WO2008032681A1 - Agent de polissage pour dispositif à semi-conducteur en circuit intégré, procédé de polissage, et procédé de fabrication du dispositif à semi-conducteur en circuit intégré - Google Patents

Agent de polissage pour dispositif à semi-conducteur en circuit intégré, procédé de polissage, et procédé de fabrication du dispositif à semi-conducteur en circuit intégré Download PDF

Info

Publication number
WO2008032681A1
WO2008032681A1 PCT/JP2007/067602 JP2007067602W WO2008032681A1 WO 2008032681 A1 WO2008032681 A1 WO 2008032681A1 JP 2007067602 W JP2007067602 W JP 2007067602W WO 2008032681 A1 WO2008032681 A1 WO 2008032681A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive
mass
polished
range
Prior art date
Application number
PCT/JP2007/067602
Other languages
English (en)
French (fr)
Inventor
Yoshinori Kon
Iori Yoshida
Original Assignee
Asahi Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co., Ltd. filed Critical Asahi Glass Co., Ltd.
Priority to JP2008534333A priority Critical patent/JP5157908B2/ja
Priority to KR1020097005253A priority patent/KR101349983B1/ko
Priority to EP07807012A priority patent/EP2063461A4/en
Priority to CN2007800340482A priority patent/CN101517709B/zh
Publication of WO2008032681A1 publication Critical patent/WO2008032681A1/ja
Priority to US12/403,864 priority patent/US20090181539A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • Polishing agent for semiconductor integrated circuit device polishing method, and method for manufacturing semiconductor integrated circuit device
  • the present invention relates to a polishing technique used in a manufacturing process of a semiconductor integrated circuit device. More specifically, the present invention relates to a polishing technique used in a manufacturing process of a semiconductor integrated circuit device including a silicon dioxide-based material layer.
  • a selective thermal oxidation method of a silicon substrate called a LOCOS (Local Oxidation of Silicon) method has been used to electrically isolate elements such as transistors.
  • LOCOS Local Oxidation of Silicon
  • the separation region formed by oxidation caused unevenness on the surface due to volume expansion.
  • oxidation proceeds in the lateral direction and bites into the element region, which has been an obstacle to miniaturization. Therefore, in recent years, shallow trench isolation (hereinafter referred to as STI) has been introduced.
  • STI shallow trench isolation
  • a trench groove is provided in a silicon substrate in order to electrically insulate an element region, and an insulating film such as a silicon oxide film is embedded in the trench groove.
  • the STI process will be exemplarily described with reference to FIG.
  • the element region is masked with a silicon nitride film 3 or the like, a trench groove 10 is formed in the silicon substrate 1, and then silicon that is a kind of a film made of silicon dioxide is embedded so as to fill the trench groove 10. Insulation of oxide film 2 etc. This is a state in which a film is deposited. Thereafter, the excess silicon oxide film 2 on the silicon nitride film 3 that is the convex portion is polished and removed by CMP to leave the insulating film in the trench groove 10 that is the concave portion.
  • a selection ratio is given to the polishing rate of the silicon oxide film and the polishing rate of the silicon nitride film, so that the silicon nitride film 3 is exposed when the silicon nitride film 3 is exposed as shown in FIG. It is common to use the membrane 3 as a stopper.
  • the polishing is excessive, the silicon oxide film embedded in the trench groove portion 10 is polished and recessed as shown in FIG. 1 (c), and a structural defect such as a recess 20 called dishing is formed. May occur, resulting in insufficient planarization or deterioration of electrical performance.
  • the degree of dating depends on the width of the trench groove, and is particularly wide! /, There is a # 1 direction where the dishing becomes larger in the trench groove.
  • silica abrasive grains are generally used as polishing abrasive grains for CMP. Since the selection ratio between the polishing speed of the silicon oxide film and the polishing speed of the silicon nitride film is small, the STI process In these cases, cerium oxide abrasive grains having excellent polishing selectivity are being used.
  • Patent Document 1 preferentially polishes a convex portion with respect to a concave portion by an abrasive containing a cerium oxide abrasive and an organic compound containing a hydrophilic group composed of a carboxyl group or a carboxyl group salt as an additive. Then, a technique for flattening is disclosed! Here, the! /, Additive improves the trench groove width dependence of the ditching, and the above additive concentration needs to be high in order to reduce the dishing even in the wide trench.
  • Patent Document 1 discloses an example of a polishing liquid containing pure water containing 1% cerium oxide as an abrasive grain as abrasive grains and 6.0% ammonium polycarboxylate as an additive.
  • the polishing liquid in which the agglomeration of the abrasive grains is remarkable due to the high concentration of the additive and the additive is left standing the cerium oxide abrasive grains completely settle within a few minutes.
  • the abrasive is constantly stirred and fluidized! / ,! It can be a cause.
  • cerium oxide abrasive grains have better polishing characteristics than conventional silica abrasive grains, they have a large specific gravity! In addition, excessive addition of additives to improve polishing characteristics promotes agglomeration, resulting in significant aggregation / sedimentation!
  • Patent Document 2 discloses a polishing agent containing cerium oxide particles, water, and an anionic surfactant as a polishing agent applicable to shallow trench isolation, and its pH and viscosity (mPa's )
  • pH and viscosity mPa's
  • point A 5.5, 0.9
  • point B 5.5, 3.0
  • point C 10 (0, 3.0)
  • D point 9.0, 0.9
  • the viscosity of the abrasive is described as 1.0 to 2.5 mPa's, particularly 1.0 to 1.4 mPa's force is preferred.
  • the pH of the polishing agent after addition of the surfactant is preferably 5.5 to 9, particularly 6 to 8.5 force S.
  • the selectivity between the polishing rate of the silicon oxide film and the polishing rate of the silicon nitride film It is described that can be increased.
  • a small amount of dispersant is added to the abrasive grains in advance.
  • the average particle size of the abrasive dispersion is increased by adding a surfactant to the liquid in which the abrasive is dispersed. Aggregates 2 to 3 times the average particle size. For this reason, the abrasive grains settled within a few minutes when the dispersibility of the abrasive grains in the abrasive was poor, making it difficult to use, and the polishing rate was insufficient.
  • concentration of the surfactant is high, the variation in dating is small and the flattening characteristics are excellent.
  • the abrasives based on the examples where the concentration of the surfactant is low the variation in dating is large and the flattening characteristics I didn't wear it.
  • the number of scratches increased rapidly as the surfactant concentration increased. This is because if the surfactant concentration is high, the cerium oxide abrasive grains agglomerate and settle, and if there are any coarse grains that cause scratches in the abrasive grains, they will be agglomerated due to agglomeration. It is thought that it accumulates on the pad and causes an increase in scratches. In addition, the abrasive grains that have become larger due to agglomeration itself may cause scratches.
  • Patent Document 1 Japanese Patent No. 3278532 (Claims)
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-160137 (Claims)
  • Patent Document 3 Japanese Patent Laid-Open No. 11 12561 (Claims)
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-35818 (Claims)
  • an object of the present invention is to solve the above-mentioned problems, and to provide a semiconductor polishing agent having excellent polishing planarization characteristics with excellent dispersion stability and few defects such as scratches.
  • Aspect 1 of the present invention is a chemical mechanical polishing abrasive for polishing a surface to be polished in the manufacture of a semiconductor integrated circuit device, wherein the abrasive is water-soluble with cerium oxide particles.
  • the composition contains polyetheramine, at least one substance selected from the group consisting of polyacrylic acid and salts thereof, and water, and the pH of the abrasive is in the range of 6 to 9, and the substance is Power Provided is an abrasive that is contained in an amount exceeding 0.02 mass% with respect to the total mass of the abrasive.
  • the water-soluble polyetheramine has a weight average molecular weight in the range of 100 to 2,000, and in the range of 0.00 to 20% by mass with respect to the total mass of the abrasive. If included, the abrasive according to aspect 1 is provided. [0021] In the embodiment 3, the weight average molecular weight of the polyacrylic acid portion of the substance is in the range of 1, 000-1, 000, 000, and the substance contains 0.02 mass% with respect to the total mass of the abrasive. The abrasive according to aspect 1 or 2 is provided, which is contained in a range of more than 0.5 mass%.
  • Aspect 4 is the abrasive according to any one of aspects 1 to 3, wherein the cerium oxide particles are contained in a range of 0 .;! To 5% by mass with respect to the total mass of the abrasive. provide.
  • Aspect 5 is a method for polishing a surface to be polished in which a polishing agent is supplied to a polishing pad, the surface to be polished of a semiconductor integrated circuit device is brought into contact with a polishing node, and polishing is performed by relative movement between the two. Therefore, a polishing method is provided in which the surface to be polished is a surface to be polished of a silicon dioxide-based material layer, and the polishing agent is a polishing agent according to any one of the modes:!
  • Aspect 6 is the aspect 5, wherein the silicon dioxide-based material layer is a borophosphate glass (BPSG) layer, a borosilicate glass (BSG) layer, or a phosphosilicate glass (PSG) layer.
  • BPSG borophosphate glass
  • BSG borosilicate glass
  • PSG phosphosilicate glass
  • Aspect 7 provides the polishing method according to aspect 6, wherein the concentration of phosphorus or boron or phosphorus and boron in the silicon dioxide-based material is in the range of 0.;! To 20% by mass, respectively.
  • Aspect 8 provides the polishing method according to aspect 5, wherein the silicon dioxide-based material layer is a silicon dioxide layer.
