WO2008041678A1 - Appareil de test de carte et procédé de test de carte - Google Patents

Appareil de test de carte et procédé de test de carte Download PDF

Info

Publication number
WO2008041678A1
WO2008041678A1 PCT/JP2007/069215 JP2007069215W WO2008041678A1 WO 2008041678 A1 WO2008041678 A1 WO 2008041678A1 JP 2007069215 W JP2007069215 W JP 2007069215W WO 2008041678 A1 WO2008041678 A1 WO 2008041678A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
wiring pattern
inspected
upstream
terminal
Prior art date
Application number
PCT/JP2007/069215
Other languages
English (en)
French (fr)
Inventor
Munehiro Yamashita
Original Assignee
Nidec-Read Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec-Read Corporation filed Critical Nidec-Read Corporation
Publication of WO2008041678A1 publication Critical patent/WO2008041678A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance

Definitions

  • the present invention relates to a substrate inspection apparatus and a substrate inspection method, and more specifically, to detect a spark generated between wiring patterns with certainty in a short circuit inspection of a wiring pattern provided on a substrate.
  • the present invention relates to a substrate inspection apparatus and a substrate inspection method capable of finding a defective substrate.
  • the present invention is not limited to a printed wiring board, and for example, a flexible board, a multilayer wiring board, an electrode board for a liquid crystal display or a plasma display, and various substrates such as a package board or a film carrier for a semiconductor package.
  • these various wiring boards are collectively referred to as “circuit boards”. Background art
  • a substrate (circuit board) having a plurality of wiring patterns is insulative with respect to other wiring patterns for each wiring pattern using an insulation inspection apparatus (whether sufficient insulation is ensured). By making this determination, an insulation inspection is performed to inspect whether the substrate is non-defective.
  • a predetermined voltage (a voltage between the wiring patterns is unstable immediately after the applied voltage is applied) and a large transient current is instantaneously generated between the wiring patterns. Since the current flows, the voltage between the wiring patterns is stabilized at the applied voltage V, and the quality of the insulation state is determined after the elapsed time (predetermined time) when the current is stabilized. Since a very high DC voltage (applied voltage) is applied, sparks may occur between the wiring patterns after the voltage is applied until the predetermined time has elapsed. When the insulation resistance value of ⁇ ⁇ changed, there was a problem! In order to detect such a spark, an insulation inspection apparatus and an insulation inspection method capable of performing the spark detection disclosed in Patent Document 1 have been proposed.
  • Patent Document 1 The principle of the insulation inspection apparatus and method disclosed in Patent Document 1 is that when a spark is generated by measuring a voltage change value between wiring patterns during a predetermined time when an applied voltage is applied to the wiring pattern. By detecting the voltage drop, the spark is detected.
  • the graph showing the voltage change shown in FIG. 10 indicates that sparks occurred at time t21 and time t22 in the graph.
  • the spark is detected. Is detected.
  • Patent Document 1 Japanese Patent No. 3546046
  • the spark detection method disclosed in Patent Document 1 has the problem of detecting the spark by the voltage drop (the amount of change in the voltage within a predetermined time) as shown in FIG. Have! /
  • the voltage drop is a force that is detected from the amount of change in voltage. For example, the voltage is measured every At time, and between time t23 and time t24 as shown in FIG. 10 (the time between time t23 and time t24 is At. When the amount of change in voltage is detected, the amount of change in voltage increases. As a result, even though a spark A actually occurred between time t3 and time t4, the spark could not be detected! /, And there was a problem! /.
  • the applied voltage applied for the test is set to 100 V or higher (usually 250 V) and the test is executed.
  • the spark generated at this time has a size of approximately 10V or less (the size of spark B shown in Fig. 10 is approximately 10V or less).
  • the voltage drop level is set to around 10V.
  • a voltage drop of 240 V must be detected, and only 4% The amount of change was detected, and the extremely high accuracy required was the reason for the above difficult problems.
  • the positive voltage terminal and the negative voltage terminal for measuring voltage are brought into contact with each other, and the current is electrically independent from both voltage terminals.
  • the positive electrode current terminal and the negative electrode current terminal for supplying are brought into contact with each other.
  • a current is supplied to the wiring pattern from both current terminals, and a voltage generated in the wiring pattern is measured using both voltage terminals, whereby the resistance value of the wiring pattern is calculated.
  • a board inspection device in which a voltage source that supplies power and a voltmeter that measures a potential difference are controlled by a single switch element, such as an inspection device (see Patent Document 1), the voltage terminal and current terminal are electrically independent. As a result, this four-terminal measurement method could not be implemented.
  • the present invention has been made in view of such circumstances, and can perform the four-terminal measurement method and reliably detect even a minute spark without calculating the amount of change in voltage. Substrate inspection apparatus and substrate inspection method that can be performed are submitted.
  • the wiring pattern to be inspected is selected from the plurality of wiring patterns, and the insulation for performing the insulation inspection of the wiring pattern is selected.
  • An inspection apparatus wherein the current corresponding to each of the plurality of wiring patterns is applied to the upstream and downstream current supply terminals that supply current to the wiring pattern, and the current corresponding to each of the plurality of wiring patterns.
  • Voltage detection for detecting the voltages of the upstream and downstream voltage detection terminals for detecting the voltage generated by the detection, and the upstream current supply terminal and the upstream voltage detection terminal corresponding to the wiring pattern to be inspected
  • the wiring pattern to be inspected is determined according to the means and the voltage value detected by the voltage detecting means.
  • an insulation inspection device characterized by detecting a spark of a wire and other wiring patterns.
  • the invention according to claim 2 is characterized in that, in the short-circuit inspection, the insulation inspection device makes the upstream voltage detection terminal and the upstream current supply terminal conductive with the wiring pattern to be inspected. 2.
  • the invention according to claim 3 is an insulation inspection apparatus for selecting a wiring pattern to be inspected from the plurality of wiring patterns on a circuit board on which the plurality of wiring patterns are formed, and performing an insulation inspection of the wiring pattern. It is generated by applying the current corresponding to each of the plurality of wiring patterns and the upstream and downstream current supply terminals supplying current to the wiring pattern and the current corresponding to each of the plurality of wiring patterns.
  • An upstream and downstream voltage detection terminal for detecting the voltage, and a voltage detection means for detecting a voltage between the downstream current supply terminal and the downstream voltage detection terminal corresponding to the wiring pattern to be inspected.
  • An insulation inspection apparatus is provided that detects a spark of the wiring pattern to be inspected and another wiring pattern based on a voltage value detected by the voltage detecting means.
  • the downstream current supply terminal and the downstream voltage detection terminal are in a conductive state with the wiring pattern to be inspected at the time of the short circuit inspection, and the upstream current 4.
  • the invention according to claim 5 is an insulation inspection method for selecting a wiring pattern to be inspected from the plurality of wiring patterns on a circuit board on which the plurality of wiring patterns are formed, and performing an insulation inspection of the wiring pattern. Then, a wiring pattern to be detected is selected from a plurality of wiring patterns on the circuit board, and an upstream current supply terminal for supplying a current corresponding to the selected wiring pattern and a voltage are detected. Connect the upstream voltage detection terminal to the conductive state and connect it to a wiring pattern other than the wiring pattern to be inspected. Corresponding downstream current supply terminals for supplying current and downstream voltage detection terminals for detecting voltage are connected in a conductive state, and current is supplied from the upstream current terminal to the downstream current terminal. When the current is supplied, the voltages at the upstream current supply terminal and the upstream voltage detection terminal connected to the wiring pattern to be inspected are detected, and the voltage caused by the spark is detected from the detected voltage. An insulation inspection method is provided.
  • the invention described in claim 6 is an insulation inspection method for selecting a wiring pattern to be inspected from the plurality of wiring patterns on a circuit board on which the plurality of wiring patterns are formed, and performing an insulation inspection of the wiring patterns. Then, a wiring pattern to be detected is selected from a plurality of wiring patterns on the circuit board, a downstream current supply terminal for supplying a current corresponding to the selected wiring pattern, and a voltage are detected.
  • a downstream voltage detection terminal for connection to a conductive state and an upstream current supply terminal for supplying a current corresponding to a wiring pattern other than the wiring pattern to be inspected, and an upstream current for detecting a voltage
  • the side voltage detection terminal is connected to the conductive state, current is supplied from the upstream current terminal to the downstream current terminal, and the wiring pattern to be inspected is connected when the current is supplied. It has been detected the voltage of the downstream-side current supply terminal and the second voltage detection terminal, from the detected voltage to provide an insulation inspection method and detecting a voltage caused by the spark.
  • the voltage change due to a minute spark is measured by measuring the voltage between the upstream current supply terminal and the upstream voltage detection terminal for inspecting the substrate to be inspected. It is possible to provide a device to be inspected that can reliably detect.
  • the upstream current supply terminal is brought into conduction with the wiring pattern to be inspected, and the downstream voltage detection terminal and the downstream current supply terminal are other than the wiring pattern to be detected. Since all the wiring patterns are in a conductive state, spark detection can be performed efficiently by combining the wiring patterns.
  • the downstream side current supply for inspecting the substrate to be inspected.
  • the downstream current supply terminal and the downstream voltage detection terminal are brought into conduction with the wiring pattern to be inspected, and the upstream current supply terminal and the upstream voltage detection terminal are inspected. Since all the wiring patterns other than the wiring pattern are in a conductive state, spark detection can be performed efficiently by combining the wiring patterns.
  • the present invention relates to an insulation inspection apparatus and method for detecting a spark generated when an insulation inspection is performed on a plurality of wiring patterns formed on a circuit board.
  • FIG. 1 is a schematic configuration diagram of an embodiment of an insulation inspection apparatus according to the present invention.
  • the insulation inspection apparatus 1 according to the first embodiment of the present invention includes a current supply means 2, a first voltage detection means 3, a current detection means 4, a second voltage detection means 5, a control means 6, a switching means 7, and a current supply terminal. 8.
  • a voltage detection terminal 9 and a display means 10 are provided.
  • an insulation inspection apparatus 1 of the present invention a circuit board CB to be inspected, and a co-tant probe CP that electrically connects the insulation inspection apparatus 1 and the circuit board CB are shown. ing.
  • the insulation inspection apparatus 1 detects a spark by using a voltage difference between a current supply terminal connected to the wiring pattern P to be inspected and a voltage measurement terminal. This is because the current supply terminal connected to the wiring pattern P and the voltage measurement terminal are equipotential as long as no spark is generated.
  • the circuit board CB shown in FIG. 1 has four wiring patterns P1 to P4.
  • the number and shape of the wiring patterns of the circuit board CB are appropriately set according to the circuit board CB to be designed.
  • circuit board CB in FIG. 1 shows a letter-shaped wiring pattern P1, a letter-shaped wiring pattern P2, and a letter-shaped wiring pattern P3 and P4! / .
  • Fig. 1 four contact probes C are in electrical contact with each of the wiring patterns P1 to P4. P is shown.
  • This contact probe CP connects the insulation inspection device 1 and the circuit board CB so as to be electrically conductive. Further, the position and number of contact probes CP are appropriately set according to the wiring pattern formed on the circuit board CB.
  • an upstream and downstream current supply terminal and an upstream and downstream voltage detection terminal which will be described later, are connected to a predetermined inspection position provided on the spring pattern by one contact probe CP. However, the current supply terminal and the voltage detection terminal may be brought into contact with a predetermined inspection position by two separate contact probes CP.
  • the current supply unit 2 applies a predetermined voltage for performing an insulation test between a wiring pattern to be inspected and another wiring pattern (hereinafter, between inspection objects).
  • the current supply means 2 can be, for example, a current controller, but is not particularly limited.
  • the power to use is S.
  • current is supplied to a predetermined wiring pattern by the current supply means 2 which is a current' controller, and a predetermined voltage is applied between inspection objects.
  • the voltage to be applied by the current supply means 2 is set to 200 to 250 V as described above.
  • the first voltage detection means 3 detects a voltage between inspection objects.
  • a voltmeter can be used as the first voltage inspection means 3, but it is not particularly limited as long as it can detect a voltage between inspection objects.
  • the resistance value between the inspection objects can be calculated. Furthermore, the insulation between inspection objects can be inspected by using this resistance value.
  • the operation of the current supply means 2 is set to be controlled according to the voltage value detected by the first voltage detection means 3.
  • the current detection means 4 detects a current between inspection objects.
  • an ammeter can be used as the current detection means 4, but the current detection means 4 is not particularly limited as long as it can detect a current value flowing between inspection objects. It should be noted that the current value between the inspection objects can also be detected by using the force S that can determine the current value supplied by the current supply means 2 and the current detection means 4.
  • the current supply terminal 8 is connected to each wiring pattern P via a contact probe CP in order to supply a current between inspection objects.
  • the current supply terminal 8 includes an upstream current supply terminal 81 that connects the upstream side (positive electrode side) of the current supply unit 2 and the wiring pattern, and a downstream side (negative electrode side) of the current supply unit 2 or the current detection unit 4.
  • a downstream current supply terminal 82 for connecting the wiring pattern P is provided.
  • an upstream current supply terminal 81 and a downstream current supply terminal 82 of this current supply terminal 8 are provided for each wiring pattern P.
  • Each of the upstream current supply terminal 81 and the downstream current supply terminal 82 has a switch element SW of the switching means 7, and the ON / OFF operation of the switch element SW of the switching means 7 causes the connection state / The unconnected state will be set.
  • the current supply terminal 8 is provided with a resistance for electrostatic discharge protection.
  • the voltage detection terminal 9 is connected to each wiring pattern P via a contact probe CP in order to detect a voltage between inspection objects.
  • the voltage detection terminal 9 includes an upstream voltage detection terminal 91 connecting the upstream side (positive electrode side) of the first voltage detection means 3 and the fountain pattern P, and a downstream side (negative electrode side) of the first voltage detection means 3. It has a downstream voltage detection terminal 92 for connecting the wiring pattern P.
  • an upstream side voltage detection terminal 91 and a downstream side voltage detection terminal 92 of this voltage detection terminal 9 are provided for each wiring pattern P.
  • the upstream side voltage detection terminal 91 and the downstream side voltage detection terminal 92 each have a switching element SW of the switching means 7 like the current supply terminal 8, and the switching element SW of the switching means 7 is turned ON / OFF. With the OFF operation, the connected / unconnected status is set.
  • the current supply terminal 8 and the voltage detection terminal 9 are arranged such that four terminals are arranged with respect to one contact probe CP in conductive contact with the wiring pattern P as shown in FIG.
  • four switch elements SW for ON / OFF control of each terminal are provided.
  • the switch element for controlling the operation of the upstream current supply terminal 81 is denoted by SW1.
  • the switch element that controls the operation of the upstream voltage detection terminal 91 is denoted by SW2
  • the switch element that controls the operation of the downstream current supply terminal 82 is denoted by SW3, and the operation of the downstream voltage detection terminal 92 is controlled.
  • the switch element is indicated by symbol SW4.
  • the switching means 7 includes a plurality of switch elements SW that are conductively connected to the contact probes CP. This switching means 7 is based on an operation signal from the control means 6 described later. The ON / OFF operation is controlled.
  • the second voltage detection means 5 detects the voltages of the upstream current supply terminal 81 and the upstream voltage detection terminal 91. Specifically, the second voltage detection means 5 detects the voltage difference between the upstream current supply terminal 81 and the upstream voltage detection terminal 91.
  • This second voltage detection means 5 has a comparator 52 for calculating the difference between the voltage at the upstream current supply terminal 81 and the upstream voltage detection terminal 91 as shown in FIG. 1, and a voltmeter 51 for detecting this difference. Configured.
  • the comparator 52 determines the voltage difference between the upstream current supply terminal 81 and the upstream voltage detection terminal 91, and the voltmeter 51 detects this difference.
  • a spark between the wiring pattern P to be inspected and another wiring pattern is detected based on the voltage value detected by the second voltage detecting means 5.
