WO2008035755A1 - Moteur sans balai - Google Patents

Moteur sans balai Download PDF

Info

Publication number
WO2008035755A1
WO2008035755A1 PCT/JP2007/068338 JP2007068338W WO2008035755A1 WO 2008035755 A1 WO2008035755 A1 WO 2008035755A1 JP 2007068338 W JP2007068338 W JP 2007068338W WO 2008035755 A1 WO2008035755 A1 WO 2008035755A1
Authority
WO
WIPO (PCT)
Prior art keywords
resolver
stator
holder
rotor
brushless motor
Prior art date
Application number
PCT/JP2007/068338
Other languages
English (en)
French (fr)
Inventor
Masayuki Okubo
Original Assignee
Mitsuba Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corporation filed Critical Mitsuba Corporation
Priority to JP2008535393A priority Critical patent/JP5112321B2/ja
Publication of WO2008035755A1 publication Critical patent/WO2008035755A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils

Definitions

  • the present invention relates to a brushless motor, and more particularly, to a mounting structure for a rotor position detecting device in a brushless motor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-129362
  • brushless motors particularly brushless motors for EPS
  • the resolver and the rotor are usually arranged side by side in the axial direction, and if the distance between the two is increased, the axial length of the motor is correspondingly increased. growing. For this reason, in a squeezed motor that satisfies the demand for motor miniaturization, the resolver and the field coil tend to be very close.
  • FIG. 6 is an explanatory diagram showing sensor output when the resolver is disposed close to the field coil.
  • the detection signal accuracy of the resolver is indicated by an error between the rotor rotation angle and the resolver detection signal.
  • the more accurate the sensor is the more linear the relationship between the two is as shown by the broken line in Fig. 6.
  • the sensor output is affected by the magnetic field generated by the field coil, and as shown by the solid line in FIG. 6, the linearity is impaired and the sensor accuracy deteriorates.
  • An object of the present invention is to provide a brushless motor capable of satisfying the demand for miniaturization of the motor while ensuring the rotor position detection accuracy by the resolver.
  • the brushless motor of the present invention includes a stator including a stator core and a field coil wound around the stator core, a rotor shaft disposed rotatably inside the stator, and the rotor shaft.
  • a shielding member made of a magnetic material is disposed between the resolver stator and the field coil.
  • the magnetic flux on the stator side is absorbed by the shielding member, and the shielding portion
  • the magnetic flux on the stator side hardly flows on the resolver stator side of the material. Therefore, the influence of the magnetic flux on the stator side with respect to the resolver stator can be suppressed, and the linearity of the resolver detection signal is ensured even when the resolver stator and the field coil are brought close to each other.
  • the brushless motor is formed of a magnetic material, and the resolver stator is accommodated.
  • a bottomed cylindrical shape having a cylindrical holder portion to be accommodated, and a bottom wall portion formed at an end portion of the holder portion and disposed between the resolver stator and the drive coil and functioning as the shielding member
  • the resolver stator may be mounted in the resolver holder. In this case, the resolver stator may be disposed in the resolver holder in a state separated from the bottom wall portion.
  • the distance L1 between the bottom wall portion and the end of the field coil is larger than the distance L2 between the inner peripheral edge of the field coil and the inner peripheral edge of the stator core (LI> L2) May be set.
  • L1> L2 the distance between the inner peripheral edge of the field coil and the inner peripheral edge of the stator core
  • an inner diameter D1 of a through hole formed in the center of the bottom wall portion and through which the rotor shaft is passed may be set smaller than an outer diameter D2 of the magnet (D1 ⁇ D2).
  • the stator includes a stator core and a field coil wound around the stator core, and includes a rotor shaft, a rotor core, and a magnet that are rotatably disposed inside the stator.
  • a brushless motor having a rotor, a resolver aperture attached to a rotor shaft, and a resolver stator disposed outside the resolver rotor, a magnetic material is formed between the resolver stator and the field coil. Since the shielding member formed in this manner is arranged, the magnetic flux on the stator side can be absorbed by the shielding member, and the influence of the magnetic flux on the stator side on the resolver stator can be suppressed. Therefore, even when the resolver stator and the field coil are brought close to each other, the linearity of the resolver detection signal is ensured, and the brushless motor can be downsized while ensuring the rotor position detection accuracy.
  • FIG. 1 is a cross-sectional view of a brushless motor that is an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the brushless motor of FIG.
  • FIG. 3 is an explanatory diagram showing a configuration of a resolver holder.
  • FIG. 4 is an explanatory diagram showing a positional relationship between a stator core, a coil, a resolver holder, and a resolver stator.
  • FIG. 5 is an explanatory diagram showing an angle error between a rotor rotation angle and a resolver detection signal, and shows a shielding part This is a comparison between the case where no material is used, the case where a non-magnetic shielding member is arranged, and the case where a magnetic shielding member is arranged.
  • FIG. 1 is a sectional view of a brushless motor according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the brushless motor of FIG.
  • the brushless motor 1 (hereinafter abbreviated as motor 1) is an inner rotor type brushless motor with a stator (stator) 2 on the outside and a rotor (rotor) 3 on the inside.
  • the motor 1 is used, for example, as a power source of a column assist type electric power steering device (EPS), and applies an operation assisting force to a steering shaft of an automobile.
  • the motor 1 is attached to a reduction mechanism (not shown) provided on the steering shaft, and the rotation of the motor 1 is transmitted to the steering shaft by being reduced by the reduction mechanism.
  • EPS column assist type electric power steering device
  • the stator 2 is attached to the bottomed cylindrical case 4, the stator core 5, the stator coil 6 (field coil; hereinafter abbreviated as coil 6) wound around the stator core 5, and the stator core 5. It is composed of 7 busbar units (terminal units)!
