WO2008047869A1 - Nickel material for chemical plant - Google Patents

Nickel material for chemical plant Download PDF

Info

Publication number
WO2008047869A1
WO2008047869A1 PCT/JP2007/070351 JP2007070351W WO2008047869A1 WO 2008047869 A1 WO2008047869 A1 WO 2008047869A1 JP 2007070351 W JP2007070351 W JP 2007070351W WO 2008047869 A1 WO2008047869 A1 WO 2008047869A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
nickel material
nickel
corrosion resistance
content
Prior art date
Application number
PCT/JP2007/070351
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Anada
Junichi Higuchi
Kiyoko Takeda
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to KR1020097008229A priority Critical patent/KR101119809B1/ko
Priority to EP07830085.2A priority patent/EP2077338B1/en
Priority to CN2007800390123A priority patent/CN101528958B/zh
Priority to JP2008539869A priority patent/JP5035250B2/ja
Publication of WO2008047869A1 publication Critical patent/WO2008047869A1/ja
Priority to US12/385,723 priority patent/US8986470B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Definitions

  • the present invention relates to a nickel material for a chemical plant, and more particularly to a nickel material for a chemical plant suitable for use as a structural member of a plant handling a corrosive substance such as chemical industry.
  • Nickel is particularly excellent in corrosion resistance in an alkali and has corrosion resistance even in a high-concentration chloride environment. Therefore, it is used as a component in various chemical plants such as caustic soda and chlor chloride manufacturing equipment.
  • the above members include a seamless pipe, a welded pipe, a plate, and an elbow.
  • a member made of nickel hereinafter also referred to as “nickel material”.
  • nickel contains carbon as an impurity element.
  • the solid solubility limit of carbon in nickel is low. For this reason, when nickel material is used for a long time at high temperature, carbon is precipitated at the grain boundary, or when welding is performed on the nickel material, carbon precipitates at the grain boundary due to the heat effect during welding, and the nickel material becomes brittle. May deteriorate the mechanical properties or deteriorate the corrosion resistance.
  • the nickel material is 0.15 in the case of ordinary carbon level nickel material (alloy number: NW2200).
  • the carbon specification value is less than 0.02% in the low carbon level nickel material (alloy number: NW2201) while the carbon specification value is less than%.
  • Nickel with a carbon content reduced to 0.02% or less from the carbon level has been put into practical use.
  • Patent Document 1 discloses an "improved nickel anode" for nickel plating containing 0.1 to 0.5% carbon and 0.;! To 1% titanium in pure Ni. It is disclosed. According to this technology, by adding titanium with a high affinity for carbon, when the anode dissolves in the plating solution, it reacts with carbon to become TiC, forming a TiC thin film, and nickel particles that collapse and fall off. By suppressing this, a beautiful glossy texture can be obtained.
  • Patent Document 2 describes that, by weight, C: 0.05 to 0.3%, Mo: 8% or less and / or ⁇ b: 5.5% or less, and 3. l X Nb + A “high hardness and low contact electric resistance Ni alloy” containing 7 to 17% of Mo is disclosed, and Nb is stated to precipitate Nb carbides and harden Ni.
  • Patent Document 3 contains a specific amount of at least one of Ti, Nb, Si, Zr, Hf, Mo, and Ta, and forms a boride by boriding to form a very hard! /, “Ni-based alloy for boriding” that forms a boride layer is disclosed!
  • Patent Document 4 describes that Ni ⁇ 99, which prevents weld defects such as cracks and blowholes.
  • Patent Document 1 Japanese Patent Publication No. 36-14006
  • Patent Document 2 JP-A-2-236250
  • Patent Document 3 Japanese Patent Laid-Open No. 62-250141
  • Patent Document 4 Japanese Patent Publication No. 44 10654
  • Patent Documents 1 and 2 describe that Ti and Nb are added to cause carbon to be precipitated as carbides, but in any case, the carbon contained in Ni. No consideration has been given to the deterioration of mechanical properties and corrosion resistance due to precipitation at grain boundaries! For this reason, in the case of the techniques disclosed in Patent Documents 1 and 2, carbon is precipitated at the grain boundary when used for a long time at a high temperature, or carbon is precipitated at the grain boundary due to the thermal effect during welding. If mechanical properties are impaired or corrosion resistance deteriorates, it cannot always be suppressed.
  • Patent Documents 3 and 4 are similar to the techniques disclosed in Patent Documents 1 and 2, and the mechanical properties and corrosion resistance due to precipitation of carbon contained in Ni at grain boundaries. No consideration has been given to sexual degradation. For this reason, in the techniques disclosed in Patent Documents 3 and 4, carbon is precipitated at the grain boundary when used for a long time at a high temperature, or carbon is precipitated at the grain boundary due to the heat effect during welding. If it is damaged or the corrosion resistance deteriorates, it will not always be possible to suppress this.
  • the object of the present invention is to use various types of equipment such as caustic soda and bull chloride production equipment without deterioration in mechanical properties and corrosion resistance even when used at high temperatures for a long time or under the influence of heat during welding. It is to provide a nickel material for a chemical plant that can be suitably used as a member in an academic plant.
  • Ti, Nb, V and Ta are elements that form thermodynamically stable carbides, and N precipitates as carbides with strong affinity for carbon. If precipitated in the grains, the amount of carbon dissolved in Ni decreases, so the amount of carbon precipitated at the grain boundaries decreases due to long-term use at high temperatures and thermal effects during welding.
  • the Ti, Nb, V, and Ta carbides are precipitated in a high temperature region during dissolution and solidification in the manufacturing process, and the precipitation position is often a grain boundary.
  • the total content of one or more of Ti, Nb, V and Ta is limited, and the carbon content and the Ti, Nb, If the contents of V and Ta satisfy a specific relational expression, the amount of carbon that dissolves in Ni decreases by the amount precipitated as carbide.
  • the carbides precipitated at the grain boundaries in the high temperature region at the time of dissolution and solidification are repeatedly subjected to crystal deformation and recrystallization by hot working, cold working and heat treatment in the manufacturing process of the Nikkenore material after solidification. It becomes finely distributed within the grain.
  • precipitation of carbides such as Ti and Nb can be expected to improve the mechanical properties by making the crystal grains finer.
  • the present invention has been completed based on the above findings, and the gist thereof is the following nickel material for chemical plants.
  • the nickel material for a chemical plant of the present invention has one or more content powers of Ti, Nb, V and Ta, which are elements having a stronger affinity for carbon than nickel, and a specific relationship with the carbon content. Since the carbon content is as low as C: 0.003-0.20%, the amount of carbon precipitated at the grain boundaries is greatly reduced, preventing deterioration of corrosion resistance and mechanical properties. This can be done with power S. For this reason, mechanical properties and corrosion resistance do not deteriorate even when used at high temperatures for long periods of time or under the influence of heat during welding. Suitable for use in various chemical plants such as caustic soda and chlor chloride manufacturing equipment. be able to.
  • Fig. 1 shows an example of a nickel material having a chemical composition used in the examples within the range specified in the present invention. It is a figure which shows the situation of precipitation of TiC to V, NA! /, A grain boundary, and a grain, and the arrow in a figure shows TiC.
