養している HB-EGF発現細胞の 培養液に抗体を添加することにより行われる。この場合において、添加される抗体の 形状としては、溶液又は凍結乾燥等により得られる固体等の形状が適宜使用できる 。水溶液として添加される場合にあっては、純粋に抗体のみを含有する水溶液であ つてもよいし、例えば界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝 剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等を含む 溶液であってもよい。添加する濃度は特に限定されないが、培養液中の最終濃度と して、好ましくは lpg/mlから lg/mlの範囲であり、より好ましくは lng/mlから lmg/mlであ り、更に好ましくは 1 g/mlから lmg/mlが好適に使用されうる。
[0139] また本発明において「接触」は更に、別の態様では、 HB-EGF発現細胞を体内に移 植した非ヒト動物や内在的に HB-EGFを発現する癌細胞を有する動物に投与するこ とによっても行われる。投与方法は経口、非経口投与のいずれかによつて実施できる 。特に好ましくは非経口投与による投与方法であり、係る投与方法としては具体的に は、注射投与、経鼻投与、経肺投与、経皮投与などが挙げられる。注射投与の例とし ては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などによって本発 明の医薬組成物細胞増殖阻害剤および抗癌剤が全身または局部的に投与できる。 また、被験動物の年齢、症状により適宜投与方法を選択することができる。水溶液と して投与される場合にあっては純粋に抗体のみを含有する水溶液であってもよいし、 例えば界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、 等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等を含む溶液であって もよい。投与量としては、例えば、一回の投与につき体重 lkgあたり O.OOOlmgから 100 Omgの範囲で投与量が選択できる。あるいは、例えば、患者あたり 0.001から 100000m g/bodyの範囲で投与量が選択できる。し力、しながら、本発明の抗体投与量はこれら の投与量に制限されるものではない。
[0140] その増殖が HB-EGFによって促進される細胞の増殖に対する、抗 HB-EGF抗体の 接触による抑制効果を評価又は測定する方法として、上述した中和活性測定法と同 等の試験を実施することが可能である。この場合、リガンドの存在下と非存在下での 活性を比較することにより、当該細胞がオートクライン様式で増殖しているのか否かに っレ、て確認すること力 Sできる。生体内にお!/、て細胞増殖抑制活性を評価又は測定す る方法としては、上述した生体内における中和活性測定法と同等の試験を実施する ことにより当該活性の評価又は測定を行うことが可能である。
[0141] 医薬組成物
別の観点においては、本発明は、 HB-EGFタンパク質に結合する抗体を有効成分 として含有する医薬組成物を特徴とする。又、本発明は HB-EGFタンパク質に結合す る抗体を有効成分として含有する細胞増殖抑制剤、特に抗癌剤を特徴とする。本発 明の細胞増殖抑制剤および抗癌剤は、癌を罹患して!/、る対象または罹患して!/、る可 能性がある対象に投与されることが好まし!/、。
[0142] 本発明にお!/、て、 HB-EGFタンパク質に結合する抗体を有効成分として含有する 細胞増殖抑制剤は、 HB-EGFタンパク質に結合する抗体を対象に投与する工程を含 む細胞増殖を抑制する方法、または、細胞増殖抑制剤の製造における HB-EGFタン ノ^質に結合する抗体の使用と表現することもできる。
[0143] また、本発明にお!/、て、 HB-EGFタンパク質に結合する抗体を有効成分として含有 する抗癌剤は、 HB-EGFタンパク質に結合する抗体を対象に投与する工程を含む癌 を予防または治療する方法、または、抗癌剤の製造における HB-EGFタンパク質に 結合する抗体の使用と表現することもできる。
[0144] 本発明にお!/、て、「HB-EGFに結合する抗体を有効成分として含有する」とは、抗 H B-EGF抗体を主要な活性成分として含むと!/、う意味であり、抗 HB-EGF抗体の含有 率を制限するものではない。
[0145] 本発明の医薬組成物(例えば、細胞増殖抑制剤、抗癌剤。以下同様。 )に含有され る抗体は HB-EGFタンパク質と結合する限り特に制限はなぐ本明細書中に例示され た!/、ずれの抗体も用いることができる。
[0146] 本発明の医薬組成物の投与方法は、経口、非経口投与のいずれかによつて実施 できる。特に好ましくは非経口投与による投与方法であり、係る投与方法としては具 体的には、注射投与、経鼻投与、経肺投与、経皮投与などが挙げられる。注射投与 の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などによつ て本発明の医薬組成物が全身または局部的に投与できる。また、患者の年齢、症状 により適宜投与方法を選択することができる。投与量としては、例えば、一回の投与 にっき体重 lkgあたり O.OOOlmgから lOOOmgの範囲で投与量が選択できる。あるいは、 例えば、患者あたり 0.001から 100000mg/bodyの範囲で投与量が選択できる。しかし ながら、本発明の医薬組成物はこれらの投与量に制限されるものではない。
[0147] 本発明の医薬組成物は、常法に従って製剤化することができ(例えば、 Remington' s Pharmaceutical Science, latest edition, Mark Pubiisning Company aston,U. S.A)、医薬的に許容される担体や添加物を共に含むものであってもよい。例えば界 面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤 、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられるが、これらに制限 されず、その他常用の担体が適宜使用できる。具体的には、軽質無水ケィ酸、乳糖、 結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナト ルァセタールジェチルァミノアセテート、ポリビュルピロリドン、ゼラチン、中鎖脂肪酸 トリダリセライド、ポリオキシエチレン硬化ヒマシ油 60、白糖、カルボキシメチルセル口 ース、コーンスターチ、無機塩類等を挙げることができる。
[0148] 本明細書において明示的に引用される全ての特許および参考文献の内容は全て 本明細書の一部としてここに引用する。また,本出願が有する優先権主張の基礎とな る出願である日本特許出願 2006-286824号の明細書および図面に記載の内容は全 て本明細書の一部としてここに引用する。
実施例
[0149] 以下に実施例により本発明をより詳細に説明する力 本発明はこれらの実施例によ り限定されるものではない。
[0150] ^ .
1 - 1.免疫原の調整
1 - 1 - 1. HB-EGF発現ベクターの作成
HB-EGF発現ベクターを構築するため、まず HB-EGF遺伝子のクローニングを以下 のとおり行った。まずヒト心臓 cDNA (human marathon ready cDNA,クロンテック)を 鍀型にして Pyrobest Taq polymerase (タカラ)を用いて以下の条件で RT-PCRを行 い、全長 HB-EGF遺伝子をクローニングした。
EGF-1 :ATGAAGCTGCTGCCGTCGGTG (配列番号: 69)
EGF-2: TCAGTGGGAATTAGTCATGCCC (配列番号: 70)
(94°C 30秒、 65°C 30秒、 72°C 60秒: 35サイクル)
