WO2008044295A1 - Support d'enregistrement d'hologramme et dispositif d'hologramme - Google Patents

Support d'enregistrement d'hologramme et dispositif d'hologramme Download PDF

Info

Publication number
WO2008044295A1
WO2008044295A1 PCT/JP2006/320329 JP2006320329W WO2008044295A1 WO 2008044295 A1 WO2008044295 A1 WO 2008044295A1 JP 2006320329 W JP2006320329 W JP 2006320329W WO 2008044295 A1 WO2008044295 A1 WO 2008044295A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram
mark
record carrier
light
servo
Prior art date
Application number
PCT/JP2006/320329
Other languages
English (en)
French (fr)
Inventor
Masakazu Ogasawara
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to US12/441,831 priority Critical patent/US20090268267A1/en
Priority to JP2008538533A priority patent/JP4768820B2/ja
Priority to PCT/JP2006/320329 priority patent/WO2008044295A1/ja
Publication of WO2008044295A1 publication Critical patent/WO2008044295A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00772Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track on record carriers storing information in the form of optical interference patterns, e.g. holograms
    • G11B7/00781Auxiliary information, e.g. index marks, address marks, pre-pits, gray codes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08564Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using galvanomirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0938Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following servo format, e.g. guide tracks, pilot signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2250/00Laminate comprising a hologram layer
    • G03H2250/40Printed information overlapped with the hologram