  • FIG. 2 shows an optical microscope observation and a transmission electron microscope observation in the case of alloy No. 10 as an example of a comparative nickel material whose chemical composition used in the examples deviated from the conditions specified in the present invention. It is a figure which shows precipitation of the carbon to the grain boundary by.
  • Figure 2 (a) shows the light.
  • Fig. 2 (b) shows the results of observation by an observation microscope, and
  • Fig. 2 (b) shows the results of observation by a transmission electron microscope.
  • the arrows in the figure indicate the carbon deposited at the grain boundaries.
  • % of the chemical component content means “mass%”.
  • the C content is less than 0.003%, there is no problem of carbon precipitation at the grain boundaries, which affects corrosion resistance and mechanical properties due to long-term use at high temperatures and thermal effects during welding.
  • the lower limit was set to 0.003%.
  • the C content is 0.003-0.20%.
  • the upper limit of the C content is preferably 0.10%, more preferably less than 0.05%.
  • One or more of Ti, Nb, V and Ta a total amount of less than 1.0% and an amount satisfying the formula (1)
  • Ti, Nb, V, and Ta all combine with carbon contained in Ni to form carbides in the manufacturing process of a member made of nickel that has a strong affinity for carbon.
  • the total content of one or more of Ti, Nb, V and Ta is less than 1 ⁇ 0%, and in relation to the carbon content, the above formula (1), that is, “(12 / 48) Ti + (12/93) Nb + (1 2/51) V + (12/181) Ta— C ⁇ 0 ”, the amount of carbon dissolved in Ni decreases, and The carbides precipitated at the grain boundaries in the high-temperature region during dissolution and solidification are repeatedly subjected to crystal deformation and recrystallization by hot working, cold working and heat treatment in the nickel material manufacturing process after solidification, so that they are finely divided within the grains. Be distributed.
  • carbides are finely dispersed in the grains, the corrosion resistance and mechanical properties are not adversely affected, so that the deterioration of the corrosion resistance and mechanical properties is suppressed. Furthermore, precipitation of carbides such as Ti and Nb can also be expected to improve the mechanical properties by refining the crystal grains.
  • the lower limit of the content of Ti, Nb, V, and Ta is the amount and formation of carbon contained in Ni.
  • the upper limit of the content of Ti, Nb, V, and Ta may be in a range that does not adversely affect the corrosion resistance and mechanical properties such as strength and toughness in relation to the carbon content. However, if it is contained excessively, the strength becomes too high, resulting in a decrease in workability and a decrease in corrosion resistance. Therefore, one or more of Ti, Nb, V and Ta are used. The total amount of was made less than 1.0%.
  • the total amount of one or more of Ti, Nb, V and Ta is preferably 0.8% or less.
  • the nickel material for chemical plants of the present invention is C% 0.003-0.
  • the Ni content as a nickel material for chemical plants which is particularly excellent in corrosion resistance in an alkali and has corrosion resistance even in a high concentration chloride environment, is 98% or more. More preferably
  • Mn 0.3% or less
  • Fe 0.4% or less
  • Si 0.3% or less
  • S 0.01% or less.
  • the total amount of impurities is more preferably less than 1.0%, and even more preferably less than 0.5%.
  • the nickel material of the present invention can be manufactured by melting using an electric furnace, an AOD furnace, a VOD furnace, a VIM furnace or the like with a force S.
  • the melted metal is made into slab, bloom or billet by V, hot forging after forging into an ingot by the so-called “ingot-making method”, or continuous forging.
  • a tube material for example, hot processing into a tube by the hot extrusion tube manufacturing method or Mannesmann tube manufacturing method, and when processing into a plate material, for example, a plate or coil is formed by hot rolling. To be processed.
  • the hot working may be any kind of process.
  • the final product is a pipe material.
  • hot extrusion pipe production methods represented by the Eugene Sejurne method
  • roll rolling pipe production methods Mannesmann pipe production methods
  • Mannesmann plug mill method and the Mannesmann mandrel mill method can be mentioned.
  • the final product is a plate material
  • a typical method for producing thick plates and steel strips can be mentioned.
  • the heating temperature before hot forging or hot rolling is preferably 900 to 1200 ° C. Since Ni is soft, the temperature is preferably 900 to 1100 ° C. Since good hot workability can be obtained under such temperature conditions, it is possible to suppress the occurrence of cracks during hot forging and surface cracks during hot rolling.
  • the processing end temperature of the hot processing is not particularly specified! /, But should be 750 ° C or higher. This is because hot workability is lowered and ductility is impaired when the finishing temperature is less than 750 ° C.
  • the blank pipe manufactured by the hot working is drawn.
  • the cold-drawn pipe manufacturing method and the cold-rolled pipe manufacturing method using a cold pilger mill can be mentioned.
  • the final product is a plate material
  • a normal cold-rolled steel strip manufacturing method can be mentioned.
  • a homogenization treatment may be performed for softening.
  • the heating temperature for the homogenization heat treatment should be 900-1200 ° C.
  • the softening heat treatment not only reduces the strength, but also promotes the fixation of carbon in the grains by precipitation of carbides such as TiC and NbC.
  • carbides such as TiC and NbC.
  • grain growth may occur at a high temperature, it is preferable to perform at a force of 750 to 950 ° C for selecting the annealing temperature in balance with the strength.
  • alloy Nos.! To 8 are nickel metal materials whose chemical compositions are within the range defined by the present invention.
  • Alloy No. 9 and Alloy No. 10 are comparative nickel materials whose chemical compositions deviate from the conditions defined in the present invention.
  • FIG. 1 shows an observation result of an alloy No. 5 with an optical microscope as an example of a nickel material having a chemical composition within the range defined by the present invention.
  • a large amount of TiC indicated by arrows in the figure precipitates in the grains, and carbon at the grain boundaries. No precipitation is observed.
  • FIG. 2 shows the observation results of Alloy No. 10 using an optical microscope and a transmission electron microscope as an example of a comparative nickel material whose chemical composition deviates from the conditions specified in the present invention.
  • Fig. 2 (a) shows the observation results with an optical microscope
  • Fig. 2 (b) shows the observation results with a transmission electron microscope.
  • the carbon deposited at the grain boundaries is indicated by arrows. From FIG. 2, in the case of the Nikkenore material of the comparative example whose chemical composition deviates from the conditions specified in the present invention, the precipitation of carbon at the grain boundaries is clearly observed.
  • the nickel material for a chemical plant of the present invention has one or more content powers of Ti, Nb, V and Ta, which are elements having a stronger affinity for carbon than nickel, and a specific relationship with the carbon content. Since the carbon content is as low as C: 0.003-0.20%, the amount of carbon precipitated at the grain boundaries is greatly reduced, preventing deterioration of corrosion resistance and mechanical properties. This can be done with power S. For this reason, mechanical properties and corrosion resistance do not deteriorate even when used at high temperatures for long periods of time or under the influence of heat during welding. Suitable for use in various chemical plants such as caustic soda and chlor chloride manufacturing equipment. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Powder Metallurgy (AREA)
  • Arc Welding In General (AREA)