  • Aspect 9 provides a method for manufacturing a semiconductor integrated circuit device, comprising the step of polishing a surface to be polished by the polishing method according to Aspect 8.
  • FIG. 1 is a schematic cross-sectional side view of a semiconductor device when polishing the semiconductor device.
  • FIG. 2 is a diagram showing an example of a polishing apparatus applicable to the polishing method of the present invention.
  • FIG. 3 is a schematic cross-sectional side view of a patterned wafer.
  • the abrasive applied to the present invention is a chemical mechanical polishing abrasive for polishing a surface to be polished of a semiconductor integrated circuit device (hereinafter also simply referred to as a semiconductor device). And at least one substance selected from the group consisting of water-soluble polyetheramine, polyacrylic acid and its salts, and water, and the pH of the abrasive is in the range of 6-9, In addition, the above substances are contained in an amount exceeding 0.02 mass% with respect to the total mass of the abrasive. A dispersant may coexist.
  • the “surface to be polished” means an intermediate surface that appears in the process of manufacturing a semiconductor device.
  • the surface to be polished of the silicon dioxide-based material layer is polished in the manufacturing process of the semiconductor device including the silicon dioxide-based material layer, and has a flat surface with few defects such as scratches.
  • the layer can be easily formed in a short time.
  • Two or more silicon dioxide-based material layers may be included in one semiconductor device.
  • This abrasive also has excellent dispersion stability.
  • cerium oxide is used as the abrasive grains in the abrasive. Conventionally, it has been known that cerium oxide abrasive grains exhibit a specifically high polishing rate in polishing silicon dioxide based materials.
  • cerium oxide abrasive grains in the present invention are not particularly limited.
  • cerium oxide abrasive grains disclosed in Patent Document 3 or Patent Document 4 can be preferably used. That is, a cerium oxide powder obtained by adding an alkali to a cerium (IV) ammonium nitrate aqueous solution to prepare a cerium hydroxide gel, filtering, washing and firing can be preferably used. Further, cerium oxide abrasive grains obtained by pulverizing and firing high-purity cerium carbonate, and further pulverizing and classifying can also be preferably used.
  • the average particle diameter (diameter) of the cerium oxide abrasive grains is 0.01 to 0.5 mm, particularly 0.02 to 0.3 mm, and more preferably 0, in terms of polishing characteristics and dispersion stability.
  • the ratio of the cerium oxide abrasive grains to the total mass of the abrasive is preferably in the range of 0.;! To 5 mass%. If the amount is less than 1% by mass, a sufficient polishing rate may not be obtained. When the amount exceeds 5% by mass, the viscosity of the abrasive becomes high and handling is often difficult.
  • the silicon dioxide-based material according to the present invention is generally silicon dioxide itself or a material containing other elements in silicon dioxide.
  • the inclusion in this case means that other elements are uniformly contained.
  • any element can be used as the “other element”.
  • boron, phosphorus, carbon, nitrogen and fluorine with force S for example, mentioning boron, phosphorus, carbon, nitrogen and fluorine with force S.
  • the concentration of phosphorus or boron or phosphorus and boron in the silicon dioxide-based material is in the range of 0.;! To 20% by mass, respectively. The effect is great.
  • Silicon dioxide-based materials containing phosphorus, boron, or phosphorus and boron are used in SiO—CVD (chemical vapor deposition) as the source gas, SiH (silane), O as well as BH (diborane), PH
  • An inorganic gas such as (phosphine) or an organic gas such as B (OCH) (trimethoxyborane) or P (OCH) (trimethoxyphosphine) can be simultaneously added to form a film.
  • Well-known silicon dioxide-based materials containing phosphorus or boron or phosphorus and boron include borophosphate glass (BPSG), borosilicate glass (BSG), and phosphate glass (PSG). is there. It is considered that the effect of realizing a high level of unevenness on the surface to be polished with a small amount of polishing is due to the adsorption effect of water-soluble polyetheramine on the surface of the surface to be polished and the cerium oxide abrasive grains.
  • BPSG is a glass mainly composed of silicon, phosphorus, boron, and oxygen. Phosphorus and boron can be changed in the range of 0.; BSG is a glass mainly composed of silicon, boron and oxygen. Boron can be varied in the range of 0.; PSG is a glass mainly composed of key, phosphorus and oxygen. Phosphorus can be varied in the range of 0.; [0042]
  • the water-soluble polyetheramine in the abrasive can be appropriately selected from known ones without particular limitations. The water solubility may be any degree as long as it is completely dissolved in the abrasive liquid at the concentration used as the abrasive.
  • the molecular weight of the water-soluble polyetheramine is not limited as long as the molecular weight is in the range having water solubility, but the weight average molecular weight is preferably in the range of 100-2,000. . When the weight average molecular weight is less than 100, the effect is small. If it exceeds 2,000, the solubility in pure water often decreases. From the viewpoint of enhancing the dispersion stability of the cerium oxide abrasive grains, the water-soluble polyetheramine has a more preferred weight average molecular weight of 150 to 800, and an even more preferred weight average molecular weight of 150 to 400.
  • the polyetheramine means a compound having two or more amino groups and two or more etheric oxygen atoms.
  • the amino group is preferably a primary amino group (—NH 2). It has a secondary amino group (one NH) or a tertiary amino group as an amino group! /, Or may! /, But the polyetheramine in the present invention has two or more primary amino groups. Preferred are compounds having other amino groups and substantially no amino groups, particularly polyether diamines having only two primary amino groups.
  • the polyetheramine is preferably a compound having a structure in which a hydrogen atom of a hydroxyl group of a polyhydric alcohol or polyether polyol is substituted with an aminoamino group.
  • the polyhydric alcohol is preferably a dihydric to hexavalent alcohol, and particularly preferably a dihydric alcohol.
  • a dihydric to polyhydric polyoxyalkylene polyol, particularly polyoxyalkylene diol is preferred.
  • the aminoalkyl group include 2-aminoethyl group, 2-aminopropyl group, 2-amino-1 methylethyl group, 3-aminopropyl group, 2-amino-1, 1-dimethylethyl group, and 4 aminobutyl group. The aminoalkyl group is preferred.
  • the polyhydric alcohol is preferably a dihydric alcohol having 2 to 8 carbon atoms which may have an etheric oxygen atom such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol and the like.
  • Polyether polyols include polyethylene glycols such as triethylene glycol and tetraethylenedaricol (ie, polyoxyethylenediol), tripropylene glycol and tetrapropylene glycol.
  • the repeating unit such as polyoxyalkylene diol having two or more oxyalkylene groups such as polypropylene glycol (that is, polyoxypropylene diol), poly (oxypropylene oxyethylene) diol, etc. having 2 to 6 carbon atoms Polyether diols that are oxyalkylene groups are preferred!
  • the polyether diamine is preferably a compound having a structure represented by the following formula (1).
  • R represents an alkylene group having 2 to 8 carbon atoms
  • X represents an oxygen atom
  • k represents an integer of 2 or more. Multiple Rs in a molecule may be different from each other! /.
  • polyether diamine a compound having a structure represented by the following formula (2) is particularly preferred.
  • R 1 is an ethylene group or propylene group
  • R 2 is an alkylene group having 2 to 6 carbon atoms
  • m is an integer of 1 or more
  • R 1 and R 2 may be the same or different.
  • polyether diamine represented by the formula (2) examples include polyoxypropylene diamine.
  • R 2 is a propylene group, m is a compound of 1 or more), polyoxyethylene diamine (R ⁇ R 2 is an ethylene group, m is a compound of 1 or more), 4, 7, 10 trioxa-tridecane 1, 13 diamine ( R 1 is an ethylene group, R 2 is a trimethylene group, and m is 2).
  • the polishing rate for the silicon dioxide-based material layer is controlled to suppress the progress of polishing of the concave portion, and the convex portion It is possible to polish with priority. As a result, it becomes possible to perform highly flat polishing with extremely small pattern dependency.
  • the concentration of the water-soluble polyetheramine in the abrasive is in the range of 0.00; 20 to 20% by mass from the viewpoint of obtaining a sufficient effect of controlling the polishing rate. It is preferable to set appropriately considering the uniformity of the mixture and the polymerization average molecular weight of the water-soluble polyetheramine.
  • the concentration of the water-soluble polyetheramine in the abrasive is more preferably in the range of 0.03 to 5% by mass, particularly preferably in the range of 0.05 to 3% by mass.
  • At least one selected from the group consisting of polyacrylic acid and salts thereof according to the present invention At least one selected from the group consisting of polyacrylic acid and salts thereof according to the present invention.
  • the substance include polyacrylic acid, its ammonium salt, amine salt, metal salt (alkali metal salt, alkaline earth salt, etc.).
  • Polyacrylic acid and its ammonium salt are preferred. It may be a mixture.
  • the salt of polyacrylic acid can also function as a cerium oxide dispersant.
  • the weight average molecular weight of the polyacrylic acid portion of this substance is in the range of 1,000-1, 000, 000. If it is less than 1,000, it is generally difficult to obtain it. If it exceeds 1,000,000, the viscosity becomes high and handling becomes difficult.
  • the ratio of the above substances in the abrasive according to the present invention exceeds 0.02 mass%.
  • the content is 0.02% by mass or less, the dispersibility of the abrasive grains is insufficient.