  • Voltage values and current values detected by the first voltage detection means 3, the current detection means 4 and the second voltage detection means 5 are given elapsed time information to the control means 6 described later (in time series). Sent as information).
  • the control means 6 selects an arrangement pattern P to be inspected, detects a spark based on the voltage values from the first voltage detection means 3 and the second voltage detection means 5, and switches the switching means 7 An instruction signal for the operation is sent.
  • the control means 6 includes selection means 61, determination means 62, and storage means 63 as shown in FIG.
  • the storage means 63 stores information related to the wiring pattern P of the circuit board CB, information related to the inspection points of the wiring pattern P, and information about detected values to be detected.
  • the selection means 61 selects the wiring pattern P to be inspected from the plurality of wiring patterns P on the circuit board CB, and specifies the wiring pattern P to be inspected. When the selecting means 61 specifies the wiring pattern P to be inspected, wiring patterns to be subjected to the insulation inspection are sequentially selected.
  • the method for selecting a wiring pattern to be inspected performed by the selection means 61 is exemplified by a method in which the order of wiring patterns to be inspected is set in the storage means 63 in advance, and the wiring pattern to be inspected is selected according to this order. be able to.
  • This selection method can adopt the method as described above, but is not particularly limited as long as the wiring pattern to be inspected is selected in order! /.
  • the selection of a specific wiring pattern performed by the selection means 61 is performed by using the switching means 7. For example, by performing ON / OFF control of each switch element SW of the switching means 7, a wiring pattern to be inspected can be selected.
  • the switch element SW is turned on so that the wiring pattern to be inspected is connected to the upstream current supply terminal 81 for connection to the current supply means 2. Become. At the same time, the switch element SW is turned on so that the upstream side voltage detecting means 91 and the wiring pattern are connected.
  • the selection means 61 selects the upstream current supply terminal 81 and the upstream voltage detection terminal 91 connected to the wiring pattern P1. Then, a signal for urging the switch elements SW1 and SW2 of these terminals 81 and 91 to be 0 N is transmitted. When the switching means 7 receives this signal, the switch element SW1 and the switch element SW2 operate.
  • a signal is transmitted that prompts the switch SW4 corresponding to a wiring pattern other than the wiring pattern to be inspected (remaining wiring patterns) to be turned on.
  • the selection means 61 as described above selects the wiring pattern P to be inspected from the plurality of wiring patterns P on the circuit board CB.
  • the wiring pattern P selected by the selection means 61 of the insulation inspection apparatus 1 shown in the first embodiment is a single wiring pattern from a plurality of wiring patterns formed on the circuit board CB. P is elected. That is, an insulation inspection is performed between one wiring pattern P selected by the selection means 61 and all the remaining wiring patterns P.
  • the determination unit 62 determines the occurrence of spark based on the voltage value from the second voltage detection unit 5.
  • the determination performed by the determination means 62 can be set to determine that a spark has occurred if a voltage detected above the threshold value exceeds the threshold value. It is also possible to set so that the voltage value by the second voltage detection means 5 is compared with the voltage value in the case of a non-defective product, and the occurrence of spark is detected by the difference.
  • This determination means 62 detects a spark from the amount of change in voltage value over time.
  • the control means 6 may be provided with calculation means (not shown) for detecting the size of the spark.
  • this calculation means calculates the energy amount of the force spark such as the voltage value and the elapsed time. Based on the result of this calculation means, it becomes possible to recognize the magnitude of the spark and to recognize the degree of the degree of damage to the circuit board CB.
  • the display means 10 displays the state of insulation inspection. This display means 10 will display the discovery of the spark.
  • the calculated spark size is also displayed on the display means 10.
  • the circuit board CB is arranged at a predetermined inspection position, and a contact probe is arranged at an inspection point on the wiring pattern P formed on the circuit board CB.
  • the selection means 61 selects the wiring pattern P to be inspected.
  • the selection means 61 specifies the upstream current supply terminal 81 and the upstream voltage detection terminal 91 of the wiring pattern P selected as the inspection target to the switching means 7. Is done.
  • an operation signal is transmitted from the selection means 61 to the switching means 7 so that the switch elements SW1 and SW2 for connecting the identified upstream current supply terminal 81 and the upstream voltage detection terminal 91 are turned on. Is done.
  • the switching means 7 receives a signal relating to the ON / OFF operation of the switch element from the selection means 61, ON / OFF control of the switch element SW is performed according to this signal.
  • the switch elements SW1 and SW2 force SON are connected to the upstream current supply terminal 81 and the upstream voltage detection terminal 91 corresponding to the wiring pattern P1.
  • the contact probe CP force S that is in contact with the wiring patterns P2 to P4 other than the wiring pattern P1 is connected to the downstream current supply terminal 82, each downstream current supply terminal is connected. Control so that 82 switch element SW4 is turned on.
  • downstream voltage detection terminal 92 corresponding to the wiring pattern P other than the inspection target may be turned on or off by the switch element SW3.
  • FIG. 2 is an embodiment showing an operating state of the insulation inspection apparatus according to the present invention.
  • the wiring pattern P1 as described above is selected for inspection. Therefore, in the wiring pattern P1, the switch element SW1 and the switch SW2 are turned on, and the upstream current supply terminal 81 and the upstream voltage detection terminal 91 are connected!
  • the distribution patterns P2 to P4 other than the inspection target are switched by the switch element SW4 force SON and connected to the downstream current supply terminal 82.
  • the upstream current supply terminal 81 and the upstream voltage detection terminal 91 of the wiring pattern P 1 to be inspected are connected to the second voltage detection means 5.
  • the switch element SW as described above is ON or OFF controlled, a current is applied to the wiring pattern P1 to be inspected.
  • the second voltage detection means 5 detects a change in the voltage value and transmits the voltage value to the control means 6 with time information relating to the voltage value.
  • the determination unit 62 compares the voltage value with a predetermined threshold value. At this time, if the voltage value is larger than the threshold value, the judging means 62 judges that a spark has occurred, and sends the fact to the display means 10 for display.
  • FIG. 3 is an example showing a change in voltage value detected by the insulation inspection apparatus of the present invention.
  • FIG. 3 (a) shows a voltage change indicating a spark state between inspection objects
  • FIG. 3 (b) shows a voltage change indicating a spark detection state of the insulation inspection apparatus according to the present invention. Yes.
  • the insulation inspection apparatus 1 detects a voltage difference between the upstream current supply terminal 81 and the upstream voltage detection terminal 91 as described above, and detects a spark based on the difference.
  • the first voltage detection means 3 increases the detected voltage value (between the wiring patterns to be inspected) after the current supply means 2 starts to supply current to the wiring pattern P1 (time tl). Voltage).
  • time t3 when the predetermined voltage value required for the insulation test is reached (time t3), the insulation test is executed. In FIG. 3, it is shown that a spark is generated at time t2 during current supply and at time t4 during insulation inspection.
  • the second voltage detection means 5 detects the voltage between the upstream voltage supply terminal 81 and the upstream current detection terminal 91. In this case, while the current is supplied by the current supply means 2 (time t1 to time t3), a voltage value depending on the protective resistance is detected, and when a predetermined voltage is applied between the wiring patterns (time After t3), the voltage value is almost zero.
  • the second voltage detection means 5 detects a spark.
  • a spark as shown in FIG. 3 occurs, a rapid voltage change is detected. For example, if a spark occurs between time tl and time t3 when the wiring pattern to be inspected is charged, the voltage flowing through the protective resistance rises rapidly (time t2). By detecting this sudden voltage increase, a spark can be detected.
  • a spark spark at time t4 occurs when an insulation inspection is performed between the wiring pattern to be inspected and another wiring pattern after charging of the wiring pattern to be inspected is completed.
  • the second voltage detection means 5 detects a voltage that rapidly increases from a voltage that was substantially zero.
  • the voltage detected by the second voltage detecting means 5 is substantially zero while no spark is generated, so that the spark detection is easily performed by the change in the voltage.
  • FIG. 3 (b) shows the determination means 62 of the control means 6 setting a threshold value for detecting a spark.
  • a threshold value for detecting a spark For example, an alternate long and two short dashes line ⁇ (setting ⁇ ) shown in FIG. 3B is set to a voltage value larger than the voltage value exerted on the protective resistance between time tl and time t3.
  • this setting a it is determined that a spark has occurred when the voltage value detected by the second voltage detecting means 5 exceeds the set value ⁇ . In this case, the spark detection can be easily performed by setting only the setting ⁇ .
  • the alternate long and short dash line ⁇ (setting ⁇ ) shown in FIG. 3 (b) is from time tl to time t3,
  • a setting value that is different from 3 or later is set.
  • this setting is / 3
  • the display means 10 displays that a spark has occurred. At this time, the size of the spark is calculated by the calculation means.
  • an area where a voltage value larger than a threshold value for detecting the spark exists can be calculated.
  • the size can be calculated by obtaining the area of a place larger than the set value of ⁇ ( The two-dot chain line ⁇ shown in Fig. 3 and the part surrounded by the voltage value transition (the part shown by diagonal lines)).
  • the size of the spark calculated by this calculation means is also displayed on the display means 10.
  • a substrate to be inspected in which a spark has occurred during the inspection is handled as a defective product.
  • the above is the description of the insulation inspection apparatus 1 according to the first embodiment of the present invention.
  • the difference between the insulation inspection apparatus 100 of the second embodiment and the insulation inspection apparatus 1 of the first embodiment is that the wiring pattern force to be inspected is higher in the potential set between the wiring patterns (plus side (upstream side)). Either connected or connected to the low potential (minus side (downstream side))! /.
  • the wiring pattern to be inspected is connected to a high potential.
  • the wiring pattern to be inspected has a low potential. It is connected to the.
  • the insulation inspection apparatus 100 detects the voltage between the voltage detection terminal and the current supply terminal connected to the wiring pattern to be inspected, like the insulation inspection apparatus 1 according to the first embodiment. To detect a spark.
  • FIG. 4 shows a schematic configuration of an insulation inspection apparatus according to the second embodiment of the present invention.
  • the insulation inspection apparatus 100 includes a current supply unit 2, a first voltage detection unit 3, a current detection unit 4, a second voltage detection unit 50, a control unit 6, a switching unit 7, and a current supply. Terminal 8, voltage detection terminal 9, and display means 10 are provided.
  • the insulation inspection apparatus 100 of the present invention the circuit board CB to be inspected, the insulation inspection apparatus 1 and the circuit board CB are electrically connected.
  • a co-connected probe CP is shown.
  • the insulation inspection apparatus 100 detects a spark by using the voltage difference between the current supply terminal connected to the wiring pattern P to be inspected as described above and the voltage measurement terminal. . This uses that the current supply terminal connected to the wiring pattern P and the voltage measurement terminal are equipotential as long as no spark occurs.
  • one wiring pattern is connected to the higher potential side, and all the remaining wiring patterns are connected to the lower potential side to perform the insulation test.
  • one wiring pattern is connected to the low potential side, and all the remaining wiring patterns are connected to the high potential side to perform insulation inspection. For this reason, the connection with respect to a test object is different in the first embodiment and the second embodiment. For this reason, when the structure of 1st embodiment and the structure of 2nd embodiment are the same, detailed description is abbreviate
  • the circuit board CB shown in FIG. 4 has four wiring patterns P1 to P4, like the circuit board CB shown in FIG. FIG. 4 further shows four contact probes CP that are in electrical contact with the wiring patterns P1 to P4.
  • the contact probe CP connects the insulation inspection apparatus 1 and the circuit board CB so as to be electrically conductive.
  • the current supply means 2 is a predetermined voltage for performing an insulation test between a wiring pattern to be inspected and another wiring pattern (hereinafter referred to as an inspection target). Is applied.
  • the current supply means 2 supplies current to all wiring patterns other than the wiring pattern to be inspected.
  • the first voltage detection means 3 detects the voltage between the inspection objects as in the case of the first embodiment.
  • the resistance value between the inspection objects can be calculated. Furthermore, the insulation between inspection objects can be inspected by using this resistance value.
  • the current detection means 4 detects the current between the inspection objects as in the case of the first embodiment. [0047] As in the case of the first embodiment, the current supply terminal 8 is connected to each wiring pattern P via a contact probe CP in order to supply a current between inspection targets.
  • the current supply terminal 8 includes an upstream current supply terminal 81 that connects the upstream side (positive electrode side) of the current supply unit 2 and the wiring pattern, and a downstream side (negative electrode side) of the current supply unit 2 or the current detection unit 4.
  • a downstream current supply terminal 82 for connecting the wiring pattern P is provided.
  • an upstream current supply terminal 81 and a downstream current supply terminal 82 of this current supply terminal 8 are provided for each wiring pattern P.
  • Each of the upstream current supply terminal 81 and the downstream current supply terminal 82 has a switch element SW of the switching means 7, and the ON / OFF operation of the switch element SW of the switching means 7 causes the connection state / The unconnected state will be set.
  • the current supply terminal 8 is provided with a resistance for electrostatic discharge protection.
  • the voltage detection terminal 9 is connected to each wiring pattern P via a contact probe CP in order to detect a voltage between inspection targets.
  • the voltage detection terminal 9 includes an upstream voltage detection terminal 91 connecting the upstream side (positive electrode side) of the first voltage detection means 3 and the fountain pattern P, and a downstream side (negative electrode side) of the first voltage detection means 3. It has a downstream voltage detection terminal 92 for connecting the wiring pattern P.
  • an upstream side voltage detection terminal 91 and a downstream side voltage detection terminal 92 of this voltage detection terminal 9 are provided for each wiring pattern P.
  • the upstream side voltage detection terminal 91 and the downstream side voltage detection terminal 92 each have a switching element SW of the switching means 7 like the current supply terminal 8, and the switching element SW of the switching means 7 is turned ON / OFF. With the OFF operation, the connected / unconnected status is set.
  • the current supply terminal 8 and the voltage detection terminal 9 have four terminals arranged for one contact probe CP that is in conductive contact with the wiring pattern P. At the same time, four switch elements SW for ON / OFF control of each terminal are provided.
  • the switch element that controls the operation of the upstream current supply terminal 81 is denoted by SW1
  • the switch element that controls the operation of the upstream voltage detection terminal 91 is denoted by SW2
  • the switch element that controls the operation of the side current supply terminal 82 is denoted by symbol SW3
  • the switch element that controls the operation of the downstream side voltage detection terminal 92 is denoted by symbol SW4.
  • the switching means 7 includes a plurality of switch elements SW that are conductively connected to the contact probes CP described above. This switching means 7 is based on an operation signal from the control means 6 described later. The ON / OFF operation is controlled.
  • the insulation inspection device 100 of the second embodiment includes second switching means 71.
  • This second switching means 71 connects the downstream current supply terminal 82 so as to be equipotential with the upstream current supply terminal 81, or the downstream side of the first voltage detection means 3 of the first voltage detection means 3. Connect it. In FIG. 4, it is connected to the downstream side of the first voltage detection means 3 and is connected in series to the current detection means 4.
  • the second switching means 71 connects the downstream current supply terminal 82 connected to the wiring pattern to be inspected as described above to the upstream side of the current supply means 2 or the upstream side of the current detection means 4. When connected to the upstream side of the current supply means 2, it can be equipotential with the upstream current supply terminal 81.
  • the second switching means 71 uses the force S to control the potential level of the wiring pattern to be inspected.
  • the insulation inspection apparatus 100 of the second embodiment has a force S that can lower the potential of the wiring pattern to be inspected by the second switching means 71, and a voltage control means 2 'for controlling this drop. It is preferable to provide it.
  • the amount of the drop can be controlled.
  • the second voltage detection means 50 detects the voltages at the downstream current supply terminal 82 and the downstream voltage detection terminal 92. Specifically, the second voltage detection means 50 detects the voltage difference between the downstream current supply terminal 82 and the downstream voltage detection terminal 92.
  • the second voltage detection means 50 has a comparator 54 that calculates the difference between the voltage at the downstream current supply terminal 82 and the downstream voltage detection terminal 92 as shown in FIG. 3, and a voltmeter 53 that detects this difference. Configured.