Description

明 細 書
化学プラント用ニッケル材
技術分野
[0001] 本発明は、化学プラント用ニッケル材に関し、詳しくは、化学工業などの腐食性物 質を取り扱うプラントの構造部材などに用いるのに好適な、化学プラント用ニッケル材 に関する。
背景技術
[0002] ニッケルは、特にアルカリ中での耐食性に優れ、高濃度の塩化物環境でも耐食性 を有する。したがって、苛性ソーダや塩化ビュルの製造設備など、各種化学プラント における部材として使用されている。
[0003] 上記の部材には、継ぎ目無し管、溶接管、板およびエルボーなどがある。そして、こ れらの設備で用いられる機器においては、ニッケルからなる部材(以下、「ニッケル材 」ともいう。)は溶接して使用されることが多い。
[0004] なお、ニッケルには不純物元素として炭素が含有されている力 ニッケル中の炭素 の固溶限は低い。このため、ニッケル材を高温で長時間使用すると粒界に炭素が析 出して、あるいは、ニッケル材に溶接を行えば、溶接時の熱影響により粒界に炭素が 析出して、ニッケル材が脆化して機械的性質が損なわれたり、耐食性が劣化する場 合がある。
[0005] このため、 JIS H4552 (2000)の「ニッケル及びニッケル合金継目無管」では、二 ッケル材につレ、ては、通常の炭素レベルのニッケル材(合金番号: NW2200)では 0 . 15%以下の炭素規定値を有するのに対し、低炭素レベルのニッケル材 (合金番号 : NW2201)では 0. 02%以下の炭素規定値となっており、高温で使用される用途で は、通常の炭素レベルから炭素含有量を 0. 02%以下に低減したニッケルが実用化 されている。
[0006] しかしながら、上記のように 0. 02%以下と低炭素レベルのニッケル材においても高 温で長時間使用する間に、不純物として含まれる炭素が主として粒界に析出し、耐 食性や機械的性質などに悪影響を与える。 [0007] ニッケル材については、例えば、特許文献;!〜 4に、種々の技術が提案されている
[0008] 具体的には、特許文献 1に、純 Niに 0. 1〜0. 5%の炭素と 0.;!〜 1 %のチタンを 含有したニッケルメツキ用の「改良型ニッケル陽極」が開示されている。この技術によ れば、炭素との親和力の大きいチタンを添加することで、陽極がメツキ液中に溶解す る際に炭素と反応し TiCとなって、 TiCの薄膜となり、崩壊脱落するニッケル粒子を抑 えることで美麗な光沢メツキが得られる。
[0009] 特許文献 2には、重量%で、 C : 0. 05〜0· 3%と、 Mo: 8%以下および/または Ν b : 5. 5%以下で、かつ 3. l X Nb + Moで 7〜17%の量を含有する「高硬度で低接 触電気抵抗の Ni合金」が開示されており、 Nbは、 Nb炭化物を析出し Niを硬くするこ とが述べられている。
[0010] 特許文献 3には、特定量の Ti、 Nb、 Si、 Zr、 Hf、 Mo及び Taの少なくとも 1種を含 有し、ほう化処理によりほう化物を形成して非常に硬!/、ほう化層を形成する「ほう化処 理用 Ni基合金」が開示されて!/、る。
[0011] また、特許文献 4には、クラックやブローホール等の溶接欠陥を防止する、 Ni≥99
%、 C≤0. 02%、Ti + Al : 0.;!〜 1 · 0%、 Ο≤0. 002%の組成を有する「高純度二 ッケル不活性ガスシールド溶接用心線」が開示されてレ、る。
[0012] 特許文献 1 :特公昭 36— 14006号公報
特許文献 2:特開平 2— 236250号公報
特許文献 3:特開昭 62— 250141号公報
特許文献 4:特公昭 44 10654号公報
発明の開示
発明が解決しょうとする課題
[0013] 特許文献 1および 2には、前述のとおり、 Tiや Nbを添加して炭素を炭化物として析 出させることが記載されているものの、いずれの場合にも、 Ni中に含有される炭素の 粒界への析出による機械的性質および耐食性の劣化につ!/、て配慮がなされて!/、な い。このため、特許文献 1および 2で開示された技術の場合、高温で長時間使用する と粒界に炭素が析出して、あるいは、溶接時の熱影響により粒界に炭素が析出して、 機械的性質が損なわれたり、耐食性が劣化するとレ、うことを必ずしも抑制することが できない。
[0014] 特許文献 3および 4で開示された技術も、前記特許文献 1および 2で開示された技 術と同様に、 Ni中に含有される炭素の粒界への析出による機械的性質および耐食 性の劣化について配慮がなされていない。このため、特許文献 3および 4で開示され た技術も、高温で長時間使用すると粒界に炭素が析出して、あるいは、溶接時の熱 影響により粒界に炭素が析出して、機械的性質が損なわれたり、耐食性が劣化する とレ、うことを必ずしも抑制することができなレ、。