Definitions

  • the present invention relates to a hologram record carrier and a hologram apparatus having a hologram recording layer capable of recording or reproducing information by irradiation with a light beam such as an optical disk or an optical card.
  • Holograms capable of recording two-dimensional data at high density are attracting attention for high-density information recording.
  • the feature of this hologram is that the wavefront of light carrying recorded information is recorded as a change in refractive index in volume on a recording medium that is a photosensitive material such as a photorefractive material.
  • the recording capacity can be dramatically increased.
  • Multiplex recording includes angle multiplexing and phase encoding multiplexing, and information can be multiplexed and recorded even in the overlapped hologram region by changing the incident angle and phase of the interfering light wave.
  • an optical information recording apparatus uses a hologram record carrier as a disk to record information at an ultra-high density.
  • a hologram record carrier as a disk to record information at an ultra-high density.
  • an appropriate exposure time and energy in a relative stationary state between the recording medium and the writing light are required. It provides a way to keep the exposure accurate.
  • Patent Document 1 shows the specific shape of the positioning mark.
  • Patent Document 2 some conventional hologram record carriers have a positioning mark inside (see Patent Document 2), and others have a region for moving the hologram recording light beam in the radial direction (see FIG. (See Patent Document 3).
  • Patent Documents 2 and 3 clearly show the shape of the track, address area, and positioning mark! / ,!
  • Patent Document 1 JP 2005-302149 A
  • Patent Document 2 JP 2005-228416
  • Patent Document 3 JP 2005-203070
  • NA numerical aperture
  • Conventional examples are set in a situation where the servo beam is focused to the diffraction limit, so the shape of the address and position information marker is limited.
  • the problem to be solved by the present invention is to provide a hologram recording carrier and a hologram device that can quickly perform hologram recording a plurality of times and can easily perform stable recording or reproduction.
  • a hologram recording carrier and a hologram device that can quickly perform hologram recording a plurality of times and can easily perform stable recording or reproduction.
  • the hologram record carrier according to claim 1 is a hologram record carrier on which information is recorded or reproduced by light irradiation,
  • a hologram recording layer that stores an optical interference pattern by a coherent hologram recording light beam as a hologram inside, and a servo that is laminated in the film thickness direction of the hologram recording layer and is recorded with multiple marks.
  • a plurality of marks extending in a direction parallel to the relative movement direction of the light spot of the hologram recording light beam irradiated onto the hologram recording carrier. It is characterized by.
  • Each of the marks is more than the direction parallel to the relative movement direction of the light spot. It is preferable to have a long shape in a direction perpendicular to the moving direction. For example, when a disc-shaped hologram record carrier is used by forming a long mark in the radial direction, the mark can be detected even when the disc is decentered.
  • a positioning mark having a shape different from that of the mark is arranged between the mark rows in a direction parallel to a relative movement direction of the light spot at an interval equal to the recording interval of the hologram.
  • the discrimination is easy.
  • an interval between adjacent mark rows in a direction perpendicular to a relative movement direction of the light spot is an interval equal to a recording interval of the hologram.
  • a determination mark is arranged at an end of the mark row that also has a plurality of mark forces formed in the vertical direction between the mark rows. For example, since there is a mark indicating the radial movement area, the movement in the radial direction can be performed accurately.
  • the hologram device wherein a hologram recording layer that stores therein an optical interference pattern by a coherent hologram recording light beam as a hologram, and a plurality of marks laminated in the film thickness direction of the hologram recording layer
  • the servo recording layer is recorded with force, and the marks are arranged in a direction parallel to the relative movement direction of the light spot of the hologram recording light beam irradiated onto the hologram record carrier.
  • a hologram device of a hologram record carrier which is extended as a plurality of mark rows and records or reproduces hologram information by light irradiation,
  • the light spot is focused on the mark of the servo layer and the return light power of the mark is read to perform servo control for tracking the light spot in accordance with the movement of the hologram record carrier and the hologram recording.
  • the relative positional relationship between the carrier and the light spot is controlled.
  • the light spot on the servo layer has a longer and longer shape in a direction perpendicular to the moving direction than in a direction parallel to a relative moving direction of the light spot. That's right.
  • the address mark and positioning mark can be detected even when the disc is decentered.
  • FIG. 1 shows a disk-shaped hologram record carrier 2 on which information is recorded or reproduced by light irradiation, which is an example of the present embodiment.
  • a plurality of marks M are pre-recorded to form a row, and a plurality of concentric circles extend as a row of marks.
  • the hologram record carrier 2 includes a hologram recording layer 7, a servo layer 5, and a protective layer 8 laminated on a substrate 3.
  • the hologram recording carrier 2 includes a hologram recording layer 7 that stores therein an optical interference pattern by a hologram recording light flux of coherent reference light and signal light as a hologram (diffraction grating), and a servo laminated in the film thickness direction. With layer 5. Further, as shown in FIG. 3, it may be a hologram record carrier 2 in which the protective layer 8 is omitted.
  • a light-sensitive material, a photorefractive material, a hole burning material, a photochromic material, or the like that is sensitive to the wavelength of the hologram recording light beam (reference light and signal light) is used.
  • the material strength of the hologram recording layer 7 is selected so that it is not sensitive to the wavelength of the servo beam SB.
  • the substrate 3 is not particularly limited as a material.
  • glass polycarbonate, amorphous polyolefin, polyimide, PET, PEN, PES and other plastics, and ultraviolet curable acrylic resin can be used.
  • the protective layer 8 is made of a light-transmitting material, and has a function of flattening the laminated structure and protecting the hologram recording layer and the like.
  • a plurality of marks M are recorded in advance on the servo layer 5 laminated in the film thickness direction of the hologram recording layer 7.
  • the mark M is made of a material that is almost insensitive to the hologram recording light beam.
  • mark M has reflectivity only at the wavelength of servo beam SB.
  • a wavelength selective reflection film For example, a wavelength selective reflection film.
  • the mark M forms a row in the direction parallel to the relative movement direction of the signal light GB light spot of the irradiated hologram recording light beam, and a plurality of mark rows MRW extend.
  • a plurality of mark rows MRW extending without intersecting with the servo layer 5 can be formed by printing or the like.
  • the recording area in which the hologram (book) is to be recorded and the mark row MRW are arranged at different positions even in the plane of the hologram recording carrier 2. Therefore, as shown in FIG. 4, the optical axis of the servo beam SB is formed at a predetermined distance from the optical axis of the signal beam GB so that the optical spot of the servo beam SB is formed at a position shifted from the optical axis of the signal beam GB. Away.
  • the mark row MRW is composed of an alternating arrangement of high !, reflectivity mark M and non-mark nM (flat portion) between them.
  • Each of the marks M in the mark row MRW has a long shape in a direction perpendicular to the moving direction rather than a direction parallel to the relative moving direction of the servo light spot to be irradiated.
  • the mark string MRW should be formatted in the order of character Z data Z check digit Z stop character with margins (margins) at both ends of the mark M as mark codes. Can do.
  • Start and stop characters are characters that indicate the beginning and end of data, such as ⁇ * "," a "," b “,” c “,” d “, etc.
  • Data is represented as information.
  • the mark patterns of the characters are arranged in order from the reading side, for example, the address data “0123” can be expressed by arranging them in order.
  • the check digit is a numerical value that is calculated and is added immediately after the mark code data in order to check for reading errors.
  • the length of the mark string MRW that is, the mark code is preferably a length including margins at both ends.
  • the width of the mark code should be long in the radial direction because it moves in the radial direction when disk eccentricity occurs. If the mark code width is narrow, The robot beam may be out of the mark code power and may not be read stably. It is preferable to secure 15% or more of the length of the mark code.
  • the data of the mark row MRW includes an address mark indicating the address of the hologram recording portion of the hologram recording layer, and various information related thereto (compression method information, material information, information such as laser power and recording wavelength). ).
  • the mark row MRW is also used for servo control of at least the tracking servo of the objective lens for light beam irradiation.
  • the mark row MRW can be formed in a spiral shape or a plurality of divided spiral arcs in addition to a concentric shape on the center of the substrate.
  • FIG. 1 An example of a disk-shaped hologram record carrier (Fig. 1) in which address marks indicating the addresses of the portions of the hologram recording layer to be recorded as holograms are recorded as mark rows MRW will be described.
  • the mark code area MCR consisting of mark rows carries information indicating the book address. As shown in FIG. 6, an address mark ADM (mark code area MCR) and a positioning mark PAM are recorded in advance on a servo layer 5 different from the hologram recording layer 7.
  • the address mark ADM is arranged at a position where the hologram recording light beam (signal light GB) is not transmitted, and one positioning mark PAM that makes contact with one mark code area MCR is a pair.
  • the positioning mark PAM has such a shape that the position in the radial direction and the tangential direction can be detected when the servo light beam SB traces the mark row of the servo layer 5.
  • the positioning mark PAM that has the light and dark power obtained by dividing the square shape shown in Fig. 6 into four equal squares, a pair of light spots is obtained when the servo beam SB is present at the center of the positioning mark PAM. It is assumed that the dark portion is arranged at the corner quadrant position.
  • the address mark ADM is formed as a mark M longer in the radial direction of the hologram record carrier than in the tangential direction.
  • the length M (in the radial direction) of the mark M is the size that does not protrude from the address mark ADM when the light spot of the servo beam SB exists in the center even if the hologram record carrier is decentered!