  • the above-mentioned substance is preferably contained in a range of more than 02% by mass and not more than 0.5% by mass with respect to the total mass of the abrasive. If it exceeds 0.5, the agglomeration of abrasive grains may proceed. Insufficient dispersibility and agglomeration of abrasive grains cause defects such as scratches during polishing.
  • the above substance may be used as an agent having other functions such as a dispersing agent for abrasive grains.
  • the amount of the “agent having other functions” is also included in the abrasive according to the present invention. Needless to say, it is added to the ratio of the above substances.
  • the abrasive according to the present invention 0.005% by mass of polyacrylic acid ammonium is added as a dispersing agent for abrasive grains, and the polyacrylic acid power is 0.02% by mass in order to fulfill the above function.
  • the ratio of the above-mentioned substances in the abrasive according to the present invention is 0.025% by mass.
  • the water according to the present invention is not particularly limited, but pure water, ultrapure water, ion-exchanged water, and the like are preferably used because of their influence on other agents, contamination of impurities, and influence on pH and the like. Is possible.
  • the present abrasive is used in a pH range of 6 to 9 in consideration of the polishing characteristics and dispersion stability of the abrasive. If it is less than pH force, the dispersibility may decrease. If it exceeds 9, the polishing rate of the entire surface to be polished is likely to decrease.
  • the abrasive according to the present invention may contain other components.
  • a typical example is a dispersant.
  • Dispersing agents include water-soluble organic polymers and anionic surfactants.
  • water-soluble organic polymers include carboxylic acid groups or carboxylic acid ammonium salts. Polymers with etc. are preferred!
  • the abrasive according to the present invention does not necessarily have to be supplied to the polishing site as a mixture of all the constituent abrasive materials in advance. That is, when supplying to a polishing place, an abrasive material may be mixed to form an abrasive composition. For example, a liquid 1 containing a cerium oxide particle, water, and an optional dispersant is divided into a liquid 2 containing a water-soluble polyetheramine and the like. May be used. This method is useful when it is necessary to adjust the polishing rate in accordance with the concentration of boron or phosphorus in the silicon dioxide-based material layer.
  • the polishing agent is supplied to the polishing pad, and the surface to be polished of the semiconductor device and the polishing pad are brought into contact with each other by relative movement between the two.
  • the polished surface of the silicon dioxide-based material layer is polished.
  • the conditions for the silicon dioxide-based material are the same as those described in relation to the abrasive according to the present invention.
  • FIG. 2 is a diagram showing an example of a polishing apparatus applicable to the polishing method of the present invention. While supplying the polishing agent 36 from the polishing agent supply pipe 35, the semiconductor device 31 is held on the polishing head 32 and brought into contact with the polishing pad 34 affixed to the surface of the polishing surface plate 33, and the polishing head 32 and the polishing surface plate. This is a method of rotating 33 to make a relative movement.
  • the polishing apparatus according to the present invention is not limited to this.
  • the polishing head 32 may move linearly as well as rotate.
  • the polishing surface plate 33 and the polishing pad 34 may be as large as or smaller than the semiconductor device 31. In that case, it is preferable to move the polishing head 32 and the polishing surface plate 33 relative to each other so that the entire surface of the semiconductor device can be polished.
  • the polishing surface plate 33 and the polishing pad 34 may not be a rotary type but may be a belt type that moves in one direction.
  • the polishing conditions of the polishing apparatus are not particularly limited, but the polishing rate can be improved by applying a load to the polishing head 32 and pressing it against the polishing pad 34.
  • the polishing pressure at this time is particularly preferably about 3 to 40 kPa from the viewpoint of uniformity in the semiconductor device having a polishing rate of preferably about 0.5 to 50 kPa, flatness, and prevention of polishing defects such as scratches.
  • the rotation speed of the polishing surface plate and the polishing head is preferably about 50 to 500 rpm, but is not limited thereto.
  • As the polishing pad a general nonwoven fabric, foamed polyurethane, porous resin, non-porous resin or the like can be used. In addition, grooves such as lattices, concentric circles, and spirals have been formed on the surface of the polishing pad to promote the supply of abrasives and to collect a certain amount of abrasives! / Yo! /
  • the polishing agent of the present invention it is possible to realize a highly flat surface of the polished surface of the silicon dioxide-based material layer in a short time with a small amount of polishing.
  • the surface after polishing is very flat, and the remaining film thickness can be easily increased.
  • the present invention can be suitably used particularly for a semiconductor device employing I LD, STI and PMD. Example
  • Examples 1, 2, 3, and 11 are examples, and the others are comparative examples.
  • “%” means mass% unless otherwise specified. The characteristic value was evaluated by the following method.
  • the “aggregation time” in the examples was determined as the time required for a supernatant to be formed after separating into two layers by placing 20 ml of abrasive in a glass test tube having a diameter of 18 mm and allowing to stand for 10 days.
  • Polishing was performed with the following apparatus and conditions.
  • Polishing machine Full automatic CMP equipment MIRRA (manufactured by APPLIED MATERIALS) Abrasive supply speed: 200ml / min Polishing pad: 2-layer pad IC—1400 K-groove or single-layer pad IC—1000 K-groove (Rodel)
  • Polishing pad conditioning MEC100—PH3. 5L (Mitsubishi Materials Corp.) Polishing surface plate rotation speed: 127rpm
  • Polishing pressure 27.6kPa (Example 1, 2, 4, 5, 9)
  • a film thickness meter UV-1280SE manufactured by KLA-Tencor was used.
  • SiO HDP-SiO film, film thickness 0 ⁇ 8 m
  • SiO high density plasma CVD method
  • STI864CMP000 model number STI864CMP000 made by International S EMATECH.
  • This patterned wafer has a stripe pattern imitating the pattern of STI, with a pattern width of 0. ⁇ , ⁇ — ⁇ ⁇ m, a pattern interval of 100 m, and a pattern density of 10-90%.
  • the pattern groove is entirely covered.
  • Figure 3 shows a schematic cross-sectional side view of a patterned wafer.
  • Reference numeral 51 represents a groove of the silicon wafer.
  • the unevenness of the convex film thickness after polishing is a difference in film thickness between the part where the pattern density is apt to be polished and the dense part where polishing is difficult to proceed. / Indicates that the level difference due to the pattern density is small, that is, the flattening performance is high.
  • the step on the surface of the patterned wafer that is, the depth of the pattern groove (corresponding to L in FIG. 3) was all 350 nm.
  • the present invention is not limited to this value.
  • the film thickness of the convex part at the center of each pattern density pattern was measured one by one.
  • the film thickness of the convex part was obtained.
  • the film thickness variation of the convex part is the difference between the maximum value and the minimum value of the film thickness difference of the convex part of each pattern density in one chip.
  • UV1280SE KLA T Encor
  • the numerical value of the pattern density is 10%, for example, when the pattern wafer is viewed from the direction orthogonal to the surface, the total of the width of the convex pattern and the width of the concave pattern. This means that the ratio of the width of the convex pattern is 10%.
  • a polyoxypropylenediamine having a polymerization average molecular weight of 230 (trade name: polyetheramine) manufactured by BASF and a polyacrylic acid having a molecular weight of 500,000.
  • the additive liquid B1 and the abrasive mixture A were mixed at a mass ratio of 1: 1 while stirring to prepare an abrasive having the composition and pH shown in Table 1.
  • the “at least one substance selected from the group consisting of polyacrylic acid and salts thereof” according to the present invention includes polyacrylic acid ammonium and polyacrylic acid. Both acids are applicable.
  • a polishing agent having the composition and pH shown in Table 1 was prepared in the same manner as in Example 1 except that the additive liquid B2 was prepared and used with 0.6% by mass of polyoxypropylene diamine and 0.6% by mass of polyacrylic acid. Product ⁇ and 7 ⁇ .
  • a polishing agent having a pH of 9.0 was prepared by adding ammonia water as a pH adjusting agent to the polishing agent obtained in the same manner as in Example 1.
  • a polishing agent having the composition and pH shown in Table 1 was prepared in the same manner as in Example 1 except that 1.0% by mass of polyoxypropylene diamine and polyacrylic acid was not used.
  • nitric acid was added as a pH adjuster to prepare an abrasive having the pH shown in Table 1.
  • This A1 solution and the same additive solution B2 solution as in Example 2 were mixed and stirred at a mass ratio of 1: 1 as in Example 1 to obtain an abrasive.
  • the pH adjuster was the strength to use.
  • the resulting abrasive had an abrasive concentration of 0.5% by mass, a polyoxypropylene diamine concentration of 0.3% by mass, a polyacrylic acid concentration of 0.3% by mass, and ⁇ 1 of 6.1. It was.
  • the composition of the abrasive, pH, aggregation time, evaluation results of the polishing characteristics, etc. are shown in Table 12.
  • the polishing time was uniformly 150 seconds.
  • the film thickness variation of the convex part was obtained by measuring the film thickness difference of the convex part of each pattern density after polishing. However, the items for which results are not listed in Table 2 were not evaluated!
  • Examples 1, 2, 3, and 11 the dispersion stability was good. In Examples 1, 2, and 11, the number of defects could be kept low. In Examples 1 and 2, the unevenness of the film thickness of the projections after polishing could be kept small regardless of the pattern density. In other words, a short pattern
  • the surface of the surface to be polished can be made highly flat and the number of defects such as scratches was small.
  • Example 4 Although the dispersion stability was good, the variation in the film thickness of the convex portion was large. This is probably because the amount of the substance according to the present invention is insufficient.