[0015] そこで、本発明の目的は、高温で長時間使用したり、溶接時の熱影響を受けても機 械的性質や耐食性が劣化せず、苛性ソーダや塩化ビュルの製造設備など、各種化 学プラントにおける部材として好適に使用することができる化学プラント用ニッケル材 を提供することである。
課題を解決するための手段
[0016] 本発明者らは、前記した課題を解決するために、種々の検討を行い、その結果、下 記 (a)〜(c)の知見を得た。
[0017] (a)Ti、 Nb、 Vおよび Taは、熱力学的に安定な炭化物を形成する元素であり、 Nは り炭素との親和性が強ぐ炭化物として析出するが、これらの炭化物が粒内に析出す れば、 Niに固溶している炭素量が減少するため、高温での長時間使用や溶接時の 熱影響等により粒界に析出する炭素の量が減少する。
[0018] (b)粒内に TiC等の炭化物が微細に分散していても耐食性および機械的性質には 悪影響を与えない。このため、 Ti、 Nb、 Vおよび Taが炭化物として粒内に析出すれ ば、粒界に析出する炭素の量が減ることで、耐食性および機械的性質の低下が抑止 される。
[0019] (c)なお、上記 Ti、 Nb、 Vおよび Taの炭化物は、製造工程の溶解凝固時の高温領 域で析出し、その析出位置は粒界である場合が多い。し力、しながら、炭素の含有量 を制限するとともに、 Ti、 Nb、 Vおよび Taの 1種または 2種以上の合計含有量を制限 し、さらに、炭素の含有量と、前記 Ti、 Nb、 Vおよび Taの含有量とが特定の関係式を 満たすようにすれば、炭化物として析出する分だけ Ni中に固溶する炭素の量は減少 し、しかも、溶解凝固時の高温領域で粒界に析出した炭化物は、凝固後のニッケノレ 材の製造工程における熱間加工、冷間加工および熱処理によって、結晶変形と再結 晶を繰り返し受けるので、粒内に微細に分布するようになる。さらには、 Tiや Nbなど の炭化物が析出することで,結晶粒が微細化し機械的性質を改善する効果も期待で きる。
[0020] 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記に示 す化学プラント用ニッケル材にある。
[0021] 質量0 /0で、 C : 0. 003—0. 20%および合計量が 1. 0%未満の Ti、 Nb、 Vおよび T aの 1種または 2種以上を、下記(1)式を満足する量で含有し、残部が Niおよび不純 物であることを特徴とする化学プラント用ニッケル材。
(12/48)Ti+ (12/93) Nb+ (12/51)V+ (12/181)Ta-C≥0 - · · (1) 0 ここで、(1)式中の元素記号は、その元素の質量%での含有量を表す。
発明の効果
[0022] 本発明の化学プラント用ニッケル材は、ニッケルよりも炭素との親和力が強い元素 である Ti、 Nb、 Vおよび Taの 1種または 2種以上の含有量力 炭素の含有量と特定 の関係式を満たし、しかも、炭素の含有量が C : 0. 003-0. 20%と低いため、粒界 に析出する炭素の量は格段に減少して、耐食性や機械的性質の低下を防止するこ と力 Sできるものである。このため、高温で長時間使用したり、溶接時の熱影響を受けて も機械的性質や耐食性が劣化せず、苛性ソーダや塩化ビュルの製造設備など、各 種化学プラントにおける部材として好適に使用することができる。
図面の簡単な説明
[0023] [図 1]図 1は、実施例で用いた化学組成が本発明で規定する範囲内にあるニッケル 材の一例として、合金 No. 5の場合における光学顕微鏡観察による炭素の析出して V、な!/、粒界および粒内への TiCの析出の状況を示す図であり、図中の矢印は TiCを 示す。
[図 2]図 2は、実施例で用いた化学組成が本発明で規定する条件から外れた比較例 のニッケル材の一例として、合金 No. 10の場合における光学顕微鏡観察および透 過電子顕微鏡観察による粒界への炭素の析出を示す図である。なお、図 2 (a)が光 学顕微鏡観察による観察結果、また、図 2 (b)が透過電子顕微鏡による観察結果で あり、図中の矢印はいずれも粒界に析出した炭素を示す。
発明を実施するための最良の形態
[0024] 以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」 は「質量%」を意味する。
[0025] C : 0. 003—0. 20%
C含有量が 0. 003%未満と少ない場合は、高温での長時間の使用や溶接時の熱 影響等により耐食性および機械的性質に影響を及ぼす粒界への炭素析出の問題は ないため、下限を 0. 003%とした。一方、 Cの含有量が 0. 20%を超えると、 Ti等によ り炭素を炭化物として粒内に固定しても、粒界に炭素が析出することを避けられず、 耐食性および機械的性質が劣化する。したがって、 Cの含有量を 0. 003-0. 20% とする。なお、より過酷な環境を考えると、 C含有量の上限は、好ましくは 0. 10%であ り、より好ましくは 0. 05%未満である。