次に、得られた PCR産物を铸型にして、以下の条件で再度 PCRを行い、 5'端、 3'端に それぞれ Sall、 Notl切断配列が付加された全長 HB-EGF cDNA断片を得た。 TAGTCATGCCCAAC (配列番号: 72)
(94°C 30秒、 65°C 30秒、 72°C 60秒: 25サイクル)
これを Sall、 Notlで切断し、同じく Sall、 Notlで切断した動物細胞用発現ベクター(pMC N)に揷入し、 HB-EGF発現ベクター(pMCN— HB-EGF)を構築した。
[0151] 1 - 1 - 2. HB-EGF—Fc融合タンパク質発現ベクターの作成
HB-EGF中和抗体を取得するための免疫原として、 HB-EGFの細胞外領域とマウス IgG2a Fc領域との融合タンパク質(HB-EGF— Fc)を用いた。図 1に免疫用融合タン パク質の構造を示す。
[0152] マウス Fc領域と HB-EGFとの融合タンパク質の発現ベクターの構築を以下のとおり 行った。まず HB-EGF発現ベクター(pMCN— HB-EGF)を铸型にして Pyrobest Taq polymerase (タカラ)を用いて以下の条件で PCRを行った。
号: 74)
(94°C 30秒、 68°C 30秒、 72°C 30秒: 25サイクル)
次に、得られた PCR産物を EcoRI、 Cpolで切断した。この DNA断片を、マウス IgG2a— Fcを有する動物細胞用発現ベクター (pMCDN_mIgG2a_Fc)の EcoRI、 Cpol間に揷 入し、 HB- EGF- Fc発現ベクター(pMCDN— HB- EGF-Fc)を構築した。
[0153] 1— 1— 3. HB-EGF一 Fc産生株の樹立
pvulで切断することにより直鎖化した HB_EGF_Fc発現ベクター(pMCDN— HB- EG F-Fc) 15 gを、 PBS (-)に懸濁した DG44細胞 (lxlO7細胞/ 01 800 L)に 1.5kV,25〃 F Dでエレクト口ポレーシヨン(Gene Pulser;BioRad)により導入した。ペニシリン/ストレプ トマイシン (PS)を含む生育培地(CHO-S-SFM II,invitrogen)で適当な細胞数に希釈 した後、 96ゥエルプレートに撒き、翌日 G418(geneticin,invitrogen)を 500 μ g/mLになる ように添加した。約 2週間後に単一クローンからなるゥエルを顕微鏡下で選別し、培養 上清 10 ί Lずっを用ぃてSDS-PAGEを行った。 PVDF膜にブロッテイング後、ャギ抗 H B-EGF抗体(R&D:AF-259_NA)、 HRP-抗ャギ抗体(BIOSOURCE:ACI3404)でゥェ スタンプロットを行い、 HB-EGF-Fcを産生する細胞株のスクリーニングを行った。最も 産生量の高!/、株を選び拡大培養を行った。
[0154] 1— 1— 4· HB-EGF— Fcタンパク質の精製
得られた HB-EGF— Fc産生株の培養上清から Hi Trap Protein G HP lmLカラ ム (Amersham Biosciences #17-0404-01)を用いて HB-EGF—Fcタンパク質の精製 を行った。培養上清を流速 ImL/minで吸着させ、 20mLの 20mMリン酸緩衝液 (pH7.0) で洗浄した後、 3.5mLの 0.1M Glycine-HCl(pH2.7)で溶出した。溶出分画は、あらか じめ 1M Tris_HCl(pH9.0)を 50 Lずつ加えたエツペンドルフチューブに 0.5mLずつ 回収した。 OD を測定し、 目的タンパク質が含まれている分画をまとめ、 PBS (-)を
280謹
加えて全量 2.5mLとした後、 PD- 10カラム (Amersham Biosciences #17-0851-01)を 用いて PBS (-)にバッファー置換した。精製したタンパク質は 0.22 mフィルター (MILLI PORE #SLGV033RS)を通し、 4°Cで保存した。
[0155] 1 2.免疫
初回免疫では COMPLETE ADJUBANT (DIFCO:DF263810)で、二回目以降は IM COMPLETE ADJUBANT (DIFCO:DF263910)により HB-EGF—Fcタンパク質のエマ ルジョンを作成し、これを 50 g/mouseで各マウス [(MRL/lpr,ォス,4週齢) (balbん,メス, 6週齢):いずれも日本チヤ一ルスリバ一より購入] 3匹ずつに皮下注射により免疫した (テルモシリンジ lmL、針 26G)。初回免疫から 2週間後に 2回目の免疫を実施し、以 降 1週間おきに計 4〜5回免疫を行った。最終免疫では、 HB-EGF— Fc(50 g)を 100 11 1の PBSに懸濁し、尾静脈注射により免疫を行い、その 3日後に細胞融合を実施し た。
[0156] 1 3.ハイプリドーマの作成
細胞融合は以下のように行った。マウスより脾臓を無菌的に摘出し、 medium 1(RP MI1640+PS)中ですりつぶして単一細胞懸濁液にした。これを 70 μ mのナイロンメッシ ュ(Falcon)に通して脂肪組織等を取り除き、細胞数をカウントした。得られた B細胞を マウスミエローマ細胞(P3U1細胞)と、およそ 2: 1の細胞数比になるように混合し、 lmL の 50%PEG(Roche,cat#:783 641)を加えて、細胞融合を行った。融合した細胞を medi urn 2[RPMI1640+PS,10% FCS,HAT(Sigma,H0262),5% BM condimed HI (Roche :# 1088947)]に懸濁し、適当枚数 (10枚)の 96ゥヱルプレートに 200 L/ゥエルで分注し、 37°Cで培養した。 1週間後に培養上清を用いて、ハイプリドーマのスクリーニングを行 つた。なお、 2匹の Balbんマウス由来のハイプリドーマをそれぞれ HAシリーズ、 HBシリ ーズとし、 Mrl/lprマウス(1匹)由来のハイプリドーマを HCシリーズとし、角早析を fiつた
[0157] 抗 HB-EGF中和抗体のスクリーニング
2- 1.ヒト HB-EGF発現細胞株の樹立
2- 1 - 1. HB-EGF— DG44株の樹立
HB-EGFを発現する DG44細胞株の樹立を以下のとおり行った。まず、 1-1-1で構築 した HB- EGF発現ベクター(pMCN— HB- EGF) 15 μ gを pvulで切断し、 1-1-3と同様 の手法により DG44細胞にエレクト口ポレーシヨンにより導入した。その後、 G418耐十生 株をピックアップし、各細胞をャギ抗 HB-EGF抗体(R&D)、 FITC標識抗ャギ IgG抗体 で染色した。 FACSキヤリバ一(ベタトンディッキンソン)で、細胞表面に発現する HB-E GFを解析し、発現量の高いクローンを選択した。
[0158] 2— 1— 2. HB— EGF— Ba/F3株の樹立
HB-EGFを細胞膜上で発現する Ba/F3細胞株の樹立を以下のとおり行った。細胞 膜上に発現する HB-EGFはプロテアーゼによってプロセッシングを受け、培養液中に 切り出されることが知られている。そこでまず、プロテアーゼ切断部位に変異を持つ、 proHB-EGF発現ベクターの構築を行った。
[0159] pMCN-HB-EGFを铸型にして、 Pyrobest Taq polymerase (タカラ)を用いて以下の
2つの条件で別々に PCRを行った。
PCR反応 1
5)
(94°C 30秒、 68°C 30秒、 72°C 30秒: 20サイクル)
PCR反応 2 76)
TAGTCATGCCCAAC (配列番号: 72)
(94°C 30秒、 68°C 30秒、 72°C 30秒: 20サイクル)
[0160] 次に、 PCR反応 1、 2で得られた 2つの DNA断片を混合し、 Pyrobest Taq polymera se (タカラ)を用いて、リコンビネーション反応(94°C 30秒、 72°C 60秒: 5サイクル)を 行った後、さらにこの反応液 1 1を铸型にして、以下の条件で PCRを行った。