  • Example 5 Although the dispersion stability was good, the number of defects was greatly increased. This is probably because water-soluble polyetheramine is not used.
  • Examples 6 to 8 examine the influence of the substance according to the present invention within the pH range of the present invention. From these results, it is understood that when the substance according to the present invention is not sufficiently present, the dispersion stability deteriorates when the pH is lowered.
  • Example 10 If water-soluble polyetheramine is present and the above substances are sufficiently present, the abrasive dispersibility deteriorates as shown in Example 10 when the pH of the abrasive is less than 6. As shown in FIG. 9, the polishing characteristics (convex thickness variation) became insufficient.
  • the present invention can be suitably used for a semiconductor device that employs ILD, STI, and PMD.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

明 細 書
半導体集積回路装置用研磨剤、研磨方法および半導体集積回路装置 の製造方法
技術分野
[0001] 本発明は、半導体集積回路装置の製造工程に用いられる研磨技術に関する。より 詳しくは、二酸化ケイ素系材料層を含む半導体集積回路装置の製造工程に用いら れる研磨技術に関する。
背景技術
[0002] 近年、半導体集積回路装置の高集積化 ·高機能化にともない、微細化 ·高密度化 のための微細加工技術の開発が求められている。特に、化学的機械的研磨法(Che mical Mechanical Polishing:以下 CMPという)による平坦化技術の重要性が高 まっている。
[0003] たとえば、半導体集積回路装置の微細化や配線の多層化が進むにつれ、製造ェ 程における各層での表面の凹凸(段差)が大きくなりやすいが、この段差力 Sフォトリソ グラフィの焦点深度を越え、十分な解像度が得られなくなるという問題を防ぐために、 CMPは不可欠の技術となって!/、る。
[0004] また、従来の半導体デバイスでは、トランジスタなどの素子間を電気的に分離する ために、 LOCOS (Local Oxidation of Silicon)法というシリコン基板の選択的 熱酸化法が用いられてきたが、熱酸化で形成される分離領域が体積膨張のため表 面に凸凹を発生させる問題があった。また、横方向へ酸化が進行して素子領域に食 い込む問題もあり、微細化の障害となっていた。そのため、近年ではシヤロートレンチ による素子分離法(Shallow Trench Isolation :以下 STIという)が導入されてい る。これは、素子領域を電気的に絶縁するために、シリコン基板にトレンチ溝を設け、 トレンチ溝内にシリコン酸化膜などの絶縁膜を埋め込むものである。
[0005] 図 1を用いて STI工程について例示的に説明する。図 1 (a)は、素子領域をシリコン 窒化膜 3等でマスクして、シリコン基板 1にトレンチ溝 10を形成した後、トレンチ溝 10 を埋め込むように、二酸化ケイ素からなる膜の一種であるシリコン酸化膜 2などの絶縁 膜を堆積した状態である。その後 CMPによって、凸部であるシリコン窒化膜 3上の余 分なシリコン酸化膜 2を研磨除去し、凹部であるトレンチ溝 10内の絶縁膜を残す方法 である。 CMPの際、シリコン酸化膜の研磨速度とシリコン窒化膜の研磨速度に選択 比を持たせ、図 1 (b)のようにシリコン窒化膜 3が露出した時点で研磨が終了するよう に、シリコン窒化膜 3をストッパーとして使用することが一般的である。
[0006] ここで、研磨が過剰であると、図 1 (c)に示すようにトレンチ溝部 10に埋め込まれた シリコン酸化膜が研磨されて窪み、デイツシングと呼ばれる窪み 20のような構造的欠 陥が発生し、平坦化が不十分になったり、電気的な性能が劣化する場合があった。 デイツシングの程度はトレンチ溝の幅に依存し、特に幅の広!/、トレンチ溝ではディッシ ングが大きくなる #1向がある。
[0007] 従来より、 CMPに用いられる研磨砥粒としてはシリカ砥粒が一般的であった力 シ リコン酸化膜の研磨速度とシリコン窒化膜の研磨速度の選択比が小さいため、 STIェ 程においてはこれらに対する研磨選択性に優れた酸化セリウム砥粒が用いられるよう になってきている。
[0008] 特許文献 1には、酸化セリウム砥粒と、添加剤としてカルボキシル基又はカルボキシ ル基の塩からなる親水基を含む有機化合物を含む研磨剤により、凹部に対し凸部を 優先的に研磨し平坦化する技術が開示されて!/、る。ここで!/、う添加剤はデイツシング のトレンチ溝幅依存性を改善するものであり、広!/、トレンチ溝でもデイツシングを低減 するためには、上述の添加剤濃度が高い必要がある。し力も添加剤濃度を高めると、 酸化セリウム砥粒の凝集を促進するため、砥粒の沈殿が起こり研磨剤の分散安定性 が低下する。また、砥粒の凝集が起こるとスクラッチが増加しデバイスが不良になると いう問題もある。
[0009] 例えば、特許文献 1では、純水に砥粒として研磨液全質量の 1 %の酸化セリウムと、 添加剤として 6. 0%のポリカルボン酸アンモニゥム塩を含む研磨液の実施例が開示 されている。し力、し添加剤が高濃度であるため砥粒の凝集が著しぐ研磨液を静置し た場合、酸化セリウム砥粒は数分以内に完全に沈降する。 CMPの研磨工程では、 研磨を行わな!/、待機時間があるため、研磨剤が常に撹拌や流動されて!/、な!/、部分 で砥粒の沈降が発生し、配管部品の閉塞の原因になることがある。 [0010] これを防ぐため、研磨パッド直前の配管内や研磨パッド上で研磨剤に添加剤を混 合する方法もあるが、混合が不十分となったり濃度が不均一になりやすぐ研磨特性 が不安定になりやすかった。また、ノ クド上に砥粒が凝集、付着しやすくなるため、ス クラッチが増加するという問題もあった。
[0011] 酸化セリウム砥粒は、従来のシリカ砥粒に比べ研磨特性は優れるものの、比重が大 き!/、ため沈降しやす!/、。さらに研磨特性の改善のため添加剤を過剰に添加すると凝 集が促進され、凝集沈降が著し!/、と!/、う大きな問題がある。
[0012] 特許文献 2には、シヤロートレンチ分離に適用可能な研磨剤として、酸化セリウム粒 子、水、陰イオン性界面活性剤を含む研磨剤であって、その pH及び粘度 (mPa' s) を、 pHを x、粘度を yとする(X, y)座標で表すと、 A点(5. 5, 0. 9)、 B点(5. 5, 3. 0 )、 C点(10. 0, 3. 0)、D点(9. 0, 0. 9)の 4点で囲まれた領域範囲内にある研磨剤 が好ましいものとして開示されている。そして、グローバルな平坦化を実現するために は、パターン凹部の研磨速度が凸部の研磨速度に比べて十分小さい研磨特性が得 られる範囲に界面活性剤の添加量及び pHを調整する必要があり、研磨剤の粘度は 、 1. 0—2. 5mPa' s、特に 1. 0〜; 1. 4mPa' s力好ましいと記載されている。
[0013] また、界面活性剤の添加量とともに粘度が増加するので、粘度を 1. 0〜; 1. 4mPa - sの範囲内にしてパターン依存性の少ない平坦化特性を実現するためには、界面活 性剤を添加した後の研磨剤の pHは 5. 5〜9、特に 6〜8. 5力 S好ましく、この pH範囲 ではシリコン酸化膜の研磨速度とシリコン窒化膜の研磨速度の選択比を大きくできる と記載されている。また、砥粒に対しあらかじめ微量の分散剤を添加することを例示し ている。
[0014] しかし、この公開公報の実施例に基づ!/、て研磨剤を作製すると、砥粒を分散させた 液に界面活性剤を添加することにより、平均粒径が砥粒分散液の平均粒径の 2〜3 倍に凝集する。そのため、研磨剤中の砥粒の分散性が悪ぐ数分以内に砥粒が沈降 し、使用が困難であり、研磨速度も不十分であった。また、界面活性剤の濃度が高い 場合はデイツシングのバラツキが小さく平坦化特性に優れている力 界面活性剤の濃 度が低めの実施例に基づく研磨剤では、デイツシングのバラツキが大きく平坦化特性 力はくなかった。 [0015] さらに、界面活性剤の濃度が高くなると、スクラッチ数が急激に増加した。これは、 界面活性剤の濃度が高いと酸化セリウム砥粒の凝集、沈降が促進されるためで、研 磨砥粒中にスクラッチの原因となる粗大粒が僅かでも存在すると、凝集することにより 研磨パッド上で蓄積していき、スクラッチの増加の原因となっていると考えられる。ま た、凝集により巨大化した研磨砥粒そのものもスクラッチの原因になる場合もあると考 x_られる。