[0026] Ti、 Nb、 Vおよび Taの 1種または 2種以上:合計量で 1. 0%未満で、かつ前記(1) 式を満足する量
Ti、 Nb、 Vおよび Taは、いずれも Nはりも炭素のとの親和力が強ぐニッケルからな る部材の製造工程において、 Ni中に含有される炭素と結合して炭化物を形成する。
[0027] そして、 Ti、 Nb、 Vおよび Taの 1種または 2種以上の合計含有量が 1 · 0%未満で、 かつ炭素含有量との関係で前記(1)式、つまり、「(12/48)Ti+ (12/93) Nb+ (1 2/51)V+ (12/181)Ta— C≥0」の式を満足すれば、 Ni中に固溶する炭素の量 は減少し、しかも、溶解凝固時の高温領域で粒界に析出した炭化物は、凝固後の二 ッケル材製造工程における熱間加工、冷間加工および熱処理によって、結晶変形と 再結晶を繰り返し受けるので、粒内に微細に分布するようになる。そして、粒内に上 記の炭化物が微細に分散していても耐食性および機械的性質には悪影響を与えな いので、耐食性および機械的性質の低下が抑止される。さらには、 Tiや Nbなどの炭 化物が析出することで、結晶粒が微細化し機械的性質を改善する効果も期待できる
[0028] なお、 Ti、 Nb、 Vおよび Taの含有量の下限は、 Ni中に含有される炭素の量と形成 される炭化物の形態により決まり、上記 Ni中に含有される炭素の量と形成される炭化 物中に含まれる各合金元素との比に固溶炭素分を見込んだ量、すなわち、前記の( 1)式を満たす量になる。
[0029] また、上記 Ti、 Nb、 Vおよび Taの含有量の上限は、炭素含有量との関係で、耐食 性ならびに強度および靱性などの機械的性質に悪影響を及ぼさない範囲であれば よい。し力、しながら、過度に含有する場合は、強度が高くなりすぎて加工性の低下を 招くばかりか、耐食性の低下をきたすため、 Ti、 Nb、 Vおよび Taの 1種または 2種以 上の合計量を 1. 0%未満とした。
[0030] なお、 Ti、 Nb、 Vおよび Taの 1種または 2種以上の合計量は、 0. 8%以下とするこ とが好ましい。
[0031] 上記の理由で、本発明の化学プラント用ニッケル材は、質量%で、 C : 0. 003-0.
20%および合計量が 1. 0%未満の Ti、 Nb、 Vおよび Taの 1種または 2種以上を、前 記の(1)式を満足する量で含有し、残部が Niおよび不純物であることと規定した。
[0032] なお、特にアルカリ中での耐食性に優れ、高濃度の塩化物環境でも耐食性を有す る化学プラント用ニッケル材としての Ni含有量は 98%以上が好ましい。より好ましくは
98. 5%以上、さらに好ましくは 99%以上である。
[0033] また、耐食性や加工性の劣化を防止するため、不純物としては、 Cu : 0. 2%以下、
Mn : 0. 3%以下、 Fe : 0. 4%以下、 Si : 0. 3%以下、 S : 0. 01 %以下とすることが好 ましい。なお、不純物の合計量は 1. 0%未満であることがより好ましぐさらに好ましく は 0. 5%未満である。
[0034] 本発明のニッケル材は、電気炉、 AOD炉、 VOD炉、 VIM炉などを用いて溶製して 製造すること力 Sでさる。
[0035] 次!/、で、溶製された溶湯を、 V、わゆる「造塊法」でインゴットに铸造した後の熱間鍛 造、または連続铸造によってスラブ、ブルームゃビレットにし、これらを素材として、管 材に加工する場合は、例えば、熱間押出製管法やマンネスマン製管法で管状に熱 間加工し、また、板材に加工する場合は、例えば、熱間圧延でプレートやコイル状に 加工する。
[0036] すなわち、熱間加工はどのような加工であってもよぐ例えば、最終製品が管材の 場合では、ュジーンセジュルネ法に代表される熱間押出製管法や、マンネスマンプ ラグミル法やマンネスマンマンドレルミル法などに代表されるロール圧延製管法(マン ネスマン製管法)を挙げることができ、最終製品が板材の場合では、通常の厚板や鋼 帯の製造方法を挙げることができる。
[0037] 熱間鍛造や熱間圧延の前の加熱温度は 900〜1200°Cとするのがよい。 Niは軟質 であるので 900〜; 1100°Cとするのがより好ましい。このような温度条件下では良好な 熱間加工性が得られるため、熱間鍛造時における割れや熱間圧延時における耳割 れゃ表面疵等の発生を抑制することが可能となる。
[0038] 熱間加工の加工終了温度は、特に規定しな!/、が、 750°C以上とするのがよレ、。これ は、加工終了温度が 750°C未満になると、熱間加工性が低下し、また延性が損なわ れるためである。