TAGTCATGCCCAAC (配列番号: 72)
(94°C 30秒、 68°C 30秒、 72°C 60秒: 22サイクル)
得られた PCR産物を SalI,NotIで切断後、同じく Sall、 Notlで切断した動物細胞用発 現ベクター(pMCN)に揷入し、 proHB-EGF発現ベクター(pMCN-MHB-EGF)を構築 した。
[0161] 次に proHB-EGFを発現する Ba/F3細胞株の樹立を以下のとおり行った。まず、構 築した proHB-EGF発現ベクター(pMCN-MHB-EGF) 15 μ gを pvulで切断し、 PBS (-) に懸濁した Ba/F3細胞 (lxlO7細胞/ mL,800 μ L)に 0.33kV,950 μ FDでエレクト口ポレー シヨン(Gene Pulser;BioRad)により導入した。これら細胞は、 lng/ml IL-3,500 μ g/m 1 G418を含む培地(RPMI1640,10% FCS,PS)で 96ゥエルプレート中で培養を行い、 2 週間後に G418耐性株をピックアップした。各細胞をャギ抗 HB-EGF抗体(R&D)、 FIT C標識抗マウス IgG抗体(BECKMAN COULTER:PN IM0819)で染色し、 FACS (ベ タトンディッキンソン)により細胞表面 HB-EGFの発現量の高いクローンを選択した。
[0162] 2 - 2. HB-EGF発現 SKOV-3細胞の樹立
HB-EGFを発現する SKOV-3細胞株の樹立を以下のとおり行った。卵巣癌細胞株 である SKOV_3(ATCCより購入)は 10% FCS,ペニシリン/ストレプトマイシン(P/S)を含 有する生育培地(Mc'Coy 5A medium,invitrogen)で培養を行った。
1-1-1で構築した HB-EGF発現ベクター(pMCN— HB-EGF) 15 μ gを pvulで消化し た。その後、 PBS (-)に懸濁した SKOV-3細胞 (lxlO7細胞/ 01 800 ^ L)に 1.5kV,25〃 F Dの条件化においてエレクト口ポレーシヨン(Gene Pulser;BioRad)により導入した。前 記生育培地で適当な細胞数に希釈した後、 96ゥエルプレートに播種した。翌日 G418( geneticin,invitrogen)を 500 μ g/mLになるように添加した。約 2週間後に G418耐性単 一クローンを選別し、ウェスタンブロットにより、 HB-EGFを発現する細胞株のスクリー ユングを行った。最も産生量の高い株を選び、後の実験に使用した。
2 - 3. HB-EGF依存的に増殖する EGFR— Ba/F3細胞株の樹立
2 - 3 - 1. pCV-hEGFR/G_CSFRの構築
本発明の抗体の活性を評価するために、ヒト EGFRの細胞外領域とマウス G-CSFR の細胞内領域のキメラ受容体 (hEGFR/mG-CSFR)を発現するベクターを構築した。 図 2aに、 HB-EGFがこのキメラ受容体を発現する細胞に結合したときの当該細胞に 及ぼす影響を模式的に示す。
ヒト上皮成長因子レセプター (EGFR)の細胞外領域をコードする遺伝子のクローニン グは、ヒト肝臓 cDNA (Marathon Ready cDNA,CLONTECH)を铸型に以下のプライ マーセットを用いた PCRにより実施した。ヒト EGFRの塩基配歹 IJ (MN— 005228)および アミノ酸配列(NP_005219)を、それぞれ配列番号 77および 78に示す。
EGFR-1: ATGCGACCCTCCGGGACGGC (配列番号: 79)
EGFR-2: CAGTGGCGATGGACGGGATCT (配列番号: 80)
(94°C 30秒、 65°C 30秒、 72°C 2分: 35サイクル)
増幅した cDNA (約 2Kb)をァガロースゲルより切り出し、 pCR- TOPOベクター (invitro gen)に揷入した。このプラスミドに揷入された断片の塩基配列を解析し、得られた EG FR遺伝子が正しい配列を有していることを確認した。次に、上記で得られたプラスミド を铸型にして、以下のプライマーセットを用いて PCRを行った。
EGFR - 5
EGFR - 6
GCCCATTCGT (配列番号: 82)
(94。C 30秒、 68。C 30秒、 72。C 2分: 25サイクル) [0164] この操作により、 5'に Notlサイトを、 3'に Bglllサイトを有する EGFR細胞外領域をコー ドする遺伝子断片を得た。これを、 Notl-Bglllで切断し、 pCV— mG-CSFRの Notl-Ba mHI間に挿入した。
[0165] 発現プラスミドベクター pCVは、 pCOSl (国際特許公開番号 W098/13388)の poly(A )付加シグナルをヒト G-CSF由来のものに置換し構築した。 pEF-BOS (Mizushima S.e t al.(1990)Nuc.Acid Res.18,5322)を Eco RI及び Xba Iで切断し、ヒト G-CSF由来の poly(A)付加シグナル断片を得た。この断片を pBacPAK8 (CLONTECH)に Eco RI/X ba I部位で揷入した。これを Eco RIで切断したのち両端を平滑化し、 Bam HIで消 化した。これにより、 5'末端に Bam HI部位が付加し、 3'末端が平滑化されたヒト G-CS F由来の poly(A)付加シグナルを含む断片を得た。この断片と pCOSlの poly(A)付加シ グナル部分を Bam HI/Eco RV部位で置換し、これを pCVとした。
[0166] pCV— mG-CSFRは pCV上にマウス G-CSF受容体の細胞質内領域である 623番目 のァスパラギン残基から C末端までを含む。マウス G-CSF受容体の塩基配列(M5828 8)を配列番号: 83、アミノ酸配列番号 (AAA37673)を配列番号: 84に示す。ただし、 p CV— mG-CSFRの揷入配列中の N末端領域においてコードする cDNA配列に制限酵 素サイトである B讓 HIサイトを作出したことから配列番号 84における 632番目のグリシ ン残基がグルタミン酸残基に置換されているものである。
[0167] pCV— mGCSFR中に挿入された遺伝子断片の塩基配列を確認し、ヒト EGFRの細胞 外領域とマウス G-CSFRの細胞内領域のキメラ受容体(hEGFR/mG-CSFR)を発現す るベクター(pCV— hEGFR/mG- CSFR)の構築を終了した。
[0168] 本発現ベクターが発現するタンパク質、すなわちヒト EGFR/マウス G-CSFRキメラ受 容体の塩基配列及びアミノ酸配列を、それぞれ配列番号 85および 86に示す。
[0169] 2- 3 - 2. HB-EGF依存性細胞株の樹立
pvulで切断することにより直鎖化したキメラ受容体(hEGFR/mG-CSFR)発現べクタ 一(pCV— hEGFR/mG- CSFR) 15ugを、 0.33kV,950 FDで Ba/F3細胞にエレクトロポ レーシヨン (Gene Pulser;BioRad)により導入した。この細胞を 10ng/ml HB-EGF, 500 11 g/ \ G418を含む培地 (RPMI1640,10% FCS, PS)で 2週間培養し、出現したコロニ [0170] 次に、得られた細胞株が HB-EGFの濃度依存的に増殖することを以下の実験により 確認した。 EGFR— Ba/F3細胞を 0〜100ng/mlの HB-EGF(R&D,259-HE)存在下で lx 103細胞/ゥエルで 96ゥエルプレートに撒き、 3日間培養した。その後細胞数を WST-8 試薬(cell counting kit_8,同仁)を用いて、添付の文書にしたがって計測した。
[0171] その結果、樹立した細胞株(EGFR— Ba/F3)は、 HB-EGFの濃度依存的に増殖が 促進されることが確認された(図 2b)。
[0172] 2-4.ハイプリドーマのスクリーニング
