WO2008038789A1 - Process for producing microconfiguration transfer sheet and apparatus therefor - Google Patents

Process for producing microconfiguration transfer sheet and apparatus therefor Download PDF

Info

Publication number
WO2008038789A1
WO2008038789A1 PCT/JP2007/069049 JP2007069049W WO2008038789A1 WO 2008038789 A1 WO2008038789 A1 WO 2008038789A1 JP 2007069049 W JP2007069049 W JP 2007069049W WO 2008038789 A1 WO2008038789 A1 WO 2008038789A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
mold
temperature
producing
shaping surface
Prior art date
Application number
PCT/JP2007/069049
Other languages
French (fr)
Japanese (ja)
Inventor
Nobutsugu Chigira
Kiyoshi Minoura
Fumiyasu Nomura
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2007550619A priority Critical patent/JP4946871B2/en
Priority to CN2007800364148A priority patent/CN101522396B/en
Priority to KR1020097000763A priority patent/KR101400820B1/en
Publication of WO2008038789A1 publication Critical patent/WO2008038789A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/08Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means for dielectric heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films

Definitions

  • the present invention relates to a manufacturing method and a manufacturing apparatus for a sheet having a fine three-dimensional shape on a surface onto which a fine shape is transferred.
  • Patent Document 2 JP 2006-35573 A
  • the object of the present invention is to heat a mold having a sheet-like base material and a fine concavo-convex shape, and to contact and pressurize both to form a fine surface on the surface of the sheet-like base material.
  • the surface is formed with the desired fine concave / convex shape that does not cause poor transfer due to air trapped between the mold and the sheet-like substrate on the transfer surface.
  • Another object of the present invention is to provide a manufacturing method and a manufacturing apparatus.
  • a fine shape transfer sheet that heats a mold having a sheet-like base material and a fine concavo-convex shape, and contacts and presses both to form the fine concavo-convex shape on the surface of the sheet-like substrate.
  • the surface of the shaping surface composed of at least one of a pair of pressure plates or molds arranged to pressurize the sheet-like substrate and the mold or a combination thereof.
  • the method for producing the fine shape transfer sheet of the present invention preferably comprises the following constitution (2) or (3).
  • pressurization starts first from one point in the shaping surface of the sheet-like substrate, and gradually toward the peripheral edge of the sheet-like substrate.
  • the method for producing the fine shape transfer sheet of the present invention preferably comprises the following constitution (5) or (6).
  • the fine shape transfer sheet manufacturing apparatus of the present invention that achieves the above-described object has the following configuration (7).
  • a fine shape transfer sheet manufacturing apparatus comprising a sheet-like base material and a mold having a fine uneven shape, and means for heating and pressurizing the sheet-like base material and the mold, the sheet-like base material The temperature gradually increases from one point in the shaping surface composed of at least one of a pair of pressure plates or molds arranged to press the material and the mold or a combination thereof toward the peripheral edge of the sheet-like substrate.
  • An apparatus for producing a fine shape transfer sheet wherein the temperature of the mold and / or the pair of pressure plates is graded so as to descend.
  • the apparatus for producing a fine shape transfer sheet according to the present invention preferably has the following configurations (8) to (14)! /.
  • a temperature adjusting means is provided in the mold, and from one point in the shaping surface of the mold to the peripheral part.
  • a resistance heating type heater is used as a means for heating the pressure plate or the mold, and the density force of the heater wiring provided on the pressure plate or the mold is higher than the other places at one point in the shaping surface.
  • a heating medium is used as a means for heating the pressure plate or the mold, and the density force of the heat medium flow path provided in the pressure plate or the mold is higher than the other places at one point in the shaping surface.
  • the heating plate for raising the temperature of the pressure plate or the mold in a wide range within the shaping surface and the independent heating means for raising the temperature of an arbitrary point are provided.
  • the mold and / or the pressure plate itself has a function of controlling flatness (flatness of the shaping surface), and according to the state of the sheet and the mold at that time, It is characterized by manipulating the amount and position of bending, and it can be moved by applying a uniform surface pressure while excluding air after pressurization. [0015] Therefore, the pressure in the shaping surface after pressurization can be made uniform and air can be eliminated, so that air entrapment is eliminated and a uniform and highly accurate transfer molding state can be obtained.
  • FIG. 1 shows a model example of an embodiment of a production apparatus for a fine shape transfer sheet of the present invention suitably used for carrying out the method for producing a fine shape transfer sheet of the present invention.
  • FIG. 1 shows a model example of an embodiment of a production apparatus for a fine shape transfer sheet of the present invention suitably used for carrying out the method for producing a fine shape transfer sheet of the present invention.
  • FIG. 2 schematically shows another embodiment of the apparatus for producing a fine shape transfer sheet of the present invention, which is preferably used for carrying out the method for producing a fine shape transfer sheet of the present invention.
  • FIG. 3 is a schematic diagram schematically showing a state where pressing is performed with the heating state at the center of the shaping surface turned on using the apparatus for producing a fine shape transfer sheet of the present invention shown in FIG. It is a front view.
  • FIG. 4 shows the shaping surface after the pressing is performed with the heating state at the center of the shaping surface turned on using the manufacturing apparatus for the fine shape transfer sheet of the present invention shown in FIG. It is the schematic front view which showed the press state which flattened by making temperature uniform.
  • FIG. 5 is a model of an example of the relationship between the temperature distribution of the temperature control plate and the amount of thermal expansion of the temperature control plate in the manufacturing apparatus of the fine shape transfer sheet as shown in FIG. FIG.
  • FIG. 6 is a schematic plan view schematically showing various embodiments in which a heating medium is attached to the central portion of the temperature control plate in the apparatus for manufacturing a fine shape transfer sheet, which is effective in the present invention.
  • (a) is the central heating medium piping (parallel) system
  • (b) is the central heating medium piping (direct) system
  • (c) is the central heater and heating medium piping system
  • (d) is the heater embedded.
  • the left side is a plan view and the right side is a side view.
  • FIG. 7 is a schematic view of a plate suitable for carrying out the method for producing a fine shape transfer sheet of the present invention.
  • 1 is a schematic front view showing an example of an apparatus in which a temperature control system is incorporated in a mold.
  • FIG. 7 is a schematic view of a plate suitable for carrying out the method for producing a fine shape transfer sheet of the present invention.
  • FIG. 8 schematically shows a state where pressing is performed with the heating state of the center portion of the shaping surface turned on using the apparatus for producing a fine shape transfer sheet of the present invention shown in FIG. FIG.
  • FIG. 9 shows the fine shape of the present invention in which the structure for controlling the heating means and the cooling means in accordance with the thickness of the sheet is added to the apparatus for producing a fine shape transfer sheet, which is the power of the present invention shown in FIG. It is the schematic front view which showed other example of 1 embodiment of the manufacturing apparatus of the transcription
  • the method for producing a fine shape transfer sheet of the present invention comprises heating a sheet-shaped substrate and a mold having a fine uneven shape, and contacting and pressurizing both the sheet-shaped substrate and the mold.
  • Yotsu In a method for producing a fine shape transfer sheet for shaping the fine uneven shape on the surface of the sheet-like substrate! /, A pair of pressure plates arranged to pressurize the sheet-like substrate and the mold or It is characterized in that it is shaped by changing the flatness of the shaping surface composed of at least one of the molds or a combination thereof.
  • flatness of the shaping surface means “the degree of flatness of the flat space formed as a gap between the pressure plate and the mold”, and “changes the flatness”. Means changing the degree of flatness.
  • the flatness of the shaping surface is determined when the pressure plate is used in the case where the die is used up and down only by the combination of the pressure plate and the die. Is the same.
  • the flatness of the shaping surface when changing the flatness of the shaping surface, preferably, pressure starts first from one point in the shaping surface of the sheet-like substrate, and the peripheral portion of the sheet-like substrate In other words, the flatness is changed so that the applied pressure gradually decreases toward the surface.
  • pressurizing while excluding air without squeezing is particularly effective in the vicinity of the peripheral edge of the shaping surface where the first pressurization point does not need to be in the center and center of the shaping surface. It can be a single point.
  • the planarity is changed so that the applied pressure gradually decreases toward the peripheral edge on the opposite side.
  • the flatness of the shaping surface it is preferable to change the flatness of the shaping surface so that the applied pressure in the shaping surface becomes uniform after the start of shaping.
  • the term "after shaping starts” here refers to the point after the first pressurization starts when one point in the shaping surface of the sheet-shaped substrate comes into contact with the mold and / or the pressure plate (pressure plate). After reaching this state, it is effective to control it to be uniform.
  • a series of control of the pressurizing force as described above generates partial thermal expansion deformation by partially heating the shaping surface of the pressure plate (pressure plate) or the mold,
  • the mold force that abuts against the sheet-like base material can be achieved by first abutting at a certain point portion and expanding the abutting portion toward the peripheral edge as pressurization proceeds.
  • the method is carried out by the specific method of the present invention as described below. [0026] That is, in the method for producing a fine shape transfer sheet of the present invention, specifically, a sheet-like base material and a mold having fine irregularities are heated, and both the sheet-like base material and the die are heated.
  • the sheet-like substrate and the mold are arranged to be pressurized.
  • the temperature is adjusted so that the temperature gradually decreases from one point in the shaping surface formed by at least one of the pair of pressure plates or molds or a combination thereof to the peripheral edge of the sheet-like substrate. How to shape.
  • the method preferably, the temperature is adjusted so that the flatness of the shaping surface is larger than the maximum value of the thickness distribution on the shaping surface of the sheet-like substrate, , "The flatness of the shaping surface is greater than the maximum value of the thickness distribution on the shaping surface of the sheet-shaped substrate! /," Means that the flatness degree! / Is the maximum value of the sheet thickness distribution. It is bigger than! /, It means being in a state.
  • the temperature at which one point of the shaping surface is higher than the other part of the shaping surface It is to change so that the temperature difference becomes smaller after the start.
  • the fine shape transfer sheet manufacturing apparatus comprising a sheet-like base material and a mold having a fine uneven shape, and means for heating and pressurizing the sheet-like base material and the die, the sheet shape Gradually from one point in the shaping surface composed of at least one of a pair of pressure plates or molds arranged to pressurize the substrate and the mold or a combination thereof toward the periphery of the sheet-like substrate
  • the apparatus for producing a fine shape transfer sheet is characterized in that the temperature of the mold and / or the pair of pressing plates is graded so that the temperature drops.
  • FIG. 1 is a schematic diagram schematically showing an embodiment of an apparatus for producing a fine shape transfer sheet of the present invention that is preferably used for carrying out the method of producing a fine shape transfer sheet of the present invention.
  • FIG. 2 is a front view, and FIG. 2 shows another embodiment of the fine shape transfer sheet manufacturing apparatus of the present invention suitably used for carrying out the fine shape transfer sheet manufacturing method of the present invention. It is the schematic front view shown in model.
  • 1 is a fine shape transfer sheet manufacturing apparatus
  • 2 is a press apparatus
  • 3 is a mold
  • 4 is a sheet-like substrate
  • 5 is an upper temperature control plate
  • 6 is a lower temperature control plate
  • 7 is a heat medium flow path for central heating
  • 8 is a heat medium circulation device
  • 9 is a cooling water circulation device
  • 10 is a central heating heater.
  • the temperature gradient of the mold and / or the pair of pressure plates attached so as to drop in temperature is particularly provided with the central heating medium 7 in the embodiment of FIG. 1 and the central heater 10 in the embodiment of FIG. This is realized. Therefore, in the embodiment shown in FIGS. 1 and 2, the upper temperature control plate 5 and the lower temperature control plate 6 constitute the pressure plate referred to in claim 1.
  • FIG. 3 is a schematic front view schematically showing a state where pressing is performed with the heating state at the center of the shaping surface turned on using the apparatus for manufacturing a fine shape transfer sheet of the present invention shown in FIG. It is a figure.
  • the temperature control plates 5 and 6 are expanded and swelled at the center of the shaping surface.
  • FIG. 4 shows a state after pressing with the heating state at the center of the shaping surface turned on using the apparatus for producing a fine shape transfer sheet of the present invention shown in FIG. 3 (that is, after the start of shaping).
  • FIG. 6 is a schematic front view schematically showing a state in which the shaping surface is flattened with a uniform temperature by turning it off.
  • FIG. 5 is a model of an example of the relationship between the temperature distribution of the temperature control plate and the thermal expansion amount of the temperature control plate in the apparatus for manufacturing a fine shape transfer sheet, which is the power of the present invention shown in FIG. It is a schematic front view to explain, and shows a state in Example 1 to be described later.
  • a temperature difference of 10 ° C 100 ° C to 10 ° C
  • the difference in height is 15 m (175 to 190 m).
  • the entire shaping surface can be in a pressurized state, and when the entire pressurized state is reached, the gradient difference disappears. In this way, the partial additional heating at the center is turned off.
  • FIG. 6 is a schematic plan view schematically showing four examples of a state in which a heating medium is attached to the central portion of the temperature control plate in the apparatus for manufacturing a fine shape transfer sheet that is effective in the present invention.
  • FIG. 7 shows a model of another embodiment of the fine shape transfer sheet manufacturing apparatus of the present invention in that case, and shows an example of an apparatus in which a temperature control system is incorporated in a mold. It is the schematic front view shown in model.
  • FIG. 8 is a schematic front view schematically showing a state where pressing is performed with the heating state at the center of the shaping surface turned on using the apparatus for manufacturing a fine shape transfer sheet shown in FIG.
  • sheet thickness measuring means and means for transmitting a signal for controlling the heating means and the cooling means from the thickness measuring means.
  • 21 is a sheet thickness measurement sensor
  • 22 is a sheet transport roll
  • 23 is a signal calculator
  • the thickness of the sheet-like substrate before the start of shaping pressurization is measured in-line by the sheet thickness measurement sensor 21. Measurements are made sequentially, and based on the measurement results, temperature control, flatness control, etc. are performed on the processing batch.
  • a temperature adjusting means is provided in the mold, and the temperature gradually decreases from one point in the shaping surface of the mold toward the peripheral portion.
  • the temperature of the mold is given a gradient. This is because, if it is provided in the mold, it is often convenient because a normal temperature control plate can be used.
  • a plurality of temperature control systems for circulating the heat medium and the refrigerant are connected to a mold or a pressure plate (pressure plate) in which the heat medium flow path is formed. Things. If the temperature of the heat transfer medium flowing at the end is set lower than the center, the temperature rise is slow at the end of the mold where the heat transfer temperature is low.Therefore, when press molding, the temperature gradually increases from the center of the mold toward the periphery. A moderate temperature gradient that lowers the temperature can be provided. The temperature difference between the center and the edge varies depending on the pattern of the sheet base material to be pressed. Generally, it is in the range of !!-20 ° C, more preferably 5-10 ° C.