  • the case 4 is formed in a bottomed cylindrical shape with iron or the like, and a bracket 24 made of aluminum die cast is attached to the opening by a fixing screw 23.
  • the stator core 5 is composed of a plurality of divided cores 8 and nine divided cores 8 are assembled in the circumferential direction.
  • the split core 8 is formed by laminating core pieces made of electromagnetic steel plates, and a synthetic resin insulator 9 is attached around the core piece!
  • a coil 6 is wound around the outside of the insulator 9.
  • the end portion 6 a of the coil 6 is drawn out in the radial direction at one end side of the stator core 5.
  • a bus bar unit 7 is attached to one end side of the stator core 5.
  • the bus bar unit 7 has a synthetic resin body. Inside the section, a copper bus bar is insert-molded. Around the bus bar unit 7, a plurality of power supply terminals 11 protrude in the radial direction. When the bus bar unit 7 is attached, the coil end 6 a is welded to the power supply terminal 11.
  • the number of bus bars corresponding to the number of phases of the motor 1 here, three for the U phase, V phase, and W phase
  • Each coil 6 is electrically connected to a power supply terminal 11 corresponding to the phase.
  • the stator core 5 is press-fitted into the case 4 and fixedly adhered to the inner peripheral surface of the case.
  • a rotor 3 is inserted inside the stator 2.
  • the rotor 3 has a rotor shaft 21.
  • the rotor shaft 21 is rotatably supported by bearings 22a and 22b.
  • the bearing 22a is fixed to the center of the bottom of the case 4, and the bearing 22b is fixed to the center of the bracket 24.
  • a cylindrical rotor core 25 is fixed to the rotor shaft 21.
  • a segment type magnet (permanent magnet) 26 is attached to the outer periphery of the rotor core 25.
  • a synthetic resin magnet holder 27 is externally attached to the rotor shaft 21.
  • the magnet 26 is disposed on the outer periphery of the rotor core 25 so as to be held by the magnet holder 27.
  • six magnets 26 are arranged along the circumferential direction.
  • a magnet cover 28 with a bottomed cylindrical shape is attached to the outside of the magnet 26.
  • a rotor (resolver rotor) 32 of a resolver 31 that is a rotation angle detecting means is attached to the end of the magnet holder 27.
  • the stator (resolver stator) 33 of the resolver 31 is press-fitted into a resolver holder 34 formed of a magnetic material such as iron and is fixed to the bracket holder unit 35 in that state.
  • a sensor harness 36 is fixed to the resolver stator 33.
  • a signal output as the rotor 32 rotates is transmitted to a controller or the like (not shown) via the sensor harness 36.
  • the sensor harness 36 is welded to the terminal portion 33a of the stator 33.
  • a synthetic resin insulator 37 is attached to the terminal portion 33a.
  • the sensor harness 36 is routed between the bracket 24 and the bracket holder unit 35 along the circumferential direction. Then, it is pulled out from the outer periphery of the bracket 24 through the rubber grommet 38 to the outside of the apparatus.
  • the resolver holder 34 is formed in a bottomed cylindrical shape, and includes a bracket holder unit 35. It is inserted into the center of the box.
  • FIG. 3 is an explanatory view showing the configuration of the resolver holder 34.
  • the resolver holder 34 has a cylindrical holder portion 61, a flange portion 62 formed on one end side of the holder portion 61, and a through hole formed in the center provided on the other end side of the holder portion 61.
  • the bottom wall 63 is formed.
  • the resolver stator 33 is accommodated concentrically.
  • the holder part 61 is formed with a notch 61a, and the terminal part 33a of the stator 33 is disposed in the notch 61a.
  • the flange portion 62 protrudes in the radial direction on one end side of the holder portion 61.
  • the flange portion 62 is further provided with protruding pieces 64a to 64c extending in the radial direction.
  • the projecting pieces 64a and 64b are formed at positions facing 1 80 °.
  • a long hole 65 is formed in each projecting piece 64a, 64b.
  • the long hole 65 is formed long in the circumferential direction and is used for fixing the resolver holder 34 and adjusting the origin of the resonance lever 31.
  • a round hole 66 is formed in the projecting piece 64c, and the round hole 66 is exclusively used for adjusting the origin. At the time of origin adjustment, an adjustment jig is inserted into the round hole 66 from the outside of the bracket 24, and the position of the resolver holder 34 is appropriately adjusted in the circumferential direction.
  • the open end portion (flange portion 62 side) of the resolver holder 34 is fitted on the outer periphery of the end portion of a holder mounting rib (holder mounting portion) 39 provided on the bracket 24.
  • the holder mounting rib 39 protrudes from the central portion of the bracket 24 in a partially cylindrical shape (cylindrical shape having a notch in a part) in the axial direction.
  • the outer diameter of the holder mounting rib 39 is slightly smaller than the inner diameter of the open end of the resolver holder 34. Therefore, the resolver holder 34 is mounted so as to be lightly press-fitted into the holder mounting rib 39.
  • a bearing fixing portion 40 is provided inside the holder mounting rib 39.
  • a bearing 22 b that supports the rotor shaft 21 is fixed to the bearing fixing portion 40.
  • the holder mounting rib 39 is formed concentrically with the bearing fixing portion 40. Therefore, when the reso-no-resolver 34 is lightly press-fitted into the holder mounting rib 39, the resolver holder 34 is mounted concentrically with the bearing fixing portion 40.
  • the resolver stator 33 in the holder 61 is attached to the bracket 24 concentrically with the bearing 22b, that is, concentrically with the rotor shaft 21, and the resolver stator 33 is attached to the rotor shaft 21 with high core accuracy. Installed in motor 1.
  • FIG. 4 is an explanatory diagram showing the positional relationship between the stator core 5, the coil 6, the resolver holder 34, and the resolver stator 33.
  • the bottom wall 63 of the resolver holder 34 magnetically isolates the resolver stator 33 and the stator core 5 side. That is, the bottom wall 63 serves as a shielding plate against the magnetic flux from the stator 2 side.
  • the resolver stator 33 is disposed away from the bottom wall portion 63, and a gap G is formed between them.
  • the distance L1 between the bottom wall 63 and the end of the coil 6 is the inner periphery of the coil 6 and the inner periphery of the stator core 5 (the tip of the tooth 5a; see FIG. 4 (b)). Is set to be larger than the distance L2 between (L1> L2). Further, the inner diameter D1 of the through hole 63a in the bottom wall 63 is formed to be smaller than the outer diameter D2 of the magnet 26! (Dl ⁇ D2).