  • the radial length At of the mark M is determined as follows.
  • the total length of the mark code area MCR and the positioning mark PAM as a pair coincides with the book recording interval Hrp in the tangential direction (optical disc rotation direction) of the hologram record carrier.
  • a set of an address mark ADM and a positioning mark PAM extending in the tangential direction is also arranged to coincide with the book recording interval Htp.
  • two adjacent positioning marks PAM in the tangential direction of the hologram record carrier are formed at the same interval as the book recording interval Hrp.
  • the set of address mark ADM and positioning mark PAM is formed in the radial direction of the hologram record carrier like the track of an optical disk. Therefore, the track pitch is such that the distance between adjacent mark rows in the radial direction coincides with the book recording interval Hrp in the radial direction.
  • the address mark ADM of these mark rows is determined to have a spacing and a width so that the hologram recording light beam FB does not pass through. Therefore, no noise or the like is given to the recording / reproducing light beam.
  • the hologram recording beam FB is applied to the address mark ADM for some reason, there is no problem because it is made of a material sensitive only to the servo beam SB.
  • Hrp and Hrp may not be equal.
  • the optical disk may be eccentric. The radial width At of the mark code area MCR is set so wide that the light spot of the servo beam SB does not protrude even if the hologram record carrier is decentered.
  • FIG. 7 shows an example of a schematic configuration of an angle multiplexing type hologram apparatus for recording or reproducing information of a hologram record carrier to which the present invention is applied.
  • the hologram apparatus in FIG. 7 includes a reference light mirror drive circuit MD, a spindle motor 22 that rotates the disk of the hologram record carrier 2 via a turntable, a pickup 23 that reads a signal by a hologram record carrier 2 force light beam, Pick-up coarse drive unit 24 that holds the pickup and moves it in the radial direction, first light source drive circuit 25a, second light source drive circuit 25b, spatial light modulator drive circuit 26, reproduction light signal detection circuit 27, servo signal processing Logic circuit 28, pickup position detection circuit 31 connected to the pickup coarse movement drive unit 24 for detecting the position signal of the pickup, slider servo circuit 32 connected to the pickup coarse movement drive unit 24 and supplying a predetermined signal thereto, spindle motor 22 is connected to the rotation speed detection unit 33 for detecting the rotation speed signal of the spindle motor, and connected to the rotation speed detection unit.
  • the hologram hologram apparatus has a control circuit 37.
  • the control circuit 37 includes a reference light mirror one drive circuit MD, a first light source drive circuit 25a, a second light source drive circuit 25b, and a spatial light modulator drive circuit. 26, playback light signal detection circuit 27, servo signal processing circuit 28, pickup position detection circuit 31, slider servo circuit 32, rotation speed detection unit 33, rotation position detection circuit 34, and spindle servo circuit 35 .
  • the control circuit 37 Based on a predetermined signal, the control circuit 37 performs servo control of coarse movement and fine movement related to the pickup, control of the reproduction position (radius and tangential position), and the like via these drive circuits.
  • the control circuit 37 is a microcomputer equipped with various memories and controls the entire device. Various control operations are performed according to the operation input by the user from the operation unit (not shown) and the current operation status of the device. In addition to generating a control signal, the display unit (not shown) displays the operating status to the user. It is connected.
  • control circuit 37 executes processing such as signing of the data to be recorded on the hologram input from the external force, and supplies a predetermined signal to the spatial light modulator drive circuit 26 to generate a hologram recording sequence. Control.
  • the control circuit 37 restores the data recorded on the hologram record carrier by performing demodulation and error correction processing based on the signal from the reproduction optical signal detection circuit 27. Further, the control circuit 37 reproduces the information data by performing a decoding process on the restored data, and outputs this as reproduced information data.
  • control circuit 37 includes thumbnail information of content information (for example, image data) from which hologram data power to be recorded is obtained, a compression method at the time of hologram recording, an encoding / decoding method, a laser power, Processing such as data sign related to hologram data such as recording wavelength is executed. Based on the signal supplied from the servo signal processing circuit 28, the control circuit 37 performs hologram recording using the information on the mark row MRW recorded on the servo layer of the hologram record carrier.
  • thumbnail information of content information for example, image data
  • a compression method at the time of hologram recording for example, an encoding / decoding method, a laser power
  • Processing such as data sign related to hologram data such as recording wavelength is executed.
  • the control circuit 37 Based on the signal supplied from the servo signal processing circuit 28, the control circuit 37 performs hologram recording using the information on the mark row MRW recorded on the servo layer of the hologram record carrier.
  • FIG. 8 shows a schematic configuration of the pickup 23 of the hologram device.
  • the pick-up that works is a configuration in which an optical system for detecting information of the mark row MRW, such as a servo optical system, is added to the pickup of a general angular multiplexing hologram device.
  • the pickup 23 is roughly divided into a hologram recording / reproducing optical system, a servo optical system, and a common system.
  • the hologram recording / reproducing optical system includes a first laser light source LD1, a first collimator lens CL1, a half mirror prism HP, a spatial light modulator SLM connected to a first light source driving circuit 25a for recording and reproducing a hologram.
  • Reproduction including image sensor IS connected to reproduction optical signal detection circuit 27 such as array lens such as objective lens OBA, objective lens OBB, load coupling device (CCD) and complementary metal oxide semiconductor device (CMOS) It consists of an optical signal detector, aperture, APP, galvanometer mirror GM, and 4f optical system illumination lenses ILB and ILA.
  • the pair of objective lenses OBA and OBB are arranged on a straight line so that their focal points coincide with each other, and a spatial light modulator SLM and an image sensor IS are arranged in a conjugate manner at the store positions at both ends.
  • the hologram record carrier 2 is arranged with the common focus of the pair of objective lenses OBA and OBB removed.
  • Space light The modulator SLM has a function of electrically transmitting or blocking incident light on a pixel-by-pixel basis using a transmissive liquid crystal panel having a plurality of pixel electrodes divided in a matrix.
  • This spatial light modulator SLM is connected to the spatial light modulator drive circuit 26, and the page data to be recorded from the spatial light modulator drive circuit 26 (information pattern of two-dimensional data such as bright and dark dot patterns on a plane).
  • the light beam is modulated so as to have a distribution based on) to generate signal light.
  • the servo optical system servo-controls (moves in the radial, tangential, and focusing directions) the position of the servo beam with respect to the hologram record carrier 2 (moving in the radial, tangential, and focusing directions), so that the second laser light source LD2, the second collimator lens Consists of servo signal detector including CL2, polarizing beam splitter PBS, condenser lens CBL, 1Z4 wavelength plate ⁇ ⁇ ⁇ 4 ⁇ , detector lens AS, and photodetector PD.
  • the servo optical system is also used for reproducing information of the mark row MRW from the servo layer 5.
  • the wavelength of the second laser light source LD2 of the servo optical system is set to a wavelength different from the wavelength of the first laser light source LD1 of the recording system.
  • the servo beam SB is set at a position where the optical axis of the signal beam GB is shifted so that it is focused on the address mark ADM of the servo layer 5 by the objective lens OBA that focuses the signal beam GB.
  • the reflected light of the servo beam SB reflected by the servo layer 5 is detected by the photodetector PD via the objective lens OBA of the servo optical system.
  • Positioning mark The photodetector for detecting PAM is made up of four light receiving elements.
  • the dichroic prism DP and the objective lens OBA are a common system.
  • the pickup 23 includes the objective lens OB in a direction parallel to its optical axis (focusing direction), a parallel direction (tangential direction) and a perpendicular direction (radial direction) to the mark row MRW. ) Is provided with a pick-up fine movement drive unit 36.
  • the photodetector PD of the servo signal detector is connected to the servo signal processing circuit 28.
  • the photodetector PD has a light receiving element for focusing, radius, and tangential movement control of the servo beam.
  • the output signal such as the mark signal RF of the photodetector PD force, the focus error signal, and the tracking error signal is supplied to the servo signal processing circuit 28.
  • a drive signal is also generated for these error signal forces, and this is supplied to the pickup fine movement drive unit 36 via the control circuit 37.
  • Pickup fine The dynamic drive unit 36 operates to finely adjust the pickup position.
  • the pickup is finely driven by the drive current according to the drive signals in the radius, tangential direction, and focusing direction, and the position of the light spot irradiated on the hologram record carrier is displaced. This makes it possible to ensure the hologram formation time by keeping the relative position of the light spot relative to the hologram record carrier during the recording motion.
  • the control circuit 37 generates a slider drive signal based on the position signal from the operation unit or the pickup position detection circuit 31 and the radial movement error signal from the servo signal processing circuit 28, and generates this slider drive signal 32. To supply.
  • the slider servo circuit 32 moves the pick-up 23 in the radial direction of the disk via the pick-up coarse drive unit 24 according to the drive current generated by the slider drive signal.
  • the rotation speed detection unit 33 detects a frequency signal indicating the current rotation frequency of the spindle motor 22 that rotates the hologram record carrier 2 with a turntable, and generates a rotation speed signal indicating the corresponding spindle rotation speed.
  • the rotation position detection circuit 34 is supplied.
  • the rotational position detection circuit 34 generates a rotational speed position signal and supplies it to the control circuit 37.
  • the control circuit 37 generates a spindle drive signal, supplies it to the spindle servo circuit 35, controls the spindle motor 22 and rotates the hologram record carrier 2.
  • the operation of the hologram recording optical system is as follows.
  • the divergent light emitted from the first laser light source LD 1 is converted into a parallel light beam by the first collimator lens CL 1 and separated into two optical paths by the noise mirror prism HP.