  • the temperature is 1 ° C or less, a temperature gradient cannot be given to the mold, and if it is 20 ° C or more, the mold temperature at the end Is too low, there is a high possibility that the formability of the sheet substrate will be lowered.
  • the watt density of the pressure plate (pressure plate) or heating source for heating the mold is not limited.
  • the heating source is a pressure plate (pressure plate) or / and Regardless of which mold is installed, the watt density is one point on the shaping surface, and higher than other places! That is.
  • a resistance heating heater is used as a means for heating the pressure plate or the mold, and the density of the heater wiring provided on the pressure plate or the mold is increased. It has a structure that is higher than other places at one point in the shape.
  • a heat medium is used as a means for heating the pressure plate or the mold, and the density force of the heat medium flow path provided in the pressure plate or the mold is larger than the other places at one point in the shaping surface. It has a high structure.
  • the heating means is provided with two systems of a heating means for raising the temperature of the pressure plate or the die over a wide range within the shaping surface and an independent heating means for raising the temperature of an arbitrary point. Preferably there is.
  • a heating means for raising the temperature of the pressure plate or mold over a wide range within the shaping surface
  • an independent cooling means for lowering the temperature of the peripheral portion of the shaping surface. It is preferable that
  • the press is connected to a hydraulic pump (not shown) and an oil tank, and the hydraulic pump controls the raising / lowering operation of the upper temperature control plate 5 and the applied pressure.
  • a hydraulic pump not shown
  • the hydraulic pump controls the raising / lowering operation of the upper temperature control plate 5 and the applied pressure.
  • any mechanism may be used as long as it is capable of controlling the force and pressure applied with a hydraulic press cylinder.
  • the pressure range can be controlled in the range of 0.1 lMPa to 20MPa. Is preferably controlled in the range of ⁇ lOMPa by IMPa.
  • the pressurization speed of the press is preferably controllable in the range of 0.01 MPa / s to lMPa / s, more preferably in the range of 0.05 MPa / s to 0.5 MPa / s.
  • the transfer surface of the mold has a fine pattern, and methods for forming the pattern on the mold include machining, laser processing, photolithography, and electron beam drawing.
  • the “fine concavo-convex shape” formed on the mold is a convex shape that is periodically repeated in the range of height from lOnm to; lmm, period from 10 nm to; 1 mm.
  • the height of the convex shape is more preferably 1 m to 100 m, and the period is more preferably 1 m to 100 m.
  • convex shapes protrusions of any shape typified by triangular pyramids, cones, quadrangular prisms, dome shapes, etc. are arranged in a discrete or dot shape, and the cross section is triangular, square or trapezoidal.
  • the material of the mold is not particularly limited as long as the desired press strength, patterning accuracy, and film releasability can be obtained.
  • metal materials including stainless steel, nickel, copper, etc., Silicone, glass, ceramics, resin, or those whose surfaces are coated with an organic film for improving releasability are preferably used.
  • the fine pattern of the mold is formed corresponding to the fine uneven pattern to be applied to the sheet surface.
  • the temperature control plate is preferably made of an aluminum alloy, and is preferably controlled by an electric heat heater inserted into the plate.
  • the heat control may be performed by flowing a temperature-controlled heat medium into copper or stainless steel pipes inserted into the temperature control plate, or inside a hole processed by machining.
  • a device configuration combining both of them may be used.
  • the sheet thickness measurement sensor it is preferable to use a radiation type, an infrared type, a light interference type, or the like.
  • multiple units such as two for measuring the thickness in the conveyance direction of the sheet and two for measuring the thickness in the width direction, may be provided, and the thickness measurement in the width direction may be performed by moving the sensor head horizontally.
  • the control of the heating means and cooling means described above is measured in advance at another location. You can use the thickness measurement result of the sheet! /
  • the sheet-like base material applied to the method of the present invention preferably has a glass transition temperature Tg (from about 40 to 180 ° C, more preferably from about 50 to 160 ° C). Yes, most preferably (Also a film mainly composed of a thermoplastic resin of 50 to 120 ° C. If the glass transition temperature Tg is below this range, the heat resistance of the molded product is lowered and the shape changes over time. If the temperature exceeds this range, the molding temperature must be increased, resulting in inefficiency in energy, and the volume fluctuation during heating / cooling of the film increases, causing the film to die. It is not preferable because it can not be released due to stagnation, or even if it can be released, the transfer accuracy of the pattern is reduced, or the pattern may be partially defective, resulting in a defect.
  • Tg glass transition temperature
  • the sheet-like base material mainly composed of the thermoplastic resin applied to the present invention is preferably, specifically, polyethylene terephthalate, polyethylene 2, 6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, or the like.
  • thermoplastic resin which is preferably formed mainly from a thermoplastic resin selected from a series resin or a mixture thereof, comprises 50% by weight or more.
  • the film applied to the present invention may be a film composed of the above-mentioned resin alone or a laminate composed of a plurality of resin layers. In this case, compared to a single sheet Thus, it is possible to impart surface properties such as easy slipping and friction resistance, mechanical strength and heat resistance.
  • a laminate composed of a plurality of resin layers as described above it is preferable that the entire sheet satisfies the above-mentioned requirements. However, even if the entire film does not satisfy the above-mentioned requirements, a layer satisfying at least the above-mentioned requirements is present. If it is formed on the surface layer, the surface can be easily molded with force S.
  • the preferred thickness (thickness, film thickness) of the film applied to the present invention is preferably in the range of 0.01 to lmm. If it is less than 0.01 mm, the thickness is not sufficient for molding. If it is more than 1 mm, it is generally difficult to convey due to the rigidity of the film. However, in the case of a sheet to be processed into a sheet form, a plate-like body having a thickness of 0.3 mm or more, more preferably 1 mm or more is preferable in order to suppress conveyance deflection and the like.
  • a method for forming a film applied to the present invention for example, in the case of a single sheet, a method for processing a sheet-forming material by heating and melting in an extruder and extruding it from a die onto a cast drum cooled to form a sheet (Melt cast method).
  • the sheet forming material is dissolved in a solvent, and the solution is extruded from a die onto a support such as a cast drum or an endless benolet to form a film, and then the solvent is removed from the film layer by drying.
  • a method of processing into a sheet form (solution casting method) and the like can also be mentioned.
  • thermoplastic resins are put into two extruders, melted and coextruded on a cast drum cooled from a die, and processed into a sheet ( (Co-extrusion method), coating layer raw material is put into an extruder into a sheet made of a single film, melt extruded and laminated while extruding from a die (melt laminating method), sheet made with a single film and easy surface shaping A single film is made separately for each of the adhesive sheets and thermocompression bonded with a heated group of rolls (thermal laminating method). Other methods include dissolving the sheet-forming material in a solvent and applying the solution onto the sheet. (Coating method).
  • melt lamination method heat lamination method, coating method, and the like
  • a base material may be subjected to a treatment such as a base preparation material or an undercoat material.
  • a structure as a composite with a base material having other functions is also preferable.
  • additives are added to the film applied to the present invention during or after the polymerization.
  • additives that can be added and blended include, for example, organic fine particles, inorganic fine particles, dispersants, dyes, fluorescent brighteners, antioxidants, weathering agents, antistatic agents, mold release agents, thickeners. , Plasticizers, pH adjusters and salts.
  • the release agent low surface tension carboxylic acids such as long chain carboxylic acids or long chain carboxylates and their derivatives, and low surface tensions such as long chain alcohols and their derivatives, modified silicone oils, etc. It is preferable to add a small amount of an alcohol compound or the like during polymerization.
  • the sheet (film) applied to the present invention preferably has a structure in which a release layer is further laminated on the surface of the molding layer.
  • a release layer By preliminarily providing a release layer on the outermost surface of the film, that is, the surface in contact with the mold, the durability (number of repeated use) of the release coat formed on the mold surface can be improved. Even when a mold that has lost its mold release effect is used, it is possible to release the mold uniformly without any problem. Further, even if the mold is not subjected to any mold release treatment, it is possible to release the mold by forming a mold release layer in advance on the film side, which is preferable because the mold mold release processing cost can be reduced. .
  • the slip resistance on the surface of the molded sheet is further improved to improve the scratch resistance and to reduce defects caused in the production process.
  • a release layer may be provided on the surface of one of the molding layers! /, And a release layer is provided on both outermost layers. May be provided!
  • the resin constituting the release layer is not particularly limited, and may be composed mainly of a silicone resin, a fluorine resin, a fatty acid resin, a polyester resin, an olefin resin, or a melamine resin. Of these, silicone resins, fluorine resins, or fatty acid resins are more preferable.
  • the release layer may contain, for example, an acrylic resin, a urethane resin, an epoxy resin, a urea resin, or a phenol resin, and various additives such as an antistatic agent.
  • the thickness of the release layer is not particularly limited, but is preferably 0.01 to 5111.
  • the thickness of the release layer is 0.01 If it is less than m, the above-mentioned releasability improvement effect may be reduced, so care must be taken.
  • the method for forming the release layer is not particularly limited, but various coating methods such as reverse coating, gravure coating, rod coating, bar coating, die coating, or spray coating may be used. Can do. And inline coating which performs said application
  • a fine shape transfer sheet is manufactured by applying a fine shape with a die, a pressing device, and processing conditions having the specifications shown in (1) to (; 10). It is a thing.
  • Mold size 500mm (film width direction) X 800mm (film running direction) X
  • Fine shape a pitch 50 m, a convex width 25 111, a convex height 50 m, and a rectangular cross section when viewed from the film running direction was used.
  • the press machine can pressurize up to 3000kN, and pressurization is done by a hydraulic pump.
  • Two temperature control plates made of aluminum alloy with a size of 700mm (film width direction) x 1000mm (film running direction) are installed in the press machine, and connected to the heating and cooling devices, respectively. Has been.
  • the mold is attached to the lower temperature control plate.
  • the heating device is a heat medium circulation device, and the heat medium is Barrel Therm # 400 (manufactured by Matsumura Oil Co., Ltd.), which is heated to 150 ° C and flows at a flow rate of 100 L / min.
  • the cooling device is a cooling water circulation device that allows water cooled to 20 ° C to flow at a flow rate of 150 L / min.
  • Sheet Made of polyethylene terephthalate resin, thickness is 100 ⁇ m (thickness unevenness: soil 7 ⁇ m), and width is 520 mm.
  • the plate deformation was measured using a Keyence Laser Focus Displacement Meter LT8100.
  • the sensor head was placed above the temperature control plate, and 20 points of displacement were measured across the plate.
  • the plate deformation may be measured using a dial gauge with a thermally insulated tip.
  • the temperature of the plate surface is controlled by the temperature of the thermocouple inserted in the plate.
  • a thermocouple was attached to the plate surface in advance, and the correlation between the plate surface temperature and the plate internal temperature was ascertained. Based on this correlation, the temperature inside the plate was controlled.
  • Mold size 500mm (film width direction) X 800mm (film running direction) X 20mm
  • the press can pressurize up to 3000kN, and pressurization is done by a hydraulic pump.
  • Two temperature control plates made of aluminum alloy with a size of 700mm (film width direction) x 1000mm (film running direction) are installed in the press machine, and connected to the heating and cooling devices, respectively. Has been.
  • the mold is attached to the lower temperature control plate.
  • the heating device is a heat medium circulation device, and the heat medium is Barrel Therm # 400 (manufactured by Matsumura Oil Co., Ltd.), which is heated to 150 ° C and flows at a flow rate of 100 L / min.
  • the cooling device is a cooling water circulation device that allows water cooled to 20 ° C to flow at a flow rate of 150 L / min.
  • a heating medium flow path separate from the heating medium flow path is provided near the center of the upper and lower temperature control plates, and the heating medium (barrel therm # 400) is flowed at a flow rate of 150 ° C and 20 L / min.
  • Sheet made of polyethylene terephthalate, with a thickness of 100 Hm (thickness variation: ⁇ 10 m) and a width of 520 mm.
  • Example 3 Mold size: 500mm (film width direction) X 800mm (film running direction) X 40mm (thickness).
  • Fine shape a pitch 50 m, a convex width 25 111, a convex height 50 m, and a rectangular cross section when viewed from the film running direction was used.
  • the press can pressurize up to 3000kN, and pressurization is done by a hydraulic pump.
  • Two temperature control plates made of aluminum alloy with a size of 700mm (film width direction) x 1000mm (film running direction) are installed in the press machine, and connected to the heating and cooling devices, respectively. Has been.
  • the mold is attached to the lower temperature control plate.
  • the heating device is a heat medium circulation device, and the heat medium is Barrel Therm # 400 (manufactured by Matsumura Oil Co., Ltd.), which is heated to 150 ° C and flows at a flow rate of 100 L / min.
  • the cooling device is a cooling water circulation device that allows water cooled to 20 ° C to flow at a flow rate of 150 L / min.
  • a heating medium pipe for heating the vicinity of the center of the mold was provided inside the mold, and the heating medium heated to 120 ° C was flowed at a flow rate of 10 L / min.
  • Sheet Polyethylene terephthalate, thickness is 80 ⁇ m (thickness variation: ⁇ 4 m), and width is 520 mm.
  • Mold size 500mm (film width direction) X 800mm (film running direction) X 20mm (thickness).
  • Fine shape pitch 50 m, convex width 25 111, convex height 50 m, and the cross section when viewed from the film running direction is rectangular.
  • the press can pressurize up to 3000kN, and pressurization is done by a hydraulic pump.
  • Two temperature control plates made of aluminum alloy with a size of 700mm (film width direction) x 1000mm (film running direction) are installed in the press machine, and connected to the heating and cooling devices, respectively. Has been.
  • the mold is attached to the lower temperature control plate.
  • the heating device is a heat medium circulation device, and the heat medium is Barrel Therm # 400 (manufactured by Matsumura Oil Co., Ltd.), which is heated to 150 ° C and flows at a flow rate of 100 L / min.
  • the cooling device is a cooling water circulation device that allows water cooled to 20 ° C to flow at a flow rate of 150 L / min.
  • a 7kW electric heater is embedded near the center of the top and bottom temperature control plate, and the temperature can be controlled separately from the heating medium heating device.
  • Sheet made of polyethylene terephthalate, with a thickness of 100 ⁇ m (thickness variation: ⁇ 7 m) and a width of 520 mm.
  • Thickness meter An X-ray sheet thickness measurement sensor was fixedly installed on the press side, and the thickness in the sheet conveyance direction was measured. The thickness distribution was 14 Hm.
  • Example 2 Using the same device as in Example 1, but without using the central heating heater, the result of pressing under the same conditions as in Example 1 resulted in a non-transfer area due to air stagnation in the center of the film. There has occurred. 10 sheets of cast film were created under the same conditions, and non-transfer areas occurred in all films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