2-4 - 1. HB-EGF結合抗体のスクリーニング(一次スクリ一ユング)
抗 HB-EGF中和抗体を取得するため、まず HB-EGFに結合する抗体のスクリーニン グを行った。結合抗体のスクリーニングには ELISA,FACSを用いた。
[0173] 2-4 - 1 - 1. ELISA
HB-EGFタンパク質 (R&D, 259-HE)を 1 μ g/mlでコーティングした ELISA用プレート( NUNC)に、ハイプリドーマの培養上清を反応させ、 1時間インキュベートした。その後 、アルカリフォスファターゼ(AP)標識抗マウス IgG(ZYMED:#62-6622)で 1時間反応後 、 lmg/mlの基質(SIGMA:S0942-50TAB)を加え発色させた。プレートリーダー(BioRa d社)により OD を測定し、 ELISA陽性ゥエルを選抜した。
405
[0174] 2-4 - 1 - 2. FACS
HB-EGF— Ba/F3細胞(約 lxlO5細胞)にハイブリドーマの培養上清を加え、 4°Cで 1 時間インキュベートした。その後 FITC標識抗マウス IgG抗体(BECKMAN COULTER : PN IM0819)を加え、 4°Cで 30分インキュベートした。その後、各ハイブリドーマ培養 上清の細胞表面の HB-EGFへの結合活性を FACS (ベタトンディッキンソン)にて解析 した。
[0175] 2-4 - 1 - 3.限界希釈
ELISA,または、 FACS解析で HB-EGFへの結合活性を有するクローンを単一クロー ン化するため、限界希釈 (LD)を行った。陽性ゥエルの細胞数を測定し、 3細胞/ゥエル となるように 96ゥエルプレートに播種した。約 10日間培養し、コロニーが出現したゥェ ルの培養上清について、再び ELISAあるいは FACSにより結合活性を解析した。これ ら一連の作業により、 HAシリーズでは 5種類の、 HBシリーズでは 4種類の、そして HC シリーズでは 5種類の HB-EGF結合活性を有する単一クローンを得た。
[0176] 2-4 - 1 -4.サブタイプの決定
抗体のサブタイプ決定は IsoStrip(Roche #1 493 027)を用いて行った。サブタイプ 決定には PBS (-)で 10倍希釈したハイプリドーマの培養上清を用いた。
[0177] [表 1] 単離された抗体の麵
[0178] 2-4 - 2.抗体の精製
得られた単一クローンのハイプリドーマの培養上清 80mLから Hi Trap Protein G HP lmLカラム (Amersham Biosciences #17-0404_01)を用いて抗体を精製した。ノヽ イブリドーマ上清を流速 lmL/minで吸着させ、 20mLの 20mM Phosphate buffer(pH7. 0)で洗浄した後、 3.5mLの 0.1M Glycine_HCl(pH2.7)で溶出した。溶出分画は、あら かじめ 1M Tris_HCl(pH9.0)を 50 Lずつ加えたエツペンドルフチューブに 0.5mlずつ 回収した。 OD を測定し、抗体が含まれている分画をまとめ、 PBS (-)を加えて全量
280
2.5mLとした後、 PD- 10カラム (Amersham Biosciences #17-0851-01)を用いて PBS (-) にバッファー置換した。精製した抗体は 0.22 πιフィルター (MILLIPORE #SLGV033 RS)を通し、以下詳細に各精製抗体の性質について検討を行った。
[0179] 2-4 - 3. EGFR— Ba/F3細胞の増殖中和活性の解析 (二次スクリーニング)
各精製抗体を用いて、 EGFR— Ba/F3細胞の HB-EGF依存的な増殖に対する中和 活性を解析した。 EGFR— Ba/F3細胞を HB-EGF(80ng/ml)存在下で 2xl04細胞/ゥェ ルで 96ゥエルプレートに撒き、各精製抗体を 0〜200ng/mlで添加した。 3日間培養後
、WST-8(cell counting kit_8)を用いて細胞数を測定した。
[0180] その結果、 HAシリーズでは HA-20が、 HBシリーズでは HB-20が、そして HCシリーズ では HC-15が強い中和活性を有することが分かった(図 3a— c)。
[0181] HB-EGF中和抗体(HA-20,HB-20,HC_15)の性晳の解析
3- 1. HA-20、 HB-20、 HC-15の可変領域のクローユングとアミノ酸配列の解析 ハイプリドーマ約 5xl06個から Trizol(#15596-018,Life technologies)を用いて total
RNAを精製した。得られた total RNA l ^u gより SMART RACE cDNA Amplification it(CLONTECH #PT3269-1)を用い、添付のマニュアルにしたがって全長 cDNAを 合成した。得られた cDNAを铸型にして、 Advantage 2 PCR Enzyme System(CLO
NTECH #PT3281-1)を用い、以下の条件で PCRを行って各抗体の重鎖 (VH)、およ び軽鎖 (VL)の可変領域をコードする遺伝子を増幅した。
軽鎖可変領域のクローニング用プライマー
UPM^k(VL-k)
UPM : Kitに添付
VL-k:GCT CAC TGG ATG GTG GGA AGA TG (配列番号: 91)
重鎖可変領域のクローニング用プライマー
HA-20 : UPMWH-G1
HB-20, HC-15: UPMWH-2a
UPM : Kitに添付
VH-G1:GGG CCA GTG GAT AGA CAG ATG (配列番号: 92)
VH-2a:CAG GGG CCA GTG GAT AGA CCG ATG (配列番号: 93)
94°C 5秒, 72°C 2分, 5サイクル
94°C 5秒, 70°C 10秒, 72°C 2分, 5サイクル
94°C 5秒, 68°C 10秒, 72°C 2分, 27サイクル
上記操作により増幅した遺伝子断片を pCRII-TOPOOnvitrogen TOPO TA-clonin g kit, #45-0640)に TA-クローユングし、その後それぞれのインサートについて塩基配 歹 IJを確認した。確認された可変領域の配列を図 4に示す。 [0182] 3 - 2.活性型 HB-EGFに対する結合活性の解析
得られた 3種類の抗体(HA-20,HB-20,HC-15)の活性型 HB-EGFタンパク質への 結合活性を比較するため、以下の実験を行った。 HB-EGFタンパク質 (R&D, 259-HE) を 1 μ g/mlでコーティングした ELISA用プレート(NUNC)に、 HA_20、 HB_20、 HC- 15 抗体を各濃度で反応させた。その後、アルカリフォスファターゼ (AP)標識抗マウス Ig G(ZYMED:#62-6622)で 1時間反応後、 lmg/mlの基質(SIGMA:S0942_50TAB)を加 え発色した。その後、プレートリーダーで OD405を測定し、得られた各抗体の結合曲 線をもとに、 50%の結合を示す抗体濃度(ED )を算出した。その結果、活性型 HB-E
GFへの結合活性は、 ED 値が 0.2〜1.4
nMであり、 V、ずれも強!/、結合活性を有することが分力、つた(図 5)。
[0183] [表 2] 抗体 HA- 20、 HB-20及び HC- 15の HB- EGに対する結合についての ED50値 mAb HB-EGF binding (ED50 nmol/L)
HA- 20 0.8
HB-20 1.4
HC - 1 5 0.2
[0184] 3 - 3. proHB-EGFに対する結合活性の解析