  • the light branched to the mirror prism MP by the half mirror prism HP is reflected here and incident on the spatial modulator SLM, where it is spatially modulated in accordance with the page data to become the signal light GB.
  • the signal light GB passes through the dichroic prism DP combined with the servo optical system, enters the object lens OBA, and enters the hologram record carrier 2.
  • the aperture of the reference light RB is limited by the aperture APP and is converted into an appropriate light beam diameter.
  • Reflected by galvo mirror GM The reflected reference light RB is incident on the 4f optical system formed by the irradiation lenses ILB and ILA and intersects with the signal light GB in the hologram record carrier 2.
  • the hologram HG (diffraction grating) is angle-multiplexed in the record carrier 2 and a plurality of holograms (books) are recorded. After recording a book, the hologram record carrier 2 is moved and the book is recorded again in another area.
  • the galvanomirror GM is driven by a reference light mirror drive circuit MD that controls an actuator that rotates its rotating shaft.
  • recording information different for each angle can be multiplexed and recorded in the same area by slightly changing the angle of the reference light with respect to the signal light in the hologram record carrier at the time of recording.
  • a so-called 4f optical system and a gallon mirror are used as a mechanism for changing the angle of the reference light applied to the hologram record carrier, and as shown in FIG.
  • a plurality of 4f lenses are arranged so that their focal points coincide with each other, the rotation axis of the galvano mirror GM is arranged at the lens focal point at one end, and the recording layer of the hologram record carrier 2 is arranged at the lens focal point at the other end (conjugate position)
  • the signal light GB irradiation is stopped by setting the spatial light modulator SLM in a light-shielded state, and only the reference light RB is incident on the hologram recording carrier 2 at a predetermined angle to generate the hologram force signal light. Is reconstructed and photoelectrically converted to page data by the image sensor IS.
  • the operation of the servo optical system is as follows.
  • the divergent light emitted from the second laser light source LD2 having a wavelength different from that of the hologram recording light beam FB is converted into a parallel light beam by the second collimator lens CL2, and is polarized as a servo light beam SB. Transmitted and synthesized with the holographic recording optical system by the dichroic prism DP.
  • the converging lens CBL of the servo optical system condenses the servo beam SB in combination with the objective lens OBA onto the servo layer 5 of the hologram record carrier 2 so as to have a certain light spot diameter! / . This light spot is not necessarily focused to the diffraction limit.
  • the recording area of the book and the address mark ADM mark code area MCR is different in the two planes of the hologram record carrier, so the light spot of the servo beam SB is formed so as to be shifted from the optical axis of the signal light GB. The axes are shifted.
  • the light reflected from the servo layer 5 is transmitted through the polarization beam splitter PBS and the servo optical system.
  • the light is detected by the photodetector PD through the detection lens AS.
  • the hologram record carrier 2 is moved (rotated) in the tangential direction. By this movement, the signal of the mark code area MCR can be detected and the book address to be recorded can be known.
  • the positioning mark PAM is used to know the location of the next book to be recorded.
  • the positioning mark PAM is arranged at an interval equal to the interval between books, and the shape can be determined by reading with the servo beam SB.
  • the photodetector PD includes light receiving elements A1 to A4 having a light receiving surface divided into four equal parts along the radial direction and the linear direction for receiving the servo light beam SB. .
  • the direction of the four dividing lines corresponds to the disk radial direction and mark row MRW (tangential direction).
  • the photodetector PD is set so that the reflected light spot when the servo light beam SB is focused is a circle centered on the center of the divided intersection of the light receiving elements A1 to A4.
  • the servo signal processing circuit 28 generates various signals according to the output signals of the light receiving elements A1 to A4 of the photodetector PD.
  • FIG. 10 shows a method for detecting the positioning mark PAM.
  • the photodetector PD shown in Fig. 9 is used for error detection.
  • the return light is detected by the light receiving element A2 in one quadrant of the photodetector (timing 2). Further, it is detected by the Al and A2 photodetectors, and at the mark position, it is detected by the Al and A3 light receiving elements (timing 3).
  • the light beam of servo beam SB moves away from the marker, the return light is detected by the opposite light receiving element (timing 4).
  • the address mark ADM and positioning mark PAM other than providing a blank (margin) between the mark code area MCR and the positioning mark PAM as in Example 1 A shape modification is shown.
  • the positioning mark PAM1 is set longer in the radial direction in the tangential direction.
  • the mark code area MCR is shifted in the radial direction alternately between each book. This makes it possible to determine that the mark is close when the output from the light receiving elements Al and A2 of the photodetector changes to detection of A3 and A4.
  • the positioning mark PAM should be divided into bright and dark shapes symmetrical in the radial and tangential directions.
  • FIG. 14 shows a schematic configuration of the pickup 23 of the second embodiment.
  • the pickup 23 shapes the light beam shape so that the servo light beam SB becomes longer in the radial direction of the hologram record carrier 2.
  • Astigmatism generating means (for example, a cylindrical lens) 100 is used as the first laser light source LD 1 of the servo optical system.
  • the hologram recording optical system is the same as that of Example 1 in FIG. 8 except that the hologram recording optical system is disposed between the first collimator lens CL 1 and the first collimator lens CL 1. As shown in FIG.
  • the servo beam SB2 can be elongated in the radial direction of the hologram record carrier 2 by an optical element that generates astigmatism, so that when the hologram record carrier 2 moves in the tangential direction, the servo beam SB2 Even if the proper position (2 in Fig. 15) moves slightly in the radial direction (eccentricity in the case of an optical disk) (1 or 3 in Fig. 15), the servo beam SB is in the mark code area MCR, Positioning mark Does not protrude from PAM. As a result, good positioning can be performed even if an error occurs in the variation of the hologram record carrier 2 or the mechanism for moving the hologram record carrier 2, so that the book can be recorded at an accurate interval.
  • FIG. 15 shows a schematic configuration of the hologram record carrier of Example 3, particularly a configuration of a mark row having a plurality of mark forces formed on the servo layer.
  • the third embodiment is the same as the pattern of the mark code area MCR and the positioning mark PAM of the first embodiment shown in FIG. 6 except that a mark row MRW2 extending in the radial direction is added.
  • a second positioning mark PAM2 having a shape different from the positioning mark PAM extending in the tangential direction is located at the intersection of the mark row MRW 2 (address mark ADM) extending in the radius and the mark row MRW extending in the tangential direction Can also be arranged.
  • ADM address mark ADM
  • the second positioning mark PAM4 at the intersecting point is a shape in which the mark shape of the previous positioning mark PAM is negative-positive inverted.
  • the servo light beam SB completes the tangential direction positioning of the hologram record carrier 2, By moving in the radial direction, the address in the radial direction can be read from the mark row MRW2. Radial movement is done with the same algorithm as tangential movement.
  • the signal detected by the servo light beam SB is processed, so that the movement from the tangential direction to the radial direction can be realized.
  • the radial direction address may be located only at a specific location on the hologram record carrier 2. And may be at certain intervals
  • the hologram recording carrier disk 2 is described as an example of the recording medium.
  • the shape of the hologram recording carrier is not limited to the disk shape.
  • It may be a hologram recording carrier of a rectangular parallel plate optical card 20a which has a force such as plastic.
  • the mark row MRW may be formed in a spiral shape, a spiral arc shape or a concentric shape with respect to the center of gravity of the substrate, for example, or a plurality of mark row MRWs may be arranged in parallel on the substrate! / But! /
  • FIG. 1 is a plan view showing a hologram record carrier according to an embodiment of the present invention.
  • FIG. 2 is a schematic partial sectional view showing a hologram record carrier according to an embodiment of the present invention.
  • FIG. 3 is a schematic partial sectional view showing a hologram record carrier according to another embodiment of the present invention.
  • FIG. 4 is an enlarged partial plan view showing a part of a mark row of a hologram record carrier of an embodiment according to the present invention.
  • FIG. 5 is an enlarged partial plan view showing a part of a mark row of a hologram record carrier of an embodiment according to the present invention.
  • FIG. 6 is an enlarged partial plan view showing a part of a mark row of the hologram record carrier of the embodiment according to the present invention.
  • FIG. 7 is a block diagram showing a schematic configuration of a hologram device for recording or reproducing information on a hologram record carrier of an embodiment according to the present invention.
  • FIG. 8 is a schematic perspective view showing an outline of a pickup of a hologram apparatus for recording / reproducing information on a hologram record carrier of an embodiment according to the present invention.
  • FIG. 9 is a plan view showing a photodetector in a pickup of a hologram apparatus for recording / reproducing information on a hologram record carrier according to an embodiment of the present invention.
  • FIG. 10 is a graph illustrating a position error signal for detecting a positioning mark of the hologram record carrier according to the embodiment of the present invention.
  • FIG. 11 is an enlarged partial plan view showing a part of a mark row of a hologram record carrier of another embodiment according to the present invention.
  • FIG. 12 is an enlarged partial plan view showing a part of a mark row of a hologram record carrier of another embodiment according to the present invention.
  • FIG. 13 is a plan view showing a part of a mark row of a hologram record carrier of another embodiment according to the present invention.
  • FIG. 14 is a schematic perspective view showing an outline of a pickup of a hologram apparatus for recording / reproducing information on a hologram record carrier of another embodiment according to the present invention.
  • FIG. 15 is an enlarged partial plan view showing a part of a mark row of a hologram record carrier of another embodiment according to the present invention.
  • FIG. 16 is an enlarged partial plan view showing a part of a mark row of a hologram record carrier of another embodiment according to the present invention.
  • FIG. 17 is an enlarged partial plan view showing a part of a mark row of a hologram record carrier of another embodiment according to the present invention.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Holo Graphy (AREA)