A process for producing a sheet and apparatus therefor that in the operation of heating a sheet substratum and a metal mold with fine uneven configuration, bringing them into mutual contact and pressurizing the same so as to form the fine uneven configuration on a surface of the sheet substratum, avoid transfer failure attributed to air trapping at the transfer face between the metal mold and the sheet substratum to thereby obtain a sheet having the desired fine uneven configuration formed on its surface. There are provided a process for producing a microconfiguration transfer sheet, and apparatus therefor, comprising, in the microconfiguration transfer sheet producing operation including heating a sheet substratum and a metal mold with fine uneven configuration, bringing them into mutual contact and pressurizing the same so as to form the fine uneven configuration on a surface of the sheet substratum, carrying out the configuration formation while changing the planarity of a configuration forming face consisting of at least one, or a combination, of a pair of pressurization plates or metal molds arranged so as to apply pressure to the sheet substratum and the metal mold.

Description

明 細 書  Specification
微細形状転写シートの製造方法および製造装置  Manufacturing method and manufacturing apparatus for fine shape transfer sheet
技術分野  Technical field
[0001] 本発明は、微細形状が転写されて、表面に該微細な立体的形状を有するシートの 製造方法と製造装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a manufacturing method and a manufacturing apparatus for a sheet having a fine three-dimensional shape on a surface onto which a fine shape is transferred.
背景技術  Background art
[0002] 樹脂シートなどの表面に微細な凹凸などの立体的形状を成形する方法として、樹 脂シートなどに対して加熱された微細な凹凸を持つ金型を押圧することにより、該凹 凸立体形状を該樹脂シートに転写させる方法が知られている(特許文献 1 2)。  [0002] As a method of forming a three-dimensional shape such as fine irregularities on the surface of a resin sheet or the like, the concave and convex three-dimensional solids are pressed by pressing a mold having heated fine irregularities against a resin sheet or the like. A method of transferring the shape onto the resin sheet is known (Patent Document 12).
[0003] しかし、この方法で、大面積の樹脂シートに微細な形状を転写成形しょうとする場合 、転写面で金型と被加工シートの間にエアを嚙み込み、微細な立体形状が完全に転 写されず、転写不良を起こすという問題があった。  However, when trying to transfer and mold a fine shape on a large-area resin sheet with this method, air is squeezed between the mold and the processed sheet on the transfer surface, and the fine three-dimensional shape is completely There was a problem that the image was not transferred to the image and the transfer was poor.
[0004] このエアを嚙み込むという問題は、被処理シート状基材が厚さムラがあるときや、加 圧板の平面性にムラがあるときなどに起こるものであった。  [0004] This problem of entrapping air occurs when the sheet-like substrate to be processed has uneven thickness, or when the flatness of the pressure plate has unevenness.
[0005] このような問題を解決するために、上記特許文献 2では、加圧板の当接開始時に転 写板を樹脂シートに対して突出するように屈曲させること、そして、その状態で加圧す ることによって賦形面の中央近傍からエアが排除されつつ加圧板がフィルムに接触し ていき、微細形状を転写するようにした方法と装置が提案され、具体的に、該屈曲は 弾性の異なるパネ部材により実施してレ、る。  [0005] In order to solve such a problem, in Patent Document 2, the transfer plate is bent so as to protrude with respect to the resin sheet at the start of contact of the pressure plate, and the pressure is applied in this state. Thus, there is proposed a method and an apparatus in which the pressure plate comes into contact with the film while air is excluded from the vicinity of the center of the shaping surface, and the fine shape is transferred. Specifically, the bending has different elasticity. It is carried out with panel members.
[0006] し力、し、該方法では、弾性の異なるバネによって加圧板を屈曲させているため、プレ ス加圧によって平坦化しても、突出部の圧力が高い等のことから、賦形面の面圧に分 布が生じることとなり、このことにより、微細形状の転写精度が賦形面内で異なり、結 果として均一な転写精度はやはり得られないものであった。これは、特に表面形状が 微細になるほど顕著であり、また、面圧分布が異なるため、得られる加工済みシート の厚みにも影響してしまうことがあって好ましくない。さらに、変形量を変化させたいと きは、その都度、パネ部材やその支持ホルダーの位置を交換する手間があり実際的 なものではなかった。 特許文献 1 :特開平 5— 60920号公報 [0006] In this method, since the pressure plate is bent by springs having different elasticity, even if the pressure plate is flattened by pressurization, the pressure on the protruding portion is high. As a result, the fine shape transfer accuracy differs within the shaping surface, and as a result, uniform transfer accuracy cannot still be obtained. This is particularly notable as the surface shape becomes finer, and since the surface pressure distribution is different, it may affect the thickness of the processed sheet to be obtained. Furthermore, it was not practical to change the amount of deformation each time there was a need to change the position of the panel member and its support holder. Patent Document 1: JP-A-5-60920
特許文献 2 :特開 2006— 35573号公報  Patent Document 2: JP 2006-35573 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の目的は、上述したような点に鑑み、シート状基材および微細凹凸形状を備 えた金型を加熱し、両者を接触、加圧させることによってシート状基材表面に微細凹 凸形状を賦形するに際して、転写面で金型とシート状基材の間に空気を嚙み込んで しまうことによる転写不良を生ずることがなぐ所望どおりの微細凹凸形状が表面に成 形されたシートを製造する方法と製造装置を提供することにある。 [0007] In view of the above-described points, the object of the present invention is to heat a mold having a sheet-like base material and a fine concavo-convex shape, and to contact and pressurize both to form a fine surface on the surface of the sheet-like base material. When shaping the concave / convex shape, the surface is formed with the desired fine concave / convex shape that does not cause poor transfer due to air trapped between the mold and the sheet-like substrate on the transfer surface. Another object of the present invention is to provide a manufacturing method and a manufacturing apparatus.
課題を解決するための手段  Means for solving the problem
[0008] 上述した目的を達成する本発明の微細形状転写シートの製造方法は、以下の(1) の構成からなるものである。 [0008] The method for producing a fine shape transfer sheet of the present invention that achieves the above-mentioned object comprises the following configuration (1).
(1)シート状基材および微細凹凸形状を備えた金型を加熱し、両者を接触、加圧さ せることによって前記シート状基材表面に前記微細凹凸形状を賦形する微細形状転 写シートの製造方法にお!/、て、前記シート状基材および金型を加圧するよう配置さ れた一対の加圧板または金型のうち少なくとも 1つあるいはその組み合わせで構成さ れる賦形面の平面性を変化させて賦形することを特徴とする微細形状転写シートの 製造方法。  (1) A fine shape transfer sheet that heats a mold having a sheet-like base material and a fine concavo-convex shape, and contacts and presses both to form the fine concavo-convex shape on the surface of the sheet-like substrate. The surface of the shaping surface composed of at least one of a pair of pressure plates or molds arranged to pressurize the sheet-like substrate and the mold or a combination thereof. A method for producing a fine shape transfer sheet, characterized by forming by changing properties.
[0009] また、力、かる本発明の微細形状転写シートの製造方法は、より具体的に好ましくは、 以下の(2)または(3)の構成からなるものである。  [0009] Further, the method for producing the fine shape transfer sheet of the present invention, more specifically, preferably comprises the following constitution (2) or (3).
(2)前記賦形面の平面性を変化させて賦形するに際して、シート状基材の賦形面内 の一点から最初に加圧がはじまり、シート状基材の周縁部に向かって徐々に加圧力 力 S小さくなるように平面性を変化させることを特徴とする上記(1)記載の微細形状転 写シートの製造方法。  (2) When shaping by changing the flatness of the shaping surface, pressurization starts first from one point in the shaping surface of the sheet-like substrate, and gradually toward the peripheral edge of the sheet-like substrate. The method for producing a fine shape transfer sheet according to the above (1), wherein the flatness is changed so as to reduce the pressure force S.
(3)前記賦形面の平面性を変化させて賦形するに際して、賦形開始後に、賦形面内 の加圧力が均一になるように賦形面の平面性を変化させることを特徴とする上記(1) または(2)記載の微細形状転写シートの製造方法。  (3) When shaping by changing the flatness of the shaping surface, after the start of shaping, the flatness of the shaping surface is changed so that the applied pressure in the shaping surface is uniform. The method for producing a fine shape transfer sheet according to the above (1) or (2).
[0010] また、上述した目的を達成する他の本発明の微細形状転写シートの製造方法は、 以下の(4)の構成からなるものである。 [0010] Further, another method for producing a fine shape transfer sheet of the present invention that achieves the above-described object, It has the following configuration (4).
(4)シート状基材および微細凹凸形状を備えた金型を加熱し、該シート状基材と金 型の両者を接触させて加圧することによって前記シート状基材表面に前記微細凹凸 形状を賦形する微細形状転写シートの製造方法にお!/、て、前記シート状基材および 金型を加圧するように配置された一対の加圧板または金型のうち少なくとも 1つある いはその組み合わせで構成される賦形面内における一点からシート状基材の周縁 部に向かって徐々に温度降下するように温度調整して賦形することを特徴とする微 細形状転写シートの製造方法。  (4) Heating a mold having a sheet-like base material and a fine concavo-convex shape, and bringing the sheet-like base material and the mold into contact with each other to pressurize the fine concavo-convex shape on the surface of the sheet-like substrate. In the manufacturing method of the fine shape transfer sheet to be shaped! /, At least one of a pair of pressure plates or molds arranged to pressurize the sheet-like substrate and the mold, or a combination thereof A method for producing a fine-shaped transfer sheet, wherein the forming is performed by adjusting the temperature so that the temperature gradually decreases from one point in the shaping surface constituted by the sheet toward the peripheral edge of the sheet-like substrate.
[0011] また、力、かる本発明の微細形状転写シートの製造方法は、より具体的に好ましくは、 以下の(5)または(6)の構成からなるものである。  [0011] Further, the method for producing the fine shape transfer sheet of the present invention, more specifically, preferably comprises the following constitution (5) or (6).
(5)前記賦形面の平面性が前記シート状基材の賦形面における厚み分布の最大値 よりも大きくなるように温度調整することを特徴とする上記 (4)記載の微細形状転写シ ートの製造方法。  (5) The fine shape transfer sheet according to the above (4), wherein the temperature is adjusted so that the flatness of the shaping surface is larger than the maximum value of the thickness distribution on the shaping surface of the sheet-like substrate. Manufacturing method.
(6)賦形時の前記金型と前記シート状基材が接触する時点にお!/、て、前記賦形面の 一点の温度が前記賦形面のその他の部位よりも温度が高ぐ賦形開始後に温度差 力 S小さくなるように変化させることを特徴とする上記 (4)または(5)記載の微細形状転 写シートの製造方法。  (6) At the time when the mold and the sheet-like base material come into contact with each other during shaping, the temperature at one point of the shaping surface is higher than the other part of the shaping surface The method for producing a fine shape transfer sheet according to the above (4) or (5), wherein the temperature differential force S is changed to be small after the shaping starts.
[0012] また、上述した目的を達成する本発明の微細形状転写シートの製造装置は、以下 の(7)の構成を有する。  [0012] The fine shape transfer sheet manufacturing apparatus of the present invention that achieves the above-described object has the following configuration (7).
(7)シート状基材および微細凹凸形状を有した金型と、該シート状基材と該金型を加 熱、加圧する手段とを備えた微細形状転写シート製造装置において、前記シート状 基材および金型を加圧するよう配置された一対の加圧板または金型のうち少なくとも 1つあるいはその組み合わせで構成される賦形面内における一点からシート状基材 の周縁部に向かって徐々に温度降下するよう金型および/または一対の加圧板の 温度に勾配がつけられたことを特徴とする微細形状転写シートの製造装置。  (7) In a fine shape transfer sheet manufacturing apparatus comprising a sheet-like base material and a mold having a fine uneven shape, and means for heating and pressurizing the sheet-like base material and the mold, the sheet-like base material The temperature gradually increases from one point in the shaping surface composed of at least one of a pair of pressure plates or molds arranged to press the material and the mold or a combination thereof toward the peripheral edge of the sheet-like substrate. An apparatus for producing a fine shape transfer sheet, wherein the temperature of the mold and / or the pair of pressure plates is graded so as to descend.
[0013] また、力、かる本発明の微細形状転写シートの製造装置において、好ましくは、以下 の(8)〜(14)の!/、ずれかの構成からなる。  [0013] In addition, the apparatus for producing a fine shape transfer sheet according to the present invention preferably has the following configurations (8) to (14)! /.
(8)前記金型に温度調整手段を設け、金型の賦形面内における一点から周縁部に 向かって徐々に温度降下するよう金型の温度に勾配がつけられたことを特徴とする 上記(7)に記載の微細形状転写シートの製造装置。 (8) A temperature adjusting means is provided in the mold, and from one point in the shaping surface of the mold to the peripheral part. The apparatus for producing a fine shape transfer sheet according to (7), wherein the temperature of the mold is given a gradient so that the temperature gradually decreases.
(9)前記加圧板または前記金型を加熱する加熱源のワット密度が、賦形面内の一点 にお!/、てその他の場所よりも高!/、構造にして!/、ることを特徴とする上記(7)または(8) 記載の微細形状転写シートの製造装置。  (9) The watt density of the heating source for heating the pressure plate or the mold is higher at one point in the shaping surface than the other places! The apparatus for producing a fine shape transfer sheet as described in (7) or (8) above,
(10)前記加圧板または金型を加熱する手段として抵抗加熱式ヒーターを用い、加圧 板または金型に設けられたヒーター配線の密度力 賦形面内の一点においてその他 の場所よりも高レ、構造にして!/、ることを特徴とする上記(7)〜(9)の!/、ずれかに記載 の微細形状転写シートの製造装置。  (10) A resistance heating type heater is used as a means for heating the pressure plate or the mold, and the density force of the heater wiring provided on the pressure plate or the mold is higher than the other places at one point in the shaping surface. The manufacturing apparatus for a fine shape transfer sheet according to any one of the above (7) to (9), characterized in that the structure is! /.
(11)前記加圧板または金型を加熱する手段として熱媒を用い、該加圧板または金 型に設けられた熱媒流路の密度力 賦形面内の一点においてその他の場所よりも高 V、構造にして!/、ることを特徴とする上記(7)〜(; 10)の!/、ずれかに記載の微細形状転 写シートの製造装置。  (11) A heating medium is used as a means for heating the pressure plate or the mold, and the density force of the heat medium flow path provided in the pressure plate or the mold is higher than the other places at one point in the shaping surface. The apparatus for producing a fine shape transfer sheet according to any one of the above (7) to (; 10), characterized in that the structure is! /.
(12)前記加圧板または前記金型をその賦形面内で広範囲に温度上昇させるための 加熱手段と、任意点を温度上昇させるため独立した加熱手段の 2系統を設けたことを 特徴とする上記(7)〜(11)のいずれかに記載の微細形状転写シートの製造装置。 (12) The heating plate for raising the temperature of the pressure plate or the mold in a wide range within the shaping surface and the independent heating means for raising the temperature of an arbitrary point are provided. The apparatus for producing a fine shape transfer sheet according to any one of the above (7) to (11).
(13)前記加圧板または前記金型をその賦形面内で広範囲に温度上昇させるための 加熱手段と、賦形面の周縁部を温度下降させるため独立した冷却手段の 2系統を設 けたことを特徴とする上記(7)〜(; 12)のレ、ずれかに記載の微細形状転写シートの製 造装置。 (13) Two systems were provided: a heating means for raising the temperature of the pressure plate or the mold over a wide range within the shaping surface, and an independent cooling means for lowering the temperature of the periphery of the shaping surface. The apparatus for producing a fine shape transfer sheet according to any of (7) to (; 12) above, characterized in that:
(14)前記シート状基材の厚み測定手段と、該厚み測定手段から前記加熱手段、冷 却手段を制御する信号を送信する手段が設けられてなることを特徴とする上記(7)〜 (13)のいずれかに記載の微細形状転写シートの製造装置。  (14) The above-mentioned (7) to (7), characterized in that there are provided thickness measuring means for the sheet-like substrate and means for transmitting a signal for controlling the heating means and cooling means from the thickness measuring means. The apparatus for producing a fine shape transfer sheet according to any one of 13).
発明の効果 The invention's effect
