WO2008032779A1 - Fibre optique et matériau à base de fibre optique - Google Patents

Fibre optique et matériau à base de fibre optique Download PDF

Info

Publication number
WO2008032779A1
WO2008032779A1 PCT/JP2007/067830 JP2007067830W WO2008032779A1 WO 2008032779 A1 WO2008032779 A1 WO 2008032779A1 JP 2007067830 W JP2007067830 W JP 2007067830W WO 2008032779 A1 WO2008032779 A1 WO 2008032779A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
refractive index
optical fiber
wavelength
delta
Prior art date
Application number
PCT/JP2007/067830
Other languages
English (en)
French (fr)
Inventor
Takeshi Yoshida
Tomohiro Nunome
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to CN2007800422798A priority Critical patent/CN101535851B/zh
Priority to US12/441,040 priority patent/US7835609B2/en
Priority to JP2008534382A priority patent/JP4677491B2/ja
Priority to EP07807237.8A priority patent/EP2060938A4/en
Publication of WO2008032779A1 publication Critical patent/WO2008032779A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0286Combination of graded index in the central core segment and a graded index layer external to the central core segment

Definitions

  • the present invention relates to an optical fiber and an optical fiber preform.
  • stimulated Prillouin scattering hereinafter referred to as
  • the present invention relates to an optical fiber that suppresses the occurrence of SBS and enables transmission of higher power signal light.
  • FTT H fiber-to-home
  • broadcast signals are often analog signals, baseband signals, or optical SCM signals.
  • the characteristics of the system from the viewpoint of the optical fiber that is the transmission medium are as follows.
  • FTTH is usually a double-star PON (Passive Optical Network), which increases the distribution port.
  • Patent Document 1 Japanese Patent No. 2584151
  • Patent Document 2 WO2004 / 100406 Nonfret
  • Patent Document 3 US Patent No. 7082243
  • Patent Document 4 Japanese Patent Laid-Open No. 2006-154707
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2006-184534
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2006_133314
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2006-154713
  • Patent 1 Design concept for optical fibers with enhanced SB3 ⁇ 4 threshold Opti cs Express, Vol. 13 Issue 14 Page 5338 (July 2005) An dreykoby akov
  • Non-Patent Document 2 "Nonlinear Optical Fibers with Increased SBS Thresholds" OFC / NF OEC 2006, OtyA3, Scott Bickham, An drey obyakov, Shenping Li
  • Patent Document 1 As a technique for suppressing SBS, as described above, a technique for changing the dopant concentration and the residual stress in the longitudinal direction has been reported (Patent Document 1). However, this method is preferable for practical use because the optical characteristics change in the longitudinal direction in this method!
  • Patent Documents 2, 3 and 5 in an optical fiber having a refractive index distribution having a three-layer structure, the SBS force S is suppressed by setting the refractive index distribution to an appropriate condition, and ITU-TReco It describes that the same optical characteristics as mmendation G.652 (hereinafter referred to as G652) can be obtained.
  • G652 mmendation G.652
  • not all of the structures described in Patent Documents 2, 3, and 5 satisfy the optical characteristics equivalent to G652, but actually manufacture based on these conditions. In this case, an appropriate design value is required for each condition.
  • Patent Document 4 the uniform bending loss tends to deteriorate due to its structure, which is desirable considering the handling of optical fiber! /, But not in shape.
  • Patent Document 6 since it is necessary to add fluorine to an intended position, it is difficult to manufacture a base material using the VAD method.
  • Patent Document 7 only describes the shape of the refractive index profile, and detailed parameters etc. are mentioned!
  • the present invention has been made in view of the above circumstances, has a characteristic that is stable in the longitudinal direction by giving a structural design value of an appropriate refractive index distribution, and has compatibility with G652,
  • the objective is to provide an optical fiber and an optical fiber preform that suppresses SBS with excellent manufacturability.
  • the force S according to the first aspect of the present invention has a substantially constant and positive relative refractive index difference ⁇ 1 in the central portion of the core in a region having a radius R l ⁇ m from the center of the core.
  • the first core is in contact with the first core so as to surround the second core, and the second core having a substantially constant positive refractive index difference ⁇ 2 in the region from radius Rlm to 2 111 and the second core is surrounded.
  • a three-layer core consisting of a third core having a positive relative refractive index difference ⁇ 3 in a region of radius 2 111 to 1 ⁇ 3 111, and surrounding the core of the three-layer structure.
  • X and ⁇ ⁇ are 0.25% ⁇ ⁇ ⁇ 0.6 0/0, the force, one, 0 ⁇ 1% ⁇ 0.6 0/ 0, the force, one becomes (2 * ⁇ - 0 ⁇ 7) % ⁇ ⁇ ( ⁇ / 2 + 0.4)% Satisfying the relationship, satisfying the relationship of ⁇ 2, A3, R1, R2 force ( ⁇ 2 + ⁇ 3) + 1.
  • Off-wavelength is less than 1260 nm, mode mode at a wavelength of 1 ⁇ 31 m, and the power of the power is from 7.9 ⁇ m to 10.2 ⁇ 111, zero-dispersion wavelength power from 1300nm to 1324nm Yes, zero-dispersion slope is 0.093 ps / (nm 2 'km) or less, uniform bending loss is 2 dB / m or less at a diameter of 20 mm and a wavelength of 1.31 in, and a 383 threshold value at a wavelength of 1
  • an optical fiber having a normal step index type refractive index distribution and +3 dB or more as compared with a single mode optical fiber having the same mode field diameter.
  • the region is composed of a three-layer core composed of a third core having a maximum relative refractive index difference ⁇ 3 and a clad having a substantially constant refractive index in contact with the core of the three-layer structure.
  • the cable cutoff wavelength is less than 1260 ⁇ m, and the mode fino red diameter at the wavelength of 1 ⁇ 31 ⁇ m is 7.9 ⁇ m ⁇ ; 10 ⁇ 2 ⁇ 111 Zero-dispersion wavelength power 300nm ⁇ ; 1324nm, zero-dispersion slope is 0.093ps / (nm 2 'km) or less, uniform bending loss at diameter 20mm, wavelength 1.31m is 2dB / m or less, wavelength 1
  • An optical fiber is provided that has an SBS threshold at 55 m with a normal step index refractive index profile and +3 dB or more compared to a single mode optical fiber with the same mode field diameter.
  • optical fiber preform that satisfies the relationship of ⁇ 2 + ⁇ 3 ⁇ 1.15.
  • the cable cutoff wavelength is less than 1260 nm and Nored diameter power 7.9 ⁇ m ⁇ ; 10.2 ⁇ 111, zero dispersion wavelength power 1300n m to; is 1324 nm, the zero dispersion slope is at 0.093ps / (nm 2 'km) or less, a diameter of 20 mm, uniform bending loss at a wavelength of 1.31 m is equal to or less than 2 dB / m, the wavelength 1-55 111 Nio
  • An optical fiber preform is provided which has a normal step index type refractive index profile and is +3 dB or more compared to a single mode optical fiber having the same mode field diameter.
  • a first core having a maximum relative refractive index difference ⁇ 1 is formed in a central portion of the core in a region having a radius Rlm from the center of the core, and the first core is surrounded.
  • the second core In contact with the second core with the minimum relative refractive index difference ⁇ 2 in the area of radius Rl am to R2 ⁇ m and the area around the radius 2 111 to 1 ⁇ 3 111
  • a refractive index distribution composed of a three-layer core composed of a third core having a refractive index difference ⁇ 3 and a clad having a substantially constant refractive index in contact with the core of the three-layer structure.
  • the cable cutoff wavelength is less than 1260 nm.
  • an optical fiber preform is provided that is +3 dB or more compared to a single mode optical fiber having the same mode field diameter.
  • FIG. 1 shows the generation of SBS in an optical fiber and shows the relationship between incident light power and transmitted and backscattered light power.
  • FIG. 2 is a block diagram illustrating an SBS threshold measurement system.
  • FIG. 3 is a diagram showing the MFD dependence of the SBS threshold in the SMF having the step index type refractive index distribution shown in FIG.
  • FIG. 4 is a diagram showing a step index type refractive index distribution.
  • FIG. 5 is a diagram showing a first example of a refractive index distribution of an optical fiber according to the present invention.
  • FIG. 6 is a diagram showing a second example of the refractive index distribution of the optical fiber according to the present invention.
  • Figure 8 shows the zero dispersion wavelength from 1300 nm to 1324 nm and SBSeff ⁇ +3 dB (X
  • FIG. 10 is a diagram showing a relationship between ⁇ 3 ⁇ 1 and SBSeff.
  • FIG. 11 is a graph showing the relationship between ⁇ 1 ⁇ ⁇ 2 and SBSeff.
  • FIG. 12 is a diagram showing the relationship between ⁇ 1 ⁇ 2 and SBSeff.
  • FIG. 13 is a graph showing the relationship between the SBS threshold value of Example 1 and Example la ⁇ ; lg and MFD.
  • FIG. 14 is a diagram showing the relationship between the SBS threshold value and MFD in Examples 1 and 1a to 11;
  • FIG. 15 is a diagram showing the relationship between the SBS threshold value and MFD in Examples 2a to 2f.
  • FIG. 16 is a diagram showing the relationship between the SBS threshold values of Examples 2g to 2m and MFD.
  • FIG. 17 is a graph showing the refractive index distribution of the optical fiber of Example 3.
  • FIG. 18 is a view showing the refractive index distribution of the optical fiber preform of Example 5.
  • FIG. 19 is a diagram showing the relationship between the SBS threshold value and MFD in Example 5.
  • FIG. 20 is a view showing the refractive index distribution of the optical fiber preform of Example 6.
  • FIG. 21 is a diagram showing the relationship between the SBS threshold value and MFD in Example 6.
  • FIG. 22 is a view showing the refractive index distribution of the optical fiber preform of Example 7.
  • the optical fiber of the present invention is provided at the center of the core, and has a first core having a substantially constant positive refractive index difference ⁇ 1 in a region having a radius RI H m from the center of the core, and the first core.
  • a second core having a substantially constant positive refractive index difference ⁇ 2 in the region of radius Rl rn force, et al. 2 111 and a second core having a positive relative refractive index difference ⁇ 2 is provided so as to surround the second core.
  • a three-layer core comprising a third core having an almost constant positive relative refractive index difference ⁇ 3 in a region of radius 2 111 to 3 111 and surrounding the core of the three-layer structure. Having a refractive index profile composed of a clad having a substantially constant refractive index,
  • a second core having a minimum relative refractive index difference ⁇ 2 and surrounding the second core A three-layer core comprising a third core having a maximum relative refractive index difference ⁇ 3 in a region having a radius of 2 111 to 1 ⁇ 3 111 and a core having the three-layer structure. And has a refractive index distribution composed of a clad having a substantially constant refractive index, ⁇ 2 is 0.4% or less,
  • the cable cutoff wavelength is less than 1260nm
  • Zero dispersion slope is 0.093ps / nm 2 'km or less
  • Single bending loss of 2 dB / m or less at a diameter of 20 mm, wavelength of 1.31 m, SBS threshold at a wavelength of 1 ⁇ 55 m has a normal step index type refractive index profile and the same mode field diameter It is characterized by an SBS threshold of +3 dB or more compared to mode optical fiber.
  • the optical fiber of the present invention is typically a force that can be manufactured by drawing a base material manufactured by the VAD method.
  • the manufacturing method of the base material is not limited to the VAD method. There is no problem with the OVD method and the CVD method, which are generally well known.
  • FIG. 1 is a graph showing the occurrence of SBS in an optical fiber.
  • the incident light power to the optical fiber is gradually increased, the backscattered light intensity increases sharply at a certain value, and most of the incident light power becomes backscattered light. And return to the incident side. Therefore, as shown in Fig. 1, the slope of the backscattered light with respect to the change in the incident light power
  • the incident light power that maximizes the rate of change can be defined as the threshold value (SBS threshold) at which SBS occurs.
  • FIG. 2 is a block diagram illustrating an example of an SBS threshold measurement system.
  • reference numeral 1 is a light source having a wavelength of 1.32 111
  • 2 is a light source having a wavelength of 1.55 111
  • 3 is an EDPA.
  • 4 is a power meter for measuring the backscattered light power
  • 5 is a 9: 1 power plastic
  • 6 is a power meter for measuring the incident light power
  • 7 is a power meter for measuring the transmitted light power
  • 8 is an optical fiber to be measured It is.
  • three power meters 4, 6, 7 are connected through a 9: 1 coupler 5 to measure incident light, backscattered light, and transmitted light power of the optical fiber 8 to be measured. Then, the incident light power S and SBS threshold values become the maximum of the second derivative of the backscattered light with respect to the incident light.
  • the SBS threshold is evaluated using the same measurement system and definition. Furthermore, the definition of this SBS threshold is considered as definition 4 in the following document.
  • the SBS threshold value has a mode field diameter (hereinafter referred to as MFD) dependency.
  • MFD mode field diameter