次に、得られた 3つの抗体の proHB-EGFに対する結合活性を解析した。内在性に HB-EGFを発現して!/、ることが知られて!/、る卵巣癌細胞株 RMG1細胞(ヒューマンサ ィエンス振興財団より購入)は、 10%FCSを含む生育培地 (Ham's F12 medium, invitr ogen)で培養した。 HB-EGFを強制発現させた細胞である、 Ba/F3細胞(HB-EGF— B a/F3)、 HB-EGF発現 DG44細胞(HB-EGF— DG44)、及び SKOV-3細胞(HB-EGF — SKOV-3)並びに HB-EGFを内示的に発現している RMG1細胞に対し、各抗体(10 g/ml)を 4°Cで 1時間反応させ、さらに FITC標識抗マウス IgG抗体(BECKMAN CO ULTER:PN IM0819)で染色を行った。その後、各抗体の細胞表面の HB-EGFへの 結合を FACS (ベタトンディッキンソン)にて解析した。 [0185] 図 6に、抗体 HA-20、 HB-20及び HC15の Ba/F3、 DG44及び SKOV-3細胞に強制発 現させた proHB-EGF、および RMG1細胞で内在性に発現する proHB-EGFに対する 結合活性を FACS解析により比較したヒストグラムを示す。一次抗体非存在下の染色 パターン(コントロール)を灰色の波形で、各抗体存在下での染色パターンを実線で 示す。横軸が染色強度、縦軸が細胞数を表す。図 6に示されるように、 HB-20、 HC-1 5は、強制発現させた細胞膜上の HB-EGF、及び卵巣癌株で内在的に発現している 細胞膜上の HB-EGFを認識したのに対し、 HA-20は、まったく結合しないかあるいは 非常に弱い結合しか示さなかった。このことから、 HA-20は、活性型 HB-EGFには強 く結合するものの、 proHB-EGFは認識しない抗体であることが明らかになった。
[0186] 3-4. 中和活性の解析
3-4 - 1. EGFR/HB-EGF結合阻害作用の固相解析
3-4 - 1 - 1. EGFR-Fcタンパク質の調整
HB-EGFとその受容体である EGFRとの結合を固相条件で確認できる ELISA系を構 築するため、まず受容体タンパク質として EGFRの細胞外領域とヒト IgGlの Fc領域との 融合タンパク質(EGFR- Fc)の調整を行った。図 7に HB-EGFと EGFRとの結合を HB- EGF抗体が固相上で阻害する状態を模式的に示す。
[0187] 最初に、 EGFR-Fc発現ベクターの構築を行った。実施例 2_3_1.で構築した pCV— h EGFR/mG-CSFRを铸型にして、以下のプライマーを用いて PCRを行った。
(94°C 30秒、 72°C 30秒: 25サイクル)
[0188] 増幅した EGFR細胞外領域をコードする遺伝子断片を、 BstEIIと Hindlllで切断し、こ れを、 pMCDN2-Fcの BstEII-Hindlll間に挿入した。揷入された遺伝子断片の塩基配 列を確認し、ヒト EGFRの細胞外領域とヒト IgGlの Fc領域との融合タンパク質(EGFR- Fc)を発現するベクター (pMCDN2_EGFR-Fc)の構築を終了した。本発現ベクター が発現するタンパク質、すなわち EGFR-Fcの塩基配列及びアミノ酸配列を、それぞ れ配列番号 96および 97に示す。
[0189] 次に、 EGFR-Fcタンパク質産生細胞株の樹立を以下のとおり行った。まず EGFR-F c発現ベクター (pMCDN2_EGFR-Fc) 15 μ gを pvulで切断し、 DG44細胞にエレクト口 ポレーシヨンにより導入した。その後、 G418耐性株の培養上清中に産生された EGFR -Fcタンパク質をウェスタンブロットにより解析した。すなわち、各培養上清 10 1を SD S-PAGEにより分離し、これを PVDF膜ブロットし、 HRP標識抗ヒ HgG抗体(アマシャム 、 NA933V)で目的タンパク質の検出を行った。産生量の最も高いクローンを選び、こ れを拡大培養して培養上清の回収を行った。
[0190] EGFR-Fcタンパク質の精製は以下のとおり行った。得られた EGFR-Fc産生株の培 養上、?青を Hi Trap Protein G HP lmLカラム (Amersham Biosciences #17-0404- 01)に流速 lmL/minで吸着させた。これを 20mLの 20mM リン酸緩衝液 (ρΗ7·0)で洗浄 した後、 3.5mLの 0.1M グリシン- HCl(pH2.7)で溶出した。回収した分画のうち 10 1ず つを SDS-PAGEにより分離し、ウェスタンブロット、および、クマシ一ブリリアントブルー (CBB)染色により目的タンパク質が含まれている分画を確認し、 PD-10カラム (Amers ham Biosciences #17-0851-01)を用いて PBS (-)にバッファー置換した。精製したタ ンパク質は 0.22 a mフィルター (MILLIPORE #SLGV033RS)を通し、 4°Cで保存した。
[0191] 3-4 - 1 - 2. ELISAによる HB—EGFと EGFRの結合角早析
抗ヒト IgG抗体をコートした ELISAプレートに、精製した EGFR-Fcを 0.5 g/mrei時 間反応させた。これに、 HB-EGF(R&D,259-HE)を、 0〜250ng/mrCl時間反応させ、 その後、ビォチン標識抗 HB-EGF抗体(R&D,BAF259)と AP標識ストレプトアビジン(Z YMED, #43-8322)により EGFR_Fcに結合した HB-EGFタンパク質を検出した。図 8に ELISAによる EGFRと HB-EGFとの結合様式の解析モデルを示す。その結果、この固 相系により、 EGFRに結合する HB-EGFをおよそ 4ng/mlの濃度から検出できることが 分かった(図 9)。
[0192] 3-4 - 1 - 3.抗体による HB-EGFと EGFRの結合阻害活性の解析
2-4-2で得られた抗体の、 HB-EGFと EGFRとの結合阻害活性に関して、上記固相 評価系を用いた解析を行った。 EGFR-Fcを固相化した ELISAプレートに、 HB_EGF(5 Ong/ml)と各抗体を添加し、室温で 1時間反応した。プレートを TBS-Tで洗浄し、 EGF Rに結合して!/、る HB-EGFを上記手法により検出した(図 10)。
[0193] その結果、いずれの抗体においても、濃度依存的な結合阻害活性が認められ、特 に HA-20、 HB-20、 HC_15で強い結合阻害活性が確認された。
[0194] 3-4 - 2. EGFR— Ba/F3細胞の増殖抑制活性
HA-20、 HB-20、 HC-15について EGFR— Ba/F3細胞の HB-EGF依存的な増殖に 対する中和活性を比較した。上記と同様に EGFR— Ba/F3細胞を HB-EGF(80ng/ml) 存在下で 2xl04細胞/ゥエルで 96ゥエルプレートに撒き、各精製抗体を添加した。 3日 間培養後、 WST-8(cell counting kit_8)を用いて細胞数を測定し、増殖曲線を作成 した。そしてこの結果をもとに、最大抑制効果の 50%の抗体濃度(EC 値)を算出した
[0195] その結果、 EGFR Ba/F3細胞の増殖抑制効果が最も強かったのが HC_15(EC =3
• 8nM)で、次いで HA-20(EC =32·6ηΜ)、 HB_20(EC =40·3ηΜ)であった(図 11)。
[0196] [表 3] 抗体 ΗΑ- 20、 ΗΒ-20及び HC- 15の EGFR_Ba/F3繊に财る増殖 fflflj効果についての ED50値
Figure imgf000061_0001
[0197] 3-4 - 3. RMG-1細胞に対する増殖抑制活性
RMG-1細胞に対する中和活性の解析は以下のとおり行った。 96ゥエルプレートに R MG-1細胞を、 6xl03細胞/ゥエルで、 8%あるいは 2%FCSを含む Ham's F12 medium中 に撒き、そこへ各抗体を添加した。 1週間培養後に、 WST-8試薬により細胞数を測定 した。
[0198] その結果、 HA-20は、抗体濃度依存的に RMG-1細胞の増殖を抑制した(図 12)。こ の増殖抑制活性は FCS濃度が 2%のときに特に顕著に認められた。