[0039] なお、熱間加工後に冷間加工を行ってもよぐ冷間加工としては、例えば、最終製 品が管材の場合では、上記の熱間加工により製造された素管に引き抜き加工を施す 冷間引抜製管法やコールドピルガーミルによる冷間圧延製管法を挙げることができ、 最終製品が板材の場合では、通常の冷延鋼帯の製造方法を挙げることができる。
[0040] 上記冷間加工の前に軟化のために均質化処理を施してもよい。なお、均質化熱処 理の加熱温度は 900〜1200°Cとするのがよい。
[0041] なお、通常は上記の熱間加工後、または熱間加工の後でさらに冷間加工を行った 後に、焼きなましのために最終熱処理として 750〜; 1100°Cに加熱保持後、水冷や 空冷等で急冷する軟化熱処理が施される。
[0042] また、軟化熱処理は強度低下だけでなぐ TiCや NbCなどの炭化物の析出による 炭素の粒内への固定を促進する目的もある。しかし、高温で行うと粒成長が起こる可 能性があるため、強度とのバランスで焼きなまし温度を選定する力 750〜950°Cで 行うのが好ましい。
[0043] 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。
実施例
[0044] 表 1に示す化学組成を有する合金 No. ;!〜 10のニッケル材を 25kg真空溶解炉に よって溶解し、インゴットを作製した。
[0045] なお、上記の合金 No. ;!〜 8は、化学組成が本発明で規定する範囲内にあるニッケ ノレ材である。一方、合金 No. 9および合金 No. 10は、化学組成が本発明で規定す る条件から外れた比較例のニッケル材である。
[0046] [表 1] 表 1
Figure imgf000009_0001
[0047] 上記の合金 No. ;!〜 10のインゴットを、熱間鍛造、「1100°C X 5時間」加熱保持後 に大気中放冷の均質化熱処理、冷間圧延および「800°C X 5分」加熱保持後に水冷 の軟化熱処理を施して板材に加工し、その後表面スケールを除去して、板厚が 4. 5 mmのニッケノレ材を得た。
[0048] このようにして得た板厚 4. 5mmのニッケル材に、「600°C X 166時間」の鋭敏化熱 処理を施した後、ミクロ組織観察用のサンプルを切り出し、研磨と ASTM E407に 記載の Etchant 13 (10gしゅう酸 + lOOmL水)中で、電圧を 2〜4Vとして、 10—3 00秒間の電解エッチングを行って、粒界における炭素の析出の有無を光学顕微鏡 で調査した。なお、粒界に析出する炭素は非常に微細であるので、薄膜試料を用い た透過電子顕微鏡による詳細な調査を併せて行った。 [0049] 表 1に、前記粒界の炭素の析出調査結果を併せて示す。
[0050] 表 1から明らかなように、 Tiと Nbのいずれか一方又は双方を含有するとともに前記(
1)式をも満たす本発明例の合金 No. ;!〜 8のニッケル材では、粒内に TiCや NbCが 観察され、粒界に炭素の析出は認められなかった。
[0051] なお、図 1に、化学組成が本発明で規定する範囲内にあるニッケル材の一例として 、合金 No. 5の光学顕微鏡による観察結果を示す。この図 1からも明らかなように、化 学組成が本発明で規定する範囲内にあるニッケル材の場合には、図中に矢印で示 す TiCが粒内に多く析出し、粒界に炭素の析出は認められない。
[0052] これに対して、表 1から、 Tiおよび Nbのいずれをも含有せず前記(1)式も満たさな い合金 No. 10のニッケル材および、本発明で規定する範囲を外れる量の Cを含有し 、し力、も、前記(1)式も満たさない合金 No. 9のニッケル材には、いずれも、粒界に炭 素の析出が観察され、このため、耐食性や機械的性質が低下することが分かる。
[0053] なお、図 2に、化学組成が本発明で規定する条件から外れた比較例のニッケル材 の一例として合金 No. 10の光学顕微鏡および透過電子顕微鏡による観察結果を示 す。図 2 (a)が光学顕微鏡による観察結果で、図 2 (b)が透過電子顕微鏡による観察 結果である。図 2 (a)と図 2 (b)のいずれの場合にも、粒界に析出した炭素を矢印で 示した。この図 2から、化学組成が本発明で規定する条件から外れた比較例のニッケ ノレ材の場合には、粒界への炭素の析出が明らかに認められる。
産業上の利用可能性
[0054] 本発明の化学プラント用ニッケル材は、ニッケルよりも炭素との親和力が強い元素 である Ti、 Nb、 Vおよび Taの 1種または 2種以上の含有量力 炭素の含有量と特定 の関係式を満たし、しかも、炭素の含有量が C : 0. 003-0. 20%と低いため、粒界 に析出する炭素の量は格段に減少して、耐食性や機械的性質の低下を防止するこ と力 Sできるものである。このため、高温で長時間使用したり、溶接時の熱影響を受けて も機械的性質や耐食性が劣化せず、苛性ソーダや塩化ビュルの製造設備など、各 種化学プラントにおける部材として好適に使用することができる。