本発明の方法、装置によれば、金型および/または加圧板自体に平面性 (賦形面 の平面性)を制御する機能を持たせ、そのときのシート、金型の状態に応じて、屈曲 量、位置を操作することに特徴があるものであり、加圧後にエアを排除しながら均一 面圧状 に移 fiさせることカでさるようになる。 [0015] したがって、加圧後における賦形面内の圧力を均一化させるとともに、エアを排除 できることからエア嚙み込みがなくなり、均一で高い精度の転写成形状態を得ること ができることになる。 According to the method and apparatus of the present invention, the mold and / or the pressure plate itself has a function of controlling flatness (flatness of the shaping surface), and according to the state of the sheet and the mold at that time, It is characterized by manipulating the amount and position of bending, and it can be moved by applying a uniform surface pressure while excluding air after pressurization. [0015] Therefore, the pressure in the shaping surface after pressurization can be made uniform and air can be eliminated, so that air entrapment is eliminated and a uniform and highly accurate transfer molding state can be obtained.
[0016] 本発明の微細形状転写シートの製造方法、製造装置によれば、表面に微細形状を 転写されたシートを良好に製造することができる。  [0016] According to the method and apparatus for producing a fine shape transfer sheet of the present invention, it is possible to satisfactorily produce a sheet having a fine shape transferred to the surface.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は、本発明の微細形状転写シートの製造方法を実施するのに好適に用い られる本発明の微細形状転写シートの製造装置の一実施態様例をモデル的に示し た概略正面図である。  [0017] FIG. 1 shows a model example of an embodiment of a production apparatus for a fine shape transfer sheet of the present invention suitably used for carrying out the method for producing a fine shape transfer sheet of the present invention. FIG.
[図 2]図 2は、本発明の微細形状転写シートの製造方法を実施するのに好適に用レヽ られる本発明の微細形状転写シートの製造装置の他の一実施態様例をモデル的に 示した概略正面図である。  [FIG. 2] FIG. 2 schematically shows another embodiment of the apparatus for producing a fine shape transfer sheet of the present invention, which is preferably used for carrying out the method for producing a fine shape transfer sheet of the present invention. FIG.
[図 3]図 3は、図 1に示した本発明の微細形状転写シートの製造装置を用いて賦形面 の中央部の加熱状態をオンにしてプレスをした状態をモデル的に示した概略正面図 である。  [FIG. 3] FIG. 3 is a schematic diagram schematically showing a state where pressing is performed with the heating state at the center of the shaping surface turned on using the apparatus for producing a fine shape transfer sheet of the present invention shown in FIG. It is a front view.
[図 4]図 4は、図 3に示した本発明の微細形状転写シートの製造装置を用いて賦形面 の中央部の加熱状態をオンにしてプレスをした後にオフにして、賦形面を均一温度 化して平坦化したプレス状態をモデル的に示した概略正面図である。  [FIG. 4] FIG. 4 shows the shaping surface after the pressing is performed with the heating state at the center of the shaping surface turned on using the manufacturing apparatus for the fine shape transfer sheet of the present invention shown in FIG. It is the schematic front view which showed the press state which flattened by making temperature uniform.
[図 5]図 5は、図 1に示した本発明に力、かる微細形状転写シートの製造装置における 温調プレートの温度分布と該温調プレートの熱膨張量の関係の 1例をモデル的に説 明する概略正面図である。  [FIG. 5] FIG. 5 is a model of an example of the relationship between the temperature distribution of the temperature control plate and the amount of thermal expansion of the temperature control plate in the manufacturing apparatus of the fine shape transfer sheet as shown in FIG. FIG.
[図 6]図 6は、本発明に力、かる微細形状転写シートの製造装置における温調プレート 内の中央部に加熱媒体を付設する各種の態様例をモデル的に示した概略平面図で あり、同図において、(a)は中央熱媒配管(並行)方式、(b)は中央熱媒配管(直行) 方式、(c)は中央ヒーター埋設及び熱媒配管方式、(d)はヒーター埋設方式を示し、 (a)〜(d)の各図において、左側に示したのが平面図、右側に示したのはその側面 図である。  [Fig. 6] Fig. 6 is a schematic plan view schematically showing various embodiments in which a heating medium is attached to the central portion of the temperature control plate in the apparatus for manufacturing a fine shape transfer sheet, which is effective in the present invention. In this figure, (a) is the central heating medium piping (parallel) system, (b) is the central heating medium piping (direct) system, (c) is the central heater and heating medium piping system, and (d) is the heater embedded. In each of the diagrams (a) to (d), the left side is a plan view and the right side is a side view.
[図 7]図 7は、本発明の微細形状転写シートの製造方法を実施するのに好適に用レヽ られる本発明の微細形状転写シートの製造装置の他の一実施態様例をモデル的に 示したものであり、金型内に温調システムを組込んだ装置例をモデル的に示した概 略正面図である。 [FIG. 7] FIG. 7 is a schematic view of a plate suitable for carrying out the method for producing a fine shape transfer sheet of the present invention. 1 is a schematic front view showing an example of an apparatus in which a temperature control system is incorporated in a mold. FIG.
[図 8]図 8は、図 7に示した本発明の微細形状転写シートの製造装置を用レ、て賦形面 の中央部の加熱状態をオンにしてプレスをした状態をモデル的に示した概略正面図 である。  [FIG. 8] FIG. 8 schematically shows a state where pressing is performed with the heating state of the center portion of the shaping surface turned on using the apparatus for producing a fine shape transfer sheet of the present invention shown in FIG. FIG.
[図 9]図 9は、図 1に示した本発明に力、かる微細形状転写シートの製造装置に、シート 厚みに応じて加熱手段、冷却手段を制御する構成を付加した本発明の微細形状転 写シートの製造装置の他の一実施態様例をモデル的に示した概略正面図である。 符号の説明  [FIG. 9] FIG. 9 shows the fine shape of the present invention in which the structure for controlling the heating means and the cooling means in accordance with the thickness of the sheet is added to the apparatus for producing a fine shape transfer sheet, which is the power of the present invention shown in FIG. It is the schematic front view which showed other example of 1 embodiment of the manufacturing apparatus of the transcription | transfer sheet | seat as a model. Explanation of symbols
[0018] 1 微細形状転写シート製造装置 [0018] 1 Fine shape transfer sheet manufacturing apparatus
2 プレス装置  2 Press equipment
3 金型  3 Mold
4 シート状基材  4 Sheet substrate
5 上温調プレート  5 Upper temperature control plate
6 下温調プレート  6 Lower temperature control plate
7 中央加熱用熱媒流路  7 Heating medium flow path for central heating
8 熱媒循環装置  8 Heat medium circulation device
9 冷却水循環装置  9 Cooling water circulation device
10 中央加熱用ヒーター  10 Heater for central heating
21 シート厚み測定センサー  21 Sheet thickness measurement sensor
22 シート搬送ロール  22 Sheet transport roll
23 信号演算器  23 Signal calculator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、図面などを参照しながら、更に詳しく本発明の微細形状転写シートの製造方 法、製造装置について説明する。 Hereinafter, the method and apparatus for producing a fine shape transfer sheet of the present invention will be described in more detail with reference to the drawings.
[0020] 本発明の微細形状転写シートの製造方法は、シート状基材および微細凹凸形状を 備えた金型を加熱し、該シート状基材と該金型の両者を接触、加圧させることによつ てシート状基材表面に、前記微細凹凸形状を賦形する微細形状転写シート製造方 法にお!/、て、前記シート状基材および金型を加圧するよう配置された一対の加圧板 または金型のうち少なくとも 1つあるいはその組合わせで構成される賦形面の平面性 を変化させて賦形することを特徴とするものである。 [0020] The method for producing a fine shape transfer sheet of the present invention comprises heating a sheet-shaped substrate and a mold having a fine uneven shape, and contacting and pressurizing both the sheet-shaped substrate and the mold. Yotsu In a method for producing a fine shape transfer sheet for shaping the fine uneven shape on the surface of the sheet-like substrate! /, A pair of pressure plates arranged to pressurize the sheet-like substrate and the mold or It is characterized in that it is shaped by changing the flatness of the shaping surface composed of at least one of the molds or a combination thereof.
[0021] ここで、「賦形面の平面性」とは、「加圧板と金型との間の間隙として形成される平板 状空間の平面度合い」を言い、「平面性を変化させる」とは、その平面性の度合いを 変化させることをいう。また、ここで、該賦形面の平面性は、加圧板と金型の組合せだ けでなぐ金型を上下に用いる場合にあっても、さらに、その場合で加圧板を用いる 場合にあっても同様である。  Here, “flatness of the shaping surface” means “the degree of flatness of the flat space formed as a gap between the pressure plate and the mold”, and “changes the flatness”. Means changing the degree of flatness. In addition, the flatness of the shaping surface is determined when the pressure plate is used in the case where the die is used up and down only by the combination of the pressure plate and the die. Is the same.
[0022] 本発明の方法において、この賦形面の平面性を変化させるに際して、好ましくは、 シート状基材の賦形面内の一点から最初に加圧がはじまり、シート状基材の周縁部 に向かって徐々に加圧力が小さくなるように平面性を変化させることである。すなわち 、エアを嚙み込ませずに排除しながら加圧していくのは、特に、最初の加圧点が賦形 面の中央 ·中心部である必要はなぐ賦形面の周縁端部付近にある一点などでもよ い。この周縁端部付近の一点から加圧を始めるときは、その反対側にある周縁端部 側に向かって、徐々に加圧力が小さくなるように平面性を変化させるのである。  In the method of the present invention, when changing the flatness of the shaping surface, preferably, pressure starts first from one point in the shaping surface of the sheet-like substrate, and the peripheral portion of the sheet-like substrate In other words, the flatness is changed so that the applied pressure gradually decreases toward the surface. In other words, pressurizing while excluding air without squeezing is particularly effective in the vicinity of the peripheral edge of the shaping surface where the first pressurization point does not need to be in the center and center of the shaping surface. It can be a single point. When pressurization is started from one point in the vicinity of the peripheral edge, the planarity is changed so that the applied pressure gradually decreases toward the peripheral edge on the opposite side.
[0023] ここで、「徐々に加圧力が小さくなるように平面性を変化させる」とは、賦形面におい て各単位面積あたりに加わる圧力が徐々に小さくなつていくようにすることをいう。  [0023] Here, "change the flatness so that the applied pressure gradually decreases" means that the pressure applied to each unit area on the shaping surface gradually decreases. .
[0024] この賦形面の平面性を変化させるに際して、賦形開始後においては、賦形面内の 加圧力が均一になるように賦形面の平面性を変化させることが好ましい。ここで言う「 賦形開始後」とは、シート状基材の賦形面内の一点が金型および/または加圧板( 加圧プレート)と接触し、最初に加圧が始まった状態より後のことであり、該状態となつ た後は、均一になるように制御することが有効なのである。  [0024] When changing the flatness of the shaping surface, it is preferable to change the flatness of the shaping surface so that the applied pressure in the shaping surface becomes uniform after the start of shaping. The term "after shaping starts" here refers to the point after the first pressurization starts when one point in the shaping surface of the sheet-shaped substrate comes into contact with the mold and / or the pressure plate (pressure plate). After reaching this state, it is effective to control it to be uniform.
[0025] 以上のような加圧力の一連の制御は、加圧板 (加圧プレート)あるいは金型におけ る賦形面に部分的な加熱をすることによって部分的な熱膨張変形を発生させ、それ によりシート状基材に当接する金型力 最初は、ある一点部分で当接し、加圧が進む につれて当接部分が周縁部に向かい広がっていくようにすることにより行うことができ 、具体的には、以下に説明するような本発明の具体的方法で行うものである。 [0026] すなわち、本発明の微細形状転写シートの製造方法は、具体的には、シート状基 材および微細凹凸形状を備えた金型を加熱し、該シート状基材と金型の両者を接触 させて加圧することによって前記シート状基材表面に前記微細凹凸形状を賦形する 微細形状転写シート製造方法にお!/、て、前記シート状基材および金型を加圧するよ うに配置された一対の加圧板または金型のうち少なくとも 1つあるいはその組み合わ せで構成される賦形面内における一点からシート状基材の周縁部に向かって徐々に 温度降下するように温度調整して賦形をする方法である。 [0025] A series of control of the pressurizing force as described above generates partial thermal expansion deformation by partially heating the shaping surface of the pressure plate (pressure plate) or the mold, Thus, the mold force that abuts against the sheet-like base material can be achieved by first abutting at a certain point portion and expanding the abutting portion toward the peripheral edge as pressurization proceeds. The method is carried out by the specific method of the present invention as described below. [0026] That is, in the method for producing a fine shape transfer sheet of the present invention, specifically, a sheet-like base material and a mold having fine irregularities are heated, and both the sheet-like base material and the die are heated. In a method for producing a fine shape transfer sheet that forms the fine irregularities on the surface of the sheet-like substrate by contacting and pressurizing, the sheet-like substrate and the mold are arranged to be pressurized. The temperature is adjusted so that the temperature gradually decreases from one point in the shaping surface formed by at least one of the pair of pressure plates or molds or a combination thereof to the peripheral edge of the sheet-like substrate. How to shape.
[0027] 力、かる方法において、好ましくは、前記賦形面の平面性が前記シート状基材の賦 形面における厚み分布の最大値よりも大きくなるように温度調整することであり、ここ で、「賦形面の平面性が前記シート状基材の賦形面における厚み分布の最大値より も大き!/、」とは、平面性の度合!/、の数値がシート厚み分布の最大値よりも大き!/、状態 であることをいう。  [0027] In the force, the method, preferably, the temperature is adjusted so that the flatness of the shaping surface is larger than the maximum value of the thickness distribution on the shaping surface of the sheet-like substrate, , "The flatness of the shaping surface is greater than the maximum value of the thickness distribution on the shaping surface of the sheet-shaped substrate! /," Means that the flatness degree! / Is the maximum value of the sheet thickness distribution. It is bigger than! /, It means being in a state.
[0028] また、好ましくは、賦形時の金型とシート状基材が接触する時点において、前記賦 形面の一点の温度が前記賦形面のその他の部位よりも温度が高ぐ賦形開始後に 温度差が小さくなるように変化させることである。  [0028] Further, preferably, at the time when the mold at the time of shaping and the sheet-like substrate are in contact, the temperature at which one point of the shaping surface is higher than the other part of the shaping surface It is to change so that the temperature difference becomes smaller after the start.
[0029] 本発明の上述した具体的方法は、以下に説明する本発明の微細形状転写シート の製造装置により行うことができる。  [0029] The above-described specific method of the present invention can be performed by the apparatus for producing a fine shape transfer sheet of the present invention described below.
[0030] すなわち、シート状基材および微細凹凸形状を有した金型と、該シート状基材と該 金型を加熱、加圧する手段とを備えた微細形状転写シート製造装置において、前記 シート状基材および金型を加圧するよう配置された一対の加圧板または金型のうち 少なくとも 1つあるいはその組み合わせで構成される賦形面内における一点からシー ト状基材の周縁部に向かって徐々に温度降下するよう金型および/または一対の加 圧板の温度に勾配がつけられたことを特徴とする微細形状転写シートの製造装置で ある。  [0030] That is, in the fine shape transfer sheet manufacturing apparatus comprising a sheet-like base material and a mold having a fine uneven shape, and means for heating and pressurizing the sheet-like base material and the die, the sheet shape Gradually from one point in the shaping surface composed of at least one of a pair of pressure plates or molds arranged to pressurize the substrate and the mold or a combination thereof toward the periphery of the sheet-like substrate The apparatus for producing a fine shape transfer sheet is characterized in that the temperature of the mold and / or the pair of pressing plates is graded so that the temperature drops.
[0031] 図 1は、本発明の微細形状転写シートの製造方法を実施するのに好適に用いられ る本発明の微細形状転写シートの製造装置の一実施態様例をモデル的に示した概 略正面図であり、図 2は、本発明の微細形状転写シートの製造方法を実施するのに 好適に用いられる本発明の微細形状転写シートの製造装置の他の一実施態様例を モデル的に示した概略正面図である。 [0031] FIG. 1 is a schematic diagram schematically showing an embodiment of an apparatus for producing a fine shape transfer sheet of the present invention that is preferably used for carrying out the method of producing a fine shape transfer sheet of the present invention. FIG. 2 is a front view, and FIG. 2 shows another embodiment of the fine shape transfer sheet manufacturing apparatus of the present invention suitably used for carrying out the fine shape transfer sheet manufacturing method of the present invention. It is the schematic front view shown in model.
[0032] 図 1、図 2において、 1は微細形状転写シート製造装置、 2はプレス装置、 3は金型、 4はシート状基材、 5は上温調プレート、 6は下温調プレート、 7は中央加熱用熱媒流 路、 8は熱媒循環装置、 9は冷却水循環装置、 10は中央加熱用ヒーターであり、賦形 面内における一点からシート状基材の周縁部に向かって徐々に温度降下するように 付けられる金型および/または一対の加圧板の温度の勾配は、図 1の態様では中央 加熱用熱媒流路 7、図 2の態様では中央加熱用ヒーター 10を特に設けることにより実 現される。したがって、この図 1、図 2に示した態様では、上温調プレート 5、下温調プ レート 6が、請求項 1でいう加圧板を構成しているものである。  In FIGS. 1 and 2, 1 is a fine shape transfer sheet manufacturing apparatus, 2 is a press apparatus, 3 is a mold, 4 is a sheet-like substrate, 5 is an upper temperature control plate, 6 is a lower temperature control plate, 7 is a heat medium flow path for central heating, 8 is a heat medium circulation device, 9 is a cooling water circulation device, and 10 is a central heating heater. Gradually from one point on the shaping surface toward the peripheral edge of the sheet-like substrate The temperature gradient of the mold and / or the pair of pressure plates attached so as to drop in temperature is particularly provided with the central heating medium 7 in the embodiment of FIG. 1 and the central heater 10 in the embodiment of FIG. This is realized. Therefore, in the embodiment shown in FIGS. 1 and 2, the upper temperature control plate 5 and the lower temperature control plate 6 constitute the pressure plate referred to in claim 1.