  • the MFD dependence of the SBS threshold is calculated and plotted in a single-mode optical fiber (hereinafter referred to as SMF) that has a normal step index type refractive index profile and satisfies the G652 standard.
  • Figure 3 shows.
  • the SMF threshold of SMF is in the range of 7.4dBm to 9.7dBm in the range of MFD force 7.9—10.2 111 in G652 standard 1.31 111. It changes with. Therefore, when comparing SBS thresholds, optical fibers with the same MFD must be compared.
  • the optical fiber of the present invention has the optical characteristics described in G652, that is, the cable cut-off wavelength force is less than 1260 nm, and the MFD force at a wavelength of 1.31 mm is from 7.9 mm; a 2 mu m, a zero-dispersion wavelength force 1300Nm ⁇ 324 nm, and a zero-dispersion slope is 0. 093ps / nm 2 'km or less, a uniform bending loss 2d in bending diameter 20 mm, the wavelength 1. 31 m B / In addition, it has an SBS threshold that is twice ((+3 dB)) or more than SMF with the same MFD.
  • FIG. 5 is a diagram showing a first example of a refractive index distribution in the optical fiber of the present invention.
  • the refractive index distribution is provided in the central portion of the core, and has a first core having a substantially constant positive relative refractive index difference ⁇ 1 in a region having a radius R1 m from the center of the core, and surrounding the first core.
  • a three-layer core consisting of a third core having a radius of 2 111 to 1 ⁇ 3 111 and a third core having a substantially constant positive refractive index difference ⁇ 3 is provided so as to surround the core of the three-layer structure. And is composed of a clad and a force having a substantially constant refractive index, and is characterized by ⁇ 1> ⁇ 2 and ⁇ 3> ⁇ 2.
  • FIG. 6 is a diagram showing a second example of the refractive index distribution in the optical fiber of the present invention.
  • the refractive index distribution is provided at the center of the core, and is in contact with a first core having a maximum relative refractive index difference ⁇ 1 in a region of radius R: m from the center of the core so as to surround the first core.
  • the optical fiber having the refractive index profile of the three-layer core and the one-layer cladding structure surrounding the core has the optical characteristics described above, that is, the characteristics compatible with G652, and the SBS threshold value.
  • the optical fiber that can be improved twice or more (+3 dB) compared to SMF having the same MFD as that of the optical fiber of the present invention as a result of repeated detailed studies, ⁇ 1, ⁇ 2, We found that the relationship between ⁇ 3 and R1, R2, R3 is limited.
  • SBSeff is defined by the following equation.
  • SBSeff SBS threshold of the optical fiber of the present invention
  • SBS threshold of SMF having the same MFD as the optical fiber of the present invention.
  • ⁇ 2 is preferably set to 0.4% or less so that the MFD at a wavelength of 1.31 Hm is 7.9 ⁇ m or more which is the lower limit of the G652 standard while satisfying the above conditions. Furthermore, in order to set the MFD at a wavelength of 1.31 mm to 7.9 mm to 10.2 m, the radial position of the third core represented by R2 / R1 is the sum of 2 and 3, ⁇ 2+ ⁇ 3 It is necessary to arrange them appropriately according to the situation.
  • Figure 9 shows the relationship between ( ⁇ 2 + ⁇ 3) and R2 / R1 that satisfy the above conditions.
  • FIG. 10 is a graph showing the relationship between ⁇ 3 ⁇ ⁇ 1 and SBSeff.
  • SBSeff changes greatly with a slight change in the relative refractive index difference.
  • ⁇ 3 ⁇ ⁇ 1 is positive, the rate of change in SBSeff relative to the change in relative refractive index difference is small.
  • SBSeff is approximated as a quadratic equation of ⁇ 3— ⁇ 1, the approximate curve is an upwardly convex parabola, and the inflection point is ⁇ 3— ⁇ 1> 0, where ⁇ 3— ⁇ 1 is positive. It can be seen that the effect of SBSeff due to the change in the relative refractive index difference is small.
  • the relative refractive index difference may change by ⁇ 0.05% from the target due to fluctuations in the dopant concentration. In that case, SBSeff may fall below the target.
  • ⁇ 3 — ⁇ 1 is positive, the amount of change in SBSeff due to the change in relative refractive index difference is small, so SBSeff does not change significantly with respect to the change in relative refractive index difference due to fluctuations in dopant concentration, and is always stable. SBS characteristics can be obtained.
  • Figure 11 shows the relationship between ⁇ 1 ⁇ ⁇ 2 and SBSeff.
  • ⁇ 1 when ⁇ 1 is 0.25% higher than ⁇ 2, the difference between ⁇ 1 and ⁇ 2 can be greatly increased compared to 0.25% or less, which results in greater SBS suppression. An effect is obtained.
  • ⁇ 1 ⁇ 2 is 0.25% or more, the influence of the change in the relative refractive index difference due to the fluctuation of the dopant concentration that occurs during the preparation of the optical fiber preform is mitigated, and even if ⁇ 1- ⁇ 2 changes, SBSeff It is possible to prevent the yield from dropping due to large changes.
  • the refractive index distribution in FIG. 11 is 0.44% to 0.56%, ⁇ 23 ⁇ 40.24%, ⁇ 3 is 0.55% in AKiO.03% ⁇ ij, and R2 / R1 is 2.2.
  • Table 2 shows the structural parameters and optical characteristics of the optical fiber of Example 1 having the refractive index profile shown in FIG. In addition, the structural parameters and optical characteristics of the optical fiber of Comparative Example 1 are also shown.
  • the optical fiber of Comparative Example 1 is an SMF having a step index type refractive index distribution as shown in FIG.
  • the optical fiber having the structural parameters of Example 1 according to the present invention has an SBS threshold value of 12 ⁇ 2 dBm in an optical fiber of 20 km, and the optical fiber of Comparative Example 1 having the same MFD. In comparison, a suppression effect of +3.5 dB was obtained. In addition, the optical fiber of Example 1 was used. The optical fiber has the same optical characteristics as SMF of Comparative Example 1 and satisfies the G652 standard.
  • Table 3 shows the results when the structural parameters of Example 1 were shaken within the ranges of X, Y, and R2ZR1.
  • the optical fiber having the structural parameters of la to lg shown in Table 3 has an SBS threshold value of 12 ⁇ 4–13.3 dBm in an optical fiber of 20 km, and the same MFD is obtained.
  • the suppression effect of +3.7 to +4.6 dB was obtained compared with SMF.
  • the optical characteristics of the optical fibers of Examples 1a to 1g all satisfy the G652 standard.
  • Tables 4 and 5 show the results of shaking the structural parameters of Example 1 in the ranges of X, Y and R2 / R1 described above.
  • Table 6 shows the optical characteristics of the optical fiber having the refractive index distribution shown in FIG. 6 when the structural parameters of the refractive index distribution are swung in the ranges of X, Y, and R2 / R1.
  • the SBS threshold is 12.0 to 13.7 dBm in an optical fiber of 20 km, and a suppression effect of +3.3 to +5 OdB is obtained compared to SMF having the same MFD.
  • the optical characteristics of the optical fibers of Examples 2a to 2f all satisfy the G652 standard.
  • the amount can be reduced, and the loss in the optical fiber can be reduced.
  • Table 7 shows the optical characteristics of the optical fiber with the refractive index profile shown in Fig. 6 when the structural parameters of the refractive index profile are swung in the X, Y, and R2 / R1 ranges described above.
  • the optical fibers having the structural parameters of Examples 2a to 2f shown in Table 6 and 2g to 2m shown in Table 7 have an SBS threshold of 10 ⁇ 8 ⁇ 14.
  • the suppression effect was +3.2 to +4.7 dB compared to SMF with the same MFD.
  • the optical characteristics of the optical fibers of Examples 2g to 2m all satisfy the G652 standard.
  • FIG. 17 shows the refractive index distribution of the optical fiber of Example 3 according to the present invention.
  • the refractive index profile in Example 3 is provided at the center of the core as shown in FIG. A first core located in a region having a diameter of Rl ⁇ m, a second core located in contact with and surrounding the first core, and a second core located in a region having a radius of 1 111 to 1 ⁇ 2 111; and the second core A three-layer core composed of a third core located in a region having a radius of R2 ⁇ m to R3 ⁇ m, and a three-layer core in contact with each other. It is composed of a clad having a certain refractive index.
  • the refractive index distribution of the core changes gradually and the boundary is ambiguous. Therefore, the diameter of each layer was determined using the change rate (d A / dr) in the radial direction of the relative refractive index difference.
  • the relative refractive index difference ⁇ 1 of the first core is defined as ⁇ which is equivalently uniform in the range from the center of the core to the radius R1, as shown in the following formula (1).
  • the refractive index difference ⁇ 2 is defined as the relative refractive index difference that is the smallest in the region of radius Rl m I ⁇ m
  • the relative refractive index difference ⁇ 3 of the third core is in the range of radius R2 ⁇ m to R3 ⁇ m. It was defined as the relative refractive index difference that was the maximum value.
  • Table 8 shows the structural parameters and optical characteristics of the optical fiber of Example 3 defined as described above. Table 8 also shows the structural parameters and optical characteristics of the light beam of Example 4 having the same refractive index distribution as that of Example 3.
  • the optical fibers of Example 3 and Example 4 had an SBS threshold of 12 ⁇ 2–12.7 dBm in an optical fiber with a 20 km distance, compared to SMF having the same MFD. + 3 ⁇ 5 to + 4. OdB suppression effect was obtained.
  • the optical fibers of Example 3 and Example 4 all satisfy the G652 standard.
  • FIG. 18 is a refractive index profile of the optical fiber preform of Example 5.
  • the optical fiber preform of the present example is provided at the center of the core, and is a first constant having a positive relative refractive index difference ⁇ 1 in a region of radius Rl ⁇ m from the center of the core.
  • the first embodiment is composed of a three-layered core composed of a third core having a substantially constant positive refractive index difference ⁇ 3 in a region of radius 2 111 to 3 111 and in contact with each other. Similar to Example 2, it has a three-layer core.
  • Tables 9 and 10 show the structural parameters of the optical fiber preform of Example 5, X, Y, and The optical characteristics are shown when the base material is drawn in the range of R2 / R1, and the base material is drawn to form an optical fiber.
  • the optical fiber obtained by drawing from the optical fiber preform of Example 5 is 10 ⁇ 9–13.8 dBm in an optical fiber with an SBS threshold of 20 km, as shown in Fig. 19, and has the same MFD. + 3 .;! ⁇ + 4.5
  • the suppression effect of 5dB is obtained, and also satisfies the G652 standard.
  • FIG. 20 is a refractive index profile of the optical fiber preform of Example 6.
  • the optical fiber preform of the present example is provided at the center of the core, and in the region of radius R1 m from the center of the core, the first core having the maximum relative refractive index difference ⁇ 1 and the core
  • it consists of a three-layer core consisting of a third core having a maximum relative refractive index difference ⁇ 3, and a three-layer structure similar to Example 1 and Example 2. Having a core.
  • Table 11 and Table 12 show the structural parameters of the optical fiber preform of Example 6 in the range of X, Y, and R2 / R1, and draw the preform to create an optical fiber. Shows optical properties.
  • the optical fiber obtained by drawing from the optical fiber preform of Example 6 is 10 ⁇ 8—14.3 dBm in an optical fiber with an SBS threshold of 20 km, as shown in FIG. 21, and has the same MFD. Suppressive effect of +3.2 to +4.7 dB is obtained compared to SMF, and G65 2 standard is satisfied.
  • Example 6a Example 6b Example 6c Example 6d Example 6e Example 6f
  • FIG. 22 shows the refractive index distribution of the optical fiber preform of Example 7.
  • the optical fiber preform of this example is provided at the center of the core and has a radius Rl ⁇ m from the center of the core.
  • the first core located in the region is provided so as to surround the first core, the second core located in the region of radius Rl ⁇ m to R2 m, and provided so as to surround the second core.
  • the third core is located in the region of the radius 2 111 to 1 ⁇ 3 111 and has a three-layer core as in the first, second, fifth, and sixth embodiments.
  • the change is gradual, and the definition of the boundary is the same as Example 3 and Example 4.
  • Table 13 shows the structural parameters of the optical fiber preform of Example 7 and the optical characteristics when the preform is drawn to form an optical fiber.
  • Optical fiber preform strength of Example 7 The optical fiber obtained by drawing is 12.6 dBm in an optical fiber with an SBS threshold of 20 km, and a suppression effect of +3.8 dB compared to SMF having the same MFD And the G652 standard is satisfied.
  • the relationship between the relative refractive index differences ⁇ 1, ⁇ 2 and ⁇ 3 of each layer is appropriately designed, and the position of the third core is appropriately set.
  • the SBS threshold can be improved by +3 dB or more compared to SMF with the same MFD while maintaining the optical characteristics described in G652.
  • the relative refractive index difference of the third core is made larger than the relative refractive index difference of the first core, it becomes possible to improve the manufacturability of the optical fiber preform.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