Description

明 細 書
ホログラム記録担体およびホログラム装置
技術分野
[0001] 本発明は光ディスク、光カードなど光ビームの照射により情報の記録又は再生可能 なホログラム記録層を有するホログラム記録担体およびホログラム装置に関する。 背景技術
[0002] 高密度情報記録のために、 2次元データを高密度記録できるホログラムが注目され ている。このホログラムの特徴は、記録情報を担持する光の波面を、フォトリフラタティ ブ材料などの光感応材料力 なる記録媒体に体積的に屈折率の変化として記録す ることにある。ホログラム記録担体に多重記録を行うことによって記録容量を飛躍的に 増大させることができる。多重記録には、角度多重や位相符号化多重などがあり、重 畳したホログラム領域でも、干渉する光波の入射角度や位相を変えることにより、情 報を多重記録することが可能である。
[0003] 一方、ホログラム記録担体をディスクとして利用し、情報を超高密度で記録する光 情報記録装置が開発されている。ホログラムの干渉縞パターンを記録するには記録 媒体と書き込み光との相対的静止状態での適度な露光の時間とエネルギが必要で あるので、かかる従来技術は、移動する記録媒体の記録位置に、正確に露光し続け る方法を提供している。
[0004] 力かる従来のホログラム記録担体には、その表面に位置情報としてのマーカを配置 したものがある (特許文献 1参照)。しかしながら、特許文献 1には、具体的な位置決 めマークの形状につ ヽては示されて 、な 、。
[0005] さらに、従来のホログラム記録担体には、その内部に位置決めマークを有したもの や (特許文献 2参照)、半径方向にホログラム記録光束が移動するための領域を有し たものがある(特許文献 3参照)。しかしながら、特許文献 2、 3には、トラックやアドレス 領域と位置決めマークの形状にっ 、ては明確に示されて!/、な!/、。
特許文献 1 :特開 2005— 302149
特許文献 2:特開 2005— 228416 特許文献 3:特開 2005 - 203070
発明の開示
発明が解決しょうとする課題
[0006] 従来のホログラム記録担体においてトラック上の光スポットの直径は、光の波長と対 物レンズの開口数 (numerical aperture :NA)により決まる値(いわゆる回折限界で、例 えば 0. 82 /NAである(λ =波長))まで、微細に絞り込まれるように設定される。従 来例はサーボ光束が回折限界に集光された状況で設定されているのでアドレスや位 置情報マーカの形状には制限がある。
[0007] 従来、複数回のホログラム記録又は再生を行う場合に、 1回のホログラム記録工程 で書き込まれるデータの単位ビット量が大きくなるため、データの記録済み部分を探 すためにホログラム毎で検索を行うなど制御が複雑であることにカ卩え、微細な光スポ ットの位置制御に複雑なサーボ検出系を必要としていた。
[0008] そこで、本発明の解決しょうとする課題には、複数回のホログラム記録を速やかに 行えるとともに安定的に記録又は再生を簡易に行うことを可能にするホログラム記録 担体およびホログラム装置を提供することが一例として挙げられる。
課題を解決するための手段
[0009] 請求項 1記載のホログラム記録担体は、光照射により情報の記録又は再生が行わ れるホログラム記録担体であって、
可干渉性のホログラム記録光束による光学干渉パターンをホログラムとして内部に 保存するホログラム記録層と、前記ホログラム記録層の膜厚方向に積層されかつ複 数のマークがあら力じめ記録されて 、るサーボ層を有し、前記マークは前記ホロダラ ム記録担体に対し照射された前記ホログラム記録光束の光スポットの相対的な移動 方向に平行な方向に列をなしマーク列として複数延在して 、ることを特徴とする。こ れにより、角度多重方式のホログラム記録担体において角度多重ホログラム群 (ブッ ク)のアドレスを規定すると同時にブックを記録する領域を決定するためのマークをホ ログラム記録担体に設けることができ、マーク列により、簡単なサーボ検出系で精度 の良い位置決めが可能である。
[0010] 前記マークの各々は前記光スポットの相対的な移動方向に平行な方向よりも前記 移動方向に垂直な方向において長い形状を有していることが好ましい。例えば、半 径方向に長 、マークとしたことでディスク形状のホログラム記録担体を用いた場合、 ディスクに偏芯などが生じた場合にもマークの検出ができる。
[0011] 前記光スポットの相対的な移動方向に平行な方向における前記マーク列の間に、 前記ホログラムの記録間隔と等しい間隔で、上記マークとは異なる形状を有する位置 決めマークを配置したことが好ましい。例えば、マークのアドレス領域と位置決めマー クでマークの形状が異なるので判別が簡単である。
[0012] 前記光スポットの相対的な移動方向に垂直な方向における隣接する前記マーク列 の間隔は、前記ホログラムの記録間隔と等しい間隔であることが好まし 、。
[0013] 前記光スポットの相対的な移動方向に垂直な方向における隣接する前記マーク列 の間において、前記光スポットが相対的に移動する前記垂直な方向に列をなした複 数のマーク力もなるマーク列が配置されて 、ることが好まし 、。
[0014] 前記マーク列の間における前記垂直な方向に列をなした複数のマーク力もなる前 記マーク列の端部に判定マークが配置されていることが好ましい。例えば、半径移動 領域を示すマークがあるので正確に半径方向の移動ができる。
[0015] 請求項 7記載のホログラム装置は、可干渉性のホログラム記録光束による光学干渉 パターンをホログラムとして内部に保存するホログラム記録層と、前記ホログラム記録 層の膜厚方向に積層されかつ複数のマークがあら力じめ記録されて 、るサーボ層を 有し、前記マークは前記ホログラム記録担体に対し照射された前記ホログラム記録光 束の光スポットの相対的な移動方向に平行な方向に列をなしマーク列として複数延 在し、光照射によりホログラムの情報の記録又は再生が行われるホログラム記録担体 のホログラム装置であって、
前記光スポットを前記サーボ層の前記マークに集光してその戻り光力 前記マーク の情報を読み取ることにより、前記ホログラム記録担体の動きに前記光スポットを追従 させるサーボ制御を行うとともに、前記ホログラム記録担体と前記光スポットの相対的 位置関係を制御することを特徴とする。
[0016] 前記サーボ層上における前記光スポットは、前記光スポットの相対的な移動方向に 平行な方向よりも前記移動方向に垂直な方向にぉ 、て長 、形状を有して 、るが好ま しい。例えば、半径方向に長い光スポットとしたことでディスク形状のホログラム記録 担体を用いた場合、ディスクに偏芯などが生じた場合にもアドレスマークや位置決め マークの検出ができる。
発明を実施するための形態
[0017] 以下に本発明の実施の形態を図面を参照しつつ説明する。
[0018] <ホログラム記録担体 >
図 1は、本実施形態の一例である光照射により情報の記録又は再生が行われるデ イスク形状のホログラム記録担体 2を示す。ホログラム HGとして内部に保存するホロ グラム記録担体 2には、複数のマーク Mがあら力じめ記録されて列をなしてマーク列 として同心円として複数延在して 、る。
[0019] 図 2に示すように、ホログラム記録担体 2は、基板 3上に積層された、ホログラム記録 層 7、サーボ層 5、および保護層 8からなる。ホログラム記録担体 2は、可干渉性の参 照光および信号光のホログラム記録光束による光学干渉パターンをホログラム(回折 格子)として内部に保存するホログラム記録層 7と、その膜厚方向に積層されたサー ボ層 5とを備えている。また、図 3に示すように保護層 8を省略したホログラム記録担体 2としてちよい。
[0020] ホログラム記録層 7には、ホログラム記録光束 (参照光および信号光)の波長に対し 感応する光感応材料、フォトリフラクティブ材料や、ホールバー-ング材料、フォトクロ ミック材料などが用いられる。ホログラム記録層 7材料にはサーボ光束 SBの波長に対 しては感応しな 、材料力 選択される。
[0021] 基板 3は、その材料として特に限定されるものではなぐ例えば、ガラス、或いはポリ カーボネート、アモルファスポリオレフイン、ポリイミド、 PET、 PEN, PESなどのプラス チック、紫外線硬化型アクリル榭脂など力もなる。
[0022] 保護層 8は光透過性材料からなり、積層構造の平坦化や、ホログラム記録層などの 保護の機能を担う。
[0023] ホログラム記録層 7の膜厚方向に積層されたサーボ層 5に複数のマーク Mがあらか じめ記録されて 、る。マーク Mはホログラム記録光束ではほとんど感応しな 、材料で 形成されている。例えば、マーク Mはサーボ光束 SBの波長にのみ反射率を有する 波長選択性反射膜などである。図 4に示すようにマーク Mは照射されたホログラム記 録光束の信号光 GB光スポットの相対的な移動方向に平行な方向に列をなし、マー ク列 MRWとして複数延在している。サーボ層 5に離れて交わることなく延在する複数 のマーク列 MRWは印刷などで形成できる。
[0024] ホログラム(ブック)を記録すべき記録領域とマーク列 MRWとは、ホログラム記録担 体 2の平面内でも異なった位置で互いに配置されている。よって、図 4に示すように、 サーボ光束 SBの光スポットが信号光 GBの光軸とずらした位置に形成されるように、 サーボ光束 SBの光軸が信号光 GBの光軸から所定距離 Hapで離れている。
[0025] マーク列 MRWは高!、反射率のマーク Mとそれらの間の非マーク nM (平坦部)との 交互の配列からなる。マーク列 MRWにおけるマーク Mの各々は照射されるサーボ 光スポットの相対的な移動方向に平行な方向よりも移動方向に垂直な方向において 長 ヽ形状を有して ヽる。マーク列 MRWで反射された光を光検出器で検知する際に 、サーボ光スポットがバーコード状のマーク Mを横切るように移動するので、マーク列 MRWすなわちマークコードの白黒または明暗によって反射光光量が変化するので 、この反射光光量の変化を電気信号に変換し取得することができる。
[0026] 図 4に示すように、マーク列 MRWはマークコードとしてマーク Mの両端にある余白 の部分 (マージン)を設けた、キャラクタ Zデータ Zチェックデジット Zストップキャラク タの順のフォーマットとすることができる。
[0027] マージンが十分でないと読み取りが不安定になる場合がある。初めと終わりの位置 を特定することが難し 、からである。スタートキャラクタおよびストップキャラクタはデー タの始まりおよび終わりを表わす文字であり、例えば、〃* "や" a", "b", "c", "d"など がある。データは情報として表されている文字 (数字、アルファベットなど)のマークパ ターンが読み取り側から順に並べられる。たとえば順番に並べることで、「0123」とい うアドレスデータを表すことができる。チェックデジットは読み誤りがないかチェックす るために、算出された数値で、マークコードデータの直後に付加される。このように、 マーク列 MRWすなわちマークコードの長さは、両端のマージンを含んだ長さとする ことが好ましい。マークコードの幅はディスク偏芯などが生じた場合、半径方向へ移 動するので半径方向へ長くを確保することが望ましい。マークコードの幅が狭いと、サ ーボ光束がマークコード力 外れてしま 、、安定して読み取りできな 、場合がある。 マークコードの長さの 15%以上を確保することが好ましい。次に、マークコードを構 成する最小単位であるマークと非マークのサーボ光スポットの相対的な移動方向に 平行な方向の太さについて、マークコードは、太さごとに、例えば、細および太のマ ーク NB、 WBと細および太の非マーク NS、 WSの組合せで構成できる。そこで、それ らの太さの割合を、 NB : WB = NS: WS = 1: 2〜1: 3と設定できる。
[0028] マーク列 MRWのデータとしては、ホログラム記録層のホログラム記録すべき部分の アドレスを示すアドレスマーク、それらに関係する種々の情報 (圧縮方法情報、材料 情報、レーザーパワーや記録波長などの情報)を示す関係マークが挙げられる。
[0029] マーク列 MRWは、光ビーム照射用の対物レンズの少なくともトラッキングサーボの サーボ制御にも用いられる。基板 3が円板の場合、トラッキングサーボ制御を行うため 、マーク列 MRWは基板の中心に関してその上に同心円状の他に、螺旋状、或いは 複数の分断された螺旋弧状に形成され得る。
[0030] マーク列 MRWとしてホログラム記録層のホログラム記録すべき部分のアドレスを示 すアドレスマークをあら力じめ記録したディスク形状のホログラム記録担体(図 1)の例 を説明する。
[0031] (実施例 1)