  • the comparator 54 determines the voltage difference between the downstream current supply terminal 82 and the downstream voltage detection terminal 92, and the voltmeter 53 detects this difference.
  • a spark between the wiring pattern P to be inspected and another wiring pattern is detected based on the voltage value detected by the second voltage detecting means 50.
  • the voltage value and current value detected by the first voltage detection means 3, the current detection means 4 and the second voltage detection means 5 are transmitted to the control means 6 described later, as in the case of the first embodiment. Is sent (as time-series information).
  • the control means 6 selects an arrangement pattern P to be inspected, detects a spark based on the voltage values from the first voltage detection means 3 and the second voltage detection means 5, or switches 7 An instruction signal for the operation is sent.
  • control means 6 performs spark detection based on the voltage values from the first voltage detection means 3 and the second voltage detection means 50, and transmits an instruction signal for the operation of the switching means 7. To do.
  • the control means 6 includes selection means 61, determination means 62, and storage means 63 as shown in FIG.
  • the selection means 61 selects a wiring pattern P to be inspected from a plurality of wiring patterns P on the circuit board CB, and specifies the wiring pattern P to be inspected.
  • the selecting means 61 specifies the wiring pattern P to be inspected, wiring patterns to be subjected to the insulation inspection are sequentially selected.
  • the method for selecting a wiring pattern to be inspected performed by the selection means 61 is exemplified by a method in which the order of wiring patterns to be inspected is set in the storage means 63 in advance, and the wiring pattern to be inspected is selected according to this order. be able to.
  • This selection method is as described above. The method can be adopted, but it is not particularly limited as long as the wiring patterns to be inspected are selected in order!
  • the selection of a specific wiring pattern performed by the selection means 61 is performed by using the switching means 7. For example, by performing ON / OFF control of each switch element SW of the switching means 7, a wiring pattern to be inspected can be selected.
  • the switch element SW3 corresponding to the wiring pattern to be inspected is turned on.
  • the switch element SW4 may be turned on.
  • the switch element SW1 and the switch element SW2 corresponding to the wiring pattern are turned on.
  • the control means 6 also controls the operation of the second switching means 71 to control the potential of the wiring pattern to be inspected as described above.
  • the embodiment shown in FIG. 5 or FIG. 6 shows a case where the wiring pattern P1 is an inspection target.
  • the selection means 61 selects the downstream current supply terminal 82 and the downstream voltage detection terminal 92 connected to the wiring pattern P1, and turns on the switch element SW3 and the switch element SW4 of these terminals 82 and 92. Send a signal to
  • the selection means 61 as described above selects the wiring pattern P to be inspected from the plurality of wiring patterns P on the circuit board CB.
  • one wiring pattern P is selected from a plurality of wiring patterns formed on the circuit board CB. That is, an insulation inspection is performed between one wiring pattern P selected by the selection means 61 and all the remaining wiring patterns P.
  • the determination unit 62 determines the occurrence of a spark based on the voltage value from the second voltage detection unit 5. The determination performed by the determination means 62 can be set to determine that a spark has occurred if a voltage detected above the threshold value exceeds the threshold value. It is also possible to set so that the voltage value by the second voltage detection means 5 is compared with the voltage value in the case of a non-defective product, and the occurrence of spark is detected by the difference.
  • This determination means 62 detects a spark from the amount of change in voltage value over time.
  • the control means 6 can be provided with calculation means (not shown) for detecting the size of the spark.
  • this calculation means calculates the energy amount of the force spark such as the voltage value and the elapsed time. Based on the result of this calculation means, it becomes possible to recognize the magnitude of the spark and to recognize the degree of the degree of damage to the circuit board CB.
  • the display means 10 displays the state of the insulation test. This display means 10 will display the discovery of the spark.
  • the calculated spark size is also displayed on the display means 10.
  • the circuit board CB is arranged at a predetermined inspection position, and a contact probe is arranged at an inspection point on the wiring pattern P formed on the circuit board CB.
  • the selection means 61 selects the wiring pattern P to be inspected.
  • the selection means 61 identifies the downstream current supply terminal 82 and the downstream voltage detection terminal 92 of the wiring pattern P selected as the inspection target to the switching means 7.
  • the switch element SW3 for switching the identified downstream current supply terminal 82 and the downstream voltage detection terminal 92 to the connected state, the switch An operation signal is transmitted from the selection means 61 to the switching means 7 so that the element SW4 is turned on.
  • the switching means 7 receives a signal relating to the ON / OFF operation of the switch element from the selection means 61, ON / OFF control of the switch element SW is performed according to this signal.
  • the switch element SW3 and the switch element SW4 connected to the downstream current supply terminal 82 and the downstream voltage detection terminal 92 corresponding to the wiring pattern P1 are turned ON.
  • the contact probe CP force that contacts the spring patterns P2 to P4 other than the spring pattern P1 is connected to the upstream current supply terminal 81 and the upstream voltage detection terminal 91, respectively. Further, control is performed so that the switch element SW1 of each upstream current supply terminal 81 and the switch element SW2 of the upstream voltage detection terminal 91 are turned ON.
  • the second switching means 71 operates so as to connect the downstream side voltage detection terminal 92 to the upstream side of the current supply means 2 (connected to the A side in FIG. 5).
  • FIG. 5 is an embodiment showing an operation state of the insulation inspection apparatus according to the present invention.
  • the wiring pattern P1 as described above is selected as the inspection target. For this reason, the wiring pattern P1 is connected to the downstream current supply terminal 82 and the downstream voltage detection terminal 92 when the switch element SW3 and the switch SW4 are turned ON.
  • the switch element SW1 and the switch element SW2 are turned on, and the upstream current supply terminal 81 and the upstream voltage detection terminal 91 are connected.
  • downstream current supply terminal 82 of the wiring pattern P1 to be inspected as shown in FIG. 5 is connected to the upstream side of the current supply means 2, and the downstream voltage detection terminal 92 is connected to the second voltage detection means 50. Connected to one side.
  • the switch element SW as described above When the switch element SW as described above is controlled ON or OFF, charging is started for all the wiring patterns. [0067] When the potentials of all the wiring patterns P reach a predetermined potential, the second switching means 71 switches the switch to the B side (see FIG. 6). For this reason, the downstream current supply terminal 92 is connected to the second current detection means 4, and the potential of the wiring pattern P1 to be inspected is lowered. In this case, the voltage control means 2 ′ controls the drop (potential or drop time) of the potential of the wiring pattern to be inspected. Sparks between the wiring patterns can be detected.
  • the potential change occurs only in the wiring pattern to be inspected, and a potential difference occurs between the wiring pattern P1 to be inspected and the remaining wiring patterns P2 to P4.
  • the voltage resulting from this spark is detected by the second voltage detecting means 50.
  • the second switching means 71 is switched from the switch A side to the B side and a sufficient time has passed, that is, the potential of the wiring pattern to be inspected drops to substantially zero. Even if a spark occurs between inspection objects after a predetermined potential difference has occurred between inspection objects, a current caused by the spark flows into the wiring pattern P1 to be inspected. Therefore, a potential difference is generated between the downstream current detection terminal 82 and the downstream voltage detection terminal 92. As a result, the voltage resulting from this spark is detected by the second voltage detecting means 50.
  • the determination unit 62 compares the voltage value with a predetermined threshold value. At this time, if the voltage value is larger than the threshold value, the judging means 62 judges that a spark has occurred, and sends that fact to the display means 10 for display.
  • FIG. 7 is an example showing a change in voltage value detected by the insulation inspection apparatus of the present invention.
  • FIG. 7 (a) shows a voltage change indicating a spark state between inspection objects
  • FIG. 7 (b) shows a voltage change indicating a spark detection state of the insulation inspection apparatus according to the present invention. ing.
  • the insulation inspection apparatus 100 detects a voltage difference between the downstream current supply terminal 82 and the downstream voltage detection terminal 92 of the wiring pattern to be inspected as described above, and sparks based on the difference. Is detected.
  • the first voltage detection means 3 increases its voltage value (inspected object) after the current supply means 2 as shown in FIG. 6 starts supplying current to all the wiring patterns (time t5). All wiring patterns are raised to a predetermined potential).
  • the second switching means 71 connects the switch to the B side in order to lower the potential of the wiring pattern to be inspected (time t7).
  • the voltage value as shown in FIG. 7 (a) decreases and reaches substantially zero (time t9).
  • the time between the time t6 and the time t7 is not particularly set, and is appropriately set by the user. However, it is preferable to shorten the time as much as possible in order to shorten the inspection time. Further, the voltage control means 2 ′ controls the potential drop at time t7 and time t9.
  • the potential difference between the inspection objects is set to a predetermined inspection voltage, and the insulation inspection is started.
  • a spark is generated! /,! /, And! /,
  • the second voltage detection means 50 determines the difference in potential between the downstream current supply terminal 82 and the downstream voltage detection terminal 92. Has not occurred. For this reason, the second voltage detection means 50 detects zero voltage because the potential difference is zero.
  • the second voltage detecting means 50 detects the voltage change.
  • a spark occurs at time tlO. Again, the spark is As a result, a current flows into the arrangement pattern to be inspected, and a voltage is generated between the downstream current supply terminal 82 and the downstream voltage detection terminal 92 due to the inflow of this current. Then, the second voltage detection means 50 detects this voltage and transmits a voltage value to the control means 6.
  • a spark (such as a time tl O) occurs when the potential of a wiring pattern to be inspected is lowered to obtain a predetermined voltage and a subsequent insulation inspection is performed.
  • the second voltage detection means 5 detects a voltage that rises rapidly from a voltage that was substantially zero. For this reason, spark detection is easily performed.
  • the determination means 62 of the control means 6 shows a threshold value for detecting a spark.
  • a threshold value for detecting a spark For example, an alternate long and two short dashes line ⁇ (setting ⁇ ) shown in FIG. 7B is set to a voltage value larger than the voltage value exerted on the protective resistance during time Ijt7 force time IJ t9.
  • this setting ⁇ it is determined that a spark has occurred when the voltage value detected by the second voltage detecting means 5 exceeds the setting value ⁇ . In this case, it is possible to easily detect the spark by setting only the setting ⁇ .
  • the display means 10 displays that a spark has occurred. At this time, the size of the spark is calculated by the calculation means.
  • an area where a voltage value larger than a threshold value for detecting the spark exists can be calculated. For example, when calculating the magnitude of a spark generated at time t8 shown in FIG. By calculating the area, the size can be calculated (the part surrounded by the two-dot chain line ⁇ and the voltage value transition shown in Fig. 7 (b) (the part shown by diagonal lines)).
  • the size of the spark calculated by this calculation means is also displayed on the display means 10.
  • a substrate to be inspected in which a spark has occurred during the inspection is handled as a defective product.
  • the above is the description of the insulation inspection apparatus 100 according to the second embodiment of the present invention.
  • FIG. 8 shows a schematic configuration of an insulation inspection apparatus 101 according to the third embodiment of the present invention.
  • the insulation inspection apparatus 101 according to the third embodiment has a basic configuration similar to that of the insulation inspection apparatus 100 according to the second embodiment.
  • the second switching included in the insulation inspection apparatus 100 according to the second embodiment is used. With means 71! /!
  • the voltage drop of the wiring pattern to be inspected using the second switching means 71 In the insulation inspection apparatus 101 of the third embodiment, the wiring to be inspected The potential of the pattern is controlled using this voltage control means 2 ′.
  • the voltage control unit 2 ′ and the current supply unit 2 are set to obtain the same potential when a predetermined potential is applied to all the wiring patterns.
  • the voltage control means 2 ′ is controlled to have a potential lower than the potential of the current supply means 2.
  • the potential of the wiring pattern to be inspected is lowered.
  • the insulation inspection apparatus 101 of the third embodiment performs the inspection except that the method of lowering the potential of the wiring pattern to be inspected is different from the case of using the second switching means 71 of the insulation inspection apparatus 100 of the second embodiment. Since the method is the same, the description is omitted.
  • the position to which the voltage control means 2 ′ of the insulation inspection apparatus 101 of the third embodiment is connected is not limited to the position shown in FIG. 8, but the downstream current detection terminal 82 of the wiring pattern to be inspected and There is no particular limitation as long as the potential applied to the downstream voltage detection terminal 92 can be controlled! /.
  • the insulation inspection device 1 of the first embodiment, the insulation inspection device 100 of the second embodiment, and the insulation inspection device 101 of the third embodiment are arranged upstream or downstream connected to the wiring pattern to be inspected. Sparks are detected by detecting the voltage between the set current supply terminal, voltage detection terminal, and terminals.
  • both of the three insulation inspection devices can detect a slight voltage change caused by a spark, and a more accurate inspection can be performed.
  • a resistance and a switch element for electrostatic discharge (ESD) protection By not including the resistance of the force switch element SW configured to detect a voltage including SW, the accuracy of voltage detection can be further improved.
  • ESD electrostatic discharge
  • the spark detection device detects a spark S by detecting the potential between the current supply terminal and the voltage detection terminal as described above, and the current supply terminal
  • the voltage detection terminals and switch elements are not limited to the switch circuit configuration shown in Fig. 9 (a).
  • the switch circuit configuration shown in FIG. 9 (b) based on the switch circuit configuration in FIG. 9 (a), the upstream current supply terminal 81, the downstream current supply terminal 82, the upstream voltage detection terminal 91, and Each of the downstream voltage detection terminals 92 is provided with a resistance R for electrostatic discharge protection.
  • the current supply terminal 8 and the voltage detection terminal 9 are each connected to one resistor R, and the upstream side and the downstream side are connected in parallel. Yes.
  • Any switch circuit configuration shown in FIG. 9 can be changed as appropriate by the user, and is not limited to the circuit configuration shown in FIG. 9A described in this specification.
  • the insulation inspection apparatus there is one electrical path from the upstream and downstream current supply terminals and the upstream and downstream voltage detection terminals to contact with the wiring pattern P.
  • the contact probe CP is used (see FIGS. 1, 5 and 8). However, this contact probe CP can be arranged one by one (four) for each terminal so that each terminal and the wiring pattern P are directly connected. Thus, by directly arranging the contact probe CP with each terminal and the wiring pattern, it is possible to measure the resistance value of the wiring pattern CP that is completely unaffected by the resistance due to the electrical path.
  • the resistance value of a common electrical path that uses a single contact probe is calculated and corrected in advance, so that it is substantially the same as when the wiring pattern P is measured by the four-terminal measurement method.
  • the resistance value can also be calculated.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an insulation inspection apparatus according to the present invention.
  • FIG. 2 is an embodiment showing an operating state of an insulation inspection apparatus according to the present invention.
  • FIG. 3 is an example showing a change in voltage value detected by the insulation inspection apparatus of the present invention.
  • Fig. 3 (a) shows the voltage change indicating the spark state between the inspection objects
  • Fig. 3 (b) shows the voltage change indicating the spark detection state of the insulation inspection apparatus according to the present invention. Yes.
  • FIG. 4 shows a schematic configuration of an insulation inspection apparatus according to a second embodiment of the present invention.
  • FIG. 5 is an embodiment showing an operating state of the insulation inspection apparatus according to the second embodiment of the present invention. Shows the state of supplying current to all the wiring patterns to be inspected!
  • FIG. 6 is an embodiment showing an operating state of the insulation inspection apparatus according to the second embodiment of the present invention. Indicates that the voltage between inspection objects is the predetermined voltage and insulation inspection is being performed.
  • FIG. 7 is an example showing a change in the voltage value detected by the insulation inspection apparatus of the present invention.
  • (A) shows a voltage change indicating a spark state between inspection objects
  • FIG. 8 shows a schematic configuration of an insulation inspection apparatus according to a third embodiment of the present invention.
  • FIG. 9 A schematic configuration diagram of a current supply terminal, a voltage detection terminal, and a switch element in the spark detection device of the present invention is shown.
  • Second voltage detection means
  • Control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