明 細 書
光ファイバ及び光ファイバ母材
技術分野
[0001] 本発明は、光ファイバ及び光ファイバ母材に関する。光ファイバを用いて光アナ口 グ信号や光ベースバンド信号を長距離伝送する場合、誘導プリリュアン散乱 (以下、
SBSと記す)の影響で、光ファイバ中にあるパワーの光を入射しょうとしても、ある一 定光量(SBSしきいパワー)までしか入射できず、残りは後方散乱光となって入射側 に戻ってしまう現象が発生するため、入射可能な信号光パワーが制限される問題が あった。本発明は、この SBSの発生を抑制し、より高いパワーの信号光の伝送が可 能となる光ファイバに関する。
本願 (ま、 2006年 9月 14曰 ίこ出願された特願 2006— 249360号 ίこ基づき優先権 を主張し、その内容をここに援用する。
背景技術
[0002] 近年、光ファイバを各家庭まで延線し、これを用いて各種情報をやりとりする、フアイ バトウザホーム(FTTH)サービスが拡充されつつある。様々な情報を伝送する FTT Hにおいて、放送信号とその他の通信信号をそれぞれ異なる方式で、 1本の光フアイ バを用いて同時に伝送するシステムがある。一般にこのシステムにおいて、放送信号 はアナログ信号やベースバンド信号、又は光 SCM信号であることが多い。伝送媒体 である光ファイバの観点から見たシステムの特徴は、次のようになる。
(i) FTTHは通常ダブルスター型の PON (Passive Optical Network)であり、分配口 スが大きくなる。
(ii)アナログ信号やベースバンド信号、又は光 SCM信号を伝送するため、受信機 における CNR (Carrier Noise Ratio)を大きくする必要があり、受光部における最低信 号光パワーが通信で用いられるデジタル伝送に比して大きい必要がある。
[0003] このように、映像伝送において強度変調によるアナログ伝送を行う際、分配ロスの補 償や高 CNRの確保のため、高パワー伝送が必要となる。しかし、光ファイバ中にある 高パワーの光を入射しょうとしても、ある一定光量(SBS閾ィ直パワー)までしか入射で きず、残りは後方散乱光となって入射側に戻ってしまう現象が発生するため、入射可 能な信号光パワーが制限される問題があった。
[0004] この SBSを抑制するための手段として、長手方向にドーパント濃度、残留応力を変 化させる手法 (例えば、特許文献 1参照)がある。これは、長手方向にドーパント濃度 や残留応力を変化させることにより、プリリュアンスペクトルの広がりを大きくし、 SBS の発生を抑制することが可能となる。また、光ファイバに SBS抑制効果のある屈折率 分布を持たせる手法も提案されている(例えば、特許文献 2〜5、 7参照)。
特許文献 1 :特許第 2584151号公報
特許文献 2: WO2004/100406号ノ ンフレット
特許文献 3 :米国特許第 7082243号明細書
特許文献 4 :特開 2006— 154707号公報
特許文献 5:特開 2006— 184534号公報
特許文献 6:特開 2006 _ 133314号公報
特許文献 7 :特開 2006— 154713号公報
^特許文 1: Design concept for optical fibers with enhanced SB¾ threshold Opti cs Express, Vol. 13 Issue 14 Page 5338 (July 2005) An dreykoby akov
非特許文献 2: "Nonlinear Optical Fibers with Increased SBS Thresholds" OFC/NF OEC 2006, OtyA3, Scott Bickham, An drey obyakov, Shenping Li
発明の開示
発明が解決しょうとする課題
[0005] SBSを抑制する技術としては、先に述べたように、長手方向にドーパント濃度や、 残留応力を変化させる手法が報告されている(特許文献 1)。し力、しながら、この方法 では長手方向に光学特性が変化してしまうために、実用上好ましくな!/、。
[0006] また、光ファイバに屈折率分布を持たせることで、 SBSを抑制させる手法も報告され ている(特許文献 2〜5、 7)。この方法では、長手方向に光学特性の変化は起こらな いが、屈折率分布を目標とする特性に合致するような構造とする必要がある。
[0007] 特許文献 2, 3及び 5では、 3層構造をもつ屈折率分布を有する光ファイバにおいて 、屈折率分布を適切な条件に設定することで、 SBS力 S抑制され、また、 ITU— TReco mmendation G.652 (以下、 G652と記す)と同等の光学特性が得られると記載され ている。し力、しながら、特許文献 2, 3及び 5に記載されている構造の内、全ての構造 において、 G652と同等の光学特性が満足される訳ではなぐ実際にこの条件を元に 製造を行う場合、それぞれの条件において適切な設計値が必要となる。
[0008] また、特許文献 4においては、その構造から一様曲げ損失が悪化する傾向があり、 光ファイバの取り扱!/、を考慮すると望まし!/、形状ではなレ、。
また、特許文献 6については、フッ素を意図的な位置に添加する必要があるため、 VAD法を用いた母材製造が困難である。
また、特許文献 7については、その屈折率分布の形状が記載されたのみであり、詳 細なパラメータ等につ!/、ては言及されて!/ヽなレ、。
課題を解決するための手段
[0009] 本発明は、前記事情に鑑みてなされ、適切な屈折率分布の構造設計値を与えるこ とで、長手方向に安定した特性を有し、また G652との互換性を有し、さらに製造性 にも優れた SBSを抑制した光ファイバ及び光ファイバ母材の提供を目的とする。
[0010] 本発明の第 1の態様(aspect)にした力 Sい、コアの中央部に、コアの中心から半径 R l^ mの領域に、ほぼ一定で正の比屈折率差 Δ1を有する第 1コアと、第 1コアを取り 囲むように接し、半径 Rl mから 2 111の領域に、ほぼ一定で正の比屈折率差 Δ 2 を有する第 2コアと、第 2コアを取り囲むように接し、半径 2 111〜1^3 111の領域に、 ほぼ一定で正の比屈折率差 Δ 3を有する第 3コアとからなる、 3層構造のコアと、前記 3層構造のコアを取り囲むように接し、ほぼ一定の屈折率を有するクラッドによって構 成される屈折率分布を有し、前記 Δ2が 0.4%以下であり、前記 Δ1、 Δ2、 Δ3の関 係が、 Δ1〉Δ2、力、つ、 Δ3〉Δ2、であり、 Δ 3〉 Δ 1であり、前記 Δ 1、 Δ2、 Δ3を 、 Δ1— Δ2=Χ、 Δ3— Δ2=Υとした場合、(Χ+Υ)〉0· 4%であり、前記 X、 Υが、 0.25%<Χ<0.60/0、力、つ、 0· 1%≤Υ≤0.60/0、力、つ、(2*Χ— 0· 7)%<Υ< ( Χ/2 + 0.4)%となる関係を満たし、前記 Δ2、 A3、R1、R2力 (Δ2+ Δ3) + 1. 0≤ R2/R1 ≤7*(Δ2+ Δ3)-1.45 かつ、 Δ2+ Δ3≤1.15となる関係を満 たし、ケーブルカットオフ波長が 1260nm未満であり、波長 1· 31 mにおけるモード フィーノレド径カ 7.9〃m〜; 10.2〃111であり、零分散波長力 1300nm〜; 1324nmで あり、零分散スロープが 0.093ps/(nm2'km)以下であり、直径 20mm、波長 1.31 inにおける一様曲げ損失が 2dB/m以下であり、波長 1· 55 111にぉける383閾 値が通常のステップインデックス型の屈折率分布を有し、同一のモードフィールド径 を持つシングルモード光ファイバに比して + 3dB以上であることを特徴とする光フアイ バが提供される。
本発明の第 2の態様(aspect)にした力 Sい、コアの中央部に、コアの中心から半径 R 1 a mの領域に、最大比屈折率差 Δ 1を有する第 1コアと、第 1コアを取り囲むように 接し、半径 Rl a mから R2 μ mの領域に、最小比屈折率差 Δ 2を有する第 2コアと、 第 2コアを取り囲むように接し、半径 2 111〜1^3 111の領域に、最大比屈折率差 Δ 3を有する第 3コアとからなる、 3層構造のコアと、前記 3層構造のコアを取り囲むよう に接し、ほぼ一定の屈折率を有するクラッドとから構成される屈折率分布を有し、前 記 Δ2力 0.40/0以下で り、前記 Δ1、 Δ2、 Δ3力 Δ1〉 Δ2、力、つ、 Δ3〉 Δ2、で あり、 Δ3〉 Δ1であり、前記 Δ1、 Δ2、 Δ3を、 Δ1— Δ2=Χ、 Δ3— Δ2=Υとした 場合、 (Χ+Υ) >0.40/0であり、前記 X、 Υ力 0.25%<Χ<0.6%,力、つ、 0.1% ≤Υ≤0.6%、かつ、(2*Χ— 0· 7)%<Υ< (Χ/2 + 0.4) %となる関係を満たし、 前記 Δ2、 A3、R1、R2力 (Δ2+ Δ3) + 1.0≤ R2/R1 ≤7*(Δ2+ Δ3) -1. 45 かつ、 Δ2+Δ3≤1. 15となる関係を満たし、ケーブルカットオフ波長が 1260η m未満で り、波長 1· 31〃mにおけるモードフィーノレド径カ 7.9〃m〜; 10· 2^111 であり、零分散波長力 300nm〜; 1324nmであり、零分散スロープが 0.093ps/(n m2'km)以下であり、直径 20mm、波長 1.31 mにおける一様曲げ損失が 2dB/ m以下であり、波長 1· 55 mにおける SBS閾値が通常のステップインデックス型の 屈折率分布を有し、同一のモードフィールド径を持つシングルモード光ファイバに比 して + 3dB以上であることを特徴とする光ファイバが提供される。
本発明の第 3の態様(aspect)にしたがい、 コアの中央部に、コアの中心から半径 Rl mの領域に、ほぼ一定で正の比屈折率差 Δ1を有する第 1コアと、第 1コアを取 り囲むように接し、半径 Rl^ mから 2 111の領域に、ほぼ一定で正の比屈折率差 Δ 2を有する第 2コアと、第 2コアを取り囲むように接し、半径 R2 m〜R3 mの領域 に、ほぼ一定で正の比屈折率差 Δ 3を有する第 3コアとからなる、 3層構造のコアと、 前記 3層構造のコアを取り囲むように接し、ほぼ一定の屈折率を有するクラッドによつ て構成される屈折率分布を有し、前記 Δ2が 0.4%以下であり、前記 Δ1、 Δ2、 Δ3 の関係が、 Δ1〉Δ2、力、つ、 Δ3〉Δ2、であり、 Δ3〉 Δ 1であり、前記 Δ 1、 Δ2、 Δ3を、 Δ1— Δ2=Χ、 Δ3— Δ2=Υとした場合、(Χ+Υ)〉0· 4%であり、前記 X、 Υ力 0.25%<Χ<0.60/0、力、つ、 0.1%≤Υ≤0.60/0、力、つ、 (2*Χ— 0.7) % < Υ< (Χ/2 + 0.4)%となる関係を満たし、前記 Δ2、厶3、 1、 2カ、(Δ2+Δ3) +1.0≤ R2/R1 ≤7*(Δ2+ Δ3)-1.45 かつ、 Δ2+ Δ3≤1.15となる関係 を満たす光ファイバ母材であり、該光ファイバ母材を線引きして光ファイバ化した際、 ケーブルカットオフ波長が 1260nm未満であり、波長 1.31 mにおけるモードフィ 一ノレド径カ 7.9〃m〜; 10.2〃111であり、零分散波長力 1300nm〜; 1324nmであり 、零分散スロープが 0.093ps/(nm2'km)以下であり、直径 20mm、波長 1.31 m における一様曲げ損失が 2dB/m以下であり、波長 1· 55 111にぉける383閾値カ 通常のステップインデックス型の屈折率分布を有し、同一のモードフィールド径を持 つシングルモード光ファイバに比して + 3dB以上であることを特徴とする光ファイバ母 材が提供される。