  • the magnetic flux on the stator 2 side is absorbed by the bottom wall portion 63 that is a shielding member, and does not leak into the bottom wall portion 63. That is, the field magnetic flux is blocked by the bottom wall 63 and hardly enters the resolver holder 34. Therefore, the influence of the magnetic flux on the stator 2 side on the resolver stator 33 is suppressed, and it is possible to ensure the linearity of the resolver detection signal even when the resolver stator 33 and the coil 6 are brought close to each other.
  • the distance between the resolver 31 and the coil 6 can be set smaller than in the case where no shielding plate is provided, and the motor size can be reduced while ensuring the rotor position detection accuracy. Can be achieved. Further, by setting L1> L2, the magnetic flux generated from the coil 6 flows not to the resolver 31 side (resolver holder 34) but to the stator core 5 side. For this reason, the influence of the shielding member on the motor magnetic flux can be reduced.
  • FIG. 5 is an explanatory diagram showing an angle error between the rotor rotation angle and the resolver detection signal.
  • the angular error width in the case of (1) was 3.8 ° and the angular error width in the case of (2) was 4.8 °.
  • the angular error width could be kept within 1.3 °.
  • the angle error width is 4.8 °
  • the angle error width is 3.0 °.
  • the bracket holder unit 35 is formed of a synthetic resin.
  • a metal resolver holder fixing nut 41 is insert-molded.
  • Two resolver holder fixing nuts 41 are provided corresponding to the long holes 65 of the resolver holder 34.
  • the resolver fixing hole 48b for fixing the resolver and the resolver adjusting hole 48c for adjusting the origin of the resolver 31 are formed in the bracket 24.
  • the resolver fixing hole 48b is disposed so as to face the long hole 65 and the resolver holder fixing nut 41, and is formed in a round hole through which the mounting screw 42 can pass.
  • the resolver adjustment hole 48c is arranged facing the round hole 66.
  • the resolver adjusting hole 48c is formed as a long hole extending in the circumferential direction so that the position of the resolver holder 34 can be adjusted in the circumferential direction.
  • An adjustment jig is inserted into the round hole 66 through the resolver adjustment hole 48c, and the position of the resolver holder 34 is adjusted (origin adjustment).
  • the fixing screw 42 is screwed into the resolver holder fixing nut 41 from the outside of the motor 1 through the resolver fixing hole 48b.
  • the resolver holder 34 is fixed while being sandwiched between the bracket 24 and the bracket holder unit 35.
  • the bracket holder unit 35 is also provided with three external power feeding terminals 43.
  • External power feed terminals 43 are provided for each of the U, V, and W phases. These external power feeding terminals 43 are provided so as to protrude in the radial direction from the side surface of the bracket 24 when the bracket holder unit 35 is assembled to the bracket 24.
  • Each external power feeding terminal 43 (4311, 43 ⁇ , 43 W) is electrically connected to a connection terminal 44 (4411, 44 ⁇ , 44 ⁇ ) provided in the bracket holder unit 35.
  • Each connection terminal 44 protrudes from the main body 45 of the bracket holder unit 35 in the axial direction, and is welded to a bus bar terminal 46 (46U, 46V, 46W) provided in the bus bar unit 7.
  • the bus bar terminal 46 also projects from the main body 47 of the bus bar unit 7 in the axial direction. Has been. Therefore, when the motor 1 is assembled, the bus bar terminal 46 and the connection terminal 44 face each other in parallel. In the motor 1, after the bracket 24 is attached to the case 4, the bus bar terminal 46 and the connection terminal 44 are fixed by welding. A welding work hole 48a is formed in the bracket 24. A bracket cap 49 is attached to the welding work hole 48a after the welding process.
  • Such a motor 1 is assembled as follows. First, the bracket assembly 51, the stator assembly 53, and the rotor assembly 54 are assembled individually.
  • the bracket assembly 51 is an assembly product in which the bracket 24 in which the bearing 22b is incorporated and the bracket holder unit 35 in which components related to the resolver stator 33 are assembled are integrated and fixed with the tapping pin screw 52.
  • the stator assembly 53 is an assembly product in which the bus bar unit 7 is attached to the stator core 5 around which the coil 6 is wound, and the power supply terminal 11 and the coil end 6a are welded and accommodated in the case 4. Configure.
  • the rotor assembly 54 fixes the rotor core 25 to the rotor shaft 21, attaches the magnet holder 27, presses the magnet 26, attaches the magnet cover 28, and press-fits the resolver rotor 32 to the magnet holder 27. It is an assembly product and constitutes rotor 3.
  • the rotor assembly 54 is attached to the bracket assembly 51, and the stator assembly 53 is externally mounted thereon, and the case 4 and the bracket 24 are fastened to the fixing screw 23.
  • the bus bar terminal 46 and the connection terminal 44 are fixed by welding through the welding work hole 48a. In this state, check the motor resistance and insulation state, and then adjust the origin of resolver 31.
  • the resolver adjustment hole 48c is formed in the bracket 24, and the origin adjustment is performed from the resolver adjustment hole 48c.
  • an adjusting jig (not shown) is inserted into the resolver adjusting hole 48c, the position of the resonator lever holder 34 is finely adjusted in the circumferential direction using the long hole 65, and the origin of the resolver 31 is adjusted.
  • the force using the bottom wall portion 63 of the resolver holder 34 as a magnetic shielding member between the resolver stator 33 and the coil 6 is shown separately.
  • a shielding member made of a magnetic material may be disposed between the resolver stator 33 and the coil 6.
  • using the bottom wall 63 of the resolver holder 34 as a shielding member is preferable in terms of cost because the number of parts is small.
  • the brushless motor used in the column assist type EPS is shown in the above-described embodiment, the present invention is applicable to other types of EPS motors.
  • the present invention can be widely applied to general brushless motors as well as motors for EPS and various in-vehicle electric products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Brushless Motors (AREA)
  • Motor Or Generator Frames (AREA)
  • Power Steering Mechanism (AREA)