明 細 書
基板検査装置及び基板検査方法
技術分野
[0001] 本発明は、基板検査装置及び基板検査方法に関し、より詳しくは、基板に設けられ る配線パターンの短絡検査にお!/、て、配線パターン間で発生するスパークを確実に 検出して、不良な基板を発見することのできる基板検査装置及び基板検査方法に関 する。
尚、本発明は、プリント配線基板に限らず、例えば、フレキシブル基板、多層配線基 板、液晶ディスプレイやプラズマディスプレイ用の電極板、及び半導体パッケージ用 のパッケージ基板やフィルムキャリアなど種々の基板における電気的配線の検査に 適用でき、本明細書では、それら種々の配線基板を総称して「回路基板」という。 背景技術
[0002] 従来、複数の配線パターンを有する基板(回路基板)は、絶縁検査装置で各配線 パターンについて、他の配線パターンとの絶縁状態の良否(十分な絶縁性が確保さ れているか否力 の判定を行うことにより、基板が良品であるか否かを検査する絶縁 検査が行われている。
この絶縁検査とは、一方の配線パターンに電圧を印加して、他方の配線パターンに 流れる電流を測定することにより、これら配線パターン間の抵抗値を算出して、この抵 抗値から絶縁状態を検査するものである。
[0003] 上記の如き絶縁検査では、配線パターンに所定電圧(印加電圧 が印加された直 後は、配線パターン間の電圧が不安定であるとともに配線パターン間に瞬時的に大 きな過渡電流が流れるため、配線パターン間の電圧が印加電圧 Vに安定し、且つ、 電流が安定する経過時間(所定時間)後に絶縁状態の良否判定を行うことになる。 しかしながら、検査対象の配線パターン間に比較的高圧の直流電圧(印加電圧)が 印加されるため、電圧を印加した後、所定時間が経過するまでに配線パターン間で スパークが発生する場合があった。そして、このスパークにより、配線パターン間の絶 縁抵抗値が変化すると!/、う不具合があった。 [0004] このようなスパークを検出するために、特許文献 1に開示されるスパーク検出を行う ことができる絶縁検査装置及び絶縁検査方法が提案されている。
この特許文献 1に開示される絶縁検査装置及び方法の原理は、配線パターンに印 加電圧が印加される所定時間中の配線パターン間の電圧の変化値を測定すること により、スパークが発生した場合の電圧降下を検出することにより、スパークを検出し ようとするものである。
例えば、図 10で示される電圧変化を示すグラフでは、グラフ中の時刻 t21と時刻 t2 2においてスパークが発生したことを示している。このように、電圧の変化を検出する とともに、スパークに起因する電圧降下(「dv/dt」を算出して得られる値)を検出(ダラ フ中の Aと Bの箇所)することにより、スパークを検出する。
[0005] 特許文献 1:特許第 3546046号公報
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、この特許文献 1に開示されるスパーク検出方法では、図 10で示され る如き電圧降下(電圧の所定時間内の変化量)によって、スパークを検出する力 下 記の如き問題点を有して!/、た。
電圧降下は電圧の変化量から検出されることになる力 例えば、電圧の測定が A t 時間毎に行われ、図 10で示す如き時刻 t23と時刻 t24間(時刻 t23と時刻 t24間が A t時間)の電圧の変化量を検出した場合、電圧の変化量は増加することになる。こ の結果、実際には時刻 t3と時刻 t4の間でスパーク Aが発生しているにもかかわらず、 スパークが検出することができな!/、問題点を有して!/、た。
[0007] また、スパークを検出する場合、スパーク発生に起因する電圧降下のレベルを設定 しなければならないが、この電圧降下のレベルを設定することが難しい問題点を有し ている。例えば、基板の絶縁検査を行う場合、検査のために印加される印加電圧は 1 00V以上(通常、 250V)に設定され検査が実行される。このとき発生するスパークは概 ね 10V以下の大きさを有している(図 10で示されるスパーク Bの大きさは約 10V以下と なる)。このため、電圧降下のレベルを 10V前後に設定することになる。この結果、 250 Vの印加電圧に対して、 240Vとなる電圧降下を検出しなければならず、僅か 4%分の 変化量を検出することになり、極めて精度の高さが要求されることが、上記の難しい 問題点に至る理由であった。
[0008] また、近年製造される基板は微細化や複雑化が進み、基板に形成される配線バタ ーンも微細化が進んでおり、配線パターン自体の抵抗値が小さくなるように形成され ている。このような背景から、配線パターンの抵抗値を正確に測定するために、四端 子測定法が用いられている。
この四端子測定法は、配線パターンの抵抗値を測定する際に、電圧を測定するた めの正極電圧端子と負極電圧端子を接触させるとともに、両電圧端子と電気的に独 立して、電流を供給するための正極電流端子と負極電流端子を接触させる。そして、 配線パターンに両電流端子から電流を供給し、この配線パターンに生じる電圧を、両 電圧端子を用いて測定することにより、配線パターンの抵抗値を算出する方法である しかしながら、従来の如き基板検査装置 (特許文献 1参照)のように電力を供給する 電圧源と電位差を測定する電圧計が一つのスィッチ素子で制御される基板検査装 置では、電圧端子と電流端子が電気的に独立していないので、この四端子測定法を 実施することができなかった。
[0009] 本発明は、このような実情に鑑みてなされたもので、四端子測定法を実施すること ができるとともに、電圧の変化量を算出することなぐ微小なスパークであっても確実 に検出することのできる基板検査装置及び基板検査方法を提出する。
課題を解決するための手段
[0010] 請求項 1記載の発明は、複数の配線パターンが形成される回路基板において、前 記複数の配線パターンから検査対象となる配線パターンが選択され、該配線パター ンの絶縁検査を行う絶縁検査装置であって、前記複数の配線パターン毎に対応する 、該配線パターンに電流を供給する上流側及び下流側電流供給端子と、前記複数 の配線パターン毎に対応する、前記電流が印加されることにより生じる電圧を検出す るための上流側及び下流側電圧検出端子と、前記検査対象となる配線パターンに対 応する上流側電流供給端子と上流側電圧検出端子との電圧を検出する電圧検出手 段と、前記電圧検出手段により検出される電圧値により、前記検査対象の配線バタ ーンと他の配線パターンのスパークを検出することを特徴とする絶縁検査装置を提供 する。
請求項 2記載の発明は、前記絶縁検査装置は、前記短絡検査時において、前記 上流側電圧検出端子と前記上流側電流供給端子を、前記検査対象の配線パターン と導通状態とし、前記下流側電圧検出端子と前記下流側電流供給端子を、前記検 查対象の配線パターン以外の全ての配線パターンと導通状態となされることを特徴と する請求項 1記載の絶縁検査装置を提供する。
請求項 3記載の発明は、複数の配線パターンが形成される回路基板において、前 記複数の配線パターンから検査対象となる配線パターンが選択され、該配線パター ンの絶縁検査を行う絶縁検査装置であって、前記複数の配線パターン毎に対応する 、該配線パターンに電流を供給する上流側及び下流側電流供給端子と、前記複数 の配線パターン毎に対応する、前記電流が印加されることにより生じる電圧を検出す るための上流側及び下流側電圧検出端子と、前記検査対象となる配線パターンに対 応する下流側電流供給端子と下流側電圧検出端子との電圧を検出する電圧検出手 段と、前記電圧検出手段により検出される電圧値により、前記検査対象の配線バタ ーンと他の配線パターンのスパークを検出することを特徴とする絶縁検査装置を提供 する。
請求項 4記載の発明は、前記絶縁検査装置は、前記短絡検査時において、前記 下流側電流供給端子と前記下流側電圧検出端子を、前記検査対象の配線パターン と導通状態とし、前記上流側電流供給端子と前記上流側電圧検出端子を、前記検 查対象の配線パターン以外の全ての配線パターンと導通状態となされることを特徴と する請求項 3記載の絶縁検査装置を提供する。
請求項 5記載の発明は、複数の配線パターンが形成される回路基板において、前 記複数の配線パターンから検査対象となる配線パターンが選択し、該配線パターン の絶縁検査を行う絶縁検査方法であって、回路基板上の複数の配線パターンから検 查対象となる配線パターンを選択し、前記選択された配線パターンに対応する、電 流を供給するための上流側電流供給端子と、電圧を検出するための上流側電圧検 出端子を導通状態に接続し、前記検査対象の配線パターン以外の配線パターンに 対応する、電流を供給するための下流側電流供給端子と、電圧を検出するための下 流側電圧検出端子を導通状態に接続し、前記上流側電流端子から前記下流側電流 端子へ、電流を供給し、前記電流供給時において、前記検査対象の配線パターンに 接続された上流側電流供給端子と上流側電圧検出端子の電圧を検出し、前記検出 された電圧から、スパークに起因する電圧を検出することを特徴とする絶縁検査方法 を提供する。
請求項 6記載の発明は、複数の配線パターンが形成される回路基板において、前 記複数の配線パターンから検査対象となる配線パターンが選択し、該配線パターン の絶縁検査を行う絶縁検査方法であって、回路基板上の複数の配線パターンから検 查対象となる配線パターンを選択し、前記選択された配線パターンに対応する、電 流を供給するための下流側電流供給端子と、電圧を検出するための下流側電圧検 出端子を導通状態に接続し、前記検査対象の配線パターン以外の配線パターンに 対応する、電流を供給するための上流側電流供給端子と、電圧を検出するための上 流側電圧検出端子を導通状態に接続し、前記上流側電流端子から前記下流側電流 端子へ、電流を供給し、前記電流供給時において、前記検査対象の配線パターンに 接続された下流側電流供給端子と下流側電圧検出端子の電圧を検出し、前記検出 された電圧から、スパークに起因する電圧を検出することを特徴とする絶縁検査方法 を提供する。
これらの発明を提供することによって、上記課題を悉く解決する。
発明の効果
請求項 1及び 5記載の発明によれば、被検査基板を検査するための上流側電流供 給端子と上流側電圧検出端子との間の電圧を測定することにより、微小なスパークに よる電圧変化を確実に検出することができる被検査装置を提供することができる。 請求項 2記載の発明によれば、短絡検査時に、上流側電流供給端子を検査対象 の配線パターンと導通状態とし、下流側電圧検出端子と下流側電流供給端子を検 查対象の配線パターン以外の全ての配線パターンと導通状態となされるので、配線 パターンの組み合わせにより効率よくスパーク検出を行うことができる。
請求項 3及び 6記載の発明によれば、被検査基板を検査するための下流側電流供 給端子と下流側電圧検出端子との間の電圧を測定することにより、微小なスパークに よる電圧変化を確実に検出することができる被検査装置を提供することができる。 請求項 4記載の発明によれば、短絡検査時に、下流側電流供給端子と下流側電圧 検出端子を検査対象の配線パターンと導通状態とし、上流側電流供給端子と上流 側電圧検出端子を検査対象の配線パターン以外の全ての配線パターンと導通状態 となされるので、配線パターンの組み合わせにより効率よくスパーク検出を行うことが できる。
発明を実施するための最良の形態
[0012] 本発明を実施するための最良の形態を説明する。
本発明は、回路基板上に形成される複数の配線パターンの絶縁検査を行う場合に 発生するスパークを検出するための絶縁検査装置及びその方法に関する。
図 1は、本発明に係る絶縁検査装置の一実施形態の概略構成図である。 本発明に係る第一実施形態の絶縁検査装置 1は、電流供給手段 2、第一電圧検出 手段 3、電流検出手段 4、第二電圧検出手段 5、制御手段 6、切替手段 7、電流供給 端子 8、電圧検出端子 9、表示手段 10を備えてなる。
図 1で示される一実施形態では、本発明の絶縁検査装置 1と、検査対象となる回路 基板 CBと、絶縁検査装置 1と回路基板 CBとを電気的に接続するコタンクトプローブ CPが示されている。
この第一実施形態の絶縁検査装置 1は、検査対象である配線パターン Pに接続さ れる電流供給端子と電圧測定端子の間の電圧差を用いることにより、スパークを検出 する。これは、配線パターン Pに接続される電流供給端子と電圧測定端子が、スパー クが発生しない限りにお!/、て、等電位であることを用いて!/、る。
[0013] 図 1に示される回路基板 CBは、 4つの配線パターン P1〜P4を有している。この回 路基板 CBが有する配線パターンは、設計される回路基板 CBに応じてその数及び 形状が適宜設定される。
尚、図 1の回路基板 CBでは、一の字状の配線パターン P1と、 Tの字状の配線パタ ーン P2と、十の字状の配線パターン P3と P4が示されて!/、る。
図 1では、各配線パターン P1〜P4に電気的に接触する 4本のコンタクトプローブ C Pが示されている。このコンタクトプローブ CPは、絶縁検査装置 1と回路基板 CBを電 気的に導通可能に接続する。また、このコンタクトプローブ CPの配置位置や配置本 数は、回路基板 CBに形成される配線パターンに応じて適宜設定されることになる。 尚、図 1の実施形態では、後述する上流側及び下流側電流供給端子と上流側及 び下流側電圧検出端子とを 1本のコンタクトプローブ CPで、配泉パターン上に設けら れる所定検査位置に導通可能に接触させているが、電流供給端子と電圧検出端子 の夫々を別々の 2本のコンタクトプローブ CPで所定検査位置に導通可能に接触させ てもよい。
[0014] 電流供給手段 2は、検査対象となる配線パターンと他の配線パターンとの間(以下 、検査対象間)に、絶縁検査を行うための所定の電圧を印加させる。
この電流供給手段 2は、例えば、カレント 'コントローラー(Current Controller)を用 いることができるが特に限定されるものではなぐ検査対象間に所定の電圧を印加さ せること力 Sできるものであれば全て用いること力 Sできる。カレント 'コントローラーを用い る場合では、カレント 'コントローラーである電流供給手段 2により、所定の配線パター ンに電流を供給して、検査対象間に所定の電圧を印加することになる。
この電流供給手段 2が印加することになる電圧は、上記の説明の如き 200〜250Vに 設定される。
[0015] 第一電圧検出手段 3は、検査対象間の電圧を検出する。この第一電圧検査手段 3 は、例えば、電圧計を用いることができるが特に限定されるものではなぐ検査対象 間の電圧を検出することができるものであればよい。
この第一電圧検出手段 3が検出する電圧値と、電流供給手段 2により供給される電 流値とを用いることによって、検査対象間の抵抗値を算出することができる。さらに、 この抵抗値を用いることによって、検査対象間の絶縁性を検査することができる。 尚、この第一電圧検出手段 3が検出する電圧値によって、電流供給手段 2の動作 の制御を行うように設定される。
[0016] 電流検出手段 4は、検査対象間の電流を検出する。この電流検出手段 4は、例え ば、電流計を用いることができるが特に限定されるものではなぐ検査対象間に流れ る電流値を検出することができればよレ、。 尚、電流供給手段 2により供給される電流値を決定することもできる力 S、この電流検 出手段 4を用いることによつても、検査対象間の電流値を検出することもできる。
[0017] 電流供給端子 8は、検査対象間の電流を供給するために、各配線パターン Pとコン タクトプローブ CPを介して接続される。
この電流供給端子 8は、電流供給手段 2の上流側(正極側)と配線パターンを接続 する上流側電流供給端子 81と、電流供給手段 2の下流側 (負極側)又は電流検出手 段 4と配線パターン Pとを接続する下流側電流供給端子 82を有している。
図 1で示される如ぐこの電流供給端子 8の上流側電流供給端子 81及び下流側電 流供給端子 82は、夫々の配線パターン Pに対して設けられている。