本発明の第 4の態様(aspect)にしたがい、 コアの中央部に、コアの中心から半径 Rl mの領域に、最大比屈折率差 Δ1を有する第 1コアと、第 1コアを取り囲むように 接し、半径 Rl a mから R2 μ mの領域に、最小比屈折率差 Δ 2を有する第 2コアと、 第 2コアを取り囲むように接し、半径 2 111〜1^3 111の領域に、最大比屈折率差 Δ 3を有する第 3コアとからなる、 3層構造のコアと、前記 3層構造のコアを取り囲むよう に接し、ほぼ一定の屈折率を有するクラッドとから構成される屈折率分布を有し、前 記 Δ2力 0.40/0以下で り、前記 Δ1、 Δ2、 Δ3力 Δ1〉 Δ2、力、つ、 Δ3〉 Δ2、で あり、 Δ3〉 Δ1であり、前記 Δ1、 Δ2、 Δ3を、 Δ1— Δ2=Χ、 Δ3— Δ2=Υとした 場合、 (Χ+Υ) >0.40/0であり、前記 X、 Υ力 0.25%<Χ<0.6%,力、つ、 0.1% ≤Υ≤0.6%、かつ、(2*Χ— 0· 7)%<Υ< (Χ/2 + 0.4) %となる関係を満たし、 前記 Δ2、 A3、R1、R2力 (Δ2+ Δ3) + 1.0≤ R2/R1 ≤7*(Δ2+ Δ3) -1. 45 かつ、 Δ2+Δ3≤1· 15となる関係を満たす光ファイバ母材であり、該光フアイ バ母材を線引きして光ファイバ化した際、ケーブルカットオフ波長が 1260nm未満で り、波長 1 · 31〃mにおけるモードフィーノレド径カ 7· 9〃m〜; 10· 2〃111であり、零 分散波長力 Sl300nm〜; 1324nmであり、零分散スロープが 0· 093ps/(nm2 -km) 以下であり、直径 20mm、波長 1. 31 mにおける一様曲げ損失が 2dB/m以下で あり、波長 1 · 55 mにおける SBS閾値が通常のステップインデックス型の屈折率分 布を有し、同一のモードフィールド径を持つシングルモード光ファイバに比して + 3d B以上であることを特徴とする光ファイバ母材が提供される。
図面の簡単な説明
[図 1]図 1は、光ファイバにおける SBSの発生を示し、入射光パワーと透過、後方散乱 光パワーとの関係を示す図である。
[図 2]図 2は、 SBS閾値測定系を例示する構成図である。
[図 3]図 3は、図 4に示すステップインデックス型の屈折率分布を持つ SMFにおける S BS閾値の MFD依存性を示す図である。
[図 4]図 4は、ステップインデックス型の屈折率分布を示す図である。
[図 5]図 5は、本発明に係る光ファイバの屈折率分布の第 1の例を示す図である。
[図 6]図 6は、本発明に係る光ファイバの屈折率分布の第 2の例を示す図である。
[図 7]図 7は、 Δ 1— Δ 2=Χ、 Δ 3— Δ 2=Υとしたとき、 Χ+Υの値と、同一の MFDを 有する SMFに対する SBS抑圧効果(SBSeff)との関係を示す図である。
[図 8]図 8は、零分散波長 1300nm〜; 1324nm、且つ SBSeff≥ + 3dBを満たす(X
, Y)の関係を示す図である。
[図 9]図 9は、 MFD = 7. 9〃m〜; 10. 2 mを満たす Δ 2+ Δ 3と R2/R1の関係を 示す図である。
[図 10]図 10は、 Δ 3—Δ 1と、 SBSeffの関係を示す図である。
[図 11]図 11は Δ 1— Δ 2と SBSeffの関係を示す図である。
[図 12]図 12は Δ 1—Δ 2と SBSeffの関係を示す図である。
[図 13]図 13は、実施例 1及び実施例 la〜; lgの SBS閾値と MFDとの関係を示す図 である。
[図 14]図 14は、実施例 1及び実施例 1 a〜; 11の SB S閾値と MFDとの関係を示す図 である。 [図 15]図 15は、実施例 2a〜2fの SBS閾値と MFDとの関係を示す図である。
[図 16]図 16は、実施例 2g〜2mの SBS閾値と MFDとの関係を示す図である。
[図 17]図 17は、実施例 3の光ファイバの屈折率分布を示す図である。
[図 18]図 18は、実施例 5の光ファイバ母材の屈折率分布を示す図である。
[図 19]図 19は、実施例 5の SBS閾値と MFDとの関係を示す図である。
[図 20]図 20は、実施例 6の光ファイバ母材の屈折率分布を示す図である。
[図 21]図 21は、実施例 6の SBS閾値と MFDとの関係を示す図である。
[図 22]図 22は、実施例 7の光ファイバ母材の屈折率分布を示す図である。
符号の説明
[0012] 1 波長 1. 32 111の光源
2 波長 1. 55 mの光源
3 EDPA
4 後方散乱光パワー測定用のパワーメータ
5 9 : 1カプラ
6 入射光パワー測定用のパワーメータ
7 透過光パワー測定用のパワーメータ
8 被測定光ファイバ
発明を実施するための最良の形態
[0013] 本発明の光ファイバは、コアの中央部に設けられ、コアの中心から半径 RI H mの 領域に、ほぼ一定で正の比屈折率差 Δ 1を有する第 1コアと、該第 1コアを取り囲むよ うに接して設けられ、半径 Rl rn力、ら 2 111の領域に、ほぼ一定で正の比屈折率 差 Δ 2を有する第 2コアと、該第 2コアを取り囲むように接して設けられ、半径 2 111 〜 3 111の領域に、ほぼ一定で正の比屈折率差 Δ 3を有する第 3コアとからなる、 3 層構造のコアと、前記 3層構造のコアを取り囲むように接して設けられ、ほぼ一定の 屈折率を有するクラッドとから構成される屈折率分布を有し、又は、
コアの中央部に設けられ、コアの中心から半径 R1 mの領域に、最大比屈折率差 Δ 1を有する第 1コアと、該第 1コアを取り囲むように接して設けられ、半径 R1 mか ら 2 111の領域に、最小比屈折率差 Δ 2を有する第 2コアと、該第 2コアを取り囲む ように接して設けられ、半径 2 111〜1^3 111の領域に、最大比屈折率差 Δ 3を有す る第 3コアとからなる、 3層構造のコアと、前記 3層構造のコアを取り囲むように接して 設けられ、ほぼ一定の屈折率を有するクラッドとから構成される屈折率分布を有し、 前記 Δ2が 0.4%以下であり、
前記 Δ1、 Δ2、 Δ3の関係が、 Δ1〉Δ2、 Δ 3〉 Δ 2、かつ Δ 3〉 Δ 1の関係であり 前記 Δ1、 Δ2、 Δ3を、 Δ1— Δ2=Χ、 Δ 3— Δ 2=Υとした場合、 (Χ+Υ)〉0.4 ο/οであり、前記 X、 Υ力 0· 25%<Χ<0.6%, 0. 1%≤Υ≤0.60/0、力、つ(2*Χ— 0 .7)%<Υ<(Χ/2 + 0.4)%となる関係を満たし、
前記 Δ2、 Δ3、 Rl、 R2が、
(Δ2+ Δ3) + 1.0≤ R2/R1 ≤7*(Δ2+ Δ3) -1.45 かつ、 Δ2+ Δ3≤1.1 5
となる関係を満たし、
ケーブルカットオフ波長が 1260nm未満であり、
波長 1.31〃mにおけるモードフィーノレド径カ 7.9〃m〜; 10.2〃111であり、 零分散波長力 1300應〜 1324應であり、
零分散スロープが 0.093ps/nm2'km以下であり、
直径 20mm、波長 1.31 mにおける一様曲げ損失が 2dB/m以下であり、 波長 1· 55 mにおける SBS閾値が通常のステップインデックス型の屈折率分布を 有し、且つ同一のモードフィールド径を持つシングルモード光ファイバに比して + 3d B以上の SBS閾値であることを特徴としている。
[0014] なお、本発明の光ファイバは、典型的には VAD法で製造された母材を線引きする ことによって製造することができる力 その母材の製法に関しては、 VAD法に限定さ れず、一般に良く知られている、 OVD法や CVD法としてもなんら問題はない。
[0015] 図 1は、光ファイバにおける、 SBSの発生を示したグラフである。図 1に示すように、 光ファイバへの入射光パワーを徐々に増加させると、ある値を境に後方散乱光のパ ヮ一が急激に増大し、入射光パワーの大半が後方散乱光となって入射側に戻ってし まう。そこで、図 1に示すように、入射光パワーの変化に対する、後方散乱光の傾きの 変化率 (後方散乱光の 2階微分)が最大となる入射光パワーを、 SBSが発生する閾 値(SBS閾値)と定義できる。
[0016] また、図 2は、 SBS閾値の測定系を例示する構成図であり、図 2中、符号 1は波長 1 . 32 111の光源、 2は波長 1. 55 111の光源、 3は EDPA、 4は後方散乱光パワー測 定用のパワーメータ、 5は 9 : 1力プラ、 6は入射光パワー測定用のパワーメータ、 7は 透過光パワー測定用のパワーメータ、 8は被測定光ファイバである。この測定系では 、 9 : 1カプラ 5を介し、 3台のパワーメータ 4 , 6 , 7を接続し、被測定光ファイバ 8の入 射光、後方散乱光及び透過光パワーを測定する。そして、後方散乱光の入射光に対 する 2階微分が最大となる入射光パワー力 S、 SBS閾ィ直となる。
[0017] また、特許文献 2, 3においても、同様の測定系及び定義を用いて SBS閾値を評価 している。さらに、この SBS閾値の定義は、下記文献において定義 4として考察され ている。
清水、 "単一モード光ファイバにおける SBS閾値に関する考察"、電子情報通信学 会 2005年総合大会 B— 10— 66
[0018] また、 SBS閾値は、モードフィールド径(以下、 MFDと記す)依存性がある。図 4に 示すように、通常のステップインデックス型の屈折率分布を有し、 G652規格を満足 するシングルモード光ファイバ(以下、 SMFと記す)における SBS閾値の MFD依存 性を計算し、プロットした結果を図 3に示す。図 3に示すように、 G652の規格である波 長 1. 31 111における MFD力 7. 9—10. 2 111の範囲において、 SMFの SBS閾ィ直 は、 7. 4dBm〜9. 7dBmの範囲で変化する。そのため、 SBS閾値を比較する場合、 同一の MFDを有する光ファイバを対比させる必要がある。