[0016] このように、従来技術においては、研磨剤の分散安定性及び優れたスクラッチ特性 と、優れた研磨の平坦化特性との両方を備える研磨剤は得られておらず、十分な特 性の半導体デバイスを得ることが難しかった。
[0017] 特許文献 1:特許第 3278532号公報(特許請求の範囲)
特許文献 2:特開 2000— 160137号公報(特許請求の範囲)
特許文献 3:特開平 11 12561号公報 (特許請求の範囲)
特許文献 4:特開 2001— 35818号公報(特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0018] そこで本発明は、上述の課題を解決し、分散安定性に優れ、スクラッチ等の欠陥が 少なぐ優れた研磨の平坦化特性を有する半導体用研磨剤を提供することを目的と する。
課題を解決するための手段
[0019] 本発明の態様 1は、半導体集積回路装置の製造において被研磨面を研磨するた めの化学的機械的研磨用研磨剤であって、当該研磨剤が、酸化セリウム粒子と、水 溶性ポリエーテルァミンと、ポリアクリル酸およびその塩からなる群から選ばれた少な くとも一つの物質と、水とを含有し、当該研磨剤の pHが 6〜9の範囲にあり、当該物 質力 当該研磨剤の全質量に対し 0. 02質量%を超える量で含まれている、研磨剤 を提供する。
[0020] 態様 2は、前記水溶性ポリエーテルァミンが、重量平均分子量が 100〜2, 000の 範囲にあり、前記研磨剤の全質量に対し 0. 00;!〜 20質量%の範囲で含まれている 、態様 1に記載の研磨剤を提供する。 [0021] 態様 3は、前記物質のポリアクリル酸部分の重量平均分子量が 1 , 000-1 , 000, 000の範囲にあり、前記物質が前記研磨剤の全質量に対し 0. 02質量%を超えかつ 0. 5質量%以下の範囲で含まれている、態様 1または 2に記載の研磨剤を提供する
[0022] 態様 4は、前記酸化セリウム粒子が、前記研磨剤の全質量に対し 0.;!〜 5質量%の 範囲で含まれている、態様 1〜3のいずれかに記載の研磨剤を提供する。
[0023] 態様 5は、研磨剤を研磨パッドに供給し、半導体集積回路装置の被研磨面と研磨 ノ ッドとを接触させて、両者間の相対運動により研磨する被研磨面の研磨方法であ つて、当該被研磨面が二酸化ケイ素系材料層の被研磨面であり、当該研磨剤が態 様;!〜 4のいずれかに記載の研磨剤である研磨方法を提供する。
[0024] 態様 6は、前記二酸化ケイ素系材料層が、ホウリンケィ酸塩ガラス(BPSG)層、ホウ ケィ酸塩ガラス(BSG)層またはリンケィ酸塩ガラス(PSG)層である、態様 5に記載の 研磨方法を提供する。
[0025] 態様 7は、前記二酸化ケイ素系材料中のリンまたはホウ素またはリンとホウ素の濃度 がそれぞれ 0.;!〜 20質量%の範囲にある、態様 6に記載の研磨方法を提供する。
[0026] 態様 8は、前記二酸化ケイ素系材料層が二酸化ケイ素層である、態様 5に記載の 研磨方法を提供する。
[0027] 態様 9は、態様 8に記載の研磨方法により、被研磨面を研磨する工程を有する、半 導体集積回路装置の製造方法を提供する。
発明の効果
[0028] 本発明により、分散安定性に優れ、スクラッチ等の欠陥が少なぐ優れた研磨の平 坦化特性を有する半導体用研磨剤が得られる。
図面の簡単な説明
[0029] [図 1]半導体デバイスを研磨する際の半導体デバイスの模式的な側断面図。
[図 2]本発明の研磨方法に適用可能な研磨装置の一例を示す図。
[図 3]パターン付ウェハの模式的側断面図。
符号の説明
[0030] 1 シリコン基板 2 シリコン酸化膜
3 シリコン窒化膜
10 トレンチ'溝
20 窪み
31 半導体デバイス
32 研磨ヘッド
33 研磨定盤
34 研磨パッド
35 研磨剤供給配管
36 研磨剤
51 シリコンウエノヽの、溝
発明を実施するための最良の形態
[0031] 以下に、本発明の実施の形態を図、表、式、実施例等を使用して説明する。なお、 これらの図、表、式、実施例等および説明は本発明を例示するものであり、本発明の 範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発 明の範疇に属し得る。図中、同一の符号は同一の要素を表す。
[0032] 本発明に適用される研磨剤は、半導体集積回路装置(以下、単に半導体デバイス ともいう)の被研磨面を研磨するための化学的機械的研磨用研磨剤であって、酸化 セリウム粒子と、水溶性ポリエーテルァミンと、ポリアクリル酸およびその塩からなる群 力、ら選ばれた少なくとも一つの物質と、水とを含有し、研磨剤の pHが 6〜9の範囲に あり、かつ、上記物質が、研磨剤の全質量に対し 0. 02質量%を超える量で含まれて いる。分散剤を共存させてもよい。なお、本発明において、「被研磨面」とは、半導体 デバイスを製造する過程で現れる中間段階の表面を意味する。
[0033] この研磨剤を使用すると、二酸化ケイ素系材料層を含む半導体デバイスの製造ェ 程において、二酸化ケイ素系材料層の被研磨面を研磨して、スクラッチ等の欠陥が 少なく平坦な表面を有する層を短時間で容易に形成することができる。この二酸化ケ ィ素系材料層は、一つの半導体デバイスに二以上含まれていてもよい。この研磨剤 は、分散安定性も優れている。 [0034] 本発明では、研磨剤中の研磨砥粒としては酸化セリウムを用いる。従来より、二酸 化ケィ素系材料の研磨においては、酸化セリウム砥粒が特異的に大きい研磨速度を 示すことが知られている。これは、酸化セリウムと被研磨膜表面の Si— O部分とが接 触することにより、両者の間に化学的な結合が生じ、単なる機械的作用以上の研削 力を生ずるためである。したがって、酸化セリウムを用いた研磨においては、砥粒と研 磨対象物の接触の制御が重要である。
[0035] 本発明における酸化セリウム砥粒は特に限定されないが、例えば特許文献 3又は 特許文献 4に開示される酸化セリウム砥粒が好ましく使用できる。すなわち、硝酸セリ ゥム(IV)アンモニゥム水溶液にアルカリを加えて水酸化セリウムゲルを作製し、濾過 、洗浄、焼成して得た酸化セリウム粉末が好ましく使用できる。また、高純度の炭酸セ リウムを粉砕後焼成し、さらに粉砕、分級して得られる酸化セリウム砥粒も好ましく使 用できる。
[0036] 酸化セリウム砥粒の平均粒径(直径)は、研磨特性と分散安定性の面から、 0. 01 〜0. 5〃m、特に 0. 02〜0. 3〃m、さらには 0. 05—0. 2〃111力《好ましい。平均粒 径が大きすぎると、半導体基板表面にスクラッチなどの研磨欠陥が発生しやすくなる おそれがある。平均粒径が小さすぎると、研磨速度が低くなるおそれがある。また、平 均粒径が小さすぎると、単位体積あたりの表面積の割合が大きいため、表面状態の 影響を受けやすい。そのため pHや添加剤濃度等の条件によっては凝集しやすくな る場合がある。凝集が起きると半導体基板表面にスクラッチなどの研磨欠陥が発生し やすくなる。
[0037] 酸化セリウム砥粒の研磨剤の全質量に対する割合としては 0. ;!〜 5質量%の範囲 が好ましい。 0. 1質量%未満では充分な研磨速度が得られない場合があり得る。 5 質量%を超えると研磨剤の粘度が高くなり、取扱いが困難になる場合が多くなる。
[0038] 本発明に係る二酸化ケイ素系材料とは、一般的に二酸化ケイ素そのもの、もしくは 二酸化ケイ素に他の元素を含有する材料である。この場合における含有とは他の元 素を均一に含んでいることを意味する。これらの場合における、「他の元素」としては 任意の元素を使用することができる。例えばホウ素、リン、炭素、窒素およびフッ素を 挙げること力 Sでさる。 [0039] 本発明に係る二酸化ケイ素系材料が、ホウ素とリンの少なくともいずれか一方を含 有する場合、その含有濃度により研磨速度が著しく異なるため、本発明の効果が発 揮されやすい。リンまたはホウ素またはリンとホウ素を含有する二酸化ケイ素系材料と しては、二酸化ケイ素系材料中のリンまたはホウ素またはリンとホウ素の濃度がそれ ぞれ 0. ;!〜 20質量%の範囲にある場合に効果が大きい。リンまたはホウ素またはリ ンとホウ素を含有する二酸化ケイ素系材料は、 SiO— CVD (化学的気相成長法)に おいて、原料ガスに SiH (シラン), Oの他に B H (ジボラン)、 PH (ホスフィン)等の 無機ガスや B (OCH ) (トリメトキシボラン)、 P (OCH ) (トリメトキシホスフィン)等の有 機ガスを同時に添加し、成膜すること力 sできる。
[0040] リンまたはホウ素またはリンとホウ素を含有する二酸化ケイ素系材料としてよく知られ たものに、ホウリンケィ酸塩ガラス(BPSG)、ホウケィ酸塩ガラス(BSG)およびリンケ ィ酸塩ガラス(PSG)がある。少ない研磨量で被研磨面の凹凸の高平坦化を実現で きる効果は、酸化セリウム砥粒と被研磨面の表面への水溶性ポリエーテルァミンの吸 着効果によると考えられる。すなわち、水溶性ポリエーテルァミンの吸着により、研磨 圧力の低い凹部では、酸化セリウムと被研磨膜中の Si— O部分との接触による化学 反応が阻害されることで研磨の進行が抑制され、研磨圧力の高い凸部では、吸着し ている水溶性ポリエーテルァミンが剥がれ易くなることで優先的に研磨が進行し、そ れにより、被研磨面の高平坦化が可能になると考えられる。水溶性ポリエーテルアミ ンを使用した場合、被研磨面を少ない研磨量で高平坦化できても、その高平坦化を 実現するための時間が長くなるようになったり、研磨剤中の酸化セリウム粒子の分散 性が低下するという問題が生じる恐れがあり得る。しかしながら、この問題は、本発明 に係る pH領域の選択とポリアクリル酸およびその塩からなる群から選ばれた少なくと も一つの物質を共存させることにより解決することができる。