これらの上流側電流供給端子 81と下流側電流供給端子 82は、夫々に切替手段 7 のスィッチ素子 SWを有しており、この切替手段 7のスィッチ素子 SWの ON/OFF動作 により、接続状態/未接続状態が設定されることになる。
この電流供給端子 8は、静電気放電(electro-static discharge)保護用の抵抗が配 置される。
[0018] 電圧検出端子 9は、検査対象間の電圧を検出するために、各配線パターン Pとコン タクトプローブ CPを介して接続される。
この電圧検出端子 9は、第一電圧検出手段 3の上流側(正極側)と配泉パターン P を接続する上流側電圧検出端子 91と、第一電圧検出手段 3の下流側 (負極側)と配 線パターン Pを接続する下流側電圧検出端子 92を有してなる。
図 1で示される如ぐこの電圧検出端子 9の上流側電圧検出端子 91及び下流側電 圧検出端子 92は、夫々の配線パターン Pに対して設けられている。
これらの上流側電圧検出端子 91と下流側電圧検出端子 92は、電流供給端子 8と 同様、夫々に切替手段 7のスィッチ素子 SWを有しており、この切替手段 7のスィッチ 素子 SWの ON/OFF動作により、接続状態/未接続状態が設定されることになる。
[0019] 電流供給端子 8と電圧検出端子 9は、図 1で示される如ぐ配線パターン Pに導通接 触する一本のコンタクトプローブ CPに対して、 4つの端子が配置されることになるとと もに、各端子の ON/OFF制御を行う 4つのスィッチ素子 SWが備えられることになる。 尚、図 1では、上流側電流供給端子 81の動作を制御するスィッチ素子を符号 SW1 とし、上流側電圧検出端子 91の動作を制御するスィッチ素子を符号 SW2とし、下流 側電流供給端子 82の動作を制御するスィッチ素子を符号 SW3とし、下流側電圧検 出端子 92の動作を制御するスィッチ素子を符号 SW4として示している。
[0020] 切替手段 7は、上記した各コンタクトプローブ CPに導通接続される複数のスィッチ 素子 SWから構成されている。この切替手段 7は、後述する制御手段 6からの動作信 号により。 ON/OFFの動作が制御されることになる。
[0021] 第二電圧検出手段 5は、上流側電流供給端子 81と上流側電圧検出端子 91の電 圧を検出する。具体的には、この第二電圧検出手段 5が、上流側電流供給端子 81と 上流側電圧検出端子 91の電圧の差を検出する。
この第二電圧検出手段 5は、図 1で示される如ぐ上流側電流供給端子 81と上流 側電圧検出端子 91の電圧の差分を算出するコンパレータ 52とこの差分を検出する 電圧計 51を有して構成される。
このコンパレータ 52が、上流側電流供給端子 81と上流側電圧検出端子 91との電 圧の差分を求め、電圧計 51がこの差分を検出することになる。
詳細は後述するが、この第二電圧検出手段 5が検出する電圧値によって、検査対 象となる配線パターン Pと他の配線パターン間とのスパークを検出する。
[0022] 第一電圧検出手段 3、電流検出手段 4や第二電圧検出手段 5が検出する電圧値や 電流値は、後述する制御手段 6へ、経過時間情報が付与されて(時系列的な情報と して)送信される。
[0023] 制御手段 6は、検査対象となる配泉パターン Pを選出したり、第一電圧検出手段 3 や第二電圧検出手段 5からの電圧値を基にスパークを検出したり、切替手段 7の動 作の指示信号を送信する。
この制御手段 6は、図 1で示される如ぐ選出手段 61、判定手段 62、記憶手段 63を 備えている。
[0024] 記憶手段 63は、回路基板 CBの配線パターン Pに関する情報、この配線パターン P の検査点に関する情報、検出される検出値の情報が記憶される。
この記憶手段 63に絶縁検査に必要な情報が格納され、これらの情報を用いること によって、絶縁検査が行われることになるとともに、検出される各検出値が格納される [0025] 選出手段 61は、回路基板 CBの複数の配線パターン Pから検査対象となる配線パ ターン Pを選出し、検査対象の配線パターン Pを特定する。この選出手段 61が検査 対象の配線パターン Pを特定することにより、順次、絶縁検査が行われる配線パター ンが選出される。
この選出手段 61が行う検査対象の配線パターンの選出方法は、予め記憶手段 63 に検査対象となる配線パターンの順番が設定され、この順番に従って検査対象の配 線パターンが選出される方法を例示することができる。この選出方法は、上記の如き 方法を採用することもできるが、検査対象となる配線パターンが順序良く選出される 方法であれば特に限定されな!/、。
この選出手段 61が行う具体的な配線パターンの選出は、切替手段 7を用いることに より実施される。例えば、切替手段 7の各スィッチ素子 SWの ON/OFF制御を行うこと により、検査対象となる配線パターンを選出することができる。
第一実施形態の絶縁検査装置では、検査対象となる配線パターンが電流供給手 段 2と接続されるための上流側電流供給端子 81と接続されるように、スィッチ素子 S Wが ONされることになる。また同時に、上流側電圧検出手段 91とこの配線パターン が接続されるようにスィッチ素子 SWが ONされる。
例えば、図 1で示される実施形態では、配線パターン P1を検査対象とする場合、選 出手段 61が、配線パターン P 1に接続する上流側電流供給端子 81と上流側電圧検 出端子 91を選出し、これら端子 81、 91のスィッチ素子 SW1とスィッチ素子 SW2を 0 Nさせるように促す信号を送信する。この信号を切替手段 7が受信することにより、スィ ツチ素子 SW1とスィッチ素子 SW2が動作することになる。
また、この場合、検査対象の配線パターン以外の配線パターン (残りの配線パター ン)に対応するスィッチ SW4が ONされるように促す信号が送信される。
[0026] 上記の説明の如ぐ選出手段 61によって、回路基板 CBの複数の配線パターン Pか ら検査対象となる配線パターン Pが選択されることになる。
この第一実施形態で示される絶縁検査装置 1の選出手段 61が選出する配線バタ ーン Pは、回路基板 CB上に形成された複数の配線パターンから 1本の配線パターン Pが選出される。つまり、選出手段 61により選出された 1本の配線パターン Pと、残り 全ての配線パターン Pとの間で絶縁検査が実施される。
このように、配線パターン Pが選出されることにより、絶縁検査を効率良く処理するこ と力 Sできる。
[0027] 判定手段 62は、第二電圧検出手段 5からの電圧値を基に、スパークの発生を判定 する。この判定手段 62が行う判定は、予め設定される閾値に対して、その閾値よりも 検出される電圧 が上回れば、スパークが発生していると判定するように設定するこ と力 Sできる。また、第二電圧検出手段 5による電圧値を良品の場合の電圧値と比較し て、その差分によりスパークの発生を検出するように設定することもできる。
尚、この判定手段 62は、電圧値の時間的変化量からスパークを検出するようにする ことあでさる。
スパークが検出されると、後述する表示手段 10にその旨が連絡される。
[0028] この制御手段 6には、スパークの大きさを検出する算出手段(図示せず)を設けるこ とができる。この算出手段は、判定手段 62がスパークを検出した場合に、その電圧値 や経過時間など力 スパークのエネルギー量を計算する。この算出手段の結果によ り、スパークの大きさを認識することが可能となり、回路基板 CBに対する破損の大き さの度合レ、を認識すること力できる。
特に、本発明によるスパーク検出方法では、検出される電圧がスパークのみに起因 する電圧変化が検出されるとともにその際の電流も検出することができるので、正確 なスパークの大きさ(=1 X V)を求めることができる。
[0029] 表示手段 10は、絶縁検査の状態を表示する。この表示手段 10は、スパークの発見 が表示されることになる。
制御手段 6の算出手段がスパークの大きさを算出するように設定している場合、こ の算出されるスパークの大きさもこの表示手段 10において表示される。
以上が本発明に係る第一実施形態の絶縁検査装置 1の構成の説明である。
[0030] この第一実施形態の絶縁検査装置 1の動作を説明する。
まず、検査対象となる回路基板 CBの配線パターン Pの情報などが記憶手段 63に 格納される。 次に、回路基板 CBが所定の検査位置に配置され、回路基板 CB上に形成される配 線パターン P上の検査点にコンタクトプローブが配置される。
[0031] 回路基板 CBが準備されると絶縁検査が開始される。
この場合、選出手段 61が、検査対象となる配線パターン Pを選出する。選出手段 6 1が検査対象となる配線パターンを選出すると、この選出手段 61は切替手段 7へこの 検査対象として選出された配線パターン Pの上流側電流供給端子 81と上流側電圧 検出端子 91が特定される。そして、この特定された上流側電流供給端子 81と上流側 電圧検出端子 91を接続状態とするためのスィッチ素子 SW1、 SW2が ONされるよう に、選出手段 61から動作信号が切替手段 7へ送信される。
[0032] 切替手段 7は、選出手段 61からのスィッチ素子の ON/OFF動作に関する信号を受 信すると、この信号に従ってスィッチ素子 SWの ON/OFF制御が行われる。
例えば、配線パターン P1が検査対象の配線パターンとなる場合、配線パターン P1 に対応する上流側電流供給端子 81と上流側電圧検出端子 91に接続されるスィッチ 素子 SW1、 SW2力 SONとなる。またこのとき同時に、この配線パターン P1以外の配線 パターン P2乃至配線パターン P4に接触されるコンタクトプローブ CP力 S、夫々下流側 電流供給端子 82と接続状態となるために、夫々の下流側電流供給端子 82のスイツ チ素子 SW4が ONとなるように制御する。
尚、この場合、検査対象以外の配線パターン Pに対応する下流側電圧検出端子 92 は、スィッチ素子 SW3により、 ON/OFFいずれの場合でも構わない。
[0033] 図 2は、本発明に係る絶縁検査装置の動作状態を示す一実施形態である。この図 2で示される動作状態では、上記の説明の如ぐ配線パターン P1が検査対象として 選出されている。このため、配線パターン P1は、スィッチ素子 SW1とスィッチ SW2が ONされており、上流側電流供給端子 81と上流側電圧検出端子 91と接続されて!/、る
このとき、検査対象以外の配泉パターン P2乃至配泉パターン P4は、スィッチ素子 S W4力 SONされて、下流側電流供給端子 82と接続されてレ、る。
図 2で示される如ぐ検査対象の配線パターン P 1の上流側電流供給端子 81と上流 側電圧検出端子 91が第二電圧検出手段 5に接続される。 [0034] 上記の如きスィッチ素子 SWが、 ON又は OFF制御されると、検査対象の配線パター ン P1に電流が印加される。
このとき、第二電圧検出手段 5は、電圧値の変化を検出するとともに制御手段 6へ 電圧値を、この電圧値に関する時間情報を付与して送信する。
[0035] 制御手段 6は、電圧値を受け取ると、判定手段 62において、この電圧値が所定閾 値と比較される。このとき、電圧値が閾値よりも大きいと、判定手段 62はスパークが発 生した判定をし、その旨が表示手段 10へ送られて表示されることになる。
[0036] 図 3は、本発明の絶縁検査装置が検出する電圧値の変化を示す一実施例である。
この図 3 (a)では、検査対象間のスパークの状態を示す電圧変化を示しており、図 3 ( b)では、本発明に係る絶縁検査装置のスパーク検出の状態を示す電圧変化を示し ている。
[0037] 本発明に係る絶縁検査装置 1は、上記の如ぐ上流側電流供給端子 81と上流側電 圧検出端子 91の間の電圧の差を検出し、その差分によりスパークを検出する。
この場合、第一電圧検出手段 3は、電流供給手段 2が電流を配線パターン P1に供 給し始めてから(時刻 tl)、検出される電圧値が上昇する(検査対象となる配線バタ ーン間の電圧)。ここで、絶縁検査に必要な所定電圧値になると(時刻 t3)、絶縁検 查が実行されることになる。この図 3では、電流供給中である時刻 t2と、絶縁検査中 である時刻 t4にスパークが発生していることが示される。
第二電圧検出手段 5は、上流側電圧供給端子 81と上流側電流検出端子 91の間 の電圧を検出する。この場合、電流供給手段 2により電流が供給されている間(時刻 t 1〜時刻 t3)は、保護抵抗に依存する電圧値が検出され、配線パターン間に所定の 電圧が印加されると(時刻 t3以降)、電圧値は略ゼロとなる。
この図 3で示される場合には、時刻 t2と時刻 t4においてスパークが発生している。 本発明の第一実施形態の絶縁検査装置 1では、この第二電圧検出手段 5がスパーク を検出するが、図 3で示される如ぐスパークが発生した場合、急激な電圧変化を検 出する。例えば、検査対象の配線パターンにチャージが行われている時刻 tl〜時刻 t3の間に、スパークが発生した場合、保護抵抗に流れる電圧が急激に上昇する(時 刻 t2)。この急激な電圧の上昇を検出することにより、スパークを検出することができ また、検査対象の配線パターンへのチャージが終了した後の検査対象の配線バタ ーンと他の配線パターンとの絶縁検査が行われる際に発生するスパーク(時刻 t4で のスパーク)が発生した場合、第二電圧検出手段 5は略ゼロであった電圧から急激に 上昇する電圧を検出する。特に、この場合では、スパークが発生しない間は第二電 圧検出手段 5が検出する電圧は略ゼロであるので、電圧に変化が生じることによりス パーク検出が容易に行われることになる。
[0038] 図 3 (b)では、制御手段 6の判定手段 62がスパークを検出するための閾値を設定し て示されている。例えば、図 3 (b)で示される二点鎖線 α (設定 α )は、時刻 tlから時 刻 t3間に保護抵抗に力、かる電圧値よりも大きい電圧値に設定されている。この設定 aの場合、第二電圧検出手段 5が検出する電圧値が、設定値 αを超えた時点でス パーク発生と判定することになる。この場合、設定 αのみを設定することで容易にス パーク検出を行うことができる。
[0039] また、図 3 (b)で示される一点鎖線 β (設定 β )は、時刻 tlから時刻 t3までと、時刻
3以降と相違する設定値が設定されている。この設定 /3の場合は、第二電圧検出手 段 5が検出するチャージの場合の保護抵抗に力、かる電圧値を補正して!/、る。このた め、設定 αの場合よりも、経過時間や第一電圧検出手段 3による電圧検出結果によ つて電圧閾値を変更するように設定することで、より精度良くスパークを検出すること ができるようになる。
これら設定 αと設定 /3は、使用者により適宜設定され、その具体的な設定値は、保 護抵抗の抵抗値などに影響されるため使用者により適宜設定される。
[0040] 制御手段 6がスパーク発生と判定すると、スパークが発生したことを表示手段 10で 表示する。また、このとき、算出手段によりスパークの大きさを算出する。
この算出手段が算出するスパークの大きさは、スパークを検出するための閾値よりも 大きい電圧値が存在する面積を算出することができる。例えば、図 3 (b)で示される時 刻 t2で発生したスパークの大きさを算出する場合、設定 αの設定値よりも大きい場所 の面積を求めることによりその大きさを算出することができる(図 3で示される二点鎖 線《と電圧値変移により囲まれる部分 (斜線で示す部分) )。 この算出手段が算出するスパークの大きさも、表示手段 10に表示されることになる
[0041] 上記の如ぐスパークが発生した場合には、スパークが発生したことが通知されると ともにそのスパークの大きさを算出し、スパークと同時にその大きさも表示されることに なる。このため、使用者は、電圧値を検出することにより、容易に絶縁検査中に発生 するスパークを検出することができるとともに、そのスパークの大きさも知ることができ この絶縁検査装置 1では、検査対象となる一本の配線パターンと残り全ての配線パ ターンの絶縁検査が行われ、この検査対象の一本の配線パターンの絶縁検査が終 了すると、検査対象として次の配線パターンが一本選択され、残り全ての配線パター ンとの絶縁検査が繰り返し行われる。このようにして被検査基板に設けられる配線パ ターン全てが検査対象の配線パターンとして絶縁検査が行われる。