[0019] 本発明の光ファイバは、 G652に記載されている光学特性、即ち、ケーブルカットォ フ波長力 1260nm未満であり、波長 1. 31〃 mにおける MFD力 7. 9〃m〜; 10. 2 μ mであり、零分散波長力 1300nm〜 324nmであり、零分散スロープが 0. 093ps/ nm2 ' km以下であり、曲げ直径 20mm、波長 1. 31 mにおける一様曲げ損失が 2d B/m以下であり、さらに、同一の MFDを持つ SMFに比して 2倍(( + 3dB)以上の S BS閾値を有している。
[0020] 図 5は、本発明の光ファイバにおける屈折率分布の第 1の例を示す図である。該屈 折率分布は、コアの中央部に設けられ、コアの中心から半径 R1 mの領域に、ほぼ 一定で正の比屈折率差 Δ 1を有する第 1コアと、該第 1コアを取り囲むように接して設 けられ、半径 Rl H m〜R2 [I mの領域に、ほぼ一定で正の比屈折率差 Δ 2を有する 第 2コアと、該第 2コアを取り囲むように接して設けられ、半径 2 111〜1^3 111の領 域に、ほぼ一定で正の比屈折率差 Δ 3を有する第 3コアとからなる 3層構造のコアと、 前記 3層構造のコアを取り囲むように接して設けられ、ほぼ一定の屈折率を有するク ラッドと力、ら構成されており、 Δ 1〉 Δ 2、 Δ 3〉 Δ 2であることを特徴としている。
[0021] また、本発明の光ファイバの屈折率分布は、図 6に示すように、比屈折率差が一定 のィ直をとらなくてもよい。図 6は、本発明の光ファイバにおける屈折率分布の第 2の例 を示す図である。該屈折率分布は、コアの中央部に設けられ、コアの中心から半径 R ; mの領域に、最大比屈折率差 Δ 1を有する第 1コアと、該第 1コアを取り囲むよう に接して設けられ、半径 R1 m〜R2 β mの領域に、最小比屈折率差 Δ 2を有する 第 2コアと、該第 2コアを取り囲むように接して設けられ、半径 2 111〜1^3 111の領 域に、最大比屈折率差 Δ 3を有する第 3コアとからなる 3層構造のコアと、前記 3層構 造のコアを取り囲むように接して設けられ、ほぼ一定の屈折率を有するクラッドとから 構成されていてもよい。またここで、 Δ 1〉 Δ 2、 Δ 3〉 Δ 2である。
[0022] また、前記 3層構造のコアと、それを囲む 1層のクラッド構造の屈折率分布を有する 光ファイバにおいて、先に述べた光学特性、即ち G652とコンパチブルな特性を持ち つつ、 SBS閾値を、本発明の光ファイバと同一の MFDを有する SMFに比して 2倍( + 3dB)以上の向上が可能な光ファイバを得るため、詳細な検討を重ねた結果、 Δ 1 , Δ 2, Δ 3及び R1 , R2, R3の関係に制限があることを見出した。
[0023] 図 7は、 Δ 1—Δ 2=Χ, Δ 3— Δ 2=Υとしたとき、 SBSの SMFに対する抑圧効果: SBSeffの関係を表した図である。ここで、 SBSeffは、次式で定義する。
SBSeff =本発明の光ファイバの SBS閾値一本発明の光ファイバと同一の MFDを 有する SMFの SBS閾値。
[0024] 図 7より、 X + Yを 0· 4%より大きくすることで、 SBSeffは + 3dB以上改善され、 SB S閾値を向上させることが可能となる。し力もながら、前記条件のみでは、 G652とコン パチブルな光学特性を持つ光ファイバを得られない場合がある。 即ち、零分散波長が 1300nm〜; 1324nmとなる光ファイバを得るために、前記 X, Yが、 Χ<0· 6%であり、且つ、 0· 1%≤Υ≤0.6%であり、かつ、(2*Χ— 0· 7)%< Υ< (Χ/2 + 0.4)%とするのが好ましい。このような条件を満たす、 X, Υの関係を 図 8に示す。
[0025] また、前記条件を満たしつつ、波長 1.31 H mにおける MFDを G652規格の下限 である、 7.9〃m以上とするために、 Δ2を 0.4%以下とするのが好ましい。さらに、 波長 1.31〃mにおける MFDを 7.9〃m〜; 10.2 mとするために、 R2/R1で表さ れる、第 3コアの半径方向の位置を、 2と 3の和、 Δ 2+ Δ 3に応じて適切に配置 させる必要がある。
[0026] 波長 1· 31 111にぉける^^0が7.9 m〜; 10.2 mを満たす光ファイバを得る ために、(Δ2+ Δ3)と R2/R1は、次の関係、つまり、
(Δ2+ Δ3) + 1.0≤ R2/R1 ≤7*(Δ2+ Δ3) -1.45 かつ、 Δ2+ Δ3≤1.
15となる関係を満たすことが好ましい。上記条件を満たす(Δ2+ Δ3)と R2/R1の 関係を図 9に示す。
[0027] また、光ファイバの製造性の観点からは、 Δ3≥Δ 1とすることが望ましい。
図 10は、 Δ 3— Δ1と、 SBSeffの関係を示した図である。図 10に示すように、 Δ3 Δ1が負の場合、比屈折率差の僅かな変動で SBSeffが大きく変化する。一方、 Δ 3— Δ1が正の場合、比屈折率差の変化に対する SBSeffの変化の割合は小さい。ま た、 SBSeffを Δ3— Δ1の 2次式として近似すると、その近似曲線は上に凸の放物線 であり、また変極点は Δ 3— Δ 1〉0であり、 Δ3— Δ 1が正の場合に比屈折率差の変 動による SBSeffの影響が小さいことが分かる。
光ファイバの母材製造時に、ドーパント濃度の揺らぎによって比屈折率差が目標よ り ±0.05%程度変化することがある。その場合、 SBSeffが目標よりも低下する可能 性がある。 Δ 3— Δ 1が正の場合、比屈折率差の変動による SBSeffの変化量が小さ いため、ドーパント濃度の揺らぎによる比屈折率差の変化に対し、 SBSeffは大きく変 化せず、常に安定した SBS特性を得ることができる。
なお、図 10の屈折率分布は、 ΑΚίΟ.5%、 Δ2¾0.22%、 Δ3«0.025%亥 ijみ で 0.40—0.650/0、 R2/R1(ま 2.2である力 表 1に示すように、異なる Δ1、 Δ2、 Δ3、 Rl、 R2、 R3の組み合わせでも同様に変極点は Δ3— Δ1〉0となり、 Δ3— Δ 1が正の場合に、常に安定した SBS特性を得られることが分かる。
また、 Δ1—Δ2«0.25%以上とするのが望ましい。図 11は Δ1— Δ2と SBSeffの 関係を示した図である。図 11に示すように、 厶1が厶2ょり0.25%以上高い場合、 Δ 1と Δ 2の差が 0.25%以下と比較して SBSeffを大きく増加させることが可能になり、 より大きな SBS抑制効果が得られる。また、厶1ー厶2が0.25%以上の場合、光ファ ィバ母材作製時に生じるドーパント濃度の揺らぎによる比屈折率差の変化の影響が 緩和され、 Δ1-Δ 2が変化しても SBSeffに大きな変化がなぐ歩留まりの低下を防 ぐこと力 Sできる。
なお、図 11の屈折率分布は、 AKiO.03%亥 ijみで 0.44%〜0.56%、 Δ2¾0. 24%、 Δ3は 0.55%であり、 R2/R1は 2.2である。し力、しな力ら、図 12に示すよう に、異なる Δ1、 Δ2、 Δ3、 Rl、 R2、 R3の糸且み合わせ、すなわち、厶1カ 0.440/0〜 0.56%,厶2カ 0.18%~0.26%,厶3カ 0.45%~0.650/0、 2/ 1力 1.8— 2 .6の範囲とした屈折率分布においても同様の傾向が得られ、 Δ1— Δ2力 SO.25% 以上の屈折率分布において、より大きな SBS抑制効果が得られ、また、 Δ 1— Δ2の 変化に対する SBSeffの依存性も小さくなる。
[表 1]
△1 厶 2 R2/R1 変極点 (A3-A1)
% % ― %
0.5 0.22 2.2 0.10
0.5 0.18 2.2 0.18
0.5 0.26 2.2 0.02
0.44 0.22 2.2 0.02
0.56 0.22 2.2 0.12
0.5 0.22 1.6 0.05
0.5 0.22 2 0.10
0.5 0.22 2.4 0.01 [0028] さらに、第 3コアを前記のように配置することにより、 SBS閾値を従来の光ファイバよ り + 3dB以上の SBS閾値を得つつ、 G652とコンパチブルな特性を得ることが可能と なる。
実施例
[0029] [実施例 1、比較例 1]
表 2に、図 5の屈折率分布を持つ、実施例 1の光ファイバの構造パラメータ及び光 学特性を示す。また、併せて比較例 1の光ファイバの構造パラメータ及び光学特性を 示す。比較例 1の光ファイバは、図 4に示すようなステップインデックス型の屈折率分 布を有する SMFである。
[0030] [表 2]
Figure imgf000014_0001
表 2に示すように、本発明に係る実施例 1の構造パラメータを持つ光ファイバは、 20 kmの光ファイバにおける SBS閾値が 12· 2dBmであり、同一の MFDを有する比較 例 1の光ファイバと比して + 3. 5dBの抑圧効果が得られた。また、実施例 1の光ファ ィバは、比較例 1の SMFと同等の光学特性を有しており、 G652規格を満足している
[0032] [実施例 la〜; lg]
また、表 3に、実施例 1の構造パラメータを、前記 X、 Y及び R2ZR1の範囲で振つ た場合の結果を示す。
[0033] [表 3]
Figure imgf000016_0001
表 3に示した実施例 la〜; lgの構造パラメータを持つ光ファイバは、図 13に示すよう に、 20kmの光ファイバにおける SBS閾値が 12· 4—13. 3dBmであり、同一の MF Dを有する SMFと比して + 3. 7〜+ 4. 6dBの抑圧効果が得られた。また、実施例 1 a〜lgの光ファイバの光学特性は、全て G652規格を満足している。
[実施例 lh〜; It]
表 4、表 5に、実施例 1の構造パラメータを、先に記した X、 Y、 R2/R1の範囲で振 つた結果を示す。表 3に示した実施例 la〜; lg、および、表 4、表 5に示した実施例 lh 〜; Itの構造パラメータを持つ光ファイバは、図 14に示すように、 20kmの光ファイバ における SBS閾値が 10. 9—13. 8dBmであり、同一の MFDを有する SMFと比して + 3. ;!〜 + 4. 5dBの抑圧効果が得られた。また、実施例 lh〜; Itの光ファイバの光 学特性は全て G652規格を満足している。
[表 4]
Figure imgf000018_0001
Mu薪0035a 22f〜
Figure imgf000019_0001
表 6に、図 6の屈折率分布を持つ光ファイバにおいて、屈折率分布の構造パラメ タを、前記 X、 Y及び R2/R1の範囲で振った場合の光学特性を示す。
[表 6]
Figure imgf000021_0002
Figure imgf000021_0001
に、 20kmの光ファイバにおいて SBS閾値が 12· 0~13. 7dBmであり、同一の MF Dを有する SMFと比して + 3. 3〜+ 5. OdBの抑圧効果が得られた。また、実施例 2 a〜2fの光ファイバの光学特性は、全て G652規格を満足している。