[0033] 図 3は、図 1に示した本発明の微細形状転写シートの製造装置を用いて賦形面の 中央部の加熱状態をオンにしてプレスをした状態をモデル的に示した概略正面図で ある。温調プレート 5、 6が賦形面中央部において膨張しふくらんでいる状態を示した ものである。  FIG. 3 is a schematic front view schematically showing a state where pressing is performed with the heating state at the center of the shaping surface turned on using the apparatus for manufacturing a fine shape transfer sheet of the present invention shown in FIG. It is a figure. The temperature control plates 5 and 6 are expanded and swelled at the center of the shaping surface.
[0034] 図 4は、図 3に示した本発明の微細形状転写シートの製造装置を用いて賦形面の 中央部の加熱状態をオンにしてプレスをした後(すなわち、賦形開始後)にオフにし て、賦形面を均一温度化して平坦化した状態をモデル的に示した概略正面図である [0034] FIG. 4 shows a state after pressing with the heating state at the center of the shaping surface turned on using the apparatus for producing a fine shape transfer sheet of the present invention shown in FIG. 3 (that is, after the start of shaping). FIG. 6 is a schematic front view schematically showing a state in which the shaping surface is flattened with a uniform temperature by turning it off.
Yes
[0035] 図 5は、図 1に示した本発明に力、かる微細形状転写シートの製造装置における温調 プレートの温度分布と該温調プレートの熱膨張量の関係の 1例をモデル的に説明す る概略正面図であり、後述する実施例 1における状態を示したものである。ここに示し たように、温調プレートの端部で中央部とで 10°Cの温度差(100°C〜; 10°C)が生ずる ようにすることにより、プレートの膨張量は鉛直面方向の高さの差にして 15 m(175 〜; 190 m)の勾配が生ずる。この勾配差を利用してエアを嚙み込まな!/、ようにして 賦形面全体を加圧状態とすることができ、該全体の加圧状態となったときには、該勾 配差が消滅するように中央部の部分的付加加熱をオフにするのである。  [0035] FIG. 5 is a model of an example of the relationship between the temperature distribution of the temperature control plate and the thermal expansion amount of the temperature control plate in the apparatus for manufacturing a fine shape transfer sheet, which is the power of the present invention shown in FIG. It is a schematic front view to explain, and shows a state in Example 1 to be described later. As shown here, by causing a temperature difference of 10 ° C (100 ° C to 10 ° C) at the center of the end of the temperature control plate, the expansion amount of the plate can be adjusted in the vertical plane direction. The difference in height is 15 m (175 to 190 m). Using this gradient difference, do not squeeze the air! / The entire shaping surface can be in a pressurized state, and when the entire pressurized state is reached, the gradient difference disappears. In this way, the partial additional heating at the center is turned off.
[0036] 図 6は、本発明に力、かる微細形状転写シートの製造装置における温調プレート内の 中央部に加熱媒体を付設する状態の 4つの例をモデル的に示した概略平面図であ る。同図において、(a)は中央熱媒配管(並行)方式、(b)は中央熱媒配管(直行)方 式、(c)は中央ヒーター埋設及び熱媒配管方式、(d)はヒーター埋設方式であり、 (a )〜(d)の各図において、左側に示したのが平面図、右側に示したのがその側面図 である。 FIG. 6 is a schematic plan view schematically showing four examples of a state in which a heating medium is attached to the central portion of the temperature control plate in the apparatus for manufacturing a fine shape transfer sheet that is effective in the present invention. The In the figure, (a) is the central heating medium piping (parallel) system, (b) is the central heating medium piping (straight) (C) is the central heater embedment and heating medium piping system, (d) is the heater embedment system, and in each figure of (a) to (d), the left side shows the plan view and the right side shows This is a side view.
[0037] 加熱に用いる熱媒の配管流路ゃヒーターは、温調プレートに設ける必要は必ずしも なぐ通常の温調プレートはそのまま用いて、特に、金型内部に部分的に熱媒の配 管流路ゃヒーターを付設してもよい。図 7は、その場合の本発明の微細形状転写シ ートの製造装置の他の一実施態様例をモデル的に示したものであり、金型内に温調 システムを組込んだ装置例をモデル的に示した概略正面図である。図 8は、図 7に示 した微細形状転写シートの製造装置を用いて賦形面の中央部の加熱状態をオンに してプレスをした状態をモデル的に示した概略正面図である。  [0037] The heating medium piping passage heater used for heating does not necessarily need to be provided on the temperature control plate. The normal temperature control plate is used as it is, and in particular, the heat medium pipe flow partially inside the mold. A road heater may be attached. FIG. 7 shows a model of another embodiment of the fine shape transfer sheet manufacturing apparatus of the present invention in that case, and shows an example of an apparatus in which a temperature control system is incorporated in a mold. It is the schematic front view shown in model. FIG. 8 is a schematic front view schematically showing a state where pressing is performed with the heating state at the center of the shaping surface turned on using the apparatus for manufacturing a fine shape transfer sheet shown in FIG.
[0038] 図 9に示した装置の態様例においては、シート状基材の厚み測定手段と、該厚み 測定手段から加熱手段、冷却手段を制御する信号を送信する手段が設けられてレ、る ものであり、 21はシート厚み測定センサー、 22はシート搬送ロール、 23は信号演算 器であり、賦形加圧開始前のシート状基材の厚みを該シート厚み測定センサー 21に よって、インラインにおいて順次に測定し、その測定結果に基づいて、その加工バッ チにおける温度制御、平面性制御などをするように構成したものである。  In the embodiment of the apparatus shown in FIG. 9, there are provided sheet thickness measuring means and means for transmitting a signal for controlling the heating means and the cooling means from the thickness measuring means. 21 is a sheet thickness measurement sensor, 22 is a sheet transport roll, 23 is a signal calculator, and the thickness of the sheet-like substrate before the start of shaping pressurization is measured in-line by the sheet thickness measurement sensor 21. Measurements are made sequentially, and based on the measurement results, temperature control, flatness control, etc. are performed on the processing batch.
[0039] すなわち、本発明の装置において、一つの構造として、好ましくは、金型に温度調 整手段を設け、金型の賦形面内における一点から周縁部に向かって徐々に温度降 下するよう金型の温度に勾配がつけられたものである。金型内に設けると、温調プレ ートは通常のものを使用できるので好都合なことが多いからである。  That is, in the apparatus of the present invention, as one structure, preferably, a temperature adjusting means is provided in the mold, and the temperature gradually decreases from one point in the shaping surface of the mold toward the peripheral portion. The temperature of the mold is given a gradient. This is because, if it is provided in the mold, it is often convenient because a normal temperature control plate can be used.
[0040] これを実現する構成の一例として、熱媒流路が内部に形成された金型または加圧 板 (加圧プレート)に、熱媒および冷媒を循環させる複数の温調系統を接続したもの が挙げられる。端部に流れる熱媒温度を中央部より低く設定すると、熱媒温度が低い 金型端部では温度上昇が遅くなるため、プレス成形する際に金型の中央付近から周 縁部に向かって徐々に温度降下する適度な温度勾配を付与することができる。なお 、中央と端部の温度差はプレスするシート基材ゃパターン形状により異なる力 一般 的には、;!〜 20°Cが好ましぐより好ましくは 5〜; 10°Cの範囲である。 1°C以下の場合 、金型に温度勾配を付与することができず、また、 20°C以上あると、端部で金型温度 が低すぎてシート基材の成形性が低下する可能性が高い。 [0040] As an example of a configuration for realizing this, a plurality of temperature control systems for circulating the heat medium and the refrigerant are connected to a mold or a pressure plate (pressure plate) in which the heat medium flow path is formed. Things. If the temperature of the heat transfer medium flowing at the end is set lower than the center, the temperature rise is slow at the end of the mold where the heat transfer temperature is low.Therefore, when press molding, the temperature gradually increases from the center of the mold toward the periphery. A moderate temperature gradient that lowers the temperature can be provided. The temperature difference between the center and the edge varies depending on the pattern of the sheet base material to be pressed. Generally, it is in the range of !!-20 ° C, more preferably 5-10 ° C. If the temperature is 1 ° C or less, a temperature gradient cannot be given to the mold, and if it is 20 ° C or more, the mold temperature at the end Is too low, there is a high possibility that the formability of the sheet substrate will be lowered.
[0041] また、好ましくは、加圧板 (加圧プレート)または金型を加熱する加熱源のワット密度 [0041] Preferably, the watt density of the pressure plate (pressure plate) or heating source for heating the mold
1S 賦形面内の一点においてその他の場所よりも高い構造にしていることであり、特 に、ここでいう「賦形面内」とは、加熱源が加圧板 (加圧プレート)または/および金型 のいずれに設けられている場合でも、全加熱源を対象として、ワット密度が賦形面内 の一点にぉレ、てその他の場所よりも高!/、構造とされて!/、ることである。本発明の効果 を顕著に得るために好ましいものであり、該一点のワット密度は、他の部分よりも 5kW /m2 (0. 5W/cm2)以上は高いことが望ましぐ上限は、 50kW/m2 (5. OW/cm2 )程度までである。従って、金型などの伝熱性にもよる力 10〜30kW/m2 (l . 0〜3 . OW/cm2)程度高いことが好ましい。 1S It is a structure that is higher than other places at one point on the shaping surface. In particular, “in the shaping surface” here means that the heating source is a pressure plate (pressure plate) or / and Regardless of which mold is installed, the watt density is one point on the shaping surface, and higher than other places! That is. The upper limit that is desirable in order to obtain the effects of the present invention remarkably, and that the watt density at one point is desirably 5 kW / m 2 (0.5 W / cm 2 ) or more higher than the other parts, Up to about 50kW / m 2 (5. OW / cm 2 ). Accordingly, it is preferable that the force due to the heat transfer property of the mold or the like is about 10 to 30 kW / m 2 (1.0 to 3.0 OW / cm 2 ).
[0042] 以上のように、本発明の装置において、好ましくは、加圧板または金型を加熱する 手段として抵抗加熱式ヒーターを用い、加圧板または金型に設けられたヒーター配線 の密度が、賦形面内の一点においてその他の場所よりも高い構造にしているもので ある。 As described above, in the apparatus of the present invention, preferably, a resistance heating heater is used as a means for heating the pressure plate or the mold, and the density of the heater wiring provided on the pressure plate or the mold is increased. It has a structure that is higher than other places at one point in the shape.
[0043] また、加圧板または金型を加熱する手段として熱媒を用い、加圧板または金型に設 けられた熱媒流路の密度力、賦形面内の一点においてその他の場所よりも高い構造 にしているものである。  [0043] In addition, a heat medium is used as a means for heating the pressure plate or the mold, and the density force of the heat medium flow path provided in the pressure plate or the mold is larger than the other places at one point in the shaping surface. It has a high structure.
[0044] また、加熱手段は、加圧板または金型をその賦形面内で広範囲に温度上昇させる ための加熱手段と任意点を温度上昇させるため独立した加熱手段の 2系統を設けた ものであることが好ましい。  [0044] In addition, the heating means is provided with two systems of a heating means for raising the temperature of the pressure plate or the die over a wide range within the shaping surface and an independent heating means for raising the temperature of an arbitrary point. Preferably there is.
[0045] また、加圧板または金型をその賦形面内で広範囲に温度上昇させるための加熱手 段と、賦形面の周縁部を温度下降させるため独立した冷却手段の 2系統を設けたも のであることが好ましい。 [0045] In addition, there are provided two systems: a heating means for raising the temperature of the pressure plate or mold over a wide range within the shaping surface, and an independent cooling means for lowering the temperature of the peripheral portion of the shaping surface. It is preferable that
[0046] プレスは、図示していない油圧ポンプとオイルタンクに接続されており、油圧ポンプ により上温調プレート 5の昇降動作および、加圧力の制御を行う。また、本実施形態 では油圧方式のプレスシリンダーを適用している力、加圧力を制御できる機構であれ ば、いかなるものでもよい。 [0046] The press is connected to a hydraulic pump (not shown) and an oil tank, and the hydraulic pump controls the raising / lowering operation of the upper temperature control plate 5 and the applied pressure. Further, in the present embodiment, any mechanism may be used as long as it is capable of controlling the force and pressure applied with a hydraulic press cylinder.
[0047] 圧力範囲は 0. lMPa〜20MPaの範囲で制御できることが好ましぐさらに好ましく は、 IMPaで〜 lOMPaの範囲で制御できることが好ましい。 [0047] It is preferable and more preferable that the pressure range can be controlled in the range of 0.1 lMPa to 20MPa. Is preferably controlled in the range of ~ lOMPa by IMPa.
[0048] プレスの昇圧速度は 0. 01MPa/s〜lMPa/sの範囲で制御できることが好ましく 、さらに好ましくは、 0. 05MPa/s〜0. 5MPa/sの範囲で制御できることが好まし い。 [0048] The pressurization speed of the press is preferably controllable in the range of 0.01 MPa / s to lMPa / s, more preferably in the range of 0.05 MPa / s to 0.5 MPa / s.
[0049] 本発明に用いられる金型 3について説明する。金型の転写面は、微細なパターンを 有するものであり、金型に該パターンを形成する方法としては、機械加工、レーザー 加工、フォトリソグラフィ、電子線描画方法等がある。ここで、金型に形成される「微細 凹凸形状」とは、高さが lOnm〜; lmm、周期が 10nm〜; 1mmの範囲で周期的に繰り 返された凸形状である。凸形状の高さはより好ましくは 1 m〜; 100 m、周期はより 好ましく 1 m〜; 100 mである。また、凸形状の例としては、三角錐、円錐、四角柱 、ドーム状等に代表される任意の形状の突起物が離散状、ドット状で配されたものや 、断面が三角、四角、台形、半円、楕円等に代表される任意の形状の突起物がストラ イブ状に配されたもの等がある。  [0049] The mold 3 used in the present invention will be described. The transfer surface of the mold has a fine pattern, and methods for forming the pattern on the mold include machining, laser processing, photolithography, and electron beam drawing. Here, the “fine concavo-convex shape” formed on the mold is a convex shape that is periodically repeated in the range of height from lOnm to; lmm, period from 10 nm to; 1 mm. The height of the convex shape is more preferably 1 m to 100 m, and the period is more preferably 1 m to 100 m. As examples of convex shapes, protrusions of any shape typified by triangular pyramids, cones, quadrangular prisms, dome shapes, etc. are arranged in a discrete or dot shape, and the cross section is triangular, square or trapezoidal. In addition, there are projections having arbitrary shapes represented by semicircles, ellipses, etc. arranged in a stripe shape.
[0050] 金型の材質としては、所望のプレス時の強度、パターン加工精度、フィルムの離型 性が得られるものであればよぐ例えば、ステンレス、ニッケル、銅等を含んだ金属材 料、シリコーン、ガラス、セラミックス、樹脂、もしくは、これらの表面に離型性を向上さ せるための有機膜を被覆させたものが好ましく用いられる。該金型の微細なパターン は、シート表面に付与したい微細な凹凸パターンに対応して形成されているものであ  [0050] The material of the mold is not particularly limited as long as the desired press strength, patterning accuracy, and film releasability can be obtained. For example, metal materials including stainless steel, nickel, copper, etc., Silicone, glass, ceramics, resin, or those whose surfaces are coated with an organic film for improving releasability are preferably used. The fine pattern of the mold is formed corresponding to the fine uneven pattern to be applied to the sheet surface.
[0051] 温調プレートは、好ましくはアルミ合金製のものとし、プレート内に铸込んだ電熱ヒ 一ターにより制御するものが良い。また、温調プレート内に铸込んだ銅あるいはステ ンレス配管、もしくは、機械加工により加工した穴の内部に温調された熱媒体を流す ことによりカロ熱制御するものでもよい。さらには両者を組み合わせた装置構成でもよ い。 [0051] The temperature control plate is preferably made of an aluminum alloy, and is preferably controlled by an electric heat heater inserted into the plate. Alternatively, the heat control may be performed by flowing a temperature-controlled heat medium into copper or stainless steel pipes inserted into the temperature control plate, or inside a hole processed by machining. Furthermore, a device configuration combining both of them may be used.
[0052] シートの厚み測定センサーは、放射線式、赤外線式、光干渉式等を用いることが好 ましい。また、シートの搬送方向の厚み測定用と幅方向の厚み測定用とで 2台など、 複数台を設けても良ぐまた、幅方向の厚み測定はセンサーヘッドを水平移動させて 行ってもよい。なお、前述の加熱手段、冷却手段の制御は、予め別の場所で測定し たシートの厚み測定結果を用いて行ってもよ!/、。 [0052] As the sheet thickness measurement sensor, it is preferable to use a radiation type, an infrared type, a light interference type, or the like. In addition, multiple units, such as two for measuring the thickness in the conveyance direction of the sheet and two for measuring the thickness in the width direction, may be provided, and the thickness measurement in the width direction may be performed by moving the sensor head horizontally. . Note that the control of the heating means and cooling means described above is measured in advance at another location. You can use the thickness measurement result of the sheet! /