マーク列からなるマークコード領域 MCRにはブックのアドレスを示す情報が担持さ れている。ホログラム記録層 7とは別のサーボ層 5には図 6に示すように、アドレスマー ク ADM (マークコード領域 MCR)および位置決めマーク PAMがあらかじめ記録され ている。
[0032] アドレスマーク ADMはホログラム記録光束 (信号光 GB)が透過しな 、位置に配置 され、 1つのマークコード領域 MCRと引接する 1つの位置決めマーク PAMが 1対と なっている。
[0033] 位置決めマーク PAMはサーボ光束 SBでサーボ層 5のマーク列をトレースした場合 に半径方向および接線方向の位置が検出できるような形状になっている。例えば図 6に示す正方形形状を正方形で 4等分した明暗力 なる位置決めマーク PAMにお いてサーボ光束 SBが位置決めマーク PAMの中央に存在するときに光スポットの対 角象限位置に暗分が配置された形状とする。
[0034] 一方、アドレスマーク ADMはホログラム記録担体の半径方向に接線方向より長い マーク Mとして形成されている。マーク Mの長さ At (半径方向)はホログラム記録担体 の偏芯が生じてもサーボ光束 SBの光スポットが中央に存在するときにアドレスマーク ADMからはみ出な!/、大きさとする。
[0035] マーク Mの半径方向長さ Atはディスクの場合、次のように決定される。扁芯量 Dcを 有するログラム記録担体にお!、て、マーク列 MRWを形成すべき再生半径 rのデイス ク円周上で、サーボ光束 SBが接線方向の 1つのブック記録間隔 Hrpで移動したとき 、再生半径 rからずれるマーク M上の摂動扁芯量を A Dcと想定すると、摂動扁芯量 A Dcは、 A Dc = DcZ (2 * π *rZHrp)で表されるので、マーク Mの半径方向長さ Atは再生半径 rのディスク円周上の内外側を考慮すると、 At≥2 * A Dc+ (サーボ 光束 SBの半径方向長さ: R)と表される。よって、 At≥2 * DcZ (2 * π *r/Hrp) +R = Dc * Hrp/ π * r+Rを満たす長さのマーク Mを設定することが好まし!/、。
[0036] 対となるマークコード領域 MCRと位置決めマーク PAMの合計の長さは図 6に示す ように、ホログラム記録担体の接線方向(光ディスク回転方向)のブック記録間隔 Hrp と一致している。また、半径方向には、接線方向に延在するアドレスマーク ADMと位 置決めマーク PAMの組がやはりブック記録間隔 Htpと一致して配置されている。
[0037] このように、ホログラム記録担体の接線方向の隣接する 2つの位置決めマーク PAM はブック記録間隔 Hrpと同一の間隔で形成されて 、る。アドレスマーク ADMおよび 位置決めマーク PAMの組の列はホログラム記録担体の半径方向にも光ディスクのト ラックのように形成されている。よって、トラックピッチは、これらマーク列の半径方向の 隣接するもの同士の間隔は半径方向のブック記録間隔 Hrpと一致している。これらの マーク列のアドレスマーク ADMはホログラム記録光束 FBが透過しな!、ように間隔お よび幅が決められている。よって、記録再生光束にノイズなどを与えることがない。ま た、もし何らかの原因でホログラム記録光束 FBがアドレスマーク ADMに力かってし まった場合でも、サーボ光束 SBのみに感応する材料で形成されて ヽるため問題は 無い。なお、接線方向および半径方向のブック記録間隔 Hrpおよび Hrpが等しい場 合の他に、 Hrpおよび Hrpを等しくしない場合もある。 [0038] ホログラム記録担体が光ディスク形状の場合、光ディスクに偏芯が生じる場合がある 。マークコード領域 MCRの半径方向の幅 Atはホログラム記録担体が偏芯したとして もサーボ光束 SBの光スポットがはみ出ないだけ広く設定されている。
[0039] <ホログラム装置 >
図 7は本発明を適用したホログラム記録担体の情報を記録又は再生する角度多重 型のホログラム装置の概略構成の例を示す。
[0040] 図 7のホログラム装置は、参照光ミラー駆動回路 MD、ホログラム記録担体 2のディ スクをターンテーブルを介して回転させるスピンドルモータ 22、ホログラム記録担体 2 力 光ビームによって信号を読み出すピックアップ 23、該ピックアップを保持し半径 方向に移動させるピックアップ粗動駆動部 24、第 1光源駆動回路 25a、第 2光源駆 動回路 25b、空間光変調器駆動回路 26、再生光信号検出回路 27、サーボ信号処 理回路 28、ピックアップ粗動駆動部 24に接続されピックアップの位置信号を検出す るピックアップ位置検出回路 31、ピックアップ粗動駆動部 24に接続されこれに所定 信号を供給するスライダサーボ回路 32、スピンドルモータ 22に接続されスピンドルモ ータの回転数信号を検出する回転数検出部 33、該回転数検出部に接続されホログ ラム記録担体 2の回転位置信号を生成する回転位置検出回路 34、並びにスピンドル モータ 22に接続されこれに所定信号を供給するスピンドルサーボ回路 35を備えてい る。
[0041] ホログラムホログラム装置は制御回路 37を有しており、制御回路 37は、参照光ミラ 一駆動回路 MD、第 1光源駆動回路 25a、第 2光源駆動回路 25b、空間光変調器駆 動回路 26、再生光信号検出回路 27、サーボ信号処理回路 28、ピックアップ位置検 出回路 31、スライダサーボ回路 32、回転数検出部 33、回転位置検出回路 34、並び にスピンドルサーボ回路 35に接続されている。制御回路 37は所定信号に基づいて、 これら駆動回路を介してピックアップに関する粗動および微動のサーボ制御、再生位 置(半径および接線方向の位置)の制御などを行う。制御回路 37は、各種メモリを搭 載したマイクロコンピュータ力 なり装置全体の制御をなすものであり、操作部(図示 せず)からの使用者による操作入力および現在の装置の動作状況に応じて各種の制 御信号を生成するとともに、使用者に動作状況などを表示する表示部(図示せず)に 接続されている。
[0042] また、制御回路 37は外部力 入力されたホログラム記録すべきデータの符号ィ匕な どの処理を実行し、所定信号を空間光変調器駆動回路 26に供給してホログラムの記 録シーケンスを制御する。制御回路 37は、再生光信号検出回路 27からの信号に基 づ ヽて復調および誤り訂正処理をなすことにより、ホログラム記録担体に記録されて いたデータを復元する。更に、制御回路 37は、復元したデータに対して復号処理を 施すことにより、情報データの再生を行い、これを再生情報データとして出力する。
[0043] 更にまた、制御回路 37は、記録すべきホログラムデータ力も得られた内容情報 (例 えば画像データ)のサムネイル情報や、ホログラム記録時の圧縮法、符号化復号ィ匕 法、レーザーパワー、記録波長などのホログラムデータに関係するデータの符号ィ匕な どの処理を実行する。そして、制御回路 37は、サーボ信号処理回路 28から供給され る信号に基づ 、て、ホログラム記録担体のサーボ層に記録されて 、たマーク列 MR Wの情報を用いてホログラム記録を実行する。
[0044] (ピックアップ)
図 8は、当該ホログラム装置のピックアップ 23の概略構成に示す。力かるピックアツ プは一般的な角度多重方式ホログラム装置のピックアップにマーク列 MRWの情報 の検出用の光学系例えばサーボ光学系を付加した構成である。
[0045] ピックアップ 23は、大きく分けてホログラム記録再生光学系と、サーボ光学系と、共 通系と、力 なる。
[0046] ホログラム記録再生光学系は、ホログラムの記録および再生用の第 1光源駆動回路 25aに接続された第 1レーザ光源 LD1、第 1コリメータレンズ CL1、ハーフミラープリ ズム HP、空間光変調器 SLM、対物レンズ OBA、対物レンズ OBB、荷結合装置(C CD)や相補型金属酸化膜半導体装置 (CMOS)などのアレイカゝらなる再生光信号検 出回路 27に接続された像センサ ISを含む再生光信号検出部、アパーチャ一 APP、 ガルバノミラー GM、 4f光学系の照射レンズ ILBおよび ILAからなる。一対の対物レ ンズ OBA、 OBBは互いの焦点が一致するように直線上に配置され両端の商店位置 には空間光変調器 SLMおよび像センサ ISが共役に配置されている。一対の対物レ ンズ OBA、 OBBの共通焦点を外して、ホログラム記録担体 2が配置される。空間光 変調器 SLMは、マトリクス状に分割された複数の画素電極を有する透過型の液晶パ ネルなどで電気的に入射光を画素ごとに透過又は遮光状態とする機能を有する。こ の空間光変調器 SLMは空間光変調器駆動回路 26に接続され、空間光変調器駆動 回路 26からの記録すべきページデータ(平面上の明暗ドットパターンなどの 2次元デ ータの情報パターン)に基づいた分布を有するように光ビームを変調して、信号光を 生成する。
[0047] サーボ光学系は、ホログラム記録担体 2に対するサーボ光束の位置(ピックアップ位 置)をサーボ制御(半径方向、接線方向、フォーカシング方向の移動)するため、第 2 レーザ光源 LD2、第 2コリメータレンズ CL2、偏光ビームスプリッタ PBS、集光レンズ CBL、 1Z4波長板 ΐΖ4 λ、検出レンズ AS、および光検出器 PDを含むサーボ信号 検出部からなる。また、サーボ光学系は、サーボ層 5からのマーク列 MRWの情報の 再生にも用いられる。
[0048] サーボ光学系の第 2レーザ光源 LD2の波長は記録系の第 1レーザ光源 LD1の波 長と異なる波長に設定されている。サーボ光束 SBは信号光 GBを集光している対物 レンズ OBAでサーボ層 5のアドレスマーク ADMに集光するように信号光 GBの光軸 カゝらずらした位置に設定されている。サーボ層 5で反射されたサーボ光束 SBの反射 光はサーボ光学系の対物レンズ OBAを介して光検出器 PDで検出される。位置決め マーク PAMの検出用の光検出器は 4分割された受光素子により構成されている。
[0049] ダイクロイツクプリズム DPおよび対物レンズ OBAは共通系である。
[0050] 更に、ピックアップ 23には、その筐体ごと、対物レンズ OBを自身の光軸に平行な方 向(フォーカシング方向)、マーク列 MRWに平行方向(接線方向)および垂直な方向 (半径方向)に移動させるピックアップ微動駆動部 36が備えられている。
[0051] サーボ信号検出部の光検出器 PDは、サーボ信号処理回路 28に接続され、例え ば、サーボ光束のフォーカス、半径および接線方向の移動制御用にそれぞれに受 光素子を有する。光検出器 PD力 のマーク信号 RF、フォーカスエラー信号やトラッ キングエラー信号などの出力信号はサーボ信号処理回路 28に供給される。
[0052] サーボ信号処理回路 28においては、これらエラー信号力も駆動信号が生成され、 これが制御回路 37を介してピックアップ微動駆動部 36に供給される。ピックアップ微 動駆動部 36はピックアップ位置を微調整するように動作する。ピックアップは半径、 接線方向およびフォーカシング方向の駆動信号による駆動電流に応じた分だけ微細 に駆動され、ホログラム記録担体に照射される光スポットの位置が変位する。これによ り、記録時の運動して 、るホログラム記録担体に対する光スポットの相対位置を一定 としてホログラムの形成時間を確保できる。
[0053] 制御回路 37は、操作部又はピックアップ位置検出回路 31からの位置信号および サーボ信号処理回路 28からの半径方向移動エラー信号に基づいてスライダ駆動信 号を生成し、これをスライダサーボ回路 32に供給する。スライダサーボ回路 32はピッ クアップ粗動駆動部 24を介して、そのスライダ駆動信号による駆動電流に応じピック アップ 23をディスク半径方向に移送せしめる。
[0054] 回転数検出部 33は、ホログラム記録担体 2をターンテーブルで回転させるスピンド ルモータ 22の現回転周波数を示す周波数信号を検出し、これに対応するスピンドル 回転数を示す回転数信号を生成し、回転位置検出回路 34に供給する。回転位置検 出回路 34は回転数位置信号を生成し、それを制御回路 37に供給する。制御回路 3 7はスピンドル駆動信号を生成し、それをスピンドルサーボ回路 35に供給し、スピンド ルモータ 22を制御して、ホログラム記録担体 2を回転駆動する。
[0055] ホログラム記録光学系の動作は次のとおりである。
[0056] 第 1レーザ光源 LD 1から出射された発散光は第 1コリメータレンズ CL 1で平行光束 に変換されノヽーフミラープリズム HPにて 2つの光路に分離される。