さらに、図 6のように第 3コアの屈折率を変化させることにより、コア中の GeOドープ
2 量を減らすことができ、光ファイバ中の損失を低減させることが可能となる。
[実施例 2g〜2m]
表 7に、図 6の屈折率分布を持つ光ファイバにおいて、屈折率分布の構造パラメ一 タを、先に 記した X、 Y、 R2/R1の範囲で振った場合の光学特性を示す。表 6に示 した実施例 2a〜2fおよび、表 7に示した 2g〜2mの構造パラメータを持つ光ファイバ は、図 16に示すように、 20kmの光ファイバにおいて SBS閾値が 10· 8— 14. 3dBm であり、同一の MFDを有する SMFと比して + 3. 2〜+ 4. 7dBの抑圧効果が得られ た。また、実施例 2g〜2mの光ファイバの光学特性は、全て G652規格を満足してい o
[表 7]
Figure imgf000023_0001
[実施例 3、実施例 4]
図 17に、本発明に係る実施例 3の光ファイバの屈折率分布を示す。実施例 3にお ける屈折率分布は、図 17に示すように、コアの中央部に設けられ、コアの中心から半 径 Rl μ mの領域に位置する第 1コアと、該第 1コアを取り囲むように接して設けられ、 半径 1 111〜1^2 111の領域に位置する第2コァと、該第 2コアを取り囲むように接し て設けられ、半径 R2 μ m〜R3 μ mの領域に位置する第 3コアとからなる 3層構造の コアと、前記 3層構造のコアを取り囲むように接して設けられ、ほぼ一定の屈折率を有 するクラッドとから構成されている。し力もながら、実施例 1、実施例 2とは異なり、該コ ァの屈折率分布は、緩やかな変化をしており、その境界が曖昧となっている。そこで 、比屈折率差の径方向の変化率(d A /dr)を用いて各層の径を決定した。また、第 1コアの比屈折率差 Δ 1は、下記式(1)に示すように、コアの中心から半径 R1の範囲 で等価的に均一となる Δで定義し、第 2コアの比屈折率差 Δ 2は、半径 Rl m I^ mの領域で最小値となる比屈折率差で定義し、第 3コアの比屈折率差 Δ 3は、半 径 R2 μ m〜R3 μ mの範囲で最大値となる比屈折率差で定義した。
[0039] 國
Figure imgf000024_0001
[0040] このようにして定義した、実施例 3の光ファイバの構造パラメータと、その光学特性を 表 8に示す。また、表 8には実施例 3と同様の屈折率分布を持つ、実施例 4の光: バの構造パラメータとその光学特性をあわせて示す。
[0041] [表 8]
unit 実施例 3 実施例 4
R1 U m 1.36 1.73
R2 μ m 3.11 3.16
R3 μ m 4.58 4.67
R2/R1 ― 2.29 1.83
Δ1 % 0.50 0.53
△2 % 0.18 0.18
Δ3 % 0.48 0.53
Δ1-Δ2 % 0.32 0.35
厶 3-Δ2 % 0.30 0.35
厶 3 + Δ2 % 0.66 0.71 フアイ/くカツ卜才フ波長 μ m 1.32 1.32 ケーブルカットオフ波長 μ. m 1.24 1.23
MFD(Petermann II)@1.31 m U m 9.55 9.25 零分散波長 nm 1316.4 1320.4 零分散スロープ ps/nm2 - km 0.089 0.089
020mm曲げ損失 @1, 31 jU m dB/m 0.23 0.07
SBS閾値 @1. m 20km dBm 12.7 12.2
損失 @1.55jW m dB/km 0.191 0.196
[0042] 表 8に示すように、実施例 3、実施例 4の光ファイバは、 SBS閾値が 20kmの光ファ ィバにおいて 12· 2—12.7dBmとなり、同一の MFDを有する SMFと比して + 3· 5 〜+ 4. OdBの抑圧効果が得られた。また、実施例 3、実施例 4の光ファイバは、全て G652規格を満足している。
[0043] [実施例 5]
図 18は、実施例 5の光ファイバ母材の屈折率分布である。本実施例の光ファイバ 母材は図 18に示すように、コアの中央部に設けられ、コアの中心から半径 Rl^ mの 領域に、ほぼ一定で正の比屈折率差 Δ1を有する第 1コアと、該第 1コアを取り囲むよ うに接して設けられ、半径 Rl rn力、ら 2 111の領域に、ほぼ一定で正の比屈折率 差 Δ2を有する第 2コアと、該第 2コアを取り囲むように接して設けられ、半径 2 111 〜 3 111の領域に、ほぼ一定で正の比屈折率差 Δ 3を有する第 3コアから成る、 3層 構造のコアから成り、実施例 1、実施例 2と同様に 3層構造のコアを有する。
表 9、表 10に実施例 5の光ファイバ母材の構造パラメータを先に記した X、 Y、及び 、 R2/R1の範囲で振り、該母材を線引きし、光ファイバ化した時の光学特性を示す 。実施例 5の光ファイバ母材から線引きされて得られた光ファイバは、図 19に示すよう に SBS閾ィ直が 20kmの光ファイバにおいて 10· 9—13. 8dBmとなり、同一の MFD を有する SMFと比して + 3.;!〜 + 4. 5dBの抑圧効果が得られており、さらに G652 規格を満足している。
[表 9]
Figure imgf000027_0001
n ¾JS薪0044
Figure imgf000028_0001
図 20は、実施例 6の光ファイバ母材の屈折率分布である。本実施例の光ファイバ 母材は図 20に示すように、コアの中央部に設けられ、コアの中心から半径 R1 mの 領域に、最大比屈折率差 Δ 1を有する第 1コアと、該第 1コアを取り囲むように接して 設けられ、半径 R1 mから R2 β mの領域に、最小比屈折率差 Δ 2を有する第 2コア と、該第 2コアを取り囲むように接して設けられ、半径 2 111〜1^3 111の領域に、最 大比屈折率差 Δ 3を有する第 3コアから成る、 3層構造のコアから成り、実施例 1、実 施例 2と同様に 3層構造のコアを有する。
表 11、表 12に実施例 6の光ファイバ母材の構造パラメータを先に記した X、 Y、及 び、 R2/R1の範囲で振り、該母材を線引きし、光ファイバ化した時の光学特性を示 す。実施例 6の光ファイバ母材から線引きされて得られた光ファイバは、図 21に示す ように SBS閾ィ直が 20kmの光ファイバにおいて 10· 8— 14. 3dBmとなり、同一の MF Dを有する SMFと比して + 3. 2〜+ 4. 7dBの抑圧効果が得られており、さらに G65 2規格を満足している。
[表 11]
unit 実施例 6a 実施例 6b 実施例 6c 実施例 6d 実施例 6e 実施例 6f
R1 μ m 1.51 1.39 1.43 1.31 1.1 1 1.33
R2 μ m 3.03 3.05 2.87 3.13 3.10 3.45
R3 μ. m 4.60 4.49 4.36 4.49 4.25 4.83
R2/R1 ― 2.00 2.20 2.00 2.40 2.80 2.60
Δ 1 % 0.50 0.50 0.44 0.56 0.44 0.40
△2 % 0.24 0.22 0.18 0.18 0.26 0.30 厶 3 % 0.50 0.60 0.70 0.70 0.70 0.70 厶 1 -厶 2 % 0.26 0.28 0.26 0.38 0.18 0.10
Δ3-Δ2 % 0.26 0.38 0.52 0.52 0.44 0.40 厶 3 +厶 2 % 0.74 0.82 0.88 0.88 0.96 1.00 フアイ/くカツ卜才フ波長 μ m 1.32 1.32 1.32 1.32 1.32 1.32 ケーブルカットオフ波長 μ. m 1.24 1.24 1.24 1.24 1.24 1.24
MFD (Petermann II) @1.31 μ m μ. m 9.2 9.36 9.44 9.39 9.37 9.1 零分散波長 nm 1317.9 1314.9 1314.2 1322.6 1309.5 1308.1 零分散スロープ ps/nm2-km 0.0906 0.0905 0.0902 0.0914 0.0897 0.0898
0 20mm曲げ損失 @1.31 m dB/m 0.39 0.69 1.42 1.35 0.92 0.15
SBS閾値 @1.55 m 20km dBm 12.0 12.8 13.0 13.7 12.3 12.0
Figure imgf000031_0001
[実施例 7]
図 22は実施例 7の光ファイバ母材の屈折率分布である。本実施例の光ファイバ母 材は図 22に示すように、コアの中央部に設けられ、コアの中心から半径 Rl ^ mの領 域に位置する第 1コアと、該第 1コアを取り囲むように接して設けられ、半径 Rl ^ mか ら R2 mの領域に位置する第 2コアと、第 2コアを取り囲むように接して設けられ、半 径 2 111〜1^3 111の領域に位置する第3コァから成り、実施例 1、実施例 2、実施 例 5、実施例 6、と同様に 3層構造のコアを有する。し力、しながら、実施例 1、 2、 5、 6と は異なり、緩やかな変化をしており、その境界の定義は実施例 3、実施例 4と同一とし た。
表 13に実施例 7の光ファイバ母材の構造パラメータと、該母材を線引きし、光フアイ バ化した時の光学特性を示す。実施例 7の光ファイバ母材力 線引きされて得られた 光ファイバは、 SBS閾値が 20kmの光ファイバにおいて 12. 6dBmとなり、同一の M FDを有する SMFと比して + 3. 8dBの抑圧効果が得られており、また、 G652規格を 満足している。
[表 13]
unit 実施例 7
R1 μ. m 1.41
R2 μ. m 3.03
R3 μ. m 4.60
R2/R1 ― 2.1
Δ 1 % 0.49
△ 2 % 0.13
△3 % 0.64
Δ 1 -Δ2 % 0.36
Δ3-Δ2 % 0.51
Δ3+Δ2 % 0.76
ファイバカットオフ波長 μ. m 1.32
ケーブルカットオフ波長 U m 1.24
MFD(Petermann II)@1.31 fJi m m 9.39
零分散波長 nm 131 9.6
零分散スロープ ps/nm2-km 0.090 φ 20mm曲げ損失 @ 1.31 )U m dB/m 0.21
SBS閾値 @1.55um 20km dBm 12.6 産業上の利用可能性
本発明においては、セグメントコア型の屈折率分布を持つ光ファイバにおいて、各 層の比屈折率差 Δ 1 , Δ 2、 Δ 3の関係を適切に設計し、また第 3コアの位置を適切 に配置したことにより、 G652に記載されている光学特性を維持しながら、 SBS閾値 を同一の MFDを有する SMFと比して + 3dB以上、向上させることが可能となる。 さらに、第 3コアの比屈折率差を、第 1コアの比屈折率差より大きくすることにより、 光ファイバ母材の製造性を向上させることが可能となる。