[0053] 熱媒体としてはバーレルサーム(松村石油(株))、 NeoSK— OIL (綜研テクニックス [0053] Barreltherm (Matsumura Oil Co., Ltd.), NeoSK—OIL (Soken Techniques)
(株))等が良ぐまた、 100°C以上に加熱された水を循環させてもよい。そして、効率 良く伝熱できるように、配管内部のレイノズル数が 1. 0 X 104〜; 12 X 104の範囲にな ることが好ましい。 In addition, water heated to 100 ° C or higher may be circulated. As it can be efficiently heat transfer, the Reynolds number of the internal pipe 1. 0 X 10 4 ~; Rukoto Preferably such a range of 12 X 10 4.
[0054] 本発明の方法'装置に適用されるシート状基材は、ガラス転移温度 Tgが、好ましく (ま 40〜; 180°Cのもので り、より好ましく (ま 50〜; 160°Cであり、最も好ましく (ま 50〜1 20°Cである熱可塑性樹脂を主たる成分とするフィルムである。ガラス転移温度 Tgが この範囲を下回ると、成形品の耐熱性が低くなり形状が経時変化するため好ましくな い。また、この範囲を上回ると、成形温度を高くせざるを得ないものとなりエネルギー 的に非効率であり、また、フィルムの加熱/冷却時の体積変動が大きくなりフィルムが 金型に嚙み込んで離型できなくなったり、また離型できたとしてもパターンの転写精 度が低下したり、部分的にパターンが欠けて欠点となる場合がある等の理由により好 ましくない。  [0054] The sheet-like base material applied to the method of the present invention preferably has a glass transition temperature Tg (from about 40 to 180 ° C, more preferably from about 50 to 160 ° C). Yes, most preferably (Also a film mainly composed of a thermoplastic resin of 50 to 120 ° C. If the glass transition temperature Tg is below this range, the heat resistance of the molded product is lowered and the shape changes over time. If the temperature exceeds this range, the molding temperature must be increased, resulting in inefficiency in energy, and the volume fluctuation during heating / cooling of the film increases, causing the film to die. It is not preferable because it can not be released due to stagnation, or even if it can be released, the transfer accuracy of the pattern is reduced, or the pattern may be partially defective, resulting in a defect.
[0055] 本発明に適用される熱可塑性樹脂を主たる成分としたシート状基材は、好ましくは 、具体的には、ポリエチレンテレフタレート、ポリエチレンー2、 6—ナフタレート、ポリ プロピレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリエ チレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテ ン等のポリオレフイン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹 脂、ポリエステルアミド系樹脂、ポリエーテルエステル系樹脂、アクリル系樹脂、ポリウ レタン系樹脂、ポリカーボネート系樹脂、あるいはポリ塩化ビュル系樹脂などからなる ものである。これらの中で共重合するモノマー種が多様であり、かつ、そのことによつ て材料物性の調整が容易であるなどの理由から、特にポリエステル系樹脂、ポリオレ フィン系樹脂、ポリアミド系樹脂、アクリル系樹脂またはこれらの混合物から選ばれる 熱可塑性樹脂から主として形成されていることが好ましぐ上述の熱可塑性樹脂が 50 重量%以上からなることがさらに好ましい。  [0055] The sheet-like base material mainly composed of the thermoplastic resin applied to the present invention is preferably, specifically, polyethylene terephthalate, polyethylene 2, 6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, or the like. Polyester resins, polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene, polymethylpentene and other polyolefin resins, polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins Resin, acrylic resin, polyurethane resin, polycarbonate resin, or polychlorinated bur resin. Among these, there are various types of monomers to be copolymerized, and it is easy to adjust the physical properties of the materials, which makes polyester resin, polyolefin resin, polyamide resin, acrylic resin, etc. More preferably, the above-mentioned thermoplastic resin, which is preferably formed mainly from a thermoplastic resin selected from a series resin or a mixture thereof, comprises 50% by weight or more.
[0056] 本発明に適用するフィルムは、上述の樹脂の単体からなるフィルムであってもかま わないし、複数の樹脂層からなる積層体であってもよい。この場合、単体シートと比べ て、易滑性や、耐摩擦性などの表面特性や、機械的強度、耐熱性を付与することが できる。このように複数の樹脂層からなる積層体とした場合は、シート全体が前述の 要件を満たすことが好ましいが、フィルム全体としては前述要件を満たしていなくても 、少なくとも前述の要件を満たす層が表層に形成されていれば容易に表面を成形す ること力 Sでさる。 [0056] The film applied to the present invention may be a film composed of the above-mentioned resin alone or a laminate composed of a plurality of resin layers. In this case, compared to a single sheet Thus, it is possible to impart surface properties such as easy slipping and friction resistance, mechanical strength and heat resistance. In the case of a laminate composed of a plurality of resin layers as described above, it is preferable that the entire sheet satisfies the above-mentioned requirements. However, even if the entire film does not satisfy the above-mentioned requirements, a layer satisfying at least the above-mentioned requirements is present. If it is formed on the surface layer, the surface can be easily molded with force S.
[0057] また、本発明に適用するフィルムの好ましい厚さ(厚み、膜厚)としては 0· 01〜; lm mの範囲であることが好ましい。 0. 01mm以下では、成形するのに十分な厚みがな ぐまた、 1mm以上ではフィルムの剛性により搬送が一般に難しい。ただし、枚葉状 に処理するシートであれば、搬送たわみ等を抑制するため、 0. 3mm以上、より好ま しくは lmm以上の厚みを有した板状体が好ましい。  [0057] Further, the preferred thickness (thickness, film thickness) of the film applied to the present invention is preferably in the range of 0.01 to lmm. If it is less than 0.01 mm, the thickness is not sufficient for molding. If it is more than 1 mm, it is generally difficult to convey due to the rigidity of the film. However, in the case of a sheet to be processed into a sheet form, a plate-like body having a thickness of 0.3 mm or more, more preferably 1 mm or more is preferable in order to suppress conveyance deflection and the like.
[0058] 本発明に適用するフィルムの形成方法としては、例えば、単体シートの場合、シート 形成用材料を押出機内で加熱溶融し、口金から冷却したキャストドラム上に押し出し てシート状に加工する方法 (溶融キャスト法)が挙げられる。その他の方法として、シ ート形成用材料を溶媒に溶解させ、その溶液を口金からキャストドラム、エンドレスべ ノレト等の支持体上に押し出して膜状とし、次いで、かかる膜層から溶媒を乾燥除去さ せてシート状に加工する方法 (溶液キャスト法)等も挙げられる。  [0058] As a method for forming a film applied to the present invention, for example, in the case of a single sheet, a method for processing a sheet-forming material by heating and melting in an extruder and extruding it from a die onto a cast drum cooled to form a sheet (Melt cast method). As another method, the sheet forming material is dissolved in a solvent, and the solution is extruded from a die onto a support such as a cast drum or an endless benolet to form a film, and then the solvent is removed from the film layer by drying. A method of processing into a sheet form (solution casting method) and the like can also be mentioned.
[0059] また、積層体の製造方法としては、二つの異なる熱可塑性樹脂を二台の押出機に 投入し、溶融して口金から冷却したキャストドラム上に共押出してシート状に加工する 方法 (共押出法)、単膜で作製したシートに被覆層原料を押出機に投入して溶融押 出して口金から押出しながらラミネートする方法 (溶融ラミネート法)、単膜で作製した シートと易表面賦形性シートをそれぞれ別々に単膜作製し、加熱されたロール群など により熱圧着する方法 (熱ラミネート法)、その他、シート形成用材料を溶媒に溶解さ せ、その溶液をシート上に塗布する方法(コーティング法)等が挙げられる。また、易 表面賦形性シート積層体の場合にも上述の溶融ラミネート法、熱ラミネート法、コーテ イング法等を用いることができる。かかる基材は、下地調整材ゃ下塗り材などの処理 が施されたものであっても良い。また、他の機能をもった基材との複合体としての構成 も好ましい。  [0059] In addition, as a method for producing a laminate, two different thermoplastic resins are put into two extruders, melted and coextruded on a cast drum cooled from a die, and processed into a sheet ( (Co-extrusion method), coating layer raw material is put into an extruder into a sheet made of a single film, melt extruded and laminated while extruding from a die (melt laminating method), sheet made with a single film and easy surface shaping A single film is made separately for each of the adhesive sheets and thermocompression bonded with a heated group of rolls (thermal laminating method). Other methods include dissolving the sheet-forming material in a solvent and applying the solution onto the sheet. (Coating method). Also in the case of an easily surface-shaped sheet laminate, the above-mentioned melt lamination method, heat lamination method, coating method, and the like can be used. Such a base material may be subjected to a treatment such as a base preparation material or an undercoat material. Further, a structure as a composite with a base material having other functions is also preferable.
[0060] また、本発明に適用するフィルムには、重合時もしくは重合後に各種の添加剤を加 えること力 Sできる。添加配合することができる添加剤の例としては、例えば、有機微粒 子、無機微粒子、分散剤、染料、蛍光増白剤、酸化防止剤、耐候剤、帯電防止剤、 離型剤、増粘剤、可塑剤、 pH調整剤および塩などが挙げられる。特に、離型剤とし て、長鎖カルボン酸、もしくは長鎖カルボン酸塩、などの低表面張力のカルボン酸や その誘導体、および、長鎖アルコールやその誘導体、変性シリコーンオイルなどの低 表面張力のアルコール化合物等を重合時に少量添加することが好ましく行われる。 [0060] Various additives are added to the film applied to the present invention during or after the polymerization. The ability to get S Examples of additives that can be added and blended include, for example, organic fine particles, inorganic fine particles, dispersants, dyes, fluorescent brighteners, antioxidants, weathering agents, antistatic agents, mold release agents, thickeners. , Plasticizers, pH adjusters and salts. In particular, as the release agent, low surface tension carboxylic acids such as long chain carboxylic acids or long chain carboxylates and their derivatives, and low surface tensions such as long chain alcohols and their derivatives, modified silicone oils, etc. It is preferable to add a small amount of an alcohol compound or the like during polymerization.
[0061] また、本発明に適用するシート(フィルム)は、成形層の表面に、さらに離型層を積 層した構成が好ましい。フィルムの最表面、すなわち、金型と接する面に離型層を予 め設けることによって、金型表面に形成する離型コートの耐久性 (繰り返し使用回数) を向上することができ、たとえ部分的に離型効果が失われた金型を用いた場合でも 問題なく均一に離型することが可能となる。また、金型に全く離型処理を施さなくても 、フィルム側に予め離型層を形成することで離型が可能となり、金型離型処理コストを 削減することができるようになるため好ましい。また、金型から成形シートを離型する 際の樹脂粘着による成形パターン崩れを防止できることや、より高温での離型が可能 となり、サイクルタイムの短縮が可能となるため、成形精度、生産性の点においても好 ましい。また、さらに成形シート表面の滑り性が向上することによって耐スクラッチ性が 向上し、製造工程などで生じる欠点を低減させることも可能となるため好ましい。  [0061] The sheet (film) applied to the present invention preferably has a structure in which a release layer is further laminated on the surface of the molding layer. By preliminarily providing a release layer on the outermost surface of the film, that is, the surface in contact with the mold, the durability (number of repeated use) of the release coat formed on the mold surface can be improved. Even when a mold that has lost its mold release effect is used, it is possible to release the mold uniformly without any problem. Further, even if the mold is not subjected to any mold release treatment, it is possible to release the mold by forming a mold release layer in advance on the film side, which is preferable because the mold mold release processing cost can be reduced. . In addition, it is possible to prevent deformation of the molding pattern due to resin adhesion when the molded sheet is released from the mold, and it is possible to release at a higher temperature, thereby shortening the cycle time. It is also preferable in terms of points. Further, it is preferable because the slip resistance on the surface of the molded sheet is further improved to improve the scratch resistance and to reduce defects caused in the production process.
[0062] 成形層が支持層を中心として、両最外層に積層された場合、どちらか片方の成形 層表面に離型層を設けてもよ!/、し、両最外層に離型層を設けてもよ!/、。  [0062] When the molding layer is laminated on both outermost layers centering on the support layer, a release layer may be provided on the surface of one of the molding layers! /, And a release layer is provided on both outermost layers. May be provided!
[0063] 離型層を構成する樹脂は、特に限定されないが、シリコーン系樹脂、フッ素系樹脂 、脂肪酸系樹脂、ポリエステル系樹脂、ォレフィン系樹脂、またはメラミン系樹脂、を 主成分として構成することが好ましぐこれらのうちでは、シリコーン系樹脂、フッ素系 樹脂、または脂肪酸系樹脂がより好ましい。また、離型層には、上述の樹脂以外にも 、例えばアクリル樹脂、ウレタン樹脂、エポキシ樹脂、尿素樹脂、またはフエノール樹 脂などが配合されてもよいし、各種の添加剤、例えば、帯電防止剤、界面活性剤、酸 化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、顔料、染料、有機または無機 の微粒子、充填剤、核剤、架橋剤などが配合されてもよい。また、離型層の厚みは、 特に限定されないが、好ましくは 0. 01〜5 111である。該離型層の厚みが 0. 01 m未満であると、上述の離型性向上効果が低下する場合があるので注意が必要であ [0063] The resin constituting the release layer is not particularly limited, and may be composed mainly of a silicone resin, a fluorine resin, a fatty acid resin, a polyester resin, an olefin resin, or a melamine resin. Of these, silicone resins, fluorine resins, or fatty acid resins are more preferable. In addition to the above-described resins, the release layer may contain, for example, an acrylic resin, a urethane resin, an epoxy resin, a urea resin, or a phenol resin, and various additives such as an antistatic agent. Agents, surfactants, antioxidants, heat stabilizers, weathering stabilizers, ultraviolet absorbers, pigments, dyes, organic or inorganic fine particles, fillers, nucleating agents, crosslinking agents, and the like may be blended. The thickness of the release layer is not particularly limited, but is preferably 0.01 to 5111. The thickness of the release layer is 0.01 If it is less than m, the above-mentioned releasability improvement effect may be reduced, so care must be taken.
[0064] 離型層を形成する方法としては、特に限定されないが、各種の塗布方法、例えば、 リバースコート法、グラビアコート法、ロッドコート法、バーコート法、ダイコート法または スプレーコート法を用いることができる。そして、上記の塗布を製膜と同時に行うインラ インコーティングが生産性、塗布均一性の観点から好ましい。 [0064] The method for forming the release layer is not particularly limited, but various coating methods such as reverse coating, gravure coating, rod coating, bar coating, die coating, or spray coating may be used. Can do. And inline coating which performs said application | coating simultaneously with film forming is preferable from a viewpoint of productivity and application | coating uniformity.
[0065] 実施例  [0065] Examples
以下、実施例に基づいて、本発明の方法、装置の具体的構成、効果について説明 をする。  The specific configuration and effects of the method and apparatus of the present invention will be described below based on examples.
[0066] 以下の各実施例では、それぞれにおいて(1)〜(; 10)に示した仕様の金型やプレス 装置、加工条件で微細形状の付与加工を行い、微細形状転写シートの製造を行つ たものである。  [0066] In each of the following examples, a fine shape transfer sheet is manufactured by applying a fine shape with a die, a pressing device, and processing conditions having the specifications shown in (1) to (; 10). It is a thing.
実施例 1  Example 1
[0067] (1)金型サイズ: 500mm (フィルム幅方向) X 800mm (フィルム走行方向) X  [0067] (1) Mold size: 500mm (film width direction) X 800mm (film running direction) X
20mm (厚み)。  20mm (thickness).
(2)金型材質:銅。  (2) Mold material: Copper.
(3)微細形状:ピッチ 50 m、凸部幅 25 111、凸部高さ 50 mで、フィルム走行方 向から見たときの断面が矩形形状のものを用いた。  (3) Fine shape: a pitch 50 m, a convex width 25 111, a convex height 50 m, and a rectangular cross section when viewed from the film running direction was used.
(4)プレス装置:最大 3000kNまで加圧できるもので、加圧は油圧ポンプによってな される。  (4) Press machine: The press machine can pressurize up to 3000kN, and pressurization is done by a hydraulic pump.
(5)プレス装置内にはアルミ合金製でサイズが 700mm (フィルム幅方向) X 1000m m (フィルム走行方向)の温調プレートが上下に 2枚取り付けられ、それぞれ、加熱装 置、冷却装置に連結されている。なお、金型は下側の温調プレートに取り付けられて いる。加熱装置は熱媒循環装置で、熱媒はバーレルサーム # 400 (松村石油株式会 社製)で、 150°Cに加熱したものを 100L/minの流量で流す。また、冷却装置は冷 却水循環装置で、 20°Cに冷却された水を 150L/minの流量で流すものである。  (5) Two temperature control plates made of aluminum alloy with a size of 700mm (film width direction) x 1000mm (film running direction) are installed in the press machine, and connected to the heating and cooling devices, respectively. Has been. The mold is attached to the lower temperature control plate. The heating device is a heat medium circulation device, and the heat medium is Barrel Therm # 400 (manufactured by Matsumura Oil Co., Ltd.), which is heated to 150 ° C and flows at a flow rate of 100 L / min. In addition, the cooling device is a cooling water circulation device that allows water cooled to 20 ° C to flow at a flow rate of 150 L / min.
(6)さらに上下温調プレートの中央近傍には 7kWの電熱ヒーターが埋設されており、 熱媒加熱装置とは個別に温調可能である。 (7)シート:ポリエチレンテレフタレート樹脂からなり、厚みが 100 μ m (厚みむら:土 7 μ m)、幅は 520mmである。 (6) Furthermore, a 7kW electric heater is embedded near the center of the top and bottom temperature control plate, and the temperature can be controlled separately from the heating medium heating device. (7) Sheet: Made of polyethylene terephthalate resin, thickness is 100 μm (thickness unevenness: soil 7 μm), and width is 520 mm.