Description

明 細 書
ブラシレスモータ
技術分野
[0001] 本発明は、ブラシレスモータに関し、特に、ブラシレスモータにおけるロータ位置検 出装置の取付構造に関する。
背景技術
[0002] 一般にブラシレスモータでは、ロータ(回転子)の回転位置を検出し、検出したロー タ回転位置に基づいて、ステータ(固定子)側のコイル (ステータコイル)を順次励磁し てロータを回転駆動させている。ロータの回転位置検出には、従来より、エンコーダ やホール IC等を用いた検出装置が使用されているが、近年、レゾルバを使用したブ ラシレスモータも増加している。レゾルバは、高温や振動環境下に強ぐ構造がシン プルで故障にくいことから、車載用モータへの使用が増大している。特に、電動パヮ 一ステアリング装置 (EPS)用のモータでは、操舵フィーリング向上のため高性能な口 ータ回転位置検出センサが求められており、安価で組付性にも優れたレゾルバの使 用が増大している。
特許文献 1:特開 2004-129362号公報
発明の開示
発明が解決しょうとする課題
[0003] 一方、ブラシレスモータ、特に、 EPS用のブラシレスモータでは、自動車内の狭い 空間に装置を収める必要があることから、モータ自体にも外形寸法の小型化が求め られている。ところ力 S、レゾルバを用いたブラシレスモータでは、レゾルバとロータが軸 方向に並んで配置されるのが通常であり、両者間の距離を大きく取ると、その分、モ 一タの軸方向長が大きくなる。このため、モータ小型化の要請を満たすベぐかかる モータでは、レゾルバと界磁コイルとの間が非常に近くなる傾向がある。しかしながら 、レゾルバを界磁コイルに近接配置すると、ロータ回転角とレゾルバの検出信号との 間のリニアリティ(直線性)が損なわれ、レゾルバの検出信号精度が低下するという問 題が生じる。 [0004] 図 6は、レゾルバを界磁コイルに近接配置した場合のセンサ出力を示す説明図で ある。一般に、レゾルバの検出信号精度は、ロータ回転角とレゾルバ検出信号との誤 差にて示される。そして、両者間の関係に、図 6の破線のような直線性があるほど精 度の良いセンサとされている。ところ力 S、レゾルバを界磁コイルに近接配置すると、セ ンサ出力が界磁コイルによる磁界の影響を受け、図 6に実線にて示したように、リニア リティが損なわれ、センサ精度が悪化するという問題があった。ブラシレスモータでは 、ロータ位置検出精度が高いほど的確な通電が可能である。従って、センサ精度が 悪化すると、ロータ位置とずれた信号が出力され、特に、 EPS用モータでは、操舵フ イーリングが悪化するおそれがある。このため、センサ精度を確保すベぐレゾルバが 界磁側の影響を受けないように、レゾルバと界磁コイルとの間の距離を十分に取る必 要がある。しかし、その反面、モータ軸方向長が大きくなり、モータ小型化の要請に反 するという問題が生じる。
[0005] 本発明の目的は、レゾルバによるロータ位置検出精度を確保しつつ、モータ小型 化の要請を満し得るブラシレスモータを提供することにある。
課題を解決するための手段
[0006] 本発明のブラシレスモータは、ステータコアと前記ステータコアに巻装された界磁コ ィルとを備える固定子と、前記固定子の内側に回転自在に配置され、ロータシャフト と、前記ロータシャフトに固定されたロータコアと、前記ロータコアの外周に取り付けら れたマグネットとを備える回転子と、前記ロータシャフトに取り付けられたレゾルバロー タと、前記レゾルバロータの外側に配置されたレゾルバステータとを有してなるブラシ レスモータであって、前記レゾルバステータと前記界磁コイルとの間に、磁性体にて 形成された遮蔽部材を配置したことを特徴とする。
[0007] 本発明にあっては、レゾルバステータと界磁コイルとの間に、磁性体にて形成され た遮蔽部材を配置することにより、固定子側の磁束が遮蔽部材に吸収され、遮蔽部 材のレゾルバステータ側には固定子側の磁束はほとんど流れない。このため、レゾル バステータに対する固定子側の磁束の影響を抑えることができ、レゾルバステータと 界磁コイルを近付けてもレゾルバ検出信号のリニアリティが確保される。
[0008] 前記ブラシレスモータにおいて、磁性体にて形成され、前記レゾルバステータが収 容される円筒形状のホルダ部と、前記ホルダ部の端部に形成され、前記レゾルバス テータと前記駆動コイルとの間に配置されて前記遮蔽部材として機能する底壁部とを 有する有底円筒形状のレゾルバホルダ内に前記レゾルバステータを取り付けるように しても良い。この場合、前記レゾルバステータを、前記底壁部とは離れた状態で前記 レゾルバホルダ内に配置するようにしても良!/、。
[0009] 一方、前記底壁部と前記界磁コイルの端部との間の距離 L1を、前記界磁コイルの 内周縁と前記ステータコアの内周縁との間の距離 L2よりも大きく(LI〉L2)設定して も良い。このように L1〉L2に設定することにより、界磁コイルから発生した磁束は、レ ゾルバ側ではなぐステータコア側に流れるので、モータ磁束への影響も少なく抑え られる。また、前記底壁部の中央に形成され前記ロータシャフトが揷通される貫通孔 の内径 D1を、前記マグネットの外径 D2よりも小さく(D1 < D2)設定しても良い。 発明の効果
[0010] 本発明のブラシレスモータによれば、ステータコアとステータコアに巻装された界磁 コイルとを備える固定子と、固定子の内側に回転自在に配置されロータシャフトとロー タコア及びマグネットとを備える回転子と、ロータシャフトに取り付けられたレゾルバ口 ータと、レゾルバロータの外側に配置されたレゾルバステータとを有してなるブラシレ スモータにて、レゾルバステータと界磁コイルとの間に磁性体にて形成した遮蔽部材 を配置したので、固定子側の磁束を遮蔽部材にて吸収することができ、固定子側の 磁束がレゾルバステータに与える影響を抑えることが可能となる。このため、レゾルバ ステータと界磁コイルを近付けてもレゾルバ検出信号のリニアリティが確保され、ロー タ位置検出精度を確保しつつ、ブラシレスモータの小型化を図ることが可能となる。 図面の簡単な説明