尚、検査途中でスパークが発生した被検査基板は、不良品として取り扱われる。 以上が本発明に係る第一実施形態の絶縁検査装置 1の説明である。
[0042] 次に、本発明に係る第二実施形態の絶縁検査装置 100について説明する。
第二実施形態の絶縁検査装置 100と第一実施形態の絶縁検査装置 1との相違は 、検査対象となる配線パターン力 配線パターン間に設定される電位の高位 (プラス 側(上流側) )に接続されるか電位の低位(マイナス側(下流側) )に接続されて!/、るか である。第一実施形態の絶縁検査装置 1では、この検査対象となる配線パターンが 電位の高位に接続されており、一方、第二実施形態の絶縁検査装置 100では、検査 対象の配線パターンが電位の低位に接続されている。
この第二実施形態の絶縁検査装置 100は、第一実施形態の絶縁検査装置 1と同 様に、検査対象となる配線パターンに接続される電圧検出端子と電流供給端子との 電圧を検出することによって、スパークを検出する。
[0043] 図 4は、本発明に係る第二実施形態の絶縁検査装置の概略構成を示して!/、る。
本発明に係る第二実施形態の絶縁検査装置 100は、電流供給手段 2、第一電圧 検出手段 3、電流検出手段 4、第二電圧検出手段 50、制御手段 6、切替手段 7、電 流供給端子 8、電圧検出端子 9、表示手段 10を備えてなる。 この図 2で示される第二実施形態では、第一実施形態と同様に、本発明の絶縁検 查装置 100と、検査対象となる回路基板 CBと、絶縁検査装置 1と回路基板 CBとを電 気的に接続するコタンクトプローブ CPが示されている。
この第二実施形態の絶縁検査装置 100は、上記の如ぐ検査対象である配線バタ ーン Pに接続される電流供給端子と電圧測定端子の間の電圧差を用いることにより、 スパークを検出する。これは、配線パターン Pに接続される電流供給端子と電圧測定 端子が、スパークが発生しない限りにおいて、等電位であることを用いている。
第一実施形態では、一本の配線パターンを電位の高位側に接続し、残り全ての配 線パターンを電位の低位側に接続して絶縁検査を行う。これに対して、第二実施形 態では、一本の配線パターンを電位の低位側に接続し、残り全ての配線パターンを 電位の高位側に接続して絶縁検査を行う。このため、第一実施形態と第二実施形態 では、検査対象に対する接続が相違している。このため、第一実施形態の構成と第 二実施形態の構成が同一の場合には、詳細な説明を省略する。
[0044] 図 4に示される回路基板 CBは、図 1で示される回路基板 CBと同様に、 4つの配線 パターン P1〜P4を有している。図 4では、さらに、各配線パターン P1〜P4に電気的 に接触する 4本のコンタクトプローブ CPが示されている。このコンタクトプローブ CPは 、絶縁検査装置 1と回路基板 CBを電気的に導通可能に接続する。
[0045] 電流供給手段 2は、第一実施形態の場合と同様、検査対象となる配線パターンと他 の配線パターンとの間(以下、検査対象間)に、絶縁検査を行うための所定の電圧を 印加させる。
尚、この電流供給手段 2は、検査対象の配線パターン以外の全ての配線パターン に電流を供給する。
[0046] 第一電圧検出手段 3は、第一実施形態の場合と同様、検査対象間の電圧を検出 する。
この第一電圧検出手段 3が検出する電圧値と、電流供給手段 2により供給される電 流値とを用いることによって、検査対象間の抵抗値を算出することができる。さらに、 この抵抗値を用いることによって、検査対象間の絶縁性を検査することができる。 電流検出手段 4は、第一実施形態の場合と同様、検査対象間の電流を検出する。 [0047] 電流供給端子 8は、第一実施形態の場合と同様、検査対象間の電流を供給するた めに、各配線パターン Pとコンタクトプローブ CPを介して接続される。
この電流供給端子 8は、電流供給手段 2の上流側(正極側)と配線パターンを接続 する上流側電流供給端子 81と、電流供給手段 2の下流側 (負極側)又は電流検出手 段 4と配線パターン Pとを接続する下流側電流供給端子 82を有している。
図 3で示される如ぐこの電流供給端子 8の上流側電流供給端子 81及び下流側電 流供給端子 82は、夫々の配線パターン Pに対して設けられている。
これらの上流側電流供給端子 81と下流側電流供給端子 82は、夫々に切替手段 7 のスィッチ素子 SWを有しており、この切替手段 7のスィッチ素子 SWの ON/OFF動作 により、接続状態/未接続状態が設定されることになる。
この電流供給端子 8は、静電気放電(electro-static discharge)保護用の抵抗が配 置される。
[0048] 電圧検出端子 9は、第一実施形態の場合と同様、検査対象間の電圧を検出するた めに、各配線パターン Pとコンタクトプローブ CPを介して接続される。
この電圧検出端子 9は、第一電圧検出手段 3の上流側(正極側)と配泉パターン P を接続する上流側電圧検出端子 91と、第一電圧検出手段 3の下流側 (負極側)と配 線パターン Pを接続する下流側電圧検出端子 92を有してなる。
図 3で示される如ぐこの電圧検出端子 9の上流側電圧検出端子 91及び下流側電 圧検出端子 92は、夫々の配線パターン Pに対して設けられている。
これらの上流側電圧検出端子 91と下流側電圧検出端子 92は、電流供給端子 8と 同様、夫々に切替手段 7のスィッチ素子 SWを有しており、この切替手段 7のスィッチ 素子 SWの ON/OFF動作により、接続状態/未接続状態が設定されることになる。
[0049] 電流供給端子 8と電圧検出端子 9は、第一実施形態の場合と同様、配線パターン P に導通接触する一本のコンタクトプローブ CPに対して、 4つの端子が配置されること になるとともに、各端子の ON/OFF制御を行う 4つのスィッチ素子 SWが備えられるこ とになる。
尚、図 1では、上流側電流供給端子 81の動作を制御するスィッチ素子を符号 SW1 とし、上流側電圧検出端子 91の動作を制御するスィッチ素子を符号 SW2とし、下流 側電流供給端子 82の動作を制御するスィッチ素子を符号 SW3とし、下流側電圧検 出端子 92の動作を制御するスィッチ素子を符号 SW4として示している。
[0050] 切替手段 7は、上記した各コンタクトプローブ CPに導通接続される複数のスィッチ 素子 SWから構成されている。この切替手段 7は、後述する制御手段 6からの動作信 号により。 ON/OFFの動作が制御されることになる。
[0051] この第二実施形態の絶縁検査装置 100は、第二切替手段 71を有している。この第 二切替手段 71は、下流側電流供給端子 82を上流側電流供給端子 81と等電位とな るように接続させたり、第一電圧検出手段 3の第一電圧検出手段 3の下流側と接続さ せたりする。この図 4では、第一電圧検出手段 3の下流側と接続されるとともに電流検 出手段 4と直列接続される。
この第二切替手段 71は、上記の如ぐ検査対象の配線パターンに接続される下流 側電流供給端子 82を、電流供給手段 2の上流側又は電流検出手段 4の上流側に接 続するが、電流供給手段 2の上流側に接続される場合には、上流側電流供給端子 8 1と等電位とすることができる。
つまり、第二実施形態の絶縁検査装置 100では、全ての配線パターンを先ずチヤ ージすることになる。
第二切替手段 71が、下流側電流供給端子 82を電流検出手段 4の上流側に接続 すると、検査対象の配線パターンの電位が降下することになる。
このため、第二切替手段 71は、検査対象の配線パターンの電位の高低を制御する こと力 Sでさる。
[0052] 第二実施形態の絶縁検査装置 100は、第二切替手段 71により検査対象の配線パ ターンの電位を降下させることができる力 S、この降下を制御するために電圧制御手段 2'を設けることが好ましい。
この電圧制御手段 2'を設けることによって、第二切替手段 71により検査対象の配 線パターンの電位を降下させる場合に、その降下量を制御することができる。このよう に降下量を制御することによって、検査対象の配線パターンと他の配線パターン間 で、検査対象の配線パターンの電位の降下時間を制御し、この降下時におけるスパ ークの検出を確実に行うことができるようになる。 [0053] 第二電圧検出手段 50は、下流側電流供給端子 82と下流側電圧検出端子 92の電 圧を検出する。具体的には、この第二電圧検出手段 50が、下流側電流供給端子 82 と下流側電圧検出端子 92の電圧の差を検出する。
この第二電圧検出手段 50は、図 3で示される如ぐ下流側電流供給端子 82と下流 側電圧検出端子 92の電圧の差分を算出するコンパレータ 54とこの差分を検出する 電圧計 53を有して構成される。
このコンパレータ 54が、下流側電流供給端子 82と下流側電圧検出端子 92との電 圧の差分を求め、電圧計 53がこの差分を検出することになる。
詳細は後述するが、この第二電圧検出手段 50が検出する電圧値によって、検査対 象となる配線パターン Pと他の配線パターン間とのスパークを検出する。
[0054] 第一電圧検出手段 3、電流検出手段 4や第二電圧検出手段 5が検出する電圧値や 電流値は、後述する制御手段 6へ、第一実施形態の場合と同様、経過時間情報が 付与されて (時系列的な情報として)送信される。
[0055] 制御手段 6は、検査対象となる配泉パターン Pを選出したり、第一電圧検出手段 3 や第二電圧検出手段 5からの電圧値を基にスパークを検出したり、切替手段 7の動 作の指示信号を送信する。
この制御手段 6は、第一実施形態の場合と同様、第一電圧検出手段 3や第二電圧 検出手段 50からの電圧値を基にスパーク検出したり、切替手段 7の動作の指示信号 を送信したりする。
この制御手段 6は、図 1で示される如ぐ選出手段 61、判定手段 62、記憶手段 63を 備えている。
[0056] 選出手段 61は、回路基板 CBの複数の配線パターン Pから検査対象となる配線パ ターン Pを選出し、検査対象の配線パターン Pを特定する。この選出手段 61が検査 対象の配線パターン Pを特定することにより、順次、絶縁検査が行われる配線パター ンが選出される。
この選出手段 61が行う検査対象の配線パターンの選出方法は、予め記憶手段 63 に検査対象となる配線パターンの順番が設定され、この順番に従って検査対象の配 線パターンが選出される方法を例示することができる。この選出方法は、上記の如き 方法を採用することもできるが、検査対象となる配線パターンが順序良く選出される 方法であれば特に限定されな!/、。
この選出手段 61が行う具体的な配線パターンの選出は、切替手段 7を用いることに より実施される。例えば、切替手段 7の各スィッチ素子 SWの ON/OFF制御を行うこと により、検査対象となる配線パターンを選出することができる。
第二実施形態の絶縁検査装置 100では、検査対象となる配線パターンに対応する スィッチ素子 SW3が ONされる。このとき、スィッチ素子 SW4が ONされても構わない。 また、検査対象に選出されなかった残りの配線パターンは、この配線パターンに対 応するスィッチ素子 SW1とスィッチ素子 SW2が ONされることになる。
[0057] この制御手段 6は、第二切替手段 71の動作も制御し、上記の如ぐ検査対象の配 線パターンの電位を制御することになる。
[0058] 例えば、図 5又は図 6で示される実施形態では、配線パターン P1を検査対象とする 場合を示している。この場合、選出手段 61が、配線パターン P1に接続する下流側電 流供給端子 82と下流側電圧検出端子 92を選出し、これら端子 82、 92のスィッチ素 子 SW3とスィッチ素子 SW4を ONさせるように信号を送信する。
この信号を切替手段 7が受信することにより、スィッチ素子 SW3とスィッチ素子 SW4 が動作することになる。
また、同時に、検査対象となる配線パターン以外の配線パターン (残りの配線バタ ーン)に対応するスィッチ素子 SW1とスィッチ素子 SW2が ONされるよう促す信号を 送信する。
[0059] 上記の説明の如ぐ選出手段 61によって、回路基板 CBの複数の配線パターン Pか ら検査対象となる配線パターン Pが選択されることになる。
この第二実施形態で示される絶縁検査装置 100の選出手段 61が選出する配線パ ターン Pは、回路基板 CB上に形成された複数の配線パターンから 1本の配線パター ン Pが選出される。つまり、選出手段 61により選出された 1本の配線パターン Pと、残り 全ての配線パターン Pとの間で絶縁検査が実施される。
このように、配線パターン Pが選出されることにより、絶縁検査を効率良く処理するこ と力 Sできる。 [0060] 判定手段 62は、第二電圧検出手段 5からの電圧値を基に、スパークの発生を判定 する。この判定手段 62が行う判定は、予め設定される閾値に対して、その閾値よりも 検出される電圧 が上回れば、スパークが発生していると判定するように設定するこ と力 Sできる。また、第二電圧検出手段 5による電圧値を良品の場合の電圧値と比較し て、その差分によりスパークの発生を検出するように設定することもできる。
尚、この判定手段 62は、電圧値の時間的変化量からスパークを検出するようにする ことあでさる。
スパークが検出されると、後述する表示手段 10にその旨が連絡される。
[0061] この制御手段 6には、スパークの大きさを検出する算出手段(図示せず)を設けるこ とができる。この算出手段は、判定手段 62がスパークを検出した場合に、その電圧値 や経過時間など力 スパークのエネルギー量を計算する。この算出手段の結果によ り、スパークの大きさを認識することが可能となり、回路基板 CBに対する破損の大き さの度合レ、を認識すること力できる。
[0062] 表示手段 10は、絶縁検査の状態を表示する。この表示手段 10は、スパークの発見 が表示されることになる。
制御手段 6の算出手段がスパークの大きさを算出するように設定している場合、こ の算出されるスパークの大きさもこの表示手段 10において表示される。
[0063] この第二実施形態の絶縁検査装置 100の動作を説明する。
まず、検査対象となる回路基板 CBの配線パターン Pの情報などが記憶手段 63に 格納される。
次に、回路基板 CBが所定の検査位置に配置され、回路基板 CB上に形成される配 線パターン P上の検査点にコンタクトプローブが配置される。
[0064] 回路基板 CBが準備されると絶縁検査が開始される。
この場合、選出手段 61が、検査対象となる配線パターン Pを選出する。 選出手段 61が検査対象となる配線パターンを選出すると、この選出手段 61は切替 手段 7へこの検査対象として選出された配線パターン Pの下流側電流供給端子 82と 下流側電圧検出端子 92が特定される。そして、この特定された下流側電流供給端 子 82と下流側電圧検出端子 92を接続状態とするためのスィッチ素子 SW3、スィッチ 素子 SW4が ONされるように、選出手段 61から動作信号が切替手段 7へ送信される。
[0065] 切替手段 7は、選出手段 61からのスィッチ素子の ON/OFF動作に関する信号を受 信すると、この信号に従ってスィッチ素子 SWの ON/OFF制御が行われる。
例えば、配線パターン P1が検査対象の配線パターンとなる場合、配線パターン P1 に対応する下流側電流供給端子 82と下流側電圧検出端子 92に接続されるスィッチ 素子 SW3、スィッチ素子 SW4が ONとなる。
またこのとき同時に、この配泉パターン P1以外の配泉パターン P2乃至配泉パター ン P4に接触されるコンタクトプローブ CP力 夫々上流側電流供給端子 81と上流側 電圧検出端子 91と接続状態となるために、夫々の上流側電流供給端子 81のスイツ チ素子 SW1と上流側電圧検出端子 91のスィッチ素子 SW2とが ONとなるように制御 する。