[0057] ハーフミラープリズム HPでミラープリズム MPへ分岐した光はここで反射され、空間 変調器 SLMに入射し、ここでページデータに応じて空間的に変調され信号光 GBと なる。信号光 GBはサーボ光学系と合成されるダイクロイツクプリズム DPを透過し物レ ンズ OBAに入射しホログラム記録担体 2に入射する。
[0058] 一方、参照光 RBはアパーチャ一 APPにて開口制限され、適度な光束径に変換さ れる。ガルバノミラー GMにより反射される。反射された参照光 RBは照射レンズ ILB および ILAで組まれた 4f光学系に入射しホログラム記録担体 2中の信号光 GBと交 差する。ガルバノミラー GMを低所定角度ごと回転させ固定することで信号光 GBと参 照光 RBが交差したある一点を中心に参照光 RBが回転して停止することでホロダラ ム記録担体 2中にホログラム HG (回折格子)が角度多重され複数のホログラム (ブッ ク)が記録される。あるブックを記録し終わった後にホログラム記録担体 2を移動させ 別の領域に再びブックを記録する。ガルバノミラー GMは、その回転軸を回動するァ クチユエータを制御する参照光ミラー駆動回路 MDによって、駆動される。
[0059] 角度多重方式では、記録時のホログラム記録担体内において、信号光に対する参 照光の角度を僅かずつ変更することによって、同一エリアに角度ごとに異なる記録情 報を多重記録できる。一般に、角度多重方式のホログラム装置では、ホログラム記録 担体へ照射する参照光の角度を変更する機構として、いわゆる 4f光学系およびガル ノ ノミラーが用いられ、図 8に示すように、 4f光学系光路に複数の 4fレンズの焦点が 一致するように並べられ、一方端のレンズ焦点にガルバノミラー GMの回転軸が配置 され他方端 (共役位置)のレンズ焦点にホログラム記録担体 2の記録層が配置される
[0060] ホログラムの再生時においては、空間光変調器 SLMを遮光状態とすることによって 信号光 GB照射を止め、参照光 RBのみを所定角度でホログラム記録担体 2へ入射し て、ホログラム力 信号光が再構築され、像センサ ISにてページデータへ光電変換さ れる。
[0061] サーボ光学系の動作は次のとおりである。
[0062] ホログラム記録光束 FBとは異なる波長の第 2レーザ光源 LD2から出射された発散 光は、第 2コリメータレンズ CL2により平行光束に変換されサーボ光束 SBとして偏光 ビームスプリッタ PBS、集光レンズ CBLを透過してダイクロイツクプリズム DPでホログ ラム記録光学系と合成される。サーボ光学系の集光レンズ CBLは、サーボ光束 SBを 、対物レンズ OBAと組み合わせてホログラム記録担体 2のサーボ層 5にある程度の 光スポット径となるように集光させるようになって!/、る。この光スポットは必ずしも回折 限界まで集光されて 、る必要はな 、。ブックの記録領域とアドレスマーク ADMのマ ークコード領域 MCRはホログラム記録担体 2平面内でも異なっているため、サーボ 光束 SBの光スポットは信号光 GBの光軸とずらした位置に形成されるように光軸がず らされている。
[0063] サーボ層 5から反射された光は、サーボ光学系の偏光ビームスプリッタ PBSおよび 検出レンズ ASを経て、光検出器 PDで検出される。ブックの記録毎にホログラム記録 担体 2を接線方向に移動(回転)させる。この移動によりマークコード領域 MCRの信 号を検出することができ、記録しょうとするブックアドレスを知ることができる。次に記 録するブックの場所を知るためには位置決めマーク PAMを利用する。位置決めマー ク PAMはブック間間隔と等しい間隔で配置されており、サーボ光束 SBで読み取るこ とで位置の判別が可能な形状になって 、る。
[0064] 例えば、光検出器 PDは、図 9に示すようにサーボ光束 SB受光用の半径方向と線 方向とに沿って 4等分割の受光面を有した受光素子 A1〜A4から構成される。 4分割 線の方向はディスク半径方向とマーク列 MRW (接線方向)に対応している。光検出 器 PDは、サーボ光束 SB合焦時の反射光スポットが受光素子 A1〜A4の分割交差 中心を中心とする円形となるように設定されている。
[0065] 光検出器 PDの受光素子 A1〜A4の各出力信号に応じて、サーボ信号処理回路 2 8は種々の信号を生成する。
[0066] 図 10に位置決めマーク PAMを検出する方法を示す。エラー検出には図 9に示す 光検出器 PDを用いる。接線方向に相対移動するサーボ光束 SBの光スポットが位置 決めマーク PAMにさし力かると光検出器の一つの象限の受光素子 A2で戻り光が検 出される(タイミング 2)。さらに進むと Al, A2の光検出器で検出されマーク位置では Al、 A3の受光素子で検出される(タイミング 3)。サーボ光束 SBの光スポットがマー タカ 遠ざかるとちょうど逆の受光素子で戻り光が検出される(タイミング 4)。よって、 受光素子 A1〜A4の出力を A1〜A4とすると、 Pe= (A1 +A2)一(A3+A4)の演 算を行うことで位置決めマーク PAMとの差を示すポジションエラー信号 Peが得られ る。このポジションエラー信号 Peを元にホログラム記録担体 2もしくはピックアップをホ ログラム記録担体 2の接線方向に移動し、ブックを記録する適正な位置 (位置決めマ ーク PAMの位置)でホログラムの記録を行うことができる。
[0067] (実施例 1の変形例)
マークコード領域 MCRと位置決めマーク PAMの区別を行うため、実施例 1のよう に、マークコード領域 MCRと位置決めマーク PAMの間にブランク(マージン)を設け る以外の、アドレスマーク ADMおよび位置決めマーク PAMの形状変形例を示す。 [0068] 図 11に示すように、位置決めマーク PAM1を接線方向に半径方向により長く設定 する。これにより、光検出器の受光素子 Al, A2の出力のみが検出されるとマークが 近いと判断することができる。
[0069] 図 12に示すように、マークコード領域 MCRをブック間各毎に交互に半径方向にず らす。これにより、光検出器の受光素子 Al, A2の出力から A3, A4の検出に変化す るとマークが近いと判断することができる。
[0070] 図 13の 1、 2、 3、 4、 5に示すように、位置決めマーク PAMは半径方向および接線 方向に対称な分割された明暗形状であればょ 、。
[0071] (実施例 2)
図 14に実施例 2のピックアップ 23の概略構成に示す。当該ピックアップ 23は、サー ボ光束 SBをホログラム記録担体 2の半径方向に長くなるように、光束形状を整形する 非点収差発生手段 (例えばシリンドリカルレンズ) 100をサーボ光学系の第 1レーザ 光源 LD 1と第 1コリメータレンズ CL 1の間に配置した以外、ホログラム記録光学系は 図 8の実施例 1と同様である。非点収差を発生させる光学素子によって、図 15に示す ように、サーボ光束 SB2をホログラム記録担体 2の半径方向に長くできるので、ホログ ラム記録担体 2が接線方向に移動する際にサーボ光束 SB2の適正位置(図 15の 2) カゝら半径方向に微少に移動してしまう(光ディスク形状の場合は偏芯)場合でも(図 1 5の 1又は 3)、サーボ光束 SBがマークコード領域 MCR、位置決めマーク PAMから はみ出てしまうことがない。その結果、ホログラム記録担体 2のばらつきやホログラム 記録担体 2を移動するメカニズムに誤差が生じても良好な位置決めを行うことができ るため、正確な間隔でブックを記録することができる。
[0072] (実施例 3)
図 15は、実施例 3のホログラム記録担体の概略構成、特にサーボ層に形成されて いる複数のマーク力もなるマーク列の構成を示す。実施例 3は、半径方向に伸びるマ ーク列 MRW2を追加した以外、図 6に示す実施例 1のマークコード領域 MCRおよび 位置決めマーク PAMのパターンと同様である。さらに、半径に伸びるマーク列 MRW 2 (アドレスマーク ADM)と接線方向に伸びるマーク列 MRWの交差する位置には接 線方向に伸びる位置決めマーク PAMとは異なる形状の第 2位置決めマーク PAM2 を配置することもできる。例えば、図 16に示すように、交差するポイントの第 2位置決 めマーク PAM4は、先の位置決めマーク PAMのマーク形状がネガポジ反転した形 状とする。この構成により、半径方向および接線方向のホログラム記録の位置が検出 できる。
[0073] 半径方向および接線方向のマーク列 MRWは接線方向の位置決めマーク PAMの 位置で交差するように配置されて 、るので、サーボ光束 SBはホログラム記録担体 2 の接線方向の位置決めを完了後、半径方向に移動することで、マーク列 MRW2から 半径方向のアドレスを読み取ることができる。半径方向の移動は接線方向への移動 と同様のアルゴリズムで行われる。
[0074] よって図 15及び図 16の構成で、サーボ光束 SBで検出した信号を処理することで 接線方向から半径方向への移動が実現できる。また、半径方向アドレスはホログラム 記録担体 2の特定の場所のみにあってもよい。し、ある一定の間隔毎にあってもよい
[0075] また、上記実施形態にお!、ては、記録媒体としホログラム記録担体ディスク 2を例に 説明したが、ホログラム記録担体の形状は円盤状に限定されるものではなぐ他に例 えば、プラスチックなど力もなる矩形状平行平板の光カード 20aのホログラム記録担 体であってもよい。力かる光カードにおいて、マーク列 MRWは基板の例えば重心に 関してその上に螺旋状もしくは螺旋弧状又は同心円状に形成されもよいし、マーク列 MRWが基板上に平行に複数並設されて!/、てもよ!/、。
図面の簡単な説明
[0076] [図 1]本発明による実施形態のホログラム記録担体を示す平面図である。
[図 2]本発明による実施形態のホログラム記録担体を示す概略部分断面図である。
[図 3]本発明による他の実施形態のホログラム記録担体を示す概略部分断面図であ る。
[図 4]本発明による実施形態のホログラム記録担体のマーク列の一部を示す拡大部 分平面図である。
[図 5]本発明による実施形態のホログラム記録担体のマーク列の一部を示す拡大部 分平面図である。 [図 6]本発明による実施形態のホログラム記録担体のマーク列の一部を示す拡大部 分平面図である。
[図 7]本発明による実施形態のホログラム記録担体の情報を記録又は再生するホログ ラム装置の概略構成を示すブロック図である。
[図 8]本発明による実施形態のホログラム記録担体の情報を記録再生するホログラム 装置のピックアップの概略を示す概略斜視図である。
[図 9]本発明による実施形態のホログラム記録担体の情報を記録再生するホログラム 装置のピックアップにおける光検出器を示す平面図である。
[図 10]本発明による実施形態のホログラム記録担体の位置決めマークを検出するた めのポジションエラー信号を説明するグラフである。
[図 11]本発明による他の実施形態のホログラム記録担体のマーク列の一部を示す拡 大部分平面図である。
[図 12]本発明による他の実施形態のホログラム記録担体のマーク列の一部を示す拡 大部分平面図である。
[図 13]本発明による他の実施形態のホログラム記録担体のマーク列の一部を示す平 面である。
[図 14]本発明による他の実施形態のホログラム記録担体の情報を記録再生するホロ グラム装置のピックアップの概略を示す概略斜視図である。
[図 15]本発明による他の実施形態のホログラム記録担体のマーク列の一部を示す拡 大部分平面図である。
[図 16]本発明による他の実施形態のホログラム記録担体のマーク列の一部を示す拡 大部分平面図である。
[図 17]本発明による他の実施形態のホログラム記録担体のマーク列の一部を示す拡 大部分平面図である。
符号の説明
2…ホログラム記録担体
3· ··基板
5…サーボ層 7· ··ホログラム記録層
8…保護層
22· ··スピンドノレモータ
23· ··ピックアップ
24· ··ピックアップ粗動駆動部
25a…第 1光源駆動回路
25b…第 2光源駆動回路
26…空間光変調器駆動回路
27…再生光信号検出回路
28…サーボ信号処理回路
31…ピックアップ位置検出回路
32· ··スライダサーボ回路
33…回転数検出部
34· ··回転位置検出回路
35…スピンドルサーボ回路
36· ··ピックアップ微動駆動部
37…制御回路
HG…ホログラム
MRW…マーク列
FB…ホログラム記録光束
SB…第 2光ビーム、サーボ光束 M…マーク
LD1…第 1レーザ光源
CL1…第 1コリメータレンズ HP- · 'ハーフミラープリズム SLM…空間光変調器
IS…像センサ
LD2"'第 2レーザ光源 CL2'"第 2コリメータレンズ
PBS…偏光ビームスプリッタ
1 4λ···ΐΖ4波長板
AS…検出レンズ
PD…光検出器
DP- · 'タ"イク口 ックプリズム
ΟΒΑ、 ΟΒΒ···対物レンズ