[0011] [図 1]本発明の一実施例であるブラシレスモータの断面図である。
[図 2]図 1のブラシレスモータの分解斜視図である。
[図 3]レゾルバホルダの構成を示す説明図である。
[図 4]ステータコアとコイル、レゾルバホルダ、レゾルバステータとの位置関係を示す 説明図である。
[図 5]ロータ回転角度とレゾルバ検出信号との角度誤差を示す説明図であり、遮蔽部 材なしの場合と、非磁性体の遮蔽部材を配置した場合、磁性体の遮蔽部材を配置し た場合を比較して示したものである。
園 6]レゾルバを界磁コイルに近接配置した場合のセンサ出力を示す説明図である。 符号の説明
1 ブラシレスモータ 2 ステータ
3 ロータ 4 ケース
5 ステータコア 5a ティース
6 ステータコィノレ 6a コ /レ末 ϋ耑
7 ノ^:スノ^:ーュ: ット 8 分割コア
9 インシユレータ 11 給電用端子
21 ロータシャフト 22a, 22b ベアリング
23 固定ネジ 24 ブラケット
25 ロータコア 26 マグネット
27 マグネットホノレダ 28 マグネットカバー
31 レゾ'ノレノ 32 ロータ
33 ステータ 33a 端子部
34 レゾノレノくホノレダ 35 ブラケットホルダュニッ ί
36 センサハーネス 37 インシユレータ
38 ゴムグロメット 39 ホルダ取付リブ
40 ベアリング固定部 41 レゾルバホルダ固定用
42 取付ネジ 43 外部給電用端子
44 接続端子 45 本体部
46 バスバー端子 47 本体部
48a 溶接作業孔 48b レゾルバ固定孔
48c レゾルバ調整孔 49 ブラケットキャップ
53 ステータアッセンブリ 54 ロータアッセンブリ
61 ホルダ部 61 a 切欠部 62 フランジ部 63 底壁部
63a 貫通孔 64a〜64c 突片
65 長孔 66 丸孔
D1 底壁部の貫通孔内径 D2 マグネット外径
G 底壁部とレゾルバステータとの間の間隙
L1 底壁部とコイル端部との間の距離
L2 コイル内周縁とステータコア内周縁との間の距離
発明を実施するための最良の形態
[0013] 以下、本発明の実施例を図面に基づいて詳細に説明する。図 1は本発明の一実施 例であるブラシレスモータの断面図、図 2は図 1のブラシレスモータの分解斜視図で ある。図 1に示すように、ブラシレスモータ 1 (以下、モータ 1と略記する)は、外側にス テータ(固定子) 2、内側にロータ(回転子) 3を配したインナーロータ型のブラシレス モータとなっている。モータ 1は、例えば、コラムアシスト式の電動パワーステアリング 装置 (EPS)の動力源として使用され、自動車のステアリングシャフトに対し動作補助 力を付与する。モータ 1は、ステアリングシャフトに設けられた図示しない減速機構部 に取り付けられ、モータ 1の回転は、この減速機構部によってステアリングシャフトに 減速されて伝達される。
[0014] ステータ 2は、有底円筒形状のケース 4と、ステータコア 5、ステータコア 5に巻装さ れたステータコイル 6 (界磁コイル;以下、コイル 6と略記する)、及び、ステータコア 5 に取り付けられるバスバーユニット(端子ユニット) 7とから構成されて!/、る。ケース 4は 、鉄等にて有底円筒状に形成されており、その開口部には、固定ネジ 23によってァ ルミダイキャスト製のブラケット 24が取り付けられる。ステータコア 5は、複数個の分割 コア 8からなり、分割コア 8を周方向に 9個集成した構成となっている。分割コア 8は、 電磁鋼板からなるコアピースを積層して形成され、その周囲には合成樹脂製のイン シユレータ 9が取り付けられて!/、る。
[0015] インシュレータ 9の外側にはコイル 6が巻装されている。コイル 6の端部 6aは、ステー タコア 5の一端側にて径方向に引き出されている。また、ステータコア 5の一端側には 、バスバーユニット 7が取り付けられる。バスバーユニット 7には、合成樹脂製の本体 部内に、銅製のバスバーがインサート成形されている。バスバーユニット 7の周囲には 複数個の給電用端子 11が径方向に突設されている。バスバーユニット 7の取り付け に際し、コイル末端 6aは、この給電用端子 11と溶接される。バスバーユニット 7では、 バスバーは、モータ 1の相数に対応した個数 (ここでは、 U相, V相, W相分の 3個)設 けられている。各コイル 6は、その相に対応した給電用端子 11と電気的に接続される 。ステータコア 5は、バスバーユニット 7を取り付けた後、ケース 4内に圧入され、ケー ス内周面に接着固定される。
[0016] ステータ 2の内側にはロータ 3が揷入されている。ロータ 3はロータシャフト 21を有し ている。ロータシャフト 21はベアリング 22a,22bによって回転自在に支持されている。 ベアリング 22aはケース 4の底部中央に、ベアリング 22bはブラケット 24の中央部にそ れぞれ固定されている。ロータシャフト 21には、円筒形状のロータコア 25が固定され ている。ロータコア 25の外周には、セグメントタイプのマグネット(永久磁石) 26が取り 付けられている。ロータシャフト 21には合成樹脂製のマグネットホルダ 27が外揷され ている。マグネット 26は、マグネットホルダ 27に保持される形でロータコア 25の外周 に配置される。モータ 1では、マグネット 26は、周方向に沿って 6個配置されている。 マグネット 26の外側には、有底円筒形状のマグネットカバー 28が取り付けられている
[0017] マグネットホルダ 27の端部には、回転角度検出手段であるレゾルバ 31のロータ(レ ゾルバロータ) 32が取り付けられている。これに対し、レゾルバ 31のステータ(レゾル バステータ) 33は、鉄等の磁性体にて形成されたレゾルバホルダ 34内に圧入され、 その状態でブラケットホルダユニット 35に固定されている。レゾルバステータ 33には、 センサハーネス 36が固定されている。ロータ 32の回転に伴って出力される信号は、 このセンサハーネス 36を介して、図示しないコントローラ等に伝送される。センサハー ネス 36は、ステータ 33の端子部 33aに溶接されている。端子部 33aの部分には合成 樹脂製のインシュレータ 37が取り付けられる。センサハーネス 36は、ブラケット 24と ブラケットホルダユニット 35との間を周方向に沿って引き回される。そして、ゴムグロメ ット 38を介してブラケット 24の外周部から装置外へと引き出される。