この場合、第二切替手段 71は、下流側電圧検出端子 92を電流供給手段 2の上流 側に接続するように動作している(図 5中の A側に接続される)。
尚、詳細は後述する力 上記の如き接続されることによって、全ての配線パターン に所定電圧を印加することになる。
[0066] 図 5は、本発明に係る絶縁検査装置の動作状態を示す一実施形態である。この図 5で示される動作状態では、上記の説明の如ぐ配線パターン P1が検査対象として 選出されている。このため、配線パターン P1は、スィッチ素子 SW3とスィッチ SW4が ONされており、下流側電流供給端子 82と下流側電圧検出端子 92と接続されてレ、る このとき、検査対象以外の配泉パターン P2乃至配泉パターン P4は、スィッチ素子 S W1とスィッチ素子 SW2が ONされて、上流側電流供給端子 81と上流側電圧検出端 子 91と接続されている。
ここで、図 5で示される如ぐ検査対象の配線パターン P1の下流側電流供給端子 8 2が電流供給手段 2の上流側に接続され、下流側電圧検出端子 92は第二電圧検出 手段 50の片側に接続される。
上記の如きスィッチ素子 SWが、 ON又は OFF制御されると、配線パターン全てにチ ヤージが開始される。 [0067] 全ての配線パターン Pの電位が所定電位に達すると、第二切替手段 71は B側にス イッチが切り替えられる(図 6参照)。このため、下流側電流供給端子 92が第二電流 検出手段 4に接続されるとともに、検査対象の配線パターン P1の電位が低下する。こ の場合、電圧制御手段 2'は、検査対象の配線パターンの電位の降下(降下量又は 降下時間)の制御を行っており、この電圧降下時においても、検査対象の配線バタ ーンと他の配線パターン間のスパークを検出することができる。
つまり、検査対象の配線パターンのみが電位の変化(低下)が生じることになり、検 查対象の配線パターン P1と残りの配線パターン P2〜配線パターン P4との電位差が 生じることになる。
このとき、検査対象間に絶縁不良が存在する場合にはスパークが発生する。このス パークによって、検査対象の配泉パターン P1に電流が流入するため、下流側電流 検出端子 82と下流側電圧検出端子 92には、電位差が生じることになる。
この結果、第二電圧検出手段 50には、このスパークに起因する電圧が検出される ことになる。
[0068] 次に、第二切替手段 71が、スィッチ A側から B側に切り替えが行われて、十分な時 間が経過した後、つまり、検査対象の配線パターンの電位が略ゼロに低下し、検査 対象間に所定の電位差が生じた後に、検査対象間でスパークが発生した場合でも、 検査対象の配線パターン P1にスパークに起因する電流が流入する。このため、下流 側電流検出端子 82と下流側電圧検出端子 92には、電位差が生じることになる。 この結果、第二電圧検出手段 50には、このスパークに起因する電圧が検出される ことになる。
[0069] 制御手段 6は、第二電圧検出手段 50からの電圧値を受け取ると、判定手段 62にお いて、この電圧値が所定閾値と比較される。このとき、電圧値が閾値よりも大きいと、 判定手段 62はスパークが発生した判定し、その旨が表示手段 10へ送られて表示さ れることになる。
[0070] 図 7は、本発明の絶縁検査装置が検出する電圧値の変化を示す一実施例である。
この図 7 (a)では、検査対象間のスパークの状態を示す電圧変化を示しており、図 7 ( b)では、本発明に係る絶縁検査装置のスパーク検出の状態を示す電圧変化を示し ている。
[0071] 本発明に係る絶縁検査装置 100は、上記の如ぐ検査対象の配線パターンの下流 側電流供給端子 82と下流側電圧検出端子 92の間の電圧の差を検出し、その差分 によりスパークを検出する。
この場合、第一電圧検出手段 3は、図 6で示される如ぐ電流供給手段 2が電流を 全ての配線パターンに供給し始めてから(時刻 t5)、その電圧値が上昇する(検査対 象となる全ての配線パターンが所定の電位まで上昇される)。
ここで、絶縁検査に必要な所定電圧値になると(時刻 t6)、検査対象の配線パター ンの電位を下げるため、第二切替手段 71がスィッチを B側に接続する(時刻 t7)。そ うすると、図 7 (a)で示される如ぐ電圧値が低下して、略ゼロに至る(時刻 t9)。
このとき、図 7 (a)で示される如ぐ時刻 t8でスパークが発生した場合、下流側電圧 供給端子 82にスパークによる電流が流れる。そうすると、下流側電流供給端子 82と 下流側電圧検出端子 92の間で、電位差が生じることになる。この結果、第二電圧検 出手段 50はこの電位差の電圧を検出することになる。このため、時刻 t8でスパーク が発生した場合には、第二電圧検出手段 50がスパークによる電圧変化を検出するこ とになる。
尚、この時刻 t6と時刻 t7の間の時間は、特にその長さが設定されておらず、使用者 により適宜設定されるが、検査時間を短縮するためにもできるだけ短くすることが好ま しい。また、電圧制御手段 2'は、時刻 t7と時刻 t9の電位降下を制御することになる。
[0072] 検査対象の配線パターンの電圧が略ゼロになると、検査対象間の電位差が所定検 查電圧に設定されることになり、絶縁検査が開始されることになる。尚、この場合、ス パークが発生して!/、な!/、際にお!/、て、第二電圧検出手段 50は下流側電流供給端子 82と下流側電圧検出端子 92の電位の差は生じていない。このため、第二電圧検出 手段 50は、電位差ゼロであり、電圧ゼロを検出する。
このとき、検査対象間でスパークが発生した場合、この場合も上記と同様、検査対 象の配線パターンに電流が流入することになり、第二電圧検出手段 50が電圧の変 化を検出する。
図 7 (b)では、時刻 tlOにおいてスパークが発生している。この場合も、スパークが 発生することにより、検査対象の配泉パターンに電流が流入し、この電流の流入によ つて、下流側電流供給端子 82と下流側電圧検出端子 92の間に電圧が生じることに なる。そうすると、第二電圧検出手段 50は、この電圧を検出し、制御手段 6へ電圧値 を送信する。
特に、このようなスパーク検出の場合、検査対象の配線パターンの電位を低下させ て、所定の電圧を得て後の絶縁検査が行われる際に発生するスパーク(時刻 tl Oの 如きスパーク)が発生した場合、第二電圧検出手段 5は略ゼロであった電圧から急激 に上昇する電圧を検出する。このため、スパーク検出が容易に行われることになる。
[0073] 図 7 (b)では、制御手段 6の判定手段 62がスパークを検出するための閾値を設定し て示している。例えば、図 7 (b)で示される二点鎖線 α (設定 α )は、時亥 Ijt7力 時亥 IJ t9間に保護抵抗に力、かる電圧値よりも大きい電圧値に設定されている。この設定 α の場合、第二電圧検出手段 5が検出する電圧値が、設定値 αを超えた時点でスパ ーク発生と判定することになる。この場合、設定 αのみを設定することで容易にスパ ーク検出を行うことができる。
[0074] また、図 7 (b)で示される一点鎖線 β (設定 β )は、時刻 t5から時刻 t7前までと、時 刻 t7以降と相違する設定値が設定されている。この設定 /3の場合は、第二電圧検出 手段 5が検出するチャージの場合の保護抵抗に力、かる電圧値を補正して!/、る。この ため、設定この場合よりも、より精度良くスパークを検出することができるようになる。 これら設定 αと設定 /3は、使用者により適宜設定され、その具体的な設定値は、保 護抵抗の抵抗値などに影響されるため使用者により適宜設定される。
この設定 /3の場合には、設定 αに比して、経過時間や第一電圧検出手段 3による 電圧検出結果によって電圧閾値を変更するように設定することで、より精度良くスパ ークを検出すること力 Sできるようになる。
[0075] 制御手段 6がスパーク発生と判定すると、スパークが発生したことを表示手段 10で 表示する。また、このとき、算出手段によりスパークの大きさを算出する。
この算出手段が算出するスパークの大きさは、スパークを検出するための閾値よりも 大きい電圧値が存在する面積を算出することができる。例えば、図 7で示される時刻 t 8で発生したスパークの大きさを算出する場合、設定 αの設定値よりも大きい場所の 面積を求めることによりその大きさを算出することができる(図 7 (b)で示される二点鎖 線 αと電圧値変移により囲まれる部分 (斜線で示す部分) )。
この算出手段が算出するスパークの大きさも、表示手段 10に表示されることになる
[0076] 上記の如ぐスパークが発生した場合には、スパークが発生したことが通知されると ともにそのスパークの大きさを算出し、スパークと同時にその大きさも表示されることに なる。このため、使用者は、電圧値を検出することにより、容易に絶縁検査中に発生 するスパークを検出することができるとともに、そのスパークの大きさも知ることができ この絶縁検査装置 100では、検査対象となる一本の配線パターンと残り全ての配 線パターンの絶縁検査が行われ、この検査対象の一本の配線パターンの絶縁検査 が終了すると、検査対象として次の配線パターンが一本選択され、残り全ての配線パ ターンとの絶縁検査が繰り返し行われる。このようにして被検査基板に設けられる配 線パターン全てが検査対象の配線パターンとして絶縁検査が行われる。
尚、検査途中でスパークが発生した被検査基板は、不良品として取り扱われる。 以上が本発明に係る第二実施形態の絶縁検査装置 100の説明である。
[0077] 図 8は、本発明に係る第三実施形態の絶縁検査装置 101の概略構成を示している 。この第三実施形態の絶縁検査装置 101は、基本的な構成は第二実施形態の絶縁 検査装置 100と同様に形成されているが、第二実施形態の絶縁検査装置 100が有 する第二切替手段 71を有して!/、な!/、。
第二実施形態の絶縁検査装置 100では、検査対象の配線パターンの電圧降下を この第二切替手段 71を用いて行っていた力 第三実施形態の絶縁検査装置 101で は、この検査対象の配線パターンの電位の制御を、この電圧制御手段 2'を用いて行 つている。
より具体的には、第三実施形態の絶縁検査装置 101では、全ての配線パターンに 所定電位を与える場合に、電圧制御手段 2'と電流供給手段 2が同電位を得るように 設定される。次に、検査対象の配線パターンの電位を降下させる場合に、電圧制御 手段 2'が電流供給手段 2の電位よりも低い電位を有するように制御させることによつ て、検査対象の配線パターンの電位を降下させる。
第三実施形態の絶縁検査装置 101は、検査対象の配線パターンの電位を降下さ せる方法が、第二実施形態の絶縁検査装置 100の第二切替手段 71を用いる場合と 異なる以外は、その検査方法は同様であるので、説明を省略する。
尚、この第三実施形態の絶縁検査装置 101の電圧制御手段 2'が接続される位置 は、図 8で示される位置に限定されず、検査対象となる配線パターンの下流側電流 検出端子 82と下流側電圧検出端子 92にかかる電位を、制御することができる位置 であれば特に限定されな!/、。
[0078] 第一実施形態の絶縁検査装置 1、第二実施形態の絶縁検査装置 100と第三実施 形態の絶縁検査装置 101は、検査対象となる配線パターンに接続される上流側又は 下流側に設定される電流供給端子と電圧検出端子と端子間の電圧を検出することに より、スパークを検出している。
このため、三つの絶縁検査装置ともに、スパークに起因する僅かな電圧の変化を検 出することが可能となり、より精度の高い検査を行うことができる。
また、これら第一乃至第三実施形態の絶縁検査装置の概略構成を示す図面では、 電圧検出端子と電流供給端子間の電圧を検出する場合に、静電気放電 (ESD)保護 用の抵抗とスィッチ素子 SWを含む電圧を検出するように構成されている力 スィッチ 素子 SWの抵抗が含まれないようにすることによって、更に電圧検出の精度を向上さ せることもできる。この場合には、例えば、上流側電圧検出端子、上流側電流供給端 子、下流側電圧検出端子と下流側電流供給端子を夫々 2つ設けることによってスイツ チ素子 SWの抵抗分を消去するようにすることができる。
[0079] また、本発明に係るスパーク検出装置は、上記の如き電流供給端子と電圧検出端 子間の電位を検出することによって、スパークを検出するものである力 S、この電流供 給端子と電圧検出端子やスィッチ素子は、図 9 (a)で示されるスィッチ回路構成に限 定されない。例えば、図 9 (b)で示されるスィッチ回路構成では、図 9 (a)のスィッチ回 路構成を基に、上流側電流供給端子 81及び下流側電流供給端子 82と上流側電圧 検出端子 91及び下流側電圧検出端子 92の夫々に静電気放電保護用の抵抗 Rが 設けられている。 また、図 9 (c)にスィッチ回路構成では、電流供給端子 8と電圧検出端子 9が夫々一 つの抵抗 Rに接続され、且つ、上流側と下流側が並列に接続されることにより構成さ れている。
図 9で示される何れのスィッチ回路構成も、使用者により適宜変更することが可能で あり、本明細書中で説明した図 9 (a)の回路構成に限定されるものではない。
[0080] 第一乃至第三実施形態絶縁検査装置の説明では、上流側及び下流側電流供給 端子と上流側及び下流側電圧検出端子から配線パターン Pに接触するまでの電気 的経路が、一本のコンタクトプローブ CPを介して形成されている(図 1、図 5及び図 8 参照)。しかしながら、このコンタクトプローブ CPは夫々の端子毎に一本ずつ(四本) 配置されて、各端子と配線パターン Pが直接的に接続されるようにすることもできる。 このように、コンタクトプローブ CPを各端子と配線パターンを直接的に配置することに よって、電気的経路による抵抗の影響を全く受けることなぐ配線パターン CPの抵抗 値を四端子測定することができる。
なお、本実施形態では、コンタクトプローブを一本を用いている力 共通の電気的 経路の抵抗値を予め算出して補正することにより、配線パターン Pを四端子測定法で 測定した場合と略同じように抵抗値を算出することもできる。
図面の簡単な説明
[0081] [図 1]本発明に係る絶縁検査装置の一実施形態を示す概略構成図である。
[図 2]本発明に係る絶縁検査装置の動作状態を示す一実施形態である。
[図 3]本発明の絶縁検査装置が検出する電圧値の変化を示す一実施例である。この 図 3 (a)では、検査対象間のスパークの状態を示す電圧変化を示しており、図 3 (b) では、本発明に係る絶縁検査装置のスパーク検出の状態を示す電圧変化を示して いる。
[図 4]本発明に係る第二実施形態の絶縁検査装置の概略構成を示している。
[図 5]本発明に係る第二実施形態の絶縁検査装置の動作状態を示す一実施形態で ある。検査対象の配線パターン全てに電流を供給して!/、る状態を示す。
[図 6]本発明に係る第二実施形態の絶縁検査装置の動作状態を示す一実施形態で ある。検査対象間での電圧が所定電圧となり、絶縁検査が行われている状態を示す [図 7]本発明の絶縁検査装置が検出する電圧値の変化を示す一実施例であり、 (a) は、検査対象間のスパークの状態を示す電圧変化を示しており、(b)は、本発明に係 る絶縁検査装置のスパーク検出の状態を示す電圧変化を示している。
[図 8]本発明に係る第三実施形態の絶縁検査装置の概略構成を示す。
園 9]本発明のスパーク検出装置における電流供給端子、電圧検出端子とスィッチ 素子の概略構成図を示す。
園 10]従来のスパーク検出装置における電圧の変化を検出した様子を示す一実施 例である。
符号の説明
1··· ··第一実施形態の絶縁検査装置
100· ··第二実施形態の絶縁検査装置
101· ··第三実施形態の絶縁検査装置
2··· ··電流供給手段
3··· ··第一電圧検出手段
4... ··電流検出手段
5··· ··第二電圧検出手段
50·· ··第二電圧検出手段
6··· ··制御手段
7··· ··切替手段
71·· ··第二切替手段
81·· ··上流側電流供給端子
82·· ··下流側電流供給端子
91·· ··上流側電圧検出端子
92·· ··下流側電圧検出端子
p... ··配線パターン