Claims

請求の範囲 [1] HB-EGFに対する中和活性を有するモノクローナル抗体。 [2] 以下(1)から(29)の!/、ずれかに記載の抗体;
( 1 ) CDR1として配列番号: 2に記載のアミノ酸配列、 CDR2として配列番号: 4に記 載のアミノ酸配列、および CDR3として配列番号: 6に記載のアミノ酸配列を有する H 鎖を含む抗体、
(2) (1 )に記載の H鎖であって、 CHとして配列番号: 8に記載のアミノ酸配列を有す る H鎖を含む抗体、
(3) (1 )に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を有す る H鎖を含む抗体、
(4) CDR1として配列番号: 12に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 14に 記載のアミノ酸配列、および CDR3として配列番号: 16に記載のアミノ酸配列を有す る L鎖を含む抗体、
(5) (4)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有す る L鎖を含む抗体、
(6) (4)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有す る L鎖を含む抗体、
(7) (1 )に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(8) (2)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(9) (3)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(10) CDR1として配列番号: 22に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 24 に記載のアミノ酸配列、および CDR3として配列番号: 26に記載のアミノ酸配列を有 する H鎖を含む抗体、
(11 ) (10)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(12) (10)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(13) CDR1として配列番号: 30に記載のアミノ酸配列、 CDR2として配列番号: 32 に記載のアミノ酸配列、および CDR3として配列番号: 34に記載のアミノ酸配列を有 する L鎖を含む抗体、
(14) (13)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有 する L鎖を含む抗体、
(15) (13)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(16) (10)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(17) (11)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(18) (12)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(19) CDR1として配列番号: 36に記載のアミノ酸配列、 CDR2として配列番号: 38 に記載のアミノ酸配列、および CDR3として配列番号: 40に記載のアミノ酸配列を有 する H鎖を含む抗体、
(20) (19)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(21) (19)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(22) CDR1として配列番号: 42に記載のアミノ酸配列、 CDR2として配列番号: 44 に記載のアミノ酸配列、および CDR3として配列番号: 46に記載のアミノ酸配列を有 する L鎖を含む抗体、
(23) (22)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有 する L鎖を含む抗体、
(24) (22)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(25) (19)に記載の H鎖、および(22)に記載の L鎖を含む抗体、
(26) (20)に記載の H鎖、および(23)に記載の L鎖を含む抗体、
(27) (21)に記載の H鎖、および(24)に記載の L鎖を含む抗体、
(28) (1)から(27)のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、(1)から(27)のいずれか に記載の抗体と同等の活性を有する抗体、
(29) (1)から(27)のいずれかに記載の抗体が結合する HB-EGFタンパク質のェピト ープと同じェピトープに結合する抗体。
[3] 配列番号 59に記載の HB-EGFを発現する細胞の細胞表面上の HB-EGFタンパク質 に結合しない抗体である請求項 1又は 2のモノクローナル抗体。
[4] 配列番号 59に記載の HB-EGFを発現する細胞力 S、 RMG-1又は配列番号 59に記載 の HB-EGFを組換え発現する Ba/F3、 DG44若しくは SKOV-3のいずれかから選択さ れる請求項 3のモノクローナル抗体。
[5] 抗体が低分子化抗体である請求項 1から 4のモノクローナル抗体。
[6] 請求項 1から 5のモノクローナル抗体を有効成分として含む癌治療剤。
[7] 癌が勝臓癌、肝臓癌、食道癌、メラノーマ、大腸癌、胃癌、卵巣癌、膀胱癌または脳 腫瘍である請求項 6の癌治療剤。
[8] 請求項 1から 5のモノクローナル抗体を有効成分として含む細胞増殖抑制剤。
[9] 細胞が勝臓癌細胞、肝臓癌細胞、食道癌細胞、メラノーマ細胞、大腸癌細胞、胃癌 細胞、卵巣癌細胞、膀胱癌細胞または脳腫瘍細胞である請求項 8の細胞増殖抑制 剤。
PCT/JP2007/070466 2006-10-20 2007-10-19 Agent anticancéreux comprenant un anticorps anti-hb-egf en tant qu'ingrédient actif WO2008047914A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002666809A CA2666809A1 (en) 2006-10-20 2007-10-19 Anti-cancer agent comprising anti-hb-egf antibody as active ingredient
US12/311,950 US9023993B2 (en) 2006-10-20 2007-10-19 Anti-cancer agent comprising anti-HB-EGF antibody as active ingredient
EP07830200.7A EP2093237B1 (en) 2006-10-20 2007-10-19 Anti-cancer agent comprising anti-hb-egf antibody as active ingredient
AU2007311946A AU2007311946A1 (en) 2006-10-20 2007-10-19 Anti-cancer agent comprising anti-HB-EGF antibody as active ingredient
JP2008539888A JP5676849B2 (ja) 2006-10-20 2007-10-19 抗hb−egf抗体を有効成分として含む癌治療剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-286824 2006-10-20
JP2006286824 2006-10-20

Publications (1)

Publication Number Publication Date
WO2008047914A1 true WO2008047914A1 (fr) 2008-04-24

Family

ID=39314124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070466 WO2008047914A1 (fr) 2006-10-20 2007-10-19 Agent anticancéreux comprenant un anticorps anti-hb-egf en tant qu'ingrédient actif

Country Status (7)

Country Link
US (1) US9023993B2 (ja)
EP (1) EP2093237B1 (ja)
JP (1) JP5676849B2 (ja)
CN (2) CN101589059A (ja)
AU (1) AU2007311946A1 (ja)
CA (1) CA2666809A1 (ja)
WO (1) WO2008047914A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040134A1 (en) * 2007-09-26 2009-04-02 U3 Pharma Gmbh Heparin-binding epidermal growth factor-like growth factor antigen binding proteins
WO2010090222A1 (ja) * 2009-02-04 2010-08-12 国立大学法人大阪大学 Hb-egf結合性タンパク質複合体
EP2221374A1 (en) * 2007-12-05 2010-08-25 Kyowa Hakko Kirin Co., Ltd. Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor
WO2010137654A1 (ja) 2009-05-29 2010-12-02 株式会社未来創薬研究所 Egfファミリーリガンドのアンタゴニストを成分とする医薬組成物
WO2011021381A1 (ja) 2009-08-17 2011-02-24 株式会社未来創薬研究所 抗hb-egf抗体を有効成分として含む医薬組成物
US8951975B2 (en) 2010-04-02 2015-02-10 Oncotherapy Science, Inc. ECT2 peptides and vaccines including the same
US8975374B2 (en) 2006-10-20 2015-03-10 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition comprising anti-HB-EGF antibody as active ingredient
US9023993B2 (en) 2006-10-20 2015-05-05 Chugai Seiyaku Kabushiki Kaisha Anti-cancer agent comprising anti-HB-EGF antibody as active ingredient
WO2018183459A1 (en) * 2017-03-29 2018-10-04 Celgene Corporation Formulations comprising pd-1 binding proteins and methods of making thereof
EP3344278A4 (en) * 2015-09-04 2019-01-23 The California Institute for Biomedical Research INSULIN-IMMUNOGLOBULIN FUSION PROTEINS
US10428145B2 (en) 2015-09-29 2019-10-01 Celgene Corporation PD-1 binding proteins and methods of use thereof
JP2020055876A (ja) * 2017-03-29 2020-04-09 塩野義製薬株式会社 癌治療用医薬組成物
US10751414B2 (en) 2016-09-19 2020-08-25 Celgene Corporation Methods of treating psoriasis using PD-1 binding antibodies
US10766958B2 (en) 2016-09-19 2020-09-08 Celgene Corporation Methods of treating vitiligo using PD-1 binding antibodies

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378795B2 (ja) * 2006-10-20 2013-12-25 中外製薬株式会社 抗hb−egf抗体を有効成分として含む医薬組成物
FR2988393B1 (fr) 2012-03-20 2014-05-09 Commissariat Energie Atomique Inhibiteur de l'hb-egf derive du domaine r de la toxine diphterique pour le traitement des maladies associees a l'activation de la voie hb-egf/egfr
CA2882594C (en) * 2012-08-21 2019-07-16 Ortho-Clinical Diagnostics, Inc. Antibodies to risperidone and use thereof
CR20170060A (es) * 2014-08-19 2017-04-18 Merck Sharp & Dohme Anticuerpos anti tigit
WO2016196638A2 (en) * 2015-06-01 2016-12-08 The Administrators Of The Tulane Educational Fund Pah antibodies and uses thereof
TWI742377B (zh) * 2018-05-24 2021-10-11 大陸商江蘇恒瑞醫藥股份有限公司 一種重組人胰島素或其類似物的前驅物的製備方法
CN109580959B (zh) * 2018-12-17 2020-03-31 江苏莱森生物科技研究院有限公司 一种检测肝素结合性表皮生长因子的elisa试剂盒
JP2022536511A (ja) * 2019-06-13 2022-08-17 シートムエックス セラピューティクス,インコーポレイテッド 癌の処置のための併用療法での活性化可能抗pdl1抗体および抗ctla-4抗体の使用