[0018] レゾルバホルダ 34は有底円筒形状に形成されており、ブラケットホルダユニット 35 の中央部に揷入装着される。図 3は、レゾルバホルダ 34の構成を示す説明図である 。図 3に示すように、レゾルバホルダ 34は、円筒形状のホルダ部 61と、ホルダ部 61の 一端側に形成されたフランジ部 62、ホルダ部 61の他端側に設けられ中央に貫通孔 が形成された底壁部 63とから構成されている。ホルダ部 61内には、レゾルバステー タ 33が同心状に収容される。ホルダ部 61には切欠部 61aが形成されており、この切 欠部 61 aにはステータ 33の端子部 33aが配置される。
[0019] フランジ部 62は、ホルダ部 61の一端側に径方向に突設されている。フランジ部 62 にはさらに、径方向に延びる突片 64a〜64cが突設されている。突片 64a,64bは、 1 80° 対向する位置に形成されている。各突片 64a,64bには、長孔 65が形成されて いる。長孔 65は周方向に長く形成されており、レゾルバホルダ 34の固定と共にレゾ ノレバ 31の原点調整に使用される。突片 64cには丸孔 66が形成されており、丸孔 66 は専ら原点調整の際に使用される。原点調整時には、ブラケット 24の外側から丸孔 6 6に調整用治具が揷入され、レゾルバホルダ 34の位置が周方向に適宜調整される。
[0020] レゾルバホルダ 34の開口端部(フランジ部 62側)は、ブラケット 24に設けられたホ ルダ取付リブ(ホルダ取付部) 39の端部外周に嵌着される。ホルダ取付リブ 39は、ブ ラケット 24の中央部に、軸方向に向かって部分円筒形状(一部に切欠を有する円筒 形状)に突設されている。ホルダ取付リブ 39の外径は、レゾルバホルダ 34の開口端 内径よりも若干小さくなつている。従って、レゾルバホルダ 34はこのホルダ取付リブ 3 9に軽圧入される形で装着される。
[0021] ホルダ取付リブ 39の内側にはベアリング固定部 40が設けられている。ベアリング固 定部 40には、ロータシャフト 21を支持するベアリング 22bが固定されている。ホルダ 取付リブ 39はベアリング固定部 40と同心状に形成されている。このため、ホルダ取付 リブ 39にレゾノレバホノレダ 34を軽圧入すると、レゾルバホルダ 34はベアリング固定部 4 0と同心状に取り付けられる。これにより、ホルダ部 61内のレゾルバステータ 33は、ベ ァリング 22bと同心状、すなわち、ロータシャフト 21と同心状にブラケット 24に取り付 けられ、レゾルバステータ 33は、ロータシャフト 21に対し芯精度良くモータ 1内に設置 される。
[0022] 一方、モータ 1では、レゾルバホルダ 34の底壁部 63力 S、コイル 6とレゾルバステータ 33との間に配置される遮蔽部材としても機能している。図 4は、ステータコア 5と、コィ ル 6、レゾルバホルダ 34、レゾルバステータ 33との位置関係を示す説明図である。図 4 (a)に示すように、レゾルバホルダ 34の底壁部 63は、レゾルバステータ 33とステー タコア 5側とを磁気的に隔離している。すなわち、底壁部 63は、ステータ 2側からの磁 束に対する遮蔽板となっている。レゾルバステータ 33は、底壁部 63と離れた状態で 配置されており、両者の間には間隙 Gが形成されている。また、底壁部 63とコイル 6 の端部(図 1において左端)との間の距離 L1は、コイル 6の内周縁とステータコア 5の 内周縁 (ティース 5a先端部;図 4 (b)参照)との間の距離 L2よりも大きく設定されてい る(L1〉L2)。さらに、底壁部 63の貫通孔 63aの内径 D1は、マグネット 26の外径 D2 より小径に形成されて!/、る(Dl < D2)。
[0023] このような状態でレゾルバホルダ 34を配置すると、ステータ 2側の磁束は、遮蔽部 材である底壁部 63に吸収され、底壁部 63の内側には漏れ出てこない。すなわち、界 磁磁束は、底壁部 63に妨げられる形となり、レゾルバホルダ 34内にはほとんど進入 しない。このため、ステータ 2側の磁束がレゾルバステータ 33に与える影響が抑えら れ、レゾルバステータ 33とコイル 6を近付けてもレゾルバ検出信号のリニアリティを確 保することが可能となる。従って、当該モータ 1では、遮蔽板を配さない場合に比して 、レゾルバ 31とコイル 6との間の距離を小さく設定することができ、ロータ位置検出精 度を確保しつつ、モータの小型化を図ることが可能となる。また、 L1〉L2に設定する ことにより、コイル 6から発生した磁束は、レゾルバ 31側(レゾルバホルダ 34)ではなく 、ステータコア 5側に流れる。このため、モータ磁束への遮蔽部材の影響も少なく抑え られる。
[0024] 図 5は、ロータ回転角度とレゾルバ検出信号との角度誤差を示す説明図であり、遮 蔽部材なしの場合 (1)と、非磁性体の遮蔽部材を配置した場合 (2)、磁性体の遮蔽部 材を配置した場合((3)D1 < D2,L1〉L2、(4)D1〉D2,L1 < L2、 (5)D1 =D2,L1 = L2)を比較して示したものである。図 5から明らかなように、発明者らの実験によれば 、(1)の場合は角度誤差幅が 3.8° 、(2)の場合は角度誤差幅が 4.8° であったのに対 し、(3)の場合は角度誤差幅を 1.3° に収めることができた。また、(4)の場合は角度誤 差幅を 4.8° 、(5)の場合は角度誤差幅を 3.0° であり、 D1 < D2,L1〉L2に設定す ることにより、角度誤差幅が抑えられることが確認された。すなわち、当該モータ 1で は、遮蔽部材なしの同様の構成のブラシレスモータに比して約 3倍程度の高精度で ロータ 3の回転位置を検出できることが明らかとなった。このため、モータ 1では、 EPS における操舵フィーリングを損なうことなぐモータ小型化の要請を満たすことが可能 となる。