[0041] なお、 BPSGとは、ケィ素とリンとホウ素と酸素とを主成分とするガラスである。リンと ホウ素とは、それぞれ、 0. ;!〜 20質量%の範囲で変更することができる。 BSGとは、 ケィ素とホウ素と酸素とを主成分とするガラスである。ホウ素は、 0. ;!〜 20質量%の 範囲で変更することができる。また、 PSGとは、ケィ素とリンと酸素とを主成分とするガ ラスである。リンは、 0. ;!〜 20質量%の範囲で変更することができる。 [0042] 研磨剤中の水溶性ポリエーテルァミンについては特に制限はなぐ公知のものから 適宜選択することができる。水溶性は、研磨剤として使用する濃度においてその研磨 剤液中に目視で完全に溶解している状態となる限り、どの程度のものであってもよい
[0043] 水溶性ポリエーテルァミンの分子量は水溶性を有する範囲の分子量である限り限 定されるものではないが、重量平均分子量で、 100-2, 000の範囲にあることが好 ましい。重量平均分子量が 100未満の場合はその効果が小さい。 2, 000を超えると 、純水への溶解性が低下する場合が多い。酸化セリウム砥粒の分散安定性を高める 観点からは、この水溶性ポリエーテルァミンのより好ましい重量平均分子量は 150〜 800であり、さらにより好ましい重量平均分子量は 150〜400である。
[0044] 上記ポリエーテルァミンとは、 2個以上のァミノ基と 2個以上のエーテル性酸素原子 を有する化合物を意味する。アミノ基としては 1級ァミノ基(-NH )が好ましい。ァミノ 基として 2級ァミノ基(一 NH )や 3級アミノ基を有して!/、てもよ!/、が、本発明における ポリエーテルァミンとしては、 2個以上の 1級アミノ基を有し、他のアミノ基を実質的に 有しない化合物が好ましぐ特に 1級ァミノ基のみを 2個有するポリエーテルジァミン が好ましい。ポリエーテルアミンは、多価アルコールやポリエーテルポリオールの水酸 基の水素原子をァミノアルキル基に置換した構造を有する化合物が好ましレ、。多価 アルコールとしては 2〜6価のアルコール、特に 2価アルコールが好ましぐポリエーテ ルポリオールとしては 2〜6価のポリオキシアルキレンポリオール、特にポリオキシアル キレンジオールが好ましい。アミノアルキル基としては、 2-アミノエチル基、 2—ァミノ プロピル基、 2—アミノー 1 メチルェチル基、 3—ァミノプロピル基、 2—アミノー 1、 1 ージメチルェチル基、 4 アミノブチル基などの炭素数 2〜6のァミノアルキル基が好 ましい。
[0045] 上記多価アルコールとしては、エチレングリコール、ジエチレングリコール、プロピレ ングリコール、ジプロピレングリコールなどのエーテル性酸素原子を有していてもよい 炭素数 2〜8の 2価アルコールが好ましい。ポリエーテルポリオールとしては、トリェチ レングリコールやテトラエチレンダリコールなどのポリエチレングリコール(すなわち、 ポリオキシエチレンジォーノレ)、トリプロピレングリコーノレゃテトラプロピレングリコーノレ などのポリプロピレングリコール(すなわち、ポリオキシプロピレンジオール)、ポリ(ォ キシプロピレン ·ォキシエチレン)ジオールなどの 2種以上のォキシアルキレン基を有 するポリオキシアルキレンジオールなどの繰り返し単位が炭素数 2〜6のォキシアル キレン基であるポリエーテルジオールが好まし!/、。
[0046] 上記ポリエーテルジァミンとしては、下記式(1)で表される構造を有する化合物が 好ましい。
[0047] H N- (R-X-) -R-NH (1)
ただし、 Rは炭素数 2〜8のアルキレン基を表し、 Xは酸素原子を表し、 kは 2以上の 整数を表す。 1分子中の複数の Rは互!/、に異なつていてもよい。
[0048] ポリエーテルジァミンとしては下記式(2)で表される構造を有する化合物が特に好 ましい。
[0049] H N-R2-0- (R'-O-) —R2— NH (2)
2 m 2
ただし、 R1はエチレン基またはプロピレン基、 R2は炭素数 2から 6のアルキレン基、 mは 1以上の整数を表し、 R1と R2は同一でも異なっていてもよい。
式(2)で表される具体的なポリエーテルジァミンとしては、例えば、ポリオキシプロピ レンジァミン
Figure imgf000012_0001
R2がプロピレン基、 mが 1以上の化合物)、ポリオキシエチレンジアミ ン(R^ R2がエチレン基、 mが 1以上の化合物)、 4, 7, 10 トリオキサ—トリデカン 1 , 13 ジァミン (R1がエチレン基、 R2がトリメチレン基、 mが 2の化合物)などがある。
[0050] 研磨剤中に水溶性ポリエーテルアミンを含有させると、二酸化ケイ素系材料層の研 磨時に、二酸化ケイ素系材料層に対する研磨速度を制御して、凹部の研磨進行を 抑制しながら凸部を優先して研磨することができる。それにより、極めて小さいパター ン依存性で高平坦化に研磨することが可能になる。
[0051] 研磨剤中における水溶性ポリエーテルァミンの濃度は、上記の研磨速度制御の十 分な効果を得る点から、 0. 00;!〜 20質量%の範囲で、研磨速度、研磨剤混合物の 均一性、水溶性ポリエーテルァミンの重合平均分子量等を考慮して適宜設定するこ とが好ましい。研磨剤中における水溶性ポリエーテルァミンの濃度は、 0. 03〜5質 量%の範囲がより好ましぐ特に好ましくは 0. 05〜3質量%の範囲である。
[0052] 本発明に係るポリアクリル酸およびその塩からなる群から選ばれた少なくとも一つの 物質としては、ポリアクリル酸、そのアンモニゥム塩、アミン塩、金属塩(アルカリ金属 塩、アルカリ土類塩等)を例示することができる。ポリアクリル酸、そのアンモニゥム塩 が好ましい。混合物であってもよい。ポリアクリル酸の塩は酸化セリウムの分散剤とし ても機能し得る。
[0053] いずれの場合についても、この物質のポリアクリル酸部分の重量平均分子量が 1 , 000—1 , 000, 000の範囲にあることカ好ましい。 1 , 000未満では一般に入手しに くぐ 1 , 000, 000を超えると粘性が高くなるため取り扱いが困難になる。
[0054] 本発明に係る研磨剤中における上記物質の割合は 0. 02質量%を超えていること が重要である。 0. 02質量%以下では、砥粒の分散性が不十分である。上記物質は 、研磨剤の全質量に対し 02質量%を超えかつ 0. 5質量%以下の範囲で含まれてい ること力 S好ましい。 0. 5を超えると砥粒の凝集が進行する恐れがある。砥粒の不十分 な分散性や凝集の進行は、研磨時にスクラッチ等の欠陥を生じる原因となる。なお、 上記物質は、砥粒の分散剤等他の機能を有する剤としても使用できる場合があるが 、そのような場合における「他の機能を有する剤」の量も本発明に係る研磨剤中にお ける上記物質の割合の中に加えられることは言うまでもない。たとえば、本発明に係 る研磨剤中に、砥粒の分散剤としてポリアクリル酸アンモニゥムが 0. 005質量%加え られ、更に、ポリアクリル酸力 上記物質としての機能を果たすために 0. 02質量%だ け添加される場合の本発明に係る研磨剤中における上記物質の割合は 0. 025質量 %である。
[0055] 本発明に係る水については、特に制限はないが、他の剤に対する影響、不純物の 混入、 pH等への影響から、純水、超純水、イオン交換水等を好ましく使用することが できる。
[0056] 本研磨剤は、研磨剤の研磨特性と分散安定性を考慮して、 pH6〜9の範囲で使用 される。 pH力 未満の場合、分散性が低下する恐れがあり、 9を超える場合、被研磨 面全体としての研磨速度が低下する可能性が大きい。
[0057] 本発明に係る研磨剤には、他の成分を共存させてもよい。代表的なものに分散剤 を挙げること力 Sできる。分散剤としては、水溶性有機高分子や陰イオン性の界面活性 剤がある。水溶性有機高分子としてはカルボン酸基またはカルボン酸アンモニゥム塩 等を有するポリマーが好まし!/、。
[0058] 本発明に係る研磨剤は、必ずしも構成する研磨材料をあらかじめすべて混合したも のとして研磨の場に供給する必要はない。すなわち研磨の場に供給する際に研磨材 料が混合されて研磨剤の組成になってもよい。たとえば、酸化セリウム粒子と水と、ォ プシヨンで分散剤とを含む液 1と、水溶性ポリエーテルアミン等を含む液 2とに分け、 研磨の際に適宜、混合比率を調整して混合して使用しても良い。この方法は二酸化 ケィ素系材料層中のホウ素やリンの濃度に応じて、研磨速度を調整する必要がある 際には有用な方法である。
[0059] 本発明の研磨剤を用いて半導体基板を研磨する場合には、研磨剤を研磨パッドに 供給し、半導体デバイスの被研磨面と研磨パッドとを接触させて、両者間の相対運動 により、二酸化ケイ素系材料層の被研磨面を研磨する。なお、二酸化ケイ素系材料 についての条件は、本発明に係る研磨剤に関連して説明したのと同様である。
[0060] 研磨装置としては、一般的な研磨装置を使用できる。たとえば図 2は、本発明の研 磨方法に適用可能な研磨装置の一例を示す図である。研磨剤供給配管 35から研磨 剤 36を供給しながら、研磨ヘッド 32に半導体デバイス 31を保持し、研磨定盤 33表 面に貼り付けた研磨パッド 34に接触させ、かつ研磨ヘッド 32と研磨定盤 33を回転さ せ相対運動させる方式である。ただし、本発明に係る研磨装置はこれに限定されな い。
[0061] 研磨ヘッド 32は回転だけでなく直線運動をしてもよい。研磨定盤 33および研磨パ ッド 34が半導デバイス 31と同程度またはそれ以下の大きさであってもよい。その場合 は研磨ヘッド 32と研磨定盤 33とを相対的に移動させることにより、半導体デバイスの 全面を研磨できるようにすること力好ましい。また研磨定盤 33および研磨パッド 34は 回転式でなくてもよぐたとえばベルト式で一方向に移動するものでもよい。