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
JPS6459878A (en) 1987-08-31 1989-03-07 Matsushita Electric Ind Co Ltd Semiconductor laser protective circuit
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
WO2003104453A1 (ja) 2002-06-05 2003-12-18 中外製薬株式会社 抗体作製方法
JP2006286824A (ja) 2005-03-31 2006-10-19 Renesas Technology Corp 半導体装置及び撮像装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342219B1 (en) 1999-04-28 2002-01-29 Board Of Regents, The University Of Texas System Antibody compositions for selectively inhibiting VEGF
DE10234192B4 (de) 2002-07-26 2009-11-26 Epoplus Gmbh Co.Kg Verwendung von Erythropoetin
EA011859B9 (ru) * 2004-01-05 2013-07-30 Емд Лексиген Ресерч Сентер Корп. Соединения для адресной доставки препарата к ткани или органу-мишени
WO2007142277A1 (ja) * 2006-06-06 2007-12-13 Kyowa Hakko Kirin Co., Ltd. ヘパリン結合上皮細胞増殖因子様増殖因子に結合するモノクローナル抗体
US8975374B2 (en) * 2006-10-20 2015-03-10 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition comprising anti-HB-EGF antibody as active ingredient
AU2007311946A1 (en) 2006-10-20 2008-04-24 Forerunner Pharma Research Co., Ltd. Anti-cancer agent comprising anti-HB-EGF antibody as active ingredient
JP5378795B2 (ja) 2006-10-20 2013-12-25 中外製薬株式会社 抗hb−egf抗体を有効成分として含む医薬組成物
EP2162471A1 (en) 2007-06-08 2010-03-17 Université de la Méditerranée Compositions and methods for treating pancreatic tumors
AR068566A1 (es) * 2007-09-26 2009-11-18 Amgen Inc Proteinas fijadoras de antigeno de factor de crecimiento del tipo factor de crecimiento epidermico fijador de heparina
CA2707689A1 (en) 2007-12-05 2009-06-11 Kyowa Hakko Kirin Co., Ltd. Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
JPS6459878A (en) 1987-08-31 1989-03-07 Matsushita Electric Ind Co Ltd Semiconductor laser protective circuit
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
WO2003104453A1 (ja) 2002-06-05 2003-12-18 中外製薬株式会社 抗体作製方法
JP2006286824A (ja) 2005-03-31 2006-10-19 Renesas Technology Corp 半導体装置及び撮像装置

Non-Patent Citations (76)

* Cited by examiner, † Cited by third party
Title
"Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
"Antibodies: A Laboratory Manual. Ed Harlow and David Lane", 1988, COLD SPRING HARBOR LABORATORY
"Clinical Aspects of Immunology", 1993, pages: 1799 - 1830
"Molecular Cloning"
"Remington's Pharmaceutical Science", MARK PUBLISHING COMPANY
ABRAHAM JA ET AL.: "Heparin-binding EGF-like growth factor: characterization of rat and mouse cDNA clones, protein domain conservation across species, and transcript expression in tissues", BIOCHEM BIOPHYS RES COMMUN, vol. 190, 1993, pages 125 - 33, XP024768206, DOI: doi:10.1006/bbrc.1993.1020
BELYAVSKY, A. ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 2919 - 2932
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043
BETTER, M.; HORWITZ, A.H., METHODS ENZYMOL., vol. 178, 1989, pages 476 - 496
BETTER, M.; HORWITZ, A.H., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496
BIRD, R.E. ET AL., TIBTECH, vol. 9, 1991, pages 132 - 137
BIRD, R.E.; WALKER, B.W., TRENDS BIOTECHNOL., vol. 9, 1991, pages 132 - 137
BLOTNICK S. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 91, 1994, pages 2890 - 2894, XP003022215 *
BLOTNICK S., PROC. NATL. ACAD. SCI. USA, vol. 91, 1994, pages 2890 - 2894
BUZZI S, CANCER IMMUNOL IMMUNOTHER, vol. 53, 2004, pages 1041 - 1048
CHIRGWIN, J. M. ET AL., BIOCHEMISTRY, vol. 18, 1979, pages 5294 - 5299
CHOMCZYNSKI, P. ET AL., ANAL. BIOCHEM., vol. 162, 1987, pages 156 - 159
CO, M.S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
CURRENT TOPICS IN MICROBIOLOGY AND IMMUNOLOGY, vol. 81, 1978, pages 1 - 7
DALBADIE-MCFARLAND, G. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409 - 6413
DE ST. GROTH, S. F. ET AL., J. IMMUNOL. METHODS, vol. 35, 1980, pages 1 - 21
EBERT, K.M. ET AL., BIO/TECHNOLOGY, vol. 12, 1994, pages 699 - 702
FASEBJ., vol. 6, 1992, pages 2422 - 2427
FROHMAN, M.A. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 8998 - 9002
GALFRE, G. ET AL., NATURE, vol. 277, 1979, pages 131 - 133
HASHIMOTO K, J BIOL CHEM, vol. 269, 1994, pages 20060 - 20066
HASHIMOTO K. ET A., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, no. 31, 1994, pages 20060 - 20066, XP003022216 *
HASHIMOTO-GOTOH, T. ET AL., GENE, vol. 152, 1995, pages 271 - 275
HOLLIGER, P. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HUDSON ET AL., J. IMMUNOL. METHODS, vol. 231, 1999, pages 177 - 189
HUSTON, J.S. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883
IWAMOTO R; HANDA K; MEKADA E: "Contact- dependent growth inhibition and apoptosis of epidermal growth factor (EGF) receptor-expressing cells by the membrane- anchored form of heparin-binding EGF-like growth factor", J BIOL CHEM, vol. 274, 1999, pages 25906 - 12
IWAMOTO R; HIGASHIYAMA S, EMBO J., vol. 13, 1994, pages 2322 - 2330
IWAMOTO R; YAMAZAKI S; ASAKURA M ET AL.: "Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function", PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 3221 - 6, XP002972137, DOI: doi:10.1073/pnas.0537588100
J. IMMUNOL., vol. 123, 1979, pages 1548 - 1550
J. MOL. BIOL., vol. 222, 1991, pages 581 - 597
KAREN M, FRONTIERS IN BIOSCIENCE, vol. 3, 1998, pages 288 - 299
KOHLER, G.; MILSTEIN, C., EUR. J. IMMUNOL., vol. 6, 1976, pages 511 - 519
KOHLER, G.; MILSTEIN, C., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
KRAMER, W. ET AL., NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456
KRAMER, W.; FRITZ, H.J., METHODS ENZYMOL., vol. 154, 1987, pages 350 - 367
KUNKEL T.A., METHODS ENZYMOL., vol. 85, 1988, pages 2763 - 2766
KUNKEL, T.A., PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488 - 492
LAMOYI, E., METHODS ENZYMOL., vol. 121, 1986, pages 652 - 663
LAMOYI, E., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 652 - 663
LEI, S.P. ET AL., J. BACTERIOL., vol. 169, 1987, pages 4379
MARGULIES, D.H. ET AL., CELL, vol. 8, 1976, pages 405 - 415
MARK, D.F. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 5666
MISHIMA K, ACT NEUROPATHOL., vol. 96, 1998, pages 322 - 328
MIYAMOTO S, CANCER RES., vol. 64, 2004, pages 5720
MIYAMOTO S, CANCER SCI., vol. 97, 2006, pages 341 - 347
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MIZUSHIMA S. ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108
MYOKEN Y. ET AL., BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 197, no. 3, 1993, pages 1450 - 1457, XP003022218 *
NAGLICH JG; METHERALL JE, CELL, vol. 69, 1992, pages 1051 - 1061
ONGUSAHA P, CANCER RES., vol. 64, 2004, pages 5283 - 5290
PLUECKTHUN, A.; SKERRA, A., METHODS ENZYMOL., vol. 178, 1989, pages 497 - 515
PLUECKTHUN, A.; SKERRA, A., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496
PROTEIN ENGINEERING, vol. 9, no. 3, 1996, pages 299 - 305
RAAB G; KLAGSBRUN M: "Heparin-binding EGF-like growth factor", BIOCHIM BIOPHYS ACTA, vol. 1333, 1997, pages F179 - 99, XP004281802, DOI: doi:10.1016/S0304-419X(97)00024-3
ROUSSEAUX, J. ET AL., METHODS ENZYMOL., vol. 121, 1986, pages 663 - 669
ROUSSEAUX, J. ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 663 - 669
SAMBROOK, J. ET AL.: "Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY PRESS, pages: 9.47 - 9.58
SATO, K. ET AL., CANCER RES., vol. 53, 1993, pages 851 - 856
See also references of EP2093237A4 *
SHULMAN, M. ET AL., NATURE, vol. 276, 1978, pages 269 - 270
TROWBRIDGE, I.S., J. EXP. MED., vol. 148, 1978, pages 313 - 323
VANDAMME, A.M. ET AL., EUR. J. BIOCHEM., vol. 192, 1990, pages 767 - 775
WANG Y.D. ET AL., ONCOGENE, vol. 21, 2002, pages 2584 - 2592, XP003022217 *
WANG YD, ONCOGENE, vol. 21, 2002, pages 2584 - 2592
WANG, A. ET AL., SCIENCE, vol. 224, pages 1431 - 1433
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
YAMAZAKI S; IWAMOTO R; SAEKI K ET AL.: "Mice with defects in HB-EGF ectodomain shedding show severe developmental abnormalities", J CELL BIOL, vol. 163, 2003, pages 469 - 75
ZOLLER, M.J.; SMITH, M., METHODS ENZYMOL., vol. 100, 1983, pages 468 - 500
ZOLLER, M.J.; SMITH, M., NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487 - 6500