Claims

請求の範囲
[1] コアの中央部に、コアの中心から半径 Rl a mの領域に、ほぼ一定で正の比屈折率 差 Δ1を有する第 1コアと、第 1コアを取り囲むように接し、半径 R1 mから R2 mの 領域に、ほぼ一定で正の比屈折率差 Δ 2を有する第 2コアと、第 2コアを取り囲むよう に接し、半径 2 111〜1^3 111の領域に、ほぼ一定で正の比屈折率差 Δ 3を有する 第 3コアとからなる、 3層構造のコアと、前記 3層構造のコアを取り囲むように接し、ほ ぼ一定の屈折率を有するクラッドによって構成される屈折率分布を有し、
前記 Δ2力 0.40/0以下で り、前記 Δ1、 Δ2、厶3の |係カ Δ1〉Δ2、力、つ、 Δ 3〉 Δ 2、であり、 Δ3〉Δ1であり、
前記 Δ1、 Δ2、 Δ3を、 Δ1— Δ2=Χ、 Δ 3— Δ 2=Υとした場合、 (Χ+Υ)〉0.4 ο/οであり、前記 X、 Υ力 0.25%<Χ<0.6%,力、つ、 0.1%≤Υ≤0.6%,力、つ、 ( 2*Χ— 0· 7)%<Υ<(Χ/2 + 0.4)%となる関係を満たし、
前記 Δ2、 Δ3、 Rl、 R2が、
(Δ2+ Δ3) + 1.0≤ R2/R1 ≤7*(Δ2+ Δ3) -1.45 かつ、 Δ2+ Δ3≤1.
15となる関係を満たし、
ケーブルカットオフ波長が 1260nm未満であり、
波長 1.31〃mにおけるモードフィーノレド径カ 7.9〃m〜; 10.2〃111であり、 零分散波長力 1300應〜 1324應であり、
零分散スロープが 0.093ps/(nm2'km)以下であり、
直径 20mm、波長 1.31 mにおける一様曲げ損失が 2dB/m以下であり、 波長 1· 55 mにおける SBS閾値が通常のステップインデックス型の屈折率分布を 有し、同一のモードフィールド径を持つシングルモード光ファイバに比して + 3dB以 上であることを特徴とする光ファイバ。
[2] コアの中央部に、コアの中心から半径 Rl^ mの領域に、最大比屈折率差 Δ1を有 する第 1コアと、第 1コアを取り囲むように接し、半径 Rl mから 2 111の領域に、最 小比屈折率差 Δ 2を有する第 2コアと、第 2コアを取り囲むように接し、半径 2 111〜 RS^ mの領域に、最大比屈折率差 Δ 3を有する第 3コアとからなる、 3層構造のコア と、前記 3層構造のコアを取り囲むように接し、ほぼ一定の屈折率を有するクラッドと から構成される屈折率分布を有し、
前記 Δ2が 0.4%以下であり、前記 Δ1、 Δ2、 Δ3が、 Δ1〉 Δ2、かつ、 Δ3〉 Δ2 、であり、 Δ3〉 Δ1であり、
前記 Δ1、 Δ2、 Δ3を、 Δ1— Δ2=Χ、 Δ 3— Δ 2=Υとした場合、 (Χ+Υ)〉0.4 ο/οであり、前記 X、 Υ力 0.25%<Χ<0.6%,力、つ、 0.1%≤Υ≤0.6%,力、つ、 ( 2*Χ— 0· 7)%<Υ<(Χ/2 + 0.4)%となる関係を満たし、
前記 Δ2、 Δ3、 Rl、 R2が、
(Δ2+ Δ3) + 1.0≤ R2/R1 ≤7*(Δ2+ Δ3) -1.45 かつ、 Δ2+ Δ3≤1.
15となる関係を満たし、
ケーブルカットオフ波長が 1260nm未満であり、
波長 1.31〃mにおけるモードフィーノレド径カ 7.9〃m〜; 10.2〃111であり、 零分散波長力 1300應〜 1324應であり、
零分散スロープが 0.093ps/(nm2'km)以下であり、
直径 20mm、波長 1.31 mにおける一様曲げ損失が 2dB/m以下であり、 波長 1· 55 mにおける SBS閾値が通常のステップインデックス型の屈折率分布を 有し、同一のモードフィールド径を持つシングルモード光ファイバに比して + 3dB以 上であることを特徴とする光ファイバ。
コアの中央部に、コアの中心から半径 R1 mの領域に、ほぼ一定で正の比屈折率 差 Δ1を有する第 1コアと、第 1コアを取り囲むように接し、半径 R1 mから R2 mの 領域に、ほぼ一定で正の比屈折率差 Δ 2を有する第 2コアと、第 2コアを取り囲むよう に接し、半径 2 111〜1^3 111の領域に、ほぼ一定で正の比屈折率差 Δ 3を有する 第 3コアとからなる、 3層構造のコアと、前記 3層構造のコアを取り囲むように接し、ほ ぼ一定の屈折率を有するクラッドによって構成される屈折率分布を有し、
前記 Δ2力 0.40/0以下で り、前記 Δ1、 Δ2、厶3の |係カ Δ1〉Δ2、力、つ、 Δ 3〉 Δ 2、であり、 Δ3〉Δ1であり、
前記 Δ1、 Δ2、 Δ3を、 Δ1— Δ2=Χ、 Δ 3— Δ 2=Υとした場合、 (Χ+Υ)〉0.4 ο/οであり、前記 X、 Υ力 0.25%<Χ<0.6%,力、つ、 0.1%≤Υ≤0.6%,力、つ、 ( 2*Χ— 0· 7)%<Υ<(Χ/2 + 0.4)%となる関係を満たし、 前記 Δ2、 Δ3、 Rl、 R2が、
(Δ2+ Δ3) + 1.0≤ R2/R1 ≤7*(Δ2+ Δ3) -1.45 かつ、 Δ2+ Δ3≤1.
15となる関係を満たす光ファイバ母材であり、
該光ファイバ母材を線引きして光ファイバ化した際、
ケーブルカットオフ波長が 1260nm未満であり、
波長 1.31〃mにおけるモードフィーノレド径カ 7.9〃m〜; 10.2〃111であり、 零分散波長力 1300應〜 1324應であり、
零分散スロープが 0.093ps/(nm2'km)以下であり、
直径 20mm、波長 1.31 mにおける一様曲げ損失が 2dB/m以下であり、 波長 1· 55 mにおける SBS閾値が通常のステップインデックス型の屈折率分布を 有し、同一のモードフィールド径を持つシングルモード光ファイバに比して + 3dB以 上であることを特徴とする光ファイバ母材。
コアの中央部に、コアの中心から半径 Rl^ mの領域に、最大比屈折率差 Δ1を有 する第 1コアと、第 1コアを取り囲むように接し、半径 Rl mから 2 111の領域に、最 小比屈折率差 Δ 2を有する第 2コアと、第 2コアを取り囲むように接し、半径 2 111〜 RS^ mの領域に、最大比屈折率差 Δ 3を有する第 3コアとからなる、 3層構造のコア と、前記 3層構造のコアを取り囲むように接し、ほぼ一定の屈折率を有するクラッドと から構成される屈折率分布を有し、
前記 Δ2が 0.4%以下であり、前記 Δ1、 Δ2、 Δ3が、 Δ1〉 Δ2、かつ、 Δ3〉 Δ2 、であり、 Δ3〉 Δ1であり、
前記 Δ1、 Δ2、 Δ3を、 Δ1— Δ2=Χ、 Δ 3— Δ 2=Υとした場合、 (Χ+Υ)〉0.4 ο/οであり、前記 X、 Υ力 0.25%<Χ<0.6%,力、つ、 0.1%≤Υ≤0.6%,力、つ、 ( 2*Χ— 0· 7)%<Υ<(Χ/2 + 0.4)%となる関係を満たし、
前記 Δ2、 Δ3、 Rl、 R2が、
(Δ2+ Δ3) + 1.0≤ R2/R1 ≤7*(Δ2+ Δ3) -1.45 かつ、 Δ2+ Δ3≤1.
15となる関係を満たす光ファイバ母材であり、
該光ファイバ母材を線引きして光ファイバ化した際、
ケーブルカットオフ波長が 1260nm未満であり、 波長 1 · 31〃mにおけるモードフィーノレド径カ 7. 9〃m〜; 10. 2〃111であり、 零分散波長力 1300應〜 1324應であり、
零分散スロープが 0. 093ps/(nm2 'km)以下であり、
直径 20mm、波長 1. 31 mにおける一様曲げ損失が 2dB/m以下であり、 波長 1 · 55 mにおける SBS閾値が通常のステップインデックス型の屈折率分布を 有し、同一のモードフィールド径を持つシングルモード光ファイバに比して + 3dB以 上であることを特徴とする光ファイバ母材。
PCT/JP2007/067830 2006-09-14 2007-09-13 Fibre optique et matériau à base de fibre optique WO2008032779A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800422798A CN101535851B (zh) 2006-09-14 2007-09-13 光纤以及光纤母材
US12/441,040 US7835609B2 (en) 2006-09-14 2007-09-13 Optical fiber and optical fiber preform
JP2008534382A JP4677491B2 (ja) 2006-09-14 2007-09-13 光ファイバ及び光ファイバ母材
EP07807237.8A EP2060938A4 (en) 2006-09-14 2007-09-13 OPTICAL FIBER AND BASIC MATERIAL OF AN OPTICAL FIBER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006249360 2006-09-14
JP2006-249360 2006-09-14