[0025] ブラケットホルダユニット 35は、合成樹脂にて形成されている。ブラケットホルダュニ ット 35には、金属製のレゾルバホルダ固定用ナット 41がインサート成形されている。 レゾルバホルダ固定用ナット 41は、レゾルバホルダ 34の長孔 65に対応して 2個設け られている。これに対し、ブラケット 24には、レゾルバ固定用のレゾルバ固定孔 48bと 、レゾルバ 31の原点調整用のレゾルバ調整孔 48cが形成されている。レゾルバ固定 孔 48bは、長孔 65及びレゾルバホルダ固定用ナット 41に臨んで配置され、取付ネジ 42が揷通可能な丸孔に形成されて!/、る。
[0026] 一方、レゾルバ調整孔 48cは、丸孔 66に臨んで配置されている。また、レゾルバ調 整孔 48cは、レゾルバホルダ 34の位置が周方向に調整可能なように、周方向に延び る長孔に形成されている。丸孔 66には、レゾルバ調整孔 48cを介して調整用治具が 揷入され、レゾルバホルダ 34の位置が調整される(原点調整)。ホルダ位置の調整後 、レゾルバホルダ固定用ナット 41には、レゾルバ固定孔 48bを介して、モータ 1の外 部から取付ネジ 42がねじ込まれる。これにより、レゾルバホルダ 34は、ブラケット 24と ブラケットホルダユニット 35の間に挟持された状態で固定される。
[0027] ブラケットホルダユニット 35にはまた、外部給電用端子 43が 3個設けられている。外 部給電用端子 43は U,V,Wの各相ごとに設けられている。これらの外部給電用端子 4 3は、ブラケットホルダユニット 35をブラケット 24に組み付けたとき、ブラケット 24の側 面から径方向に突出するように設けられている。各外部給電用端子43 (4311,43¥,4 3W)は、ブラケットホルダュニット35内に設けられた接続端子44 (4411,44¥,44\¥) と電気的に接続されている。各接続端子 44は、ブラケットホルダユニット 35の本体部 45から軸方向に向かって突設されており、バスバーユニット 7に設けられたバスバー 端子 46 (46U,46V,46W)と溶接される。
[0028] バスバー端子 46もまた、バスバーユニット 7の本体部 47から軸方向に向かって突設 されている。従って、モータ 1を組み付けると、バスバー端子 46と接続端子 44が並列 に対向する。モータ 1では、ケース 4にブラケット 24を取り付けた後、バスバー端子 46 と接続端子 44を溶接固定する。ブラケット 24にはそのための溶接作業孔 48aが形成 されている。溶接作業孔 48aには、溶接工程後にブラケットキャップ 49が取り付けら れる。
[0029] このようなモータ 1は次のように組み付けられる。まず、ブラケットアッセンブリ 51ゃス テータアッセンブリ 53、ロータアッセンブリ 54を個々に組み付ける。この場合、ブラケ ットアッセンブリ 51は、ベアリング 22bを組み込んだブラケット 24と、レゾルバステータ 33関係の部品を組み付けたブラケットホルダユニット 35とを一体化し、タツピンネジ 5 2にて固定したアッセンブリ品である。また、ステータアッセンブリ 53は、コイル 6を巻 装したステータコア 5にバスバーユニット 7を取り付け、給電用端子 1 1とコイル末端 6a を溶接したものをケース 4内に収容固定したアッセンブリ品であり、ステータ 2を構成 する。さらに、ロータアッセンブリ 54は、ロータシャフト 21にロータコア 25を固定し、マ グネットホルダ 27を取り付けた後、マグネット 26を圧入しマグネットカバー 28を装着 すると共に、マグネットホルダ 27にレゾルバロータ 32を圧入固定したアッセンブリ品 であり、ロータ 3を構成する。
[0030] このようなアッセンブリ品をそれぞれ組み立てた後、ロータアッセンブリ 54をブラケッ トァッセンブリ 51に取り付け、そこにステータアッセンブリ 53を外装して固定ネジ 23に てケース 4とブラケット 24を締結する。次に、溶接作業孔 48aを介して、バスバー端子 46と接続端子 44を溶接固定する。この状態にてモータの抵抗値や絶縁状態のチェ ック等を行い、その後、レゾルバ 31の原点調整を行う。前述のように、ブラケット 24に はレゾルバ調整孔 48cが形成されており、原点調整は、このレゾルバ調整孔 48cから 行われる。その際、レゾルバ調整孔 48cには図示しない調整用治具が揷入され、レゾ ノレバホルダ 34の位置が長孔 65を利用して周方向に微調整され、レゾルバ 31の原点 が調整される。
[0031] 原点調整後、ブラケット 24の外側から取付ネジ 42を揷入し、レゾルバホルダ固定用 ナット 41にねじ込み、固定する。これにより、レゾルバホルダ 34のフランジ部 62が、ブ ラケット 24とブラケットホルダユニット 35との間に挟まれる形で固定される。取付ネジ 4 2を締め付けた後、ブラケットキャップ 49を取り付ける。これにてモータ 1の組み付け 作業は完了し、その後、各種特性チェック等が行われ、完成品となる。
[0032] 本発明は前記実施例に限定されるものではなぐその要旨を逸脱しない範囲で種 々変更可能であることは言うまでもなレ、。
例えば、前述の実施例 1では、レゾルバステータ 33とコイル 6との間の磁気的な遮 蔽部材として、レゾルバホルダ 34の底壁部 63を用いた例を示した力 底壁部 63では なぐ別途、磁性体からなる遮蔽部材をレゾルバステータ 33とコイル 6との間に配置し ても良い。但し、モータ 1では、レゾルバホルダ 34の底壁部 63を遮蔽部材として利用 する方が部品点数も少なぐコスト面においても好ましい。
[0033] また、前述の実施例では、コラムアシスト式の EPSに使用されるブラシレスモータを 示したが、他の方式の EPS用モータにも本発明は適用可能である。加えて、 EPSや 各種車載電動品用のモータのみならず、本発明は、広くブラシレスモータ一般にも適 用可能である。