[0062] 研磨装置の研磨条件には特に制限はないが、研磨ヘッド 32に荷重をかけ研磨パ ッド 34に押しつけることにより研磨速度を向上できる。このときの研磨圧力は、 0. 5〜 50kPa程度が好ましぐ研磨速度の半導体デバイス内均一性、平坦性、スクラッチ等 の研磨欠陥防止の観点から、 3〜40kPa程度が特に好ましい。また研磨定盤、研磨 ヘッドの回転数は、 50〜500rpm程度が好ましいが、これらに限定されない。 [0063] 研磨パッドとしては一般的な不織布、発泡ポリウレタン、多孔質樹脂、非多孔質樹 脂等からなるものが使用できる。また、研磨パッドの表面に、研磨剤の供給を促進さ せたり、研磨剤が一定量溜まるようにするために、格子状、同心円状、らせん状など の溝加工がなされて!/、てもよ!/、。
[0064] このようにして、本発明の研磨剤を使用した研磨により、少量の研磨で、短時間に、 二酸化ケイ素系材料層の被研磨面の凹凸の高平坦化を実現できるようになる。研磨 後の表面は非常に平坦であり、残った膜厚を厚くすることも容易にできる。研磨面の 研磨欠陥も少ない。このため、成膜のコスト低減とそのスループットの改善も可能とな る。従って、本研磨方法を使用した半導体デバイスの製造においては、その品質を 向上でき、コストを低減でき、スループットを改善することができる。本発明は、特に、 I LD、 STIおよび PMDを採用する半導体デバイスに好適に使用することができる。 実施例
[0065] 以下、本発明に係る例を説明する。例 1 , 2, 3、 11が実施例、その他が比較例であ る。実施例および比較例において「%」は、特に断らない限り質量%を意味する。特 性値は下記の方法により評価した。
[0066] (pH)
横河電機社製の pH81 - 11で測定した。
[0067] (砥粒の平均粒径)
レーザー散乱'回折装置 (堀場製作所製、商品名: LA— 920)を使用して求めた。
[0068] (研磨剤の分散安定性)
実施例における「凝集時間」は、直径 18mmのガラス製試験管に研磨剤を 20ミリリ ットル入れて 10日間静置し、二層に分離し上澄み液ができるまでの時間として求め た。
[0069] (研磨特性)
(1)研磨条件
研磨は以下の装置および条件で行った。
研磨機:全自動 CMP装置 MIRRA (APPLIED MATERIALS社製) 研磨剤供給速度: 200ミリリットル/分 研磨パッド: 2層パッド IC— 1400の K— grooveまたは単層パッド IC— 1000の K— groove (Rodel社製)
研磨パッドのコンディショニング: MEC100— PH3. 5L (三菱マテリアル社製) 研磨定盤の回転数: 127rpm
研磨ヘッドの回転数: 129rpm
研磨圧: 27· 6kPa (例 1、 2, 4, 5, 9の研磨剤の場合)
[0070] (2)評価
研磨速度の測定:膜厚計 UV— 1280SE (KLA—Tencor社製)を使用した。
研磨後欠陥の測定:欠陥検査装置 KLA— 2132 (KLA— Tencor社製)を使用し て、研磨したウェハ面内のスクラッチ等の欠陥数を測定した。
[0071] (3)被研磨物
凸部膜厚ばらつきの計測による研磨による平坦化の評価には、 International S EMATECH製の型番 STI864CMP000のパターンウェハに高密度プラズマ CVD 法により SiO (HDP- SiO膜、膜厚 0· 8 m)を製膜したパターン付ウェハを使用し
2 2
た。このパターン付ウェハは、 STIのパターンを模した、パターン幅が 0. δ , ΐη—δΟΟ 〃m、パターン間隔が 100 mでパターン密度が 10〜90%等のストライプパターン を有し、シリコン面のパターン溝は全面被覆されている。パターン付ウェハの模式的 側断面図を図 3に示す。符号 51がシリコンウェハの溝を表す。
[0072] 研磨後の凸部膜厚ばらつきは、研磨が進行しやすいパターン密度が疎な部分と研 磨が進行しにくい密部分との膜厚差であるので、凸部膜厚ばらつきが小さ!/、ほどバタ ーン密度による段差が少ない、つまり平坦化性能が高いことを示す。
[0073] なお、パターン付ウェハ表面の段差すなわちパターン溝深さ(図 3の Lに相当)はす ベて 350nmであった力 本発明はこの数値に限定されるものではない。
[0074] パターンウェハについて、一つのチップ内における、パターン密度が 20%〜90% のそれぞれの部分について、各パターン密度のパターンの中央部における凸部の 膜厚を一点ずつ測定し、各パターン密度における凸部膜厚を求めた。凸部膜厚ばら つきは、 1つのチップ内における各パターン密度の凸部の膜厚差の最大値と最小値 の差である。膜厚の測定には光干渉式全自動膜厚測定装置 UV1280SE (KLA T encor社製)を用いた。
[0075] なお、パターン密度の数値は、たとえば 10%の場合、パターンウェハをその面に直 交する方向から見た場合、凸部のパターンの幅と凹部のパターンの幅との合計に対 する凸部のパターンの幅の割合が 10%であることを意味する。
[0076] 研磨後欠陥については、 PE— TEOS膜付 Siウエノ、 {Tetra— Ethyl— Ortho— Sil icate(TEOS)を原料としたプラズマ CVD法により製膜した Si〇2膜 }を 60秒間研磨 後、洗浄および乾燥してから、 KLA— 2132にて測定を行った。欠陥数はウェハ 1枚 あたりに検出された欠陥の総数を意味する。この平均値を出すのに各水準につき 2 枚のウェハを使用した。
[0077] [例 1]
酸化セリウム砥粒と、分散剤としての重合平均分子量 5000のポリアクリル酸アンモ 二ゥムとを質量比で 100 : 0. 7となるようにして脱イオン水中で撹拌しながら混合し、 超音波分散、フィルタリングを施して、砥粒濃度が 10%、分散剤濃度が 0. 07%の混 合物を作製した。この混合物を脱イオン水で 5倍に希釈し、砥粒濃度 2%、分散剤濃 度 0. 014%の砥粒混合物 Aを作製した。砥粒混合物 Aの pHは 7. 6であり、砥粒の 平均粒径は 0· 19 mであった。
[0078] 次に、脱イオン水中に、水溶性ポリエーテルァミンとして重合平均分子量 230のポリ ォキシプロピレンジァミン(BASF社製、商品名ポリエーテルァミン)および分子量 50 00のポリアクリル酸を溶解し、ポリオキシプロピレンジァミン濃度が 1. 0質量%、ポリ アクリル酸濃度が 0. 6質量%の添加剤液 B1を作製した。
[0079] この添加剤液 B1と砥粒混合物 Aとを、質量比 1: 1で、撹拌しながら混合することに より表 1の組成および pHの研磨剤を作製した。なお、いずれの例においても、本発 明の定義によれば、本発明に係る「ポリアクリル酸およびその塩からなる群から選ば れた少なくとも一つの物質」には、ポリアクリル酸アンモニゥムとポリアクリル酸との両 方が該当する。
[0080] [例 2]
ポリオキシプロピレンジァミンが 0. 6質量%、ポリアクリル酸が 0. 6質量%の添加剤 液 B2を作製し使用した以外は例 1と同様にして表 1の組成および pHの研磨剤を作 ^^し 7^。
[0081] [例 3]
例 1と同様にして得た研磨剤に、 pH調整剤としてアンモニア水を加えて pH9. 0の 研磨剤を作製した。
[0082] [例 4]
ポリオキシプロピレンジァミンが 1. 0質量%、ポリアクリル酸を不使用の添加剤液 B4 を作製し使用した以外は例 1と同様にして表 1の組成および pHの研磨剤を作製した
[0083] [例 5]
ポリオキシプロピレンジァミンは不使用、ポリアクリル酸が 0. 34質量%の添加剤液 B5を作製し使用し、 pH調整剤としてアンモニア水を加えた以外は例 1と同様にして 表 1の組成および pHの研磨剤を作製した。
[0084] [例 6〜8]
例 4と同一の条件で作製した研磨剤に、 pH調整剤として硝酸を加え、 pHを表 1の 値にした研磨剤を作製した。
[0085] [例 9、 10]
例 1と同一の条件で作製した研磨剤に、 pH調整剤としてそれぞれアンモニア、硝 酸を加え、 pHを表 1の値にして例 9、 10の研磨剤を作製した。
[0086] [例 11]
酸化セリウム砥粒と、分散剤としての重合平均分子量 5000のポリアクリル酸アンモ 二ゥムとを質量比で 50 : 0. 35となるようにして脱イオン水中で撹拌しながら混合し、 超音波分散、フィルタリングを施して、砥粒濃度が 5. 0質量%、分散剤濃度が 0. 03 5%の混合物を作製した。この混合物を脱イオン水で 5倍に希釈し、砥粒濃度 1. 0質 量%、分散剤濃度 0. 007質量%の砥粒混合物 A1液を作製した。
[0087] この A1液と、例 2と同様の添加剤液 B2液とを、例 1と同様に質量比 1: 1で混合、撹 拌して、研磨剤を得た。 pH調整剤は用いな力、つた。得られた研磨剤は、砥粒濃度が 0. 5質量%、ポリオキシプロピレンジァミン濃度が 0. 3質量%、ポリアクリル酸濃度が 0. 3質量%、 ^1が 6. 1であった。 [0088] 上記各例について、研磨剤の組成、 pH、凝集時間、研磨特性の評価結果等を表 1 2に示す。研磨時間は一律に 150秒間とした。凸部膜厚ばらつきは、研磨後の、各 パターン密度の凸部の膜厚差を測定して求めた。ただし、表 2に結果の記載がない 項目につ!/、ては評価を行わなかった。
[0089] [表 1]
Figure imgf000019_0001
( 1 ) 砥粒:酸化セリウム (粒径 0 . 1 9 μ m) 0
( 2 ) 分散剤 :いずれの系につ 1^ てもポリアクリル酸アンモニゥム 0 . 0 0 7質量%,
[0090] [表 2]
Figure imgf000019_0002