(8)動作方法:上記の装置を用い、以下のように成型を行った。あらかじめ、樹脂シ ートを金型上におく。次に、温調プレート上下ともに中央部が 110°C、周縁部で 100 °Cとなるまで加熱した後、上側プレートを下降させて、フィルムのプレスを開始する。 プレスは金型表面で 5MPaで、 30秒実施した。また、プレス中に温調プレートの電熱 ヒーターのみを OFF (オフ)にした。その後、プレスを継続したまま、温調プレートを上 下ともに冷却する。各温調プレートが 60°Cになったときに冷却を停止する。上下とも に冷却が完了すれば、プレスを開放する。その後シートを金型から離型する。  (8) Operation method: Using the above apparatus, molding was performed as follows. Place the resin sheet on the mold in advance. Next, heating is performed until the central portion is 110 ° C. and the peripheral portion is 100 ° C. on both the upper and lower sides of the temperature control plate, and then the upper plate is lowered to start film pressing. The press was performed at 5 MPa on the mold surface for 30 seconds. In addition, only the electric heater of the temperature control plate was turned off during pressing. After that, cool down the temperature control plate while keeping pressing. Stop cooling when each temperature control plate reaches 60 ° C. When both the top and bottom are cooled, the press is released. Thereafter, the sheet is released from the mold.
上記の動作を繰り返し、 10枚の成型フィルムを作成した。成型面を目視で評価した 結果、エアの嚙み込みや転写不良等なぐ全面均一に転写された成型シートを得た  The above operation was repeated to create 10 molded films. As a result of visual evaluation of the molding surface, a molding sheet was obtained that was evenly transferred over the entire surface without air stagnation or transfer failure.
(9)上記条件で加圧前の温調プレートの変形を個別に測定した結果、中央近傍で 1 90 μ m、周縁部近傍で 175 μ mであり約 15 m中央凸の状態でプレスされているこ とが確認できた。 (9) As a result of individually measuring the deformation of the temperature control plate before pressurization under the above conditions, it was 1 90 μm near the center and 175 μm near the peripheral edge, and it was pressed with a convexity of about 15 m in the center. It was confirmed that
上記のプレート変形の測定は、キーエンス社製レーザーフォーカス変位計 LT810 0を用いて行った。センサーヘッドを温調プレート上方に置き、プレート全面で 20点 の変位を測定した。なお、プレート変形の測定は、先端を断熱したダイヤルゲージを 用いて測定してもよい。  The plate deformation was measured using a Keyence Laser Focus Displacement Meter LT8100. The sensor head was placed above the temperature control plate, and 20 points of displacement were measured across the plate. The plate deformation may be measured using a dial gauge with a thermally insulated tip.
プレート表面の温度制御は、プレート内部に揷入した熱電対の温度で行う。あらか じめプレート表面に熱電対を貼り付け、プレート表面温度とプレート内部温度の相関 を把握しておき、この相関をもとにプレート内部の温度により制御した。  The temperature of the plate surface is controlled by the temperature of the thermocouple inserted in the plate. A thermocouple was attached to the plate surface in advance, and the correlation between the plate surface temperature and the plate internal temperature was ascertained. Based on this correlation, the temperature inside the plate was controlled.
[0068] なお、以下の実施例、比較例においても、同様にしてプレート変形の測定とプレー ト表面の温度制御を行った。 In the following examples and comparative examples, plate deformation measurement and plate surface temperature control were performed in the same manner.
実施例 2  Example 2
[0069] (1)金型サイズ: 500mm (フィルム幅方向) X 800mm (フィルム走行方向) X 20mm  [0069] (1) Mold size: 500mm (film width direction) X 800mm (film running direction) X 20mm
(厚み)。  (Thickness).
(2)金型材質:銅。 (3)微細形状:ピッチ 50 m、凸部幅 25 111、凸部高さ 50 mで、フィルム走行方 向から見た時の断面が矩形形状のもの。 (2) Mold material: Copper. (3) Fine shape: pitch 50 m, convex width 25 111, convex height 50 m, and rectangular cross section when viewed from the film running direction.
(4)プレス装置:最大 3000kNまで加圧できるもので、加圧は油圧ポンプによってさ れる。  (4) Press device: The press can pressurize up to 3000kN, and pressurization is done by a hydraulic pump.
(5)プレス装置内にはアルミ合金製でサイズが 700mm (フィルム幅方向) X 1000m m (フィルム走行方向)の温調プレートが上下に 2枚取り付けられ、それぞれ、加熱装 置、冷却装置に連結されている。なお、金型は下側の温調プレートに取り付けられて いる。加熱装置は熱媒循環装置で、熱媒はバーレルサーム # 400 (松村石油株式会 社製)で、 150°Cに加熱したものを 100L/minの流量で流す。また、冷却装置は冷 却水循環装置で、 20°Cに冷却された水を 150L/minの流量で流すものである。 ½)さらに上下温調プレートの中央近傍には加熱用熱媒流路とは個別の熱媒流路を 設け、 150°C、 20L/minの流量で熱媒(バーレルサーム # 400)を流す。  (5) Two temperature control plates made of aluminum alloy with a size of 700mm (film width direction) x 1000mm (film running direction) are installed in the press machine, and connected to the heating and cooling devices, respectively. Has been. The mold is attached to the lower temperature control plate. The heating device is a heat medium circulation device, and the heat medium is Barrel Therm # 400 (manufactured by Matsumura Oil Co., Ltd.), which is heated to 150 ° C and flows at a flow rate of 100 L / min. In addition, the cooling device is a cooling water circulation device that allows water cooled to 20 ° C to flow at a flow rate of 150 L / min. ½) In addition, a heating medium flow path separate from the heating medium flow path is provided near the center of the upper and lower temperature control plates, and the heating medium (barrel therm # 400) is flowed at a flow rate of 150 ° C and 20 L / min.
(7)シート:ポリエチレンテレフタレートからなり、厚みが 100 H m (厚みむら: ± 10 m)、幅は 520mmである。  (7) Sheet: made of polyethylene terephthalate, with a thickness of 100 Hm (thickness variation: ± 10 m) and a width of 520 mm.
(8)動作方法:上記の装置を用い、以下のように成型を行った。あらかじめ、シートを 金型上におく。次に、温調プレート上下ともに中央部が 110°C、周縁部で 100°Cとな るまで加熱した後、上側プレートを下降させて、フィルムのプレスを開始する。プレス は金型表面で 5MPaで、 30秒実施した。また、プレス中に温調プレートの電熱ヒータ 一のみを OFF (オフ)にした。その後、プレスを継続したまま、温調プレートを上下とも に冷却する。各温調プレートが 60°Cになったときに冷却を停止する。上下ともに冷却 が完了すれば、プレスを開放する。その後シートを金型から離型する。  (8) Operation method: Using the above apparatus, molding was performed as follows. Place the sheet on the mold in advance. Next, after heating the top and bottom of the temperature control plate to 110 ° C at the center and 100 ° C at the periphery, lower the upper plate and start pressing the film. The press was performed at 5 MPa on the mold surface for 30 seconds. Also, only one electric heater on the temperature control plate was turned off during pressing. After that, cool down the temperature control plate both top and bottom with pressing. Stop cooling when each temperature control plate reaches 60 ° C. When cooling is completed on both the top and bottom, the press is released. Thereafter, the sheet is released from the mold.
上記の動作を繰り返し、 10枚の成型フィルムを作成した。成型面を目視で評価した 結果、エアの嚙み込みや転写不良等なぐ全面均一に転写された成型シートを得た The above operation was repeated to create 10 molded films. As a result of visual evaluation of the molding surface, a molding sheet was obtained that was evenly transferred over the entire surface without air stagnation or transfer failure.
Yes
(9)上記条件で加圧前の温調プレートの変形を個別に測定した結果、中央近傍で 2 00 μ m、周縁部近傍で 170 μ mであり約 30 μ m中央凸の状態でプレスされているこ とが確認できた。  (9) As a result of individually measuring the deformation of the temperature control plate before pressurization under the above conditions, it was 200 μm near the center and 170 μm near the peripheral edge, which was pressed with a center convex of about 30 μm. It was confirmed that
実施例 3 (1)金型サイズ: 500mm (フィルム幅方向) X 800mm (フィルム走行方向) X 40mm (厚み)。 Example 3 (1) Mold size: 500mm (film width direction) X 800mm (film running direction) X 40mm (thickness).
(2)金型材質:銅。  (2) Mold material: Copper.
(3)微細形状:ピッチ 50 m、凸部幅 25 111、凸部高さ 50 mで、フィルム走行方 向から見たときの断面が矩形形状のものを用いた。  (3) Fine shape: a pitch 50 m, a convex width 25 111, a convex height 50 m, and a rectangular cross section when viewed from the film running direction was used.
(4)プレス装置:最大 3000kNまで加圧できるもので、加圧は油圧ポンプによってさ れる。  (4) Press device: The press can pressurize up to 3000kN, and pressurization is done by a hydraulic pump.
(5)プレス装置内にはアルミ合金製でサイズが 700mm (フィルム幅方向) X 1000m m (フィルム走行方向)の温調プレートが上下に 2枚取り付けられ、それぞれ、加熱装 置、冷却装置に連結されている。なお、金型は下側の温調プレートに取り付けられて いる。加熱装置は、熱媒循環装置で、熱媒はバーレルサーム # 400 (松村石油株式 会社製)で、 150°Cに加熱したものを 100L/minの流量で流す。また、冷却装置は 冷却水循環装置で、 20°Cに冷却された水を 150L/minの流量で流すものである。  (5) Two temperature control plates made of aluminum alloy with a size of 700mm (film width direction) x 1000mm (film running direction) are installed in the press machine, and connected to the heating and cooling devices, respectively. Has been. The mold is attached to the lower temperature control plate. The heating device is a heat medium circulation device, and the heat medium is Barrel Therm # 400 (manufactured by Matsumura Oil Co., Ltd.), which is heated to 150 ° C and flows at a flow rate of 100 L / min. The cooling device is a cooling water circulation device that allows water cooled to 20 ° C to flow at a flow rate of 150 L / min.
(6)さらに金型の中央近傍を加熱するための熱媒配管を金型内部に設け、 120°Cに 加熱した熱媒を 10L/minの流量で流した。  (6) A heating medium pipe for heating the vicinity of the center of the mold was provided inside the mold, and the heating medium heated to 120 ° C was flowed at a flow rate of 10 L / min.
(7)シート:ポリエチレンテレフタレートからなり、厚みが 80 μ m (厚みむら: ± 4 m)、 幅は 520mmである。  (7) Sheet: Polyethylene terephthalate, thickness is 80 μm (thickness variation: ± 4 m), and width is 520 mm.
(8)動作方法:上記の装置を用い、以下のように成型を行った。あらかじめ、シートを 金型上におく。次に、温調プレート上下ともに 110°Cで設定で温調し、金型中央に熱 媒を流すことで金型中央の温度 1 12°C、周縁部で 105°Cとなるまで加熱した後、上 側プレートを下降させて、フィルムのプレスを開始する。プレスは金型表面で 5MPa で、 30秒実施した。また、プレス中に金型の熱媒循環を停止した。その後、プレスを 継続したまま、温調プレートを上下ともに冷却する。各温調プレートが 60°Cになったと きに冷却を停止する。上下ともに冷却が完了すれば、プレスを開放する。その後、シ ートを金型から離型する。  (8) Operation method: Using the above apparatus, molding was performed as follows. Place the sheet on the mold in advance. Next, the temperature is adjusted at 110 ° C on both the top and bottom of the temperature control plate, and heated to a temperature of 112 ° C at the center of the mold and 105 ° C at the periphery by flowing a heat medium in the center of the mold. Lower the upper plate and start pressing the film. The press was performed at 5 MPa on the mold surface for 30 seconds. Also, the heat medium circulation of the mold was stopped during the pressing. After that, cool down both the top and bottom of the temperature control plate while continuing the press. Stop cooling when each temperature control plate reaches 60 ° C. When the cooling is completed for both the upper and lower sides, the press is released. Then, the sheet is released from the mold.
上記の動作を繰り返し、 10枚の成型フィルムを作成した。成型面を目視で評価した 結果、エアの嚙み込みや転写不良等なぐ全面均一に転写された成型シートを得た (9)上記条件で加圧前の金型の変形を個別に測定した結果、中央近傍で 80 [I m、 周縁部近傍で 71 ,1 mであり、約 9 m中央凸の状態でプレスされていることが確認で きた。 The above operation was repeated to create 10 molded films. As a result of visual evaluation of the molding surface, a molding sheet was obtained that was evenly transferred over the entire surface without air stagnation or transfer failure. (9) As a result of individually measuring the deformation of the mold before pressurization under the above conditions, it is 80 [I m near the center and 71,1 m near the peripheral edge, and is pressed with a central convex of about 9 m. It was confirmed that
実施例 4 Example 4
(1)金型サイズ: 500mm (フィルム幅方向) X 800mm (フィルム走行方向) X 20mm (厚み)。 (1) Mold size: 500mm (film width direction) X 800mm (film running direction) X 20mm (thickness).
(2)金型材質:銅。  (2) Mold material: Copper.
(3)微細形状:ピッチ 50 m、凸部幅 25 111、凸部高さ 50 mで、フィルム走行方 向から見たときの断面が矩形形状のものである。  (3) Fine shape: pitch 50 m, convex width 25 111, convex height 50 m, and the cross section when viewed from the film running direction is rectangular.
(4)プレス装置:最大 3000kNまで加圧できるもので、加圧は油圧ポンプによってさ れる。  (4) Press device: The press can pressurize up to 3000kN, and pressurization is done by a hydraulic pump.
(5)プレス装置内にはアルミ合金製でサイズが 700mm (フィルム幅方向) X 1000m m (フィルム走行方向)の温調プレートが上下に 2枚取り付けられ、それぞれ、加熱装 置、冷却装置に連結されている。なお、金型は下側の温調プレートに取り付けられて いる。加熱装置は熱媒循環装置で、熱媒はバーレルサーム # 400 (松村石油株式会 社製)で、 150°Cに加熱したものを 100L/minの流量で流す。また、冷却装置は冷 却水循環装置で、 20°Cに冷却された水を 150L/minの流量で流すものである。  (5) Two temperature control plates made of aluminum alloy with a size of 700mm (film width direction) x 1000mm (film running direction) are installed in the press machine, and connected to the heating and cooling devices, respectively. Has been. The mold is attached to the lower temperature control plate. The heating device is a heat medium circulation device, and the heat medium is Barrel Therm # 400 (manufactured by Matsumura Oil Co., Ltd.), which is heated to 150 ° C and flows at a flow rate of 100 L / min. In addition, the cooling device is a cooling water circulation device that allows water cooled to 20 ° C to flow at a flow rate of 150 L / min.
(6)さらに上下温調プレートの中央近傍には 7kWの電熱ヒーターが埋設されており、 熱媒加熱装置とは個別に温調可能である。  (6) Furthermore, a 7kW electric heater is embedded near the center of the top and bottom temperature control plate, and the temperature can be controlled separately from the heating medium heating device.
(7)シート:ポリエチレンテレフタレートからなり、厚みが 100 μ m (厚みむら: ± 7 m) 、幅は 520mmである。  (7) Sheet: made of polyethylene terephthalate, with a thickness of 100 μm (thickness variation: ± 7 m) and a width of 520 mm.
(8)厚さ計: X線式のシート厚み測定センサーをプレス側に固定設置し、シート搬送 方向の厚みを測定した。厚み分布は 14 H mであった。  (8) Thickness meter: An X-ray sheet thickness measurement sensor was fixedly installed on the press side, and the thickness in the sheet conveyance direction was measured. The thickness distribution was 14 Hm.
(9)動作方法:上記の装置を用い、以下のように成型を行った。シートの厚みを厚み センサーで測定しながら金型上にセットする。次に、温調プレート上下ともに中央部 力 S 110°C、周縁部で 100°Cとなるまで加熱した後、上側プレートを下降させて、フィル ムのプレスを開始する。プレスは金型表面で 5MPaで、 30秒実施した。また、プレス 中に温調プレートの電熱ヒーターのみをオフした。その後、プレスを継続したまま、温 調プレートを上下ともに冷却する。各温調プレートが 60°Cになったときに冷却を停止 する。上下ともに冷却が完了すれば、プレスを開放する。その後シートを金型から離 型する。 (9) Operation method: Using the above apparatus, molding was performed as follows. Set the sheet thickness on the mold while measuring with the thickness sensor. Next, after heating until the central force S is 110 ° C on both the top and bottom of the temperature control plate and the peripheral edge is 100 ° C, the upper plate is lowered and the film press is started. The press was performed at 5 MPa on the mold surface for 30 seconds. In addition, only the electric heater of the temperature control plate was turned off during pressing. After that, keep the press Cool the adjustment plate both top and bottom. Stop cooling when each temperature control plate reaches 60 ° C. When the cooling is completed for both the upper and lower sides, the press is released. Then release the sheet from the mold.
上記の動作を繰り返し、 10枚の成型フィルムを作成した。成型面を目視で評価した 結果、エアの嚙み込みや転写不良等なぐ全面均一に転写された成型シートを得た  The above operation was repeated to create 10 molded films. As a result of visual evaluation of the molding surface, a molding sheet was obtained that was evenly transferred over the entire surface without air stagnation or transfer failure.
(10)上記条件で加圧前の温調プレートの変形を個別に測定した結果、中央近傍で 190 m、周縁部近傍で 175 μ mであり約 15 m中央凸の状態でプレスされている ことが確認できた。 (10) As a result of individually measuring the deformation of the temperature control plate before pressurization under the above conditions, it is 190 m near the center and 175 μm near the peripheral edge, and it is pressed with a center convex of about 15 m. Was confirmed.
比較例 1 Comparative Example 1
実施例 1の装置と同じ装置を用いて、ただし中央加熱用のヒーターを用いずに、実 施例 1と同一の条件でプレスした結果、フィルム中央部にエアの嚙み込みによる非転 写部が発生した。同じ条件で 10枚の成型フィルムを作成したカ、全てのフィルムにお いて非転写部が発生した。  Using the same device as in Example 1, but without using the central heating heater, the result of pressing under the same conditions as in Example 1 resulted in a non-transfer area due to air stagnation in the center of the film. There has occurred. 10 sheets of cast film were created under the same conditions, and non-transfer areas occurred in all films.