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023993B2 (en) 2006-10-20 2015-05-05 Chugai Seiyaku Kabushiki Kaisha Anti-cancer agent comprising anti-HB-EGF antibody as active ingredient
US8975374B2 (en) 2006-10-20 2015-03-10 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition comprising anti-HB-EGF antibody as active ingredient
JP2011501655A (ja) * 2007-09-26 2011-01-13 ウー3・フアルマ・ゲー・エム・ベー・ハー ヘパリン結合上皮成長因子様成長因子抗原結合タンパク質
AU2008303796B2 (en) * 2007-09-26 2014-09-18 Amgen Inc. Heparin-binding epidermal growth factor-like growth factor antigen binding proteins
WO2009040134A1 (en) * 2007-09-26 2009-04-02 U3 Pharma Gmbh Heparin-binding epidermal growth factor-like growth factor antigen binding proteins
EP2221374A1 (en) * 2007-12-05 2010-08-25 Kyowa Hakko Kirin Co., Ltd. Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor
EP2221374A4 (en) * 2007-12-05 2011-01-19 Kyowa Hakko Kirin Co Ltd MONOCLONAL ANTIBODY CAPABLE OF BINDING TO A GROWTH FACTOR OF HB-EGF (HEPARIN-BINDING EPIDERMAL GROWTH FACTOR)
US8163282B2 (en) 2007-12-05 2012-04-24 Kyowa Hakko Kirin Co., Ltd Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor
WO2010090222A1 (ja) * 2009-02-04 2010-08-12 国立大学法人大阪大学 Hb-egf結合性タンパク質複合体
JP5299922B2 (ja) * 2009-02-04 2013-09-25 国立大学法人大阪大学 Hb−egf結合性タンパク質複合体
WO2010137654A1 (ja) 2009-05-29 2010-12-02 株式会社未来創薬研究所 Egfファミリーリガンドのアンタゴニストを成分とする医薬組成物
WO2011021381A1 (ja) 2009-08-17 2011-02-24 株式会社未来創薬研究所 抗hb-egf抗体を有効成分として含む医薬組成物
US8951975B2 (en) 2010-04-02 2015-02-10 Oncotherapy Science, Inc. ECT2 peptides and vaccines including the same
EP3344278A4 (en) * 2015-09-04 2019-01-23 The California Institute for Biomedical Research INSULIN-IMMUNOGLOBULIN FUSION PROTEINS
US10501546B2 (en) 2015-09-04 2019-12-10 The California Institute For Biomedical Research Insulin immunoglobulin fusion proteins
US11421033B2 (en) 2015-09-04 2022-08-23 The Scripps Research Institute Insulin immunoglobulin fusion proteins
US10428145B2 (en) 2015-09-29 2019-10-01 Celgene Corporation PD-1 binding proteins and methods of use thereof
US10751414B2 (en) 2016-09-19 2020-08-25 Celgene Corporation Methods of treating psoriasis using PD-1 binding antibodies
US10766958B2 (en) 2016-09-19 2020-09-08 Celgene Corporation Methods of treating vitiligo using PD-1 binding antibodies
WO2018183459A1 (en) * 2017-03-29 2018-10-04 Celgene Corporation Formulations comprising pd-1 binding proteins and methods of making thereof
JP2020055876A (ja) * 2017-03-29 2020-04-09 塩野義製薬株式会社 癌治療用医薬組成物

Also Published As

Publication number Publication date
JPWO2008047914A1 (ja) 2010-02-25
CN101589058A (zh) 2009-11-25
AU2007311946A1 (en) 2008-04-24
US20100273988A1 (en) 2010-10-28
EP2093237A4 (en) 2012-06-27
US9023993B2 (en) 2015-05-05
EP2093237A1 (en) 2009-08-26
CN101589059A (zh) 2009-11-25
EP2093237B1 (en) 2015-12-30
JP5676849B2 (ja) 2015-02-25
CA2666809A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP5676849B2 (ja) 抗hb−egf抗体を有効成分として含む癌治療剤
JP5378795B2 (ja) 抗hb−egf抗体を有効成分として含む医薬組成物
JP6025904B2 (ja) Egfファミリーリガンドのアンタゴニストを成分とする医薬組成物
JP5554993B2 (ja) Anexelektoに結合するモノクローナル抗体、およびその利用
JP5632582B2 (ja) 抗Claudin3モノクローナル抗体およびそれを用いる癌の治療および診断
US8975374B2 (en) Pharmaceutical composition comprising anti-HB-EGF antibody as active ingredient
US8546546B2 (en) Anti-Muc 17 antibody
WO2011021381A1 (ja) 抗hb-egf抗体を有効成分として含む医薬組成物
KR20090079214A (ko) 항 ereg 항체를 이용하는 암의 진단 및 치료 방법
WO2010119691A1 (ja) 抗tmprss11e抗体を用いた癌の診断と治療
JP5806935B2 (ja) 抗hb−egf抗体を有効成分として含む医薬組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045023.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008539888

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2666809

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007311946

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2688/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007830200

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007311946

Country of ref document: AU

Date of ref document: 20071019

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12311950

Country of ref document: US