Claims

請求の範囲
[1] 質量%で、 C:0.003—0.20%および合計量が 1· 0%未満の Ti、 Nb、 Vおよび T aの 1種または 2種以上を、下記(1)式を満足する量で含有し、残部が Niおよび不純 物であることを特徴とする化学プラント用ニッケル材。
(12/48)Ti+ (12/93)Nb+ (12/51)V+ (12/181)Ta-C≥0- · · (1) ここで、(1)式中の元素記号は、その元素の質量%での含有量を表す。
PCT/JP2007/070351 2006-10-20 2007-10-18 Nickel material for chemical plant WO2008047869A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097008229A KR101119809B1 (ko) 2006-10-20 2007-10-18 화학 플랜트용 니켈재
EP07830085.2A EP2077338B1 (en) 2006-10-20 2007-10-18 Nickel material for chemical plant
CN2007800390123A CN101528958B (zh) 2006-10-20 2007-10-18 化工设备用镍材
JP2008539869A JP5035250B2 (ja) 2006-10-20 2007-10-18 化学プラント用ニッケル材
US12/385,723 US8986470B2 (en) 2006-10-20 2009-04-17 Nickel material for chemical plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-285718 2006-10-20
JP2006285718 2006-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/385,723 Continuation US8986470B2 (en) 2006-10-20 2009-04-17 Nickel material for chemical plant

Publications (1)

Publication Number Publication Date
WO2008047869A1 true WO2008047869A1 (en) 2008-04-24

Family

ID=39314087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070351 WO2008047869A1 (en) 2006-10-20 2007-10-18 Nickel material for chemical plant

Country Status (6)