Claims

請求の範囲 The scope of the claims
[1] シート状基材および微細凹凸形状を備えた金型を加熱し、該シート状基材と金型 の両者を接触、加圧させることによって前記シート状基材表面に前記微細凹凸形状 を賦形する微細形状転写シートの製造方法にお!/、て、前記シート状基材および金型 を加圧するよう配置された一対の加圧板または金型のうち少なくとも 1つあるいはその 組み合わせで構成される賦形面の平面性を変化させて賦形することを特徴とする微 細形状転写シートの製造方法。  [1] A sheet-shaped substrate and a mold having a fine uneven shape are heated, and both the sheet-shaped substrate and the mold are brought into contact with and pressed to form the fine uneven shape on the surface of the sheet-shaped substrate. In the manufacturing method of the fine shape transfer sheet to be shaped, it is composed of at least one of a pair of pressure plates or molds arranged to pressurize the sheet-like substrate and the mold or a combination thereof. A method for producing a finely shaped transfer sheet, comprising shaping by changing the flatness of the shaping surface.
[2] 前記賦形面の平面性を変化させて賦形するに際して、シート状基材の賦形面内の 一点から最初に加圧がはじまり、シート状基材の周縁部に向力、つて徐々に加圧力が 小さくなるように平面性を変化させることを特徴とする請求項 1に記載の微細形状転 写シートの製造方法。 [2] When shaping by changing the flatness of the shaping surface, the pressure starts first from one point in the shaping surface of the sheet-like substrate, and the directing force is applied to the peripheral edge of the sheet-like substrate. 2. The method for producing a fine shape transfer sheet according to claim 1, wherein the flatness is changed so that the pressure is gradually reduced.
[3] 前記賦形面の平面性を変化させて賦形するに際して、賦形開始後に、賦形面内の 加圧力が均一になるように賦形面の平面性を変化させることを特徴とする請求項 1ま たは 2に記載の微細形状転写シートの製造方法。  [3] When forming by changing the flatness of the shaping surface, after the start of shaping, the flatness of the shaping surface is changed so that the applied pressure in the shaping surface is uniform. The method for producing a fine shape transfer sheet according to claim 1 or 2.
[4] シート状基材および微細凹凸形状を備えた金型を加熱し、該シート状基材と金型 の両者を接触させて加圧することによって前記シート状基材表面に前記微細凹凸形 状を賦形する微細形状転写シートの製造方法にお!/、て、前記シート状基材および金 型を加圧するように配置された一対の加圧板または金型のうち少なくとも 1つあるい はその組み合わせで構成される賦形面内における一点からシート状基材の周縁部 に向力、つて徐々に温度降下するように温度調整して賦形することを特徴とする微細 形状転写シートの製造方法。  [4] A sheet-shaped substrate and a mold having a fine uneven shape are heated, and both the sheet-shaped substrate and the mold are brought into contact with each other and pressed to form the fine uneven shape on the surface of the sheet-shaped substrate. And / or a method for producing a fine shape transfer sheet for shaping the sheet-like substrate, and / or at least one of a pair of pressure plates or molds arranged to pressurize the sheet-like substrate and the mold. A method for producing a fine shape transfer sheet, characterized by forming by adjusting the temperature so that the temperature decreases gradually from one point in the shaping surface constituted by the combination to the peripheral edge of the sheet-like substrate .
[5] 前記賦形面の平面性が前記シート状基材の賦形面における厚み分布の最大値よ りも大きくなるように温度調整することを特徴とする請求項 4に記載の微細形状転写シ ートの製造方法。  [5] The fine shape transfer according to claim 4, wherein the temperature is adjusted so that the flatness of the shaping surface is larger than the maximum thickness distribution on the shaping surface of the sheet-like substrate. Sheet manufacturing method.
[6] 賦形時の前記金型と前記シート状基材が接触する時点において、前記賦形面の一 点の温度が前記賦形面のその他の部位よりも温度が高ぐ賦形開始後に温度差が 小さくなるように変化させることを特徴とする請求項 4または 5に記載の微細形状転写 シートの製造方法。 [6] After the start of shaping, the temperature at one point of the shaping surface is higher than the other parts of the shaping surface at the time when the mold and the sheet-like base material come into contact at the time of shaping. 6. The method for producing a fine shape transfer sheet according to claim 4, wherein the temperature difference is changed to be small.
[7] シート状基材および微細凹凸形状を有した金型と、該シート状基材と該金型を加熱 、加圧する手段とを備えた微細形状転写シート製造装置において、前記シート状基 材および金型を加圧するよう配置された一対の加圧板または金型のうち少なくとも 1 つあるいはその組み合わせで構成される賦形面内における一点からシート状基材の 周縁部に向かって徐々に温度降下するよう金型および/または一対の加圧板の温 度に勾配がつけられたことを特徴とする微細形状転写シートの製造装置。 [7] In the apparatus for producing a fine shape transfer sheet, comprising the sheet-like substrate and a mold having a fine uneven shape, and means for heating and pressurizing the sheet-like substrate and the mold, the sheet-like substrate And a gradual drop in temperature from one point in the shaping surface consisting of at least one of a pair of pressure plates or molds arranged to pressurize the mold or a combination thereof toward the periphery of the sheet-like substrate An apparatus for producing a fine shape transfer sheet, wherein the temperature of the mold and / or the pair of pressure plates is inclined.
[8] 前記金型に温度調整手段を設け、金型の賦形面内における一点から周縁部に向 力、つて徐々に温度降下するよう金型の温度に勾配がつけられたことを特徴とする請 求項 7に記載の微細形状転写シートの製造装置。  [8] The mold is provided with a temperature adjusting means, and the temperature of the mold is graded so that the temperature is gradually lowered from one point on the shaping surface of the mold toward the peripheral portion. The apparatus for producing a fine shape transfer sheet according to claim 7.
[9] 前記加圧板または前記金型を加熱する加熱源のワット密度が、賦形面内の一点に お!/、てその他の場所よりも高!/、構造にして!/、ることを特徴とする請求項 7に記載の微 細形状転写シートの製造装置。  [9] The watt density of the heating plate for heating the pressure plate or the mold is higher at one point in the shaping surface than the other places! The apparatus for manufacturing a fine transfer sheet according to claim 7,
[10] 前記加圧板または金型を加熱する手段として抵抗加熱式ヒーターを用い、加圧板 または金型に設けられたヒーター配線の密度力 賦形面内の一点においてその他の 場所よりも高い構造にしていることを特徴とする請求項 7に記載の微細形状転写シー トの製造装置。  [10] A resistance heating type heater is used as a means for heating the pressure plate or the mold, and the density force of the heater wiring provided on the pressure plate or the mold is made higher than the other places at one point in the shaping surface. 8. The apparatus for producing a fine shape transfer sheet according to claim 7, wherein
[11] 前記加圧板または金型を加熱する手段として熱媒を用い、該加圧板または金型に 設けられた熱媒流路の密度力 S、賦形面内の一点においてその他の場所よりも高い構 造にしていることを特徴とする請求項 7に記載の微細形状転写シートの製造装置。  [11] A heating medium is used as a means for heating the pressure plate or the mold, and the density force S of the heat medium flow path provided in the pressure plate or the mold is larger than the other places at one point in the shaping surface. 8. The apparatus for producing a fine shape transfer sheet according to claim 7, wherein the apparatus has a high structure.
[12] 前記加圧板または前記金型をその賦形面内で広範囲に温度上昇させるための加 熱手段と 任意点を温度上昇させるため独立した加熱手段の 2系統を設けたことを特 徴とする請求項 7に記載の微細形状転写シートの製造装置。  [12] It is characterized in that two systems are provided: a heating means for raising the temperature of the pressure plate or the mold over a wide range within the shaping surface and an independent heating means for raising the temperature of an arbitrary point. The apparatus for producing a fine shape transfer sheet according to claim 7.
[13] 前記加圧板または前記金型をその賦形面内で広範囲に温度上昇させるための加 熱手段と、賦形面の周縁部を温度下降させるため独立した冷却手段の 2系統を設け たことを特徴とする請求項 7に記載の微細形状転写シートの製造装置。  [13] Two systems are provided: a heating means for raising the temperature of the pressure plate or the mold over a wide range within the shaping surface, and an independent cooling means for lowering the temperature of the periphery of the shaping surface. 8. The apparatus for producing a fine shape transfer sheet according to claim 7, wherein:
[14] 前記シート状基材の厚み測定手段と、該厚み測定手段から前記加熱手段、冷却手 段を制御する信号を送信する手段が設けられてなることを特徴とする請求項 7に記載 の微細形状転写シートの製造装置。  [14] The thickness measurement means of the sheet-like substrate and means for transmitting a signal for controlling the heating means and the cooling means from the thickness measurement means are provided. Manufacturing equipment for fine shape transfer sheet.
PCT/JP2007/069049 2006-09-29 2007-09-28 Process for producing microconfiguration transfer sheet and apparatus therefor WO2008038789A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007550619A JP4946871B2 (en) 2006-09-29 2007-09-28 Manufacturing method and manufacturing apparatus for fine shape transfer sheet
CN2007800364148A CN101522396B (en) 2006-09-29 2007-09-28 Process for producing microconfiguration transfer sheet and apparatus therefor
KR1020097000763A KR101400820B1 (en) 2006-09-29 2007-09-28 Process for producing microconfiguration transfer sheet and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-267215 2006-09-29
JP2006267215 2006-09-29

Publications (1)

Publication Number Publication Date
WO2008038789A1 true WO2008038789A1 (en) 2008-04-03

Family

ID=39230221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069049 WO2008038789A1 (en) 2006-09-29 2007-09-28 Process for producing microconfiguration transfer sheet and apparatus therefor

Country Status (5)

Country Link
JP (1) JP4946871B2 (en)
KR (1) KR101400820B1 (en)
CN (1) CN101522396B (en)
TW (1) TWI396617B (en)
WO (1) WO2008038789A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296222B1 (en) * 2011-06-30 2013-08-14 주식회사 디엠에스 Imprint Apparatus And Method for Imprinting Using the Same
TWI417184B (en) * 2011-12-30 2013-12-01 Univ Nat Taiwan Imprint assembly with inner and outer diffluent passages and imprint apparatus using the same
JP5263440B1 (en) * 2012-11-05 2013-08-14 オムロン株式会社 Transfer molding method and transfer molding apparatus
DE102017220315B3 (en) * 2017-11-15 2018-11-08 Bayerische Motoren Werke Aktiengesellschaft Die-casting machine with a die-casting mold for producing metallic die-cast parts
CN109878111A (en) * 2019-02-28 2019-06-14 耿晨企业股份有限公司 The heating and cooling device of folded folder carbon fiber forming mould
CN114274495A (en) * 2021-11-16 2022-04-05 江苏罗科雷森建筑材料科技有限公司 Pressing device for processing polyurethane sandwich board
CN114274496A (en) * 2021-12-10 2022-04-05 浙江晶科能源有限公司 Equipment and method for making grain
CN114536628A (en) * 2022-01-19 2022-05-27 华南理工大学 Rapid hot-pressing device and hot-pressing method for preparing polymer microstructure
CN114311618A (en) * 2022-01-24 2022-04-12 广东鑫球新材料科技有限公司 Aluminum block heating forming equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592991U (en) * 1991-09-18 1993-12-17 株式会社八光電機製作所 Cartridge heater group
JPH06182783A (en) * 1992-10-23 1994-07-05 Ricoh Co Ltd Manufacture of plastic mirror and manufacture thereof and manufacture of plastic molding
JP2002036355A (en) * 2000-07-28 2002-02-05 Ricoh Co Ltd Method and apparatus for manufacturing plastic molded article
JP2005353858A (en) * 2004-06-11 2005-12-22 Canon Inc Processing unit and method therefor
JP2006035573A (en) * 2004-07-26 2006-02-09 Meiki Co Ltd Apparatus and method for molding resin molding
JP2006095901A (en) * 2004-09-30 2006-04-13 Ricoh Co Ltd Plastic molding method, plastic molding device, and molding die
JP2007261197A (en) * 2006-03-29 2007-10-11 Fukushima Prefecture Mold assembly for injection molding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI222925B (en) * 2003-06-11 2004-11-01 Univ Nat Taiwan Hot-embossing forming method featuring fast heating/cooling and uniform pressurization
JP2006175448A (en) * 2004-12-20 2006-07-06 Komatsu Sanki Kk Machine and method for thermal transfer press work

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592991U (en) * 1991-09-18 1993-12-17 株式会社八光電機製作所 Cartridge heater group
JPH06182783A (en) * 1992-10-23 1994-07-05 Ricoh Co Ltd Manufacture of plastic mirror and manufacture thereof and manufacture of plastic molding
JP2002036355A (en) * 2000-07-28 2002-02-05 Ricoh Co Ltd Method and apparatus for manufacturing plastic molded article
JP2005353858A (en) * 2004-06-11 2005-12-22 Canon Inc Processing unit and method therefor
JP2006035573A (en) * 2004-07-26 2006-02-09 Meiki Co Ltd Apparatus and method for molding resin molding
JP2006095901A (en) * 2004-09-30 2006-04-13 Ricoh Co Ltd Plastic molding method, plastic molding device, and molding die
JP2007261197A (en) * 2006-03-29 2007-10-11 Fukushima Prefecture Mold assembly for injection molding

Also Published As

Publication number Publication date
KR20090074721A (en) 2009-07-07
CN101522396B (en) 2012-07-18
TW200824882A (en) 2008-06-16
TWI396617B (en) 2013-05-21
KR101400820B1 (en) 2014-05-29
CN101522396A (en) 2009-09-02
JPWO2008038789A1 (en) 2010-01-28
JP4946871B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
WO2008038789A1 (en) Process for producing microconfiguration transfer sheet and apparatus therefor
JP4135768B2 (en) Intermittent film forming apparatus and method
CN101528442B (en) Intermittent film forming device and intermittent film forming method
TWI624370B (en) Method for moving thermoplastic film
JP4975675B2 (en) Manufacturing method and manufacturing apparatus of molded body
CN1579732A (en) Process and apparatus for embossing a film surface
TW200922774A (en) Method for manufacturing a sheet having transferred minute shape and apparatus for manufacturing the same
JP4135769B2 (en) Intermittent film forming apparatus and forming method
JP5104232B2 (en) Fine shape transfer sheet molding equipment
JP5104228B2 (en) Fine shape transfer sheet manufacturing apparatus and fine shape transfer sheet manufacturing method
JP2010030192A (en) Minute shape transfer sheet and method of manufacturing minute shape transfer sheet
CN105313510A (en) Novel double-sided mould press
JP5082738B2 (en) Fine shape transfer sheet manufacturing equipment
JP2010046882A (en) Method of manufacturing fine-shape transfer sheet
JP2008087227A (en) Method and apparatus for manufacturing fine shape transfer sheet
US8784093B2 (en) Cooling apparatus for microreplication
JP2009029061A (en) Manufacturing device and method of fine shape transfer sheet
JP2009166409A (en) Fine-shaped transferring sheet
JP2010094934A (en) Apparatus for manufacturing transfer sheet for fine pattern
JP2008238578A (en) Method and apparatus for intermittent film formation on surface of long film
WO2019036440A1 (en) Method and apparatus to manufacture a rigid polymer panel
JP2010030055A (en) Microshape transferring sheet
WO2009023022A1 (en) Embossing system, methods of use, and articles produced therefrom

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036414.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007550619

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097000763

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828790

Country of ref document: EP

Kind code of ref document: A1