Claims

請求の範囲
[1] ステータコアと、前記ステータコアに巻装された界磁コイルとを備える固定子と、 前記固定子の内側に回転自在に配置され、ロータシャフトと、前記ロータシャフトに 固定されたロータコアと、前記ロータコアの外周に取り付けられたマグネットとを備える 回転子と、
前記ロータシャフトに取り付けられたレゾルバロータと、
前記レゾルバロータの外側に配置されたレゾルバステータと、を有してなるブラシレ スモータであって、
前記レゾルバステータと前記界磁コイルとの間に、磁性体にて形成された遮蔽部材 を配置したことを特徴とするブラシレスモータ。
[2] 請求項 1記載のブラシレスモータにおいて、前記レゾルバステータは、磁性体にて 形成された有底円筒形状のレゾルバホルダ内に取り付けられ、前記レゾルバホルダ は、前記レゾルバステータが収容される円筒形状のホルダ部と、前記ホルダ部の一 端側に形成され、前記レゾルバステータと前記駆動コイルとの間に配置されて前記 遮蔽部材として機能する底壁部とを有することを特徴とするブラシレスモータ。
[3] 請求項 2記載のブラシレスモータにおいて、前記レゾルバステータは、前記底壁部 とは離れた状態で前記レゾルバホルダ内に配置されることを特徴とするブラシレスモ ータ。
[4] 請求項 2記載のブラシレスモータにおいて、前記底壁部と前記界磁コイルの端部と の間の距離 L1は、前記界磁コイルの内周縁と前記ステータコアの内周縁との間の距 離 L2よりも大き!/、 (LI > L2)ことを特徴とするブラシレスモータ。
[5] 請求項 2記載のブラシレスモータにおいて、前記底壁部の中央に形成され前記口 ータシャフトが揷通される貫通孔の内径 D1は、前記マグネットの外径 D2よりも小さい (D1 < D2)ことを特徴とするブラシレスモータ。
PCT/JP2007/068338 2006-09-22 2007-09-21 Moteur sans balai WO2008035755A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535393A JP5112321B2 (ja) 2006-09-22 2007-09-21 ブラシレスモータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006258114 2006-09-22
JP2006-258114 2006-09-22

Publications (1)

Publication Number Publication Date
WO2008035755A1 true WO2008035755A1 (fr) 2008-03-27

Family

ID=39200578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068338 WO2008035755A1 (fr) 2006-09-22 2007-09-21 Moteur sans balai

Country Status (2)

Country Link
JP (1) JP5112321B2 (ja)
WO (1) WO2008035755A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937474A1 (fr) * 2008-10-22 2010-04-23 Mitsubishi Electric Corp Machine electrique tournante et procede de fabrication de celle-ci
CN104919684A (zh) * 2013-01-10 2015-09-16 株式会社日立产机系统 具备旋转变压器的电动机和带旋转变压器的润滑脂可换式电动机
JP2015173537A (ja) * 2014-03-11 2015-10-01 本田技研工業株式会社 電動機
US10958138B2 (en) 2017-02-07 2021-03-23 Nidec Corporation Motor
FR3144443A1 (fr) * 2022-12-23 2024-06-28 Sc2N Machine électrique tournante comprenant une cible électriquement isolée d’un rotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455645B1 (ko) * 2017-07-27 2022-10-18 엘지이노텍 주식회사 모터

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174751A (ja) * 2001-12-06 2003-06-20 Matsushita Electric Ind Co Ltd 電動機
JP2004064801A (ja) * 2002-07-24 2004-02-26 Asmo Co Ltd ブラシレスモータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174751A (ja) * 2001-12-06 2003-06-20 Matsushita Electric Ind Co Ltd 電動機
JP2004064801A (ja) * 2002-07-24 2004-02-26 Asmo Co Ltd ブラシレスモータ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937474A1 (fr) * 2008-10-22 2010-04-23 Mitsubishi Electric Corp Machine electrique tournante et procede de fabrication de celle-ci
CN104919684A (zh) * 2013-01-10 2015-09-16 株式会社日立产机系统 具备旋转变压器的电动机和带旋转变压器的润滑脂可换式电动机
EP2945265A4 (en) * 2013-01-10 2016-09-21 Hitachi Industry Equipment Systems Co Ltd ENGINE WITH A RESOLVER AND LUBRICATED ENGINE WITH A RESOLVER
JP2015173537A (ja) * 2014-03-11 2015-10-01 本田技研工業株式会社 電動機
US10958138B2 (en) 2017-02-07 2021-03-23 Nidec Corporation Motor
FR3144443A1 (fr) * 2022-12-23 2024-06-28 Sc2N Machine électrique tournante comprenant une cible électriquement isolée d’un rotor

Also Published As

Publication number Publication date
JPWO2008035755A1 (ja) 2010-01-28
JP5112321B2 (ja) 2013-01-09

Similar Documents

Publication Publication Date Title
JP4061130B2 (ja) ブラシレスモータ
US8304944B2 (en) Electric power-steering apparatus motor apparatus
EP2351682B1 (en) Electric power steering device
JP2010104212A (ja) ブラシレスモータ
KR20170082911A (ko) 모터 및 이를 포함하는 전동식 조향장치
JP2008206354A (ja) ブラシレスモータ
WO2008035755A1 (fr) Moteur sans balai
JP2010115022A (ja) ブラシレスモータ
CN102655357A (zh) 马达和用于电动转向装置的马达
JP5523044B2 (ja) 駆動制御装置、およびモータユニット
JP2008079468A (ja) ブラシレスモータ
US11670991B2 (en) Electric driving apparatus
JP2004304945A (ja) ブラシレスモータ
KR20170088061A (ko) 모터 및 이를 포함하는 전동식 조향장치
JP5064401B2 (ja) ブラシレスモータ
JP2008182852A (ja) レゾルバステータの固定構造及びブラシレスモータ
JP2007006570A (ja) ブラシレスモータ及びブラシレスモータのセンサ位置調整方法
US20070289807A1 (en) Motor and electric power steering system
JP2011131775A (ja) 制御装置及び回転電機を有する電動パワーステアリング装置
JP5293256B2 (ja) 回転電機及びこれを用いた電動パワーステアリング装置
JP2008079469A (ja) モータの端子構造
JP5299706B2 (ja) 回転電機及び電動パワーステアリング装置
KR102412391B1 (ko) 모터 및 이를 포함하는 전동식 조향장치
JP5037256B2 (ja) ブラシレスモータ
WO2024150834A1 (ja) トルクセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535393

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807688

Country of ref document: EP

Kind code of ref document: A1