Country Link
US (1) US8986470B2 (ja)
EP (1) EP2077338B1 (ja)
JP (1) JP5035250B2 (ja)
KR (1) KR101119809B1 (ja)
CN (1) CN101528958B (ja)
WO (1) WO2008047869A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066709A1 (ja) 2016-10-07 2018-04-12 新日鐵住金株式会社 ニッケル材及びニッケル材の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111217759A (zh) 2013-12-31 2020-06-02 阿达玛马克西姆股份有限公司 一种化合物及其制备方法
CN116121594A (zh) * 2021-11-12 2023-05-16 江苏新华合金有限公司 一种纯镍棒材及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250141A (ja) 1986-04-23 1987-10-31 Nippon Stainless Steel Co Ltd ほう化処理用Ni基合金
JPS63168259A (ja) * 1986-12-29 1988-07-12 Sumitomo Metal Ind Ltd 純ニツケルホツトコイルの製造方法
JPH02145333A (ja) * 1988-11-28 1990-06-04 Ngk Insulators Ltd 電気回路用基板およびその製造方法
JPH02236250A (ja) 1989-03-09 1990-09-19 Nippon Kinzoku Kogyo Kk 高硬度で低接触電気抵抗のNi合金
JPH08143996A (ja) * 1994-11-24 1996-06-04 Sumitomo Metal Ind Ltd 熱間加工性に優れた電気機器用ニッケル
JP3614006B2 (ja) 1998-02-26 2005-01-26 株式会社日立製作所 非対称経路利用通信システム、および、非対称経路利用通信方法
JP2006057186A (ja) * 2005-09-09 2006-03-02 Hitachi Metals Ltd ハンダ付け性に優れたニッケル材料帯の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023936A (en) * 1976-06-14 1977-05-17 Lukens Steel Company Titanium clad steel and process for making
SG87196A1 (en) * 1999-12-21 2002-03-19 Mitsui Chemicals Inc Electrode and electrolyte for use in preparation of nitrogen trifluoride gas, and preparation method of nitrogen trifluoride gas by use of them
JP4042362B2 (ja) * 2000-08-11 2008-02-06 住友金属工業株式会社 Ni基合金製品とその製造方法
JP2002060877A (ja) 2000-08-16 2002-02-28 Kawatetsu Mining Co Ltd 導電ペースト用Ni合金粉
JP3960069B2 (ja) * 2002-02-13 2007-08-15 住友金属工業株式会社 Ni基合金管の熱処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250141A (ja) 1986-04-23 1987-10-31 Nippon Stainless Steel Co Ltd ほう化処理用Ni基合金
JPS63168259A (ja) * 1986-12-29 1988-07-12 Sumitomo Metal Ind Ltd 純ニツケルホツトコイルの製造方法
JPH02145333A (ja) * 1988-11-28 1990-06-04 Ngk Insulators Ltd 電気回路用基板およびその製造方法
JPH02236250A (ja) 1989-03-09 1990-09-19 Nippon Kinzoku Kogyo Kk 高硬度で低接触電気抵抗のNi合金
JPH08143996A (ja) * 1994-11-24 1996-06-04 Sumitomo Metal Ind Ltd 熱間加工性に優れた電気機器用ニッケル
JP3614006B2 (ja) 1998-02-26 2005-01-26 株式会社日立製作所 非対称経路利用通信システム、および、非対称経路利用通信方法
JP2006057186A (ja) * 2005-09-09 2006-03-02 Hitachi Metals Ltd ハンダ付け性に優れたニッケル材料帯の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIS H, vol. 4552, 2000
See also references of EP2077338A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066709A1 (ja) 2016-10-07 2018-04-12 新日鐵住金株式会社 ニッケル材及びニッケル材の製造方法
KR20190067837A (ko) 2016-10-07 2019-06-17 닛폰세이테츠 가부시키가이샤 니켈재 및 니켈재의 제조 방법
US10767245B2 (en) 2016-10-07 2020-09-08 Nippon Steel Corporation Nickel material and method for manufacturing nickel material

Also Published As

Publication number Publication date
EP2077338A1 (en) 2009-07-08
US8986470B2 (en) 2015-03-24
EP2077338B1 (en) 2015-04-01
CN101528958B (zh) 2011-01-26
KR101119809B1 (ko) 2012-03-21
KR20090055046A (ko) 2009-06-01
JP5035250B2 (ja) 2012-09-26
EP2077338A4 (en) 2014-07-30
JPWO2008047869A1 (ja) 2010-02-25
CN101528958A (zh) 2009-09-09
US20090269238A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
KR102090201B1 (ko) 오스테나이트계 내열합금 및 그 제조 방법
EP3524705B1 (en) Ni-cr-fe alloy
WO2009142228A1 (ja) 原子力用高強度Ni基合金管及びその製造方法
WO2009154161A1 (ja) オーステナイト系耐熱合金ならびにこの合金からなる耐熱耐圧部材とその製造方法
WO2018131412A1 (ja) 二相ステンレス鋼およびその製造方法
US20240043948A1 (en) Method for manufacturing austenitic stainless steel strip
JP6816779B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
JP6520546B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
JP2021127517A (ja) オーステナイト系ステンレス鋼材
JP2020105572A (ja) オーステナイト系耐熱鋼
JP5035250B2 (ja) 化学プラント用ニッケル材
JP6690359B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
WO2020067444A1 (ja) オーステナイト系合金
JP6927418B2 (ja) チタン合金およびその製造方法
WO2021132634A1 (ja) 合金
JP2014012884A (ja) スケール付着抑制性と成形性に優れたチタン合金材およびその製造方法、ならびに熱交換器または海水蒸発器
CN115461477B (zh) 奥氏体系耐热钢的制造方法
JP6806158B2 (ja) ニッケル材及びニッケル材の製造方法
WO2018105698A1 (ja) 軟磁性部品用鋼材、軟磁性部品、及び、軟磁性部品の製造方法
WO2021157217A1 (ja) 油井用鋼材および油井管
JP2004137549A (ja) Ni−Cr合金
JP2023040457A (ja) チタン合金板およびその製造方法
JP2022024243A (ja) β型チタン合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039012.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008539869

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007830085

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097008229

Country of ref document: KR