Claims

請求の範囲
[1] 光照射により情報の記録又は再生が行われるホログラム記録担体であって、
可干渉性のホログラム記録光束による光学干渉パターンをホログラムとして内部に 保存するホログラム記録層と、前記ホログラム記録層の膜厚方向に積層されかつ複 数のマークがあら力じめ記録されて 、るサーボ層を有し、前記マークは前記ホロダラ ム記録担体に対し照射された前記ホログラム記録光束の光スポットの相対的な移動 方向に平行な方向に列をなしマーク列として複数延在して 、ることを特徴とするホロ グラム記録担体。
[2] 前記マークの各々は前記光スポットの相対的な移動方向に平行な方向よりも前記 移動方向に垂直な方向にぉ 、て長 、形状を有して 、ることを特徴とする請求項 1に 記載のホログラム記録担体。
[3] 前記光スポットの相対的な移動方向に平行な方向における前記マーク列の間に、 前記ホログラムの記録間隔と等しい間隔で、上記マークとは異なる形状を有する位置 決めマークを配置したことを特徴とする請求項 1〜5のいずれかに記載のホログラム 記録担体。
[4] 前記光スポットの相対的な移動方向に垂直な方向における隣接する前記マーク列 の間隔は、前記ホログラムの記録間隔と等しい間隔であることを特徴とする請求項 1 〜5の!、ずれかに記載のホログラム記録担体。
[5] 前記光スポットの相対的な移動方向に垂直な方向における隣接する前記マーク列 の間において、前記光スポットが相対的に移動する前記垂直な方向に列をなした複 数のマーク力もなるマーク列が配置されていることを特徴とする請求項 1〜5のいず れかに記載のホログラム記録担体。
[6] 前記マーク列の間における前記垂直な方向に列をなした複数のマーク力もなる前 記マーク列の端部に判定マークが配置されていることを特徴とする請求項 1〜5のい ずれかに記載のホログラム記録担体。
[7] 可干渉性のホログラム記録光束による光学干渉パターンをホログラムとして内部に 保存するホログラム記録層と、前記ホログラム記録層の膜厚方向に積層されかつ複 数のマークがあら力じめ記録されて 、るサーボ層を有し、前記マークは前記ホロダラ ム記録担体に対し照射された前記ホログラム記録光束の光スポットの相対的な移動 方向に平行な方向に列をなしマーク列として複数延在し、光照射によりホログラムの 情報の記録又は再生が行われるホログラム記録担体のホログラム装置であって、 前記光スポットを前記サーボ層の前記マークに集光してその戻り光力 前記マーク の情報を読み取ることにより、前記ホログラム記録担体の動きに前記光スポットを追従 させるサーボ制御を行うとともに、前記ホログラム記録担体と前記光スポットの相対的 位置関係を制御することを特徴とするホログラム装置。
前記サーボ層上における前記光スポットは、前記光スポットの相対的な移動方向に 平行な方向よりも前記移動方向に垂直な方向にぉ 、て長 、形状を有して 、ることを 特徴とする請求項 7記載のホログラム装置。
PCT/JP2006/320329 2006-10-11 2006-10-11 Support d'enregistrement d'hologramme et dispositif d'hologramme WO2008044295A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/441,831 US20090268267A1 (en) 2006-10-11 2006-10-11 Hologram recording carrier and hologram apparatus
JP2008538533A JP4768820B2 (ja) 2006-10-11 2006-10-11 ホログラム記録担体およびホログラム装置
PCT/JP2006/320329 WO2008044295A1 (fr) 2006-10-11 2006-10-11 Support d'enregistrement d'hologramme et dispositif d'hologramme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/320329 WO2008044295A1 (fr) 2006-10-11 2006-10-11 Support d'enregistrement d'hologramme et dispositif d'hologramme

Publications (1)

Publication Number Publication Date
WO2008044295A1 true WO2008044295A1 (fr) 2008-04-17

Family

ID=39282506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320329 WO2008044295A1 (fr) 2006-10-11 2006-10-11 Support d'enregistrement d'hologramme et dispositif d'hologramme

Country Status (3)

Country Link
US (1) US20090268267A1 (ja)
JP (1) JP4768820B2 (ja)
WO (1) WO2008044295A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087460A1 (ja) * 2012-12-03 2014-06-12 日立コンシューマエレクトロニクス株式会社 記録再生装置
JPWO2014083671A1 (ja) * 2012-11-30 2017-01-05 日立コンシューマエレクトロニクス株式会社 記録再生装置及び記録媒体
JP2021118022A (ja) * 2020-01-21 2021-08-10 アメシスタム ストレージ テクノロジー カンパニー リミテッドAmethystum Storage Technology Co., Ltd. 光ディスクヘッド位置を正確に検出および制御するための方法、光ディスク並びに装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9721906B2 (en) * 2015-08-31 2017-08-01 Intel Corporation Electronic package with corner supports
CN115497516A (zh) * 2021-06-17 2022-12-20 广东紫晶信息存储技术股份有限公司 一种全息存储光路系统及其光束校准方法
CN115910120A (zh) * 2021-08-12 2023-04-04 广东紫晶信息存储技术股份有限公司 全息存储光盘的光道格式及其编码方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992958A (ja) * 1973-01-10 1974-09-04
JP2002063733A (ja) * 2000-08-18 2002-02-28 Nippon Telegr & Teleph Corp <Ntt> ホログラフィック光記録媒体及び記録再生装置
JP2003085768A (ja) * 2001-09-13 2003-03-20 Optware:Kk 光情報記録装置および方法
JP2005203070A (ja) * 2003-12-15 2005-07-28 Pioneer Electronic Corp 記録媒体並びに記録再生方法及び記録再生装置
JP2005228416A (ja) * 2004-02-13 2005-08-25 Pioneer Electronic Corp ホログラム記録媒体並びに記録再生方法及び記録再生装置
JP2005302149A (ja) * 2004-04-12 2005-10-27 Tdk Corp ホログラフィック記録媒体、及びその記録再生方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793504A (en) * 1996-08-07 1998-08-11 Northrop Grumman Corporation Hybrid angular/spatial holographic multiplexer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992958A (ja) * 1973-01-10 1974-09-04
JP2002063733A (ja) * 2000-08-18 2002-02-28 Nippon Telegr & Teleph Corp <Ntt> ホログラフィック光記録媒体及び記録再生装置
JP2003085768A (ja) * 2001-09-13 2003-03-20 Optware:Kk 光情報記録装置および方法
JP2005203070A (ja) * 2003-12-15 2005-07-28 Pioneer Electronic Corp 記録媒体並びに記録再生方法及び記録再生装置
JP2005228416A (ja) * 2004-02-13 2005-08-25 Pioneer Electronic Corp ホログラム記録媒体並びに記録再生方法及び記録再生装置
JP2005302149A (ja) * 2004-04-12 2005-10-27 Tdk Corp ホログラフィック記録媒体、及びその記録再生方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014083671A1 (ja) * 2012-11-30 2017-01-05 日立コンシューマエレクトロニクス株式会社 記録再生装置及び記録媒体
WO2014087460A1 (ja) * 2012-12-03 2014-06-12 日立コンシューマエレクトロニクス株式会社 記録再生装置
JP2021118022A (ja) * 2020-01-21 2021-08-10 アメシスタム ストレージ テクノロジー カンパニー リミテッドAmethystum Storage Technology Co., Ltd. 光ディスクヘッド位置を正確に検出および制御するための方法、光ディスク並びに装置
JP7128257B2 (ja) 2020-01-21 2022-08-30 アメシスタム ストレージ テクノロジー カンパニー リミテッド 光ディスクヘッド位置を正確に検出および制御するための方法、光ディスク並びに装置

Also Published As

Publication number Publication date
US20090268267A1 (en) 2009-10-29
JP4768820B2 (ja) 2011-09-07
JPWO2008044295A1 (ja) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4445963B2 (ja) ホログラム記録担体並びに記録再生方法及び装置
JP4574183B2 (ja) ホログラム記録媒体
JP4199099B2 (ja) ホログラム記録媒体及び記録再生システム
CN100440336C (zh) 全息图记录载体、全息图装置及记录方法
US20060067179A1 (en) Optical information recording device and optical information reproduction device
JP4439512B2 (ja) ホログラム記録担体
US20050180291A1 (en) Recording and reproducing method
US7453791B2 (en) Optical recording medium having a plurality of guide tracks transfer regions
JP4521055B2 (ja) 記録再生方法、記録媒体及び記録再生装置
JP4768820B2 (ja) ホログラム記録担体およびホログラム装置
US20080291807A1 (en) Hologram Record Carrier and Record Reproducing Method and System
US8085642B2 (en) Servo controlling apparatus and method of holographic information recording/reproducing system
EP1235209A2 (en) Information recording and reproducing apparatus
JP2010067339A (ja) 光ディスクに対する記録/再生方法及び装置
JP4882802B2 (ja) ホログラム記録装置及びホログラム再生装置
JP4794409B2 (ja) 光ディスク装置
JP4128964B2 (ja) 記録再生装置
JP2005276354A (ja) 記録再生装置
JP4882803B2 (ja) ホログラム記録装置及びホログラム再生装置
JP2006171416A (ja) ホログラム記録媒体及びホログラム記録再生装置
JP2008108407A (ja) 対物レンズ位置制御装置、対物レンズ位置制御方法、および情報記録再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06811636

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008538533

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12441831

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811636

Country of ref document: EP

Kind code of ref document: A1