Publications (1)

Publication Number Publication Date
WO2008032779A1 true WO2008032779A1 (fr) 2008-03-20

Family

ID=39183833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067830 WO2008032779A1 (fr) 2006-09-14 2007-09-13 Fibre optique et matériau à base de fibre optique

Country Status (6)

Country Link
US (1) US7835609B2 (ja)
EP (1) EP2060938A4 (ja)
JP (1) JP4677491B2 (ja)
CN (1) CN101535851B (ja)
RU (1) RU2401444C1 (ja)
WO (1) WO2008032779A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176122A (ja) * 2009-01-27 2010-08-12 Draka Comteq Bv シングルモード光ファイバ
JP2010226107A (ja) * 2009-03-19 2010-10-07 Northrop Grumman Systems Corp 光ファイバ増幅器およびその作成方法
US11200963B2 (en) 2016-07-27 2021-12-14 Sequenom, Inc. Genetic copy number alteration classifications
US11694768B2 (en) 2017-01-24 2023-07-04 Sequenom, Inc. Methods and processes for assessment of genetic variations
US11783911B2 (en) 2014-07-30 2023-10-10 Sequenom, Inc Methods and processes for non-invasive assessment of genetic variations

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658757B2 (ja) * 2015-08-04 2020-03-04 住友電気工業株式会社 光接続部品
JP6796142B2 (ja) 2016-04-06 2020-12-02 テラダイオード, インコーポレーテッド 可変レーザビームプロファイルのための光ファイバ構造および方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100406A2 (en) 2003-05-02 2004-11-18 Corning Incorporated Large effective area high sbs threshold optical fiber
JP2006133314A (ja) 2004-11-02 2006-05-25 Fujikura Ltd 光ファイバ及び伝送システム並びに波長多重伝送システム
JP2006154707A (ja) 2004-10-29 2006-06-15 Shin Etsu Chem Co Ltd 光ファイバ
JP2006154713A (ja) 2004-11-05 2006-06-15 Fujikura Ltd シングルモード光ファイバ及び伝送システム並びに波長多重伝送システム
JP2006184534A (ja) 2004-12-27 2006-07-13 Sumitomo Electric Ind Ltd 光ファイバ
US7082243B2 (en) 2004-04-05 2006-07-25 Corning Incorporated Large effective area high SBS threshold optical fiber
JP2006232599A (ja) * 2005-02-24 2006-09-07 Swcc Showa Cable Systems Co Ltd 誘導ブリユアン散乱抑制光ファイバ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584151B2 (ja) 1991-06-11 1997-02-19 株式会社フジクラ 光ファイバ
US5748824A (en) 1995-11-17 1998-05-05 Corning Incorporated Positive dispersion optical waveguide
US6587623B1 (en) * 2000-08-14 2003-07-01 The Board Of Trustees Of The University Of Illinois Method for reducing stimulated brillouin scattering in waveguide systems and devices
US7209626B2 (en) * 2003-01-27 2007-04-24 Peter Dragic Waveguide configuration
CN1802578A (zh) * 2003-05-02 2006-07-12 康宁股份有限公司 有效面积大和sbs阈值高的光纤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100406A2 (en) 2003-05-02 2004-11-18 Corning Incorporated Large effective area high sbs threshold optical fiber
US7082243B2 (en) 2004-04-05 2006-07-25 Corning Incorporated Large effective area high SBS threshold optical fiber
JP2006154707A (ja) 2004-10-29 2006-06-15 Shin Etsu Chem Co Ltd 光ファイバ
JP2006133314A (ja) 2004-11-02 2006-05-25 Fujikura Ltd 光ファイバ及び伝送システム並びに波長多重伝送システム
JP2006154713A (ja) 2004-11-05 2006-06-15 Fujikura Ltd シングルモード光ファイバ及び伝送システム並びに波長多重伝送システム
JP2006184534A (ja) 2004-12-27 2006-07-13 Sumitomo Electric Ind Ltd 光ファイバ
JP2006232599A (ja) * 2005-02-24 2006-09-07 Swcc Showa Cable Systems Co Ltd 誘導ブリユアン散乱抑制光ファイバ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATOU F. ET AL.: "Yudo Brillouin (SBS) YOkuatsu Fiber no Denso Tokusei", IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 2005 NEN TSUSHIN, no. 2, 7 September 2005 (2005-09-07), pages 293 + ABSTR. NO. B-10-75, XP003019990 *
See also references of EP2060938A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176122A (ja) * 2009-01-27 2010-08-12 Draka Comteq Bv シングルモード光ファイバ
CN101915956A (zh) * 2009-01-27 2010-12-15 德拉克通信科技公司 单模光纤
JP2010226107A (ja) * 2009-03-19 2010-10-07 Northrop Grumman Systems Corp 光ファイバ増幅器およびその作成方法
US11783911B2 (en) 2014-07-30 2023-10-10 Sequenom, Inc Methods and processes for non-invasive assessment of genetic variations
US11200963B2 (en) 2016-07-27 2021-12-14 Sequenom, Inc. Genetic copy number alteration classifications
US11694768B2 (en) 2017-01-24 2023-07-04 Sequenom, Inc. Methods and processes for assessment of genetic variations

Also Published As

Publication number Publication date
EP2060938A1 (en) 2009-05-20
JPWO2008032779A1 (ja) 2010-01-28
CN101535851B (zh) 2011-01-26
US20090317040A1 (en) 2009-12-24
US7835609B2 (en) 2010-11-16
CN101535851A (zh) 2009-09-16
JP4677491B2 (ja) 2011-04-27
RU2401444C1 (ru) 2010-10-10
EP2060938A4 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP6397899B2 (ja) 空間分割多重のための少モード光ファイバ光リンク
US7606460B2 (en) Optical fiber and transmission system, and wavelength division multiplexing system
US6904218B2 (en) Super-large-effective-area (SLA) optical fiber and communication system incorporating the same
JP4494691B2 (ja) 光伝送路
EP1255138B1 (en) Positive dispersion optical fiber having large effective area
EP1725898B1 (en) Non-zero dispersion shifted optical fiber
US20020090187A1 (en) Optical fiber having low non-linearity for WDM transmission
WO2008032779A1 (fr) Fibre optique et matériau à base de fibre optique
KR20010101071A (ko) 광 파이버 및 이를 포함하는 광 전송 시스템
WO2010122790A1 (ja) 空孔付き単一モード光ファイバ及びこれを用いた光伝送システム
RU2216029C2 (ru) Оптическое волокно с дисперсионным смещением
RU2216755C2 (ru) Оптическое волокно с низкой дисперсией и оптическая система передачи с использованием оптического волокна с низкой дисперсией
WO2008044600A1 (fr) Fibre optique et voie de transmission par fibre optique
JP2009198945A (ja) シングルモード光ファイバ
RU2356077C2 (ru) Оптическое волокно и система связи, и система мультиплексирования с разделением по длине волны
JP3756389B2 (ja) 分散補償光ファイバおよび光ファイバ複合伝送路
AU768485B2 (en) Optical fiber having low non-linearity for wdm transmission
CN109975920B (zh) 光纤和光源装置
JP3766073B2 (ja) 分散補償光ファイバおよび光ファイバ複合伝送路
JP2005003794A (ja) 光ファイバ、及びそれを用いた光伝送線路
JP4205455B2 (ja) 光ファイバ及びそれを用いた光伝送システム
KR100735239B1 (ko) 메트로 망용 광섬유
JP2004191633A (ja) 光ファイバ
JP2004133273A (ja) 単一モード光ファイバ
JP2008268974A (ja) 分散補償ファイバモジュール及び光ファイバ伝送路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042279.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2008534382

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007807237

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1056/KOLNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009113619

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12441040

Country of ref document: US