Claims

請求の範囲
[1] 複数の配線パターンが形成される回路基板において、前記複数の配線パターンか ら検査対象となる配線パターンが選択され、該配線パターンの絶縁検査を行う絶縁 検査装置であって、
前記複数の配線パターン毎に対応する、該配線パターンに電流を供給する上流側 及び下流側電流供給端子と、
前記複数の配線パターン毎に対応する、前記電流が印加されることにより生じる電 圧を検出するための上流側及び下流側電圧検出端子と、
前記検査対象となる配線パターンに対応する上流側電流供給端子と上流側電圧 検出端子との電圧を検出する電圧検出手段と、
前記電圧検出手段により検出される電圧値により、前記検査対象の配線パターンと 他の配線パターンのスパークを検出することを特徴とする絶縁検査装置。
[2] 前記絶縁検査装置は、前記短絡検査時において、
前記上流側電圧検出端子と前記上流側電流供給端子を、前記検査対象の配線 パターンと導通状態とし、
前記下流側電圧検出端子と前記下流側電流供給端子を、前記検査対象の配線 ノ ターン以外の全ての配線パターンと導通状態となされることを特徴とする請求項 1 記載の絶縁検査装置。
[3] 複数の配線パターンが形成される回路基板において、前記複数の配線パターンか ら検査対象となる配線パターンが選択され、該配線パターンの絶縁検査を行う絶縁 検査装置であって、
前記複数の配線パターン毎に対応する、該配線パターンに電流を供給する上流側 及び下流側電流供給端子と、
前記複数の配線パターン毎に対応する、前記電流が印加されることにより生じる電 圧を検出するための上流側及び下流側電圧検出端子と、
前記検査対象となる配線パターンに対応する下流側電流供給端子と下流側電圧 検出端子との電圧を検出する電圧検出手段と、
前記電圧検出手段により検出される電圧値により、前記検査対象の配線パターンと 他の配線パターンのスパークを検出することを特徴とする絶縁検査装置。
[4] 前記絶縁検査装置は、前記短絡検査時において、
前記下流側電流供給端子と前記下流側電圧検出端子を、前記検査対象の配線 パターンと導通状態とし、
前記上流側電流供給端子と前記上流側電圧検出端子を、前記検査対象の配線 ノ ターン以外の全ての配線パターンと導通状態となされることを特徴とする請求項 3 記載の絶縁検査装置。
[5] 複数の配線パターンが形成される回路基板において、前記複数の配線パターンか ら検査対象となる配線パターンが選択し、該配線パターンの絶縁検査を行う絶縁検 查方法であって、
回路基板上の複数の配線パターンから検査対象となる配線パターンを選択し、 前記選択された配線パターンに対応する、電流を供給するための上流側電流供給 端子と、電圧を検出するための上流側電圧検出端子を導通状態に接続し、 前記検査対象の配線パターン以外の配線パターンに対応する、電流を供給するた めの下流側電流供給端子と、電圧を検出するための下流側電圧検出端子を導通状 態に接続し、
前記上流側電流端子から前記下流側電流端子へ、電流を供給し、
前記電流供給時にお!/、て、前記検査対象の配線パターンに接続された上流側電 流供給端子と上流側電圧検出端子の電圧を検出し、
前記検出された電圧から、スパークに起因する電圧を検出することを特徴とする絶 縁検査方法。
[6] 複数の配線パターンが形成される回路基板において、前記複数の配線パターンか ら検査対象となる配線パターンが選択し、該配線パターンの絶縁検査を行う絶縁検 查方法であって、
回路基板上の複数の配線パターンから検査対象となる配線パターンを選択し、 前記選択された配線パターンに対応する、電流を供給するための下流側電流供給 端子と、電圧を検出するための下流側電圧検出端子を導通状態に接続し、 前記検査対象の配線パターン以外の配線パターンに対応する、電流を供給するた めの上流側電流供給端子と、電圧を検出するための上流側電圧検出端子を導通状 態に接続し、
前記上流側電流端子から前記下流側電流端子へ、電流を供給し、
前記電流供給時にお!/、て、前記検査対象の配線パターンに接続された下流側電 流供給端子と下流側電圧検出端子の電圧を検出し、
前記検出された電圧から、スパークに起因する電圧を検出することを特徴とする絶 縁検査方法。
PCT/JP2007/069215 2006-10-04 2007-10-01 Appareil de test de carte et procédé de test de carte WO2008041678A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006272368A JP4369949B2 (ja) 2006-10-04 2006-10-04 絶縁検査装置及び絶縁検査方法
JP2006-272368 2006-10-04

Publications (1)

Publication Number Publication Date
WO2008041678A1 true WO2008041678A1 (fr) 2008-04-10

Family

ID=39268533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069215 WO2008041678A1 (fr) 2006-10-04 2007-10-01 Appareil de test de carte et procédé de test de carte

Country Status (3)

Country Link
JP (1) JP4369949B2 (ja)
TW (1) TWI434050B (ja)
WO (1) WO2008041678A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160103172A1 (en) * 2014-10-08 2016-04-14 Nidec-Read Corporation Circuit board testing apparatus and circuit board testing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190784A (ja) * 2009-02-19 2010-09-02 Hioki Ee Corp 回路基板検査装置
JP5425502B2 (ja) * 2009-03-26 2014-02-26 日置電機株式会社 回路基板検査装置
JP5910262B2 (ja) * 2012-04-10 2016-04-27 日本電産リード株式会社 部品内蔵基板の検査方法
JP6069884B2 (ja) * 2012-05-08 2017-02-01 日本電産リード株式会社 絶縁検査方法及び絶縁検査装置
JP6221281B2 (ja) * 2013-03-19 2017-11-01 日本電産リード株式会社 絶縁検査方法及び絶縁検査装置
TWI498571B (zh) * 2013-03-29 2015-09-01 Nidec Read Corp 絕緣檢測裝置及絕緣檢測方法
JP2015001470A (ja) * 2013-06-17 2015-01-05 日本電産リード株式会社 基板検査装置
JP6229876B2 (ja) * 2013-08-27 2017-11-15 日本電産リード株式会社 検査装置
JP6237482B2 (ja) * 2014-06-11 2017-11-29 三菱電機株式会社 測定装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466569A (en) * 1987-09-08 1989-03-13 Mitsubishi Electric Corp Method for measuring partial discharge
JPH0792219A (ja) * 1993-09-22 1995-04-07 Tokai Univ 部分放電光平衡検出装置
JP2003172757A (ja) * 2001-09-26 2003-06-20 Nidec-Read Corp 回路基板の絶縁検査装置及び絶縁検査方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466569A (en) * 1987-09-08 1989-03-13 Mitsubishi Electric Corp Method for measuring partial discharge
JPH0792219A (ja) * 1993-09-22 1995-04-07 Tokai Univ 部分放電光平衡検出装置
JP2003172757A (ja) * 2001-09-26 2003-06-20 Nidec-Read Corp 回路基板の絶縁検査装置及び絶縁検査方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160103172A1 (en) * 2014-10-08 2016-04-14 Nidec-Read Corporation Circuit board testing apparatus and circuit board testing method
US10175284B2 (en) * 2014-10-08 2019-01-08 Nidec-Read Corporation Circuit board testing apparatus and circuit board testing method

Also Published As

Publication number Publication date
JP2008089485A (ja) 2008-04-17
TW200825430A (en) 2008-06-16
TWI434050B (zh) 2014-04-11
JP4369949B2 (ja) 2009-11-25

Similar Documents

Publication Publication Date Title
WO2008041678A1 (fr) Appareil de test de carte et procédé de test de carte
US10175284B2 (en) Circuit board testing apparatus and circuit board testing method
US9606162B2 (en) Insulation inspection method and insulation inspection apparatus
TWI664427B (zh) 接觸端子的維修方法及檢測裝置
TWI404949B (zh) 檢查用治具之維修方法及基板檢查裝置
JP4925042B2 (ja) 絶縁検査装置
TW201500743A (zh) 基板檢查裝置
JP6221281B2 (ja) 絶縁検査方法及び絶縁検査装置
CN103543389A (zh) 绝缘检查方法及绝缘检查装置
JP2008076266A (ja) 基板検査装置及び基板検査方法
JP2015010880A (ja) 絶縁検査装置
JP6255833B2 (ja) 基板検査方法及び基板検査装置
JP4928316B2 (ja) 絶縁検査装置
JP4911598B2 (ja) 絶縁検査装置及び絶縁検査方法
US7233152B2 (en) Short detection circuit and short detection method
KR20230089428A (ko) 절연 검사 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828955

Country of ref document: EP

Kind code of ref document: A1