例 1 , 2, 3、 11については、分散安定性は良好であった。例 1 , 2、 11では、欠陥数 も低く抑えることカできた。また、例 1, 2では、研磨後の凸部膜厚のばらつきもパター ン密度によらず小さく抑えることができた。すなわち、短時間でかつ小さいパターン依 存性で被研磨面の凹凸の高平坦化を実現でき、スクラッチ等の欠陥数も少なかった
[0092] これに対し、例 4では、分散安定性は良好なものの、凸部膜厚のばらつきが大きく なった。これは恐らく本発明に係る物質量が不足したためであろうと考えられる。
[0093] 例 5では、分散安定性は良好なものの、欠陥数が大幅に増加した。これは、水溶性 ポリエーテルァミンが使用されていないためと考えられる。
[0094] 例 6〜8は pHが本発明に係る範囲内での本発明に係る物質の影響を調べたもの である。これらの結果から、本発明に係る物質が十分に存在しない場合、 pHを下げ ると分散安定性が悪化することが理解される。
[0095] 上記の結果から、本発明の要件を満たせば、少な!/、研磨量で短時間に被研磨面 の凹凸の高平坦化を実現でき、その欠陥も少なぐかつ、研磨剤の分散性も良好で あること力 Sわ力、る。一方、水溶性ポリエーテルァミンが存在しないと、欠陥数が増大し 、また、上記物質が存在しないかその量が不十分であると、 pHが低い場合には凸部 研磨剤の分散性が悪化し、高い場合には、研磨特性(凸部膜厚ばらつき)が不十分 になることが判明した。なお、水溶性ポリエーテルァミンが存在し、上記物質が十分 存在しても研磨剤の pHが 6未満では、例 10に示すように研磨剤の分散性が悪化し、 9を超えると、例 9に示すように研磨特性(凸部膜厚ばらつき)が不十分になった。
[0096] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら 力、である。
本出願は、 2006年 9月 13日出願の日本特許出願 2006— 248220に基づくものであり 、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0097] 本発明は、 ILD、 STIおよび PMDを採用する半導体デバイスに好適に使用するこ と力 Sできる。

Claims

請求の範囲
[1] 半導体集積回路装置の製造において被研磨面を研磨するための化学的機械的研 磨用研磨剤であって、
当該研磨剤が、
酸化セリウム粒子と、
水溶性ポリエーテルァミンと、
ポリアクリル酸およびその塩からなる群から選ばれた少なくとも一つの物質と、 水とを含有し、
当該研磨剤の pHが 6〜9の範囲にあり、
当該物質が、当該研磨剤の全質量に対し 0. 02質量%を超える量で含まれている 研磨剤。
[2] 前記水溶性ポリエーテルアミンカ S、重量平均分子量が 100〜2, 000の範囲にあり 、前記研磨剤の全質量に対し 0. 00;!〜 20質量%の範囲で含まれている、請求項 1 に記載の研磨剤。
[3] 前記物質のポリアクリル酸部分の重量平均分子量が 1 , 000—1 , 000, 000の範 囲にあり、前記物質が前記研磨剤の全質量に対し 0. 02質量%を超えかつ 0. 5質量 %以下の範囲で含まれている、請求項 1または 2に記載の研磨剤。
[4] 前記酸化セリウム粒子が、前記研磨剤の全質量に対し 0. ;!〜 5質量%の範囲で含 まれて!/、る、請求項;!〜 3の!/、ずれかに記載の研磨剤。
[5] 研磨剤を研磨パッドに供給し、半導体集積回路装置の被研磨面と研磨パッドとを接 触させて、両者間の相対運動により研磨する被研磨面の研磨方法であって、 当該被研磨面が二酸化ケイ素系材料層の被研磨面であり、
当該研磨剤が請求項 1〜4のいずれかに記載の研磨剤である
研磨方法。
[6] 前記二酸化ケイ素系材料層が、ホウリンケィ酸塩ガラス(BPSG)層、ホウケィ酸塩 ガラス(BSG)層またはリンケィ酸塩ガラス(PSG)層である、請求項 5に記載の研磨 方法。
[7] 前記二酸化ケイ素系材料中のリンまたはホウ素またはリンとホウ素の濃度がそれぞ れ 0.;!〜 20質量%の範囲にある、請求項 6に記載の研磨方法。
[8] 前記二酸化ケイ素系材料層が二酸化ケイ素層である、請求項 5に記載の研磨方法
[9] 請求項 8に記載の研磨方法により、被研磨面を研磨する工程を有する、半導体集 積回路装置の製造方法。
PCT/JP2007/067602 2006-09-13 2007-09-10 Agent de polissage pour dispositif à semi-conducteur en circuit intégré, procédé de polissage, et procédé de fabrication du dispositif à semi-conducteur en circuit intégré WO2008032681A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008534333A JP5157908B2 (ja) 2006-09-13 2007-09-10 半導体集積回路装置用研磨剤、研磨方法および半導体集積回路装置の製造方法
KR1020097005253A KR101349983B1 (ko) 2006-09-13 2007-09-10 반도체 집적 회로 장치용 연마제, 연마 방법 및 반도체 집적 회로 장치의 제조 방법
EP07807012A EP2063461A4 (en) 2006-09-13 2007-09-10 POLISHING AGENT FOR INTEGRATED CIRCUIT SEMICONDUCTOR DEVICE, POLISHING METHOD, AND METHOD OF MANUFACTURING THE INTEGRATED CIRCUIT SEMICONDUCTOR DEVICE
CN2007800340482A CN101517709B (zh) 2006-09-13 2007-09-10 半导体集成电路装置用抛光剂、抛光方法、以及制造半导体集成电路装置的方法
US12/403,864 US20090181539A1 (en) 2006-09-13 2009-03-13 Polishing agent for semiconductor integrated circuit device, polishing method, and method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006248220 2006-09-13
JP2006-248220 2006-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/403,864 Continuation US20090181539A1 (en) 2006-09-13 2009-03-13 Polishing agent for semiconductor integrated circuit device, polishing method, and method for manufacturing semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
WO2008032681A1 true WO2008032681A1 (fr) 2008-03-20

Family

ID=39183740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067602 WO2008032681A1 (fr) 2006-09-13 2007-09-10 Agent de polissage pour dispositif à semi-conducteur en circuit intégré, procédé de polissage, et procédé de fabrication du dispositif à semi-conducteur en circuit intégré

Country Status (7)

Country Link
US (1) US20090181539A1 (ja)
EP (1) EP2063461A4 (ja)
JP (1) JP5157908B2 (ja)
KR (1) KR101349983B1 (ja)
CN (1) CN101517709B (ja)
TW (1) TWI384059B (ja)
WO (1) WO2008032681A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2346069A1 (en) * 2008-11-07 2011-07-20 Asahi Glass Company Limited Abrasive, polishing method, method for manufacturing semiconductor integrated circuit device
WO2013172111A1 (ja) 2012-05-18 2013-11-21 株式会社 フジミインコーポレーテッド 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
KR20160135194A (ko) 2014-03-20 2016-11-25 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물, 연마 방법 및 기판의 제조 방법
CN114373807A (zh) * 2021-11-26 2022-04-19 江苏科来材料科技有限公司 一种晶硅电池的钝化结构及其制备方法
JP2022545469A (ja) * 2019-08-21 2022-10-27 アプライド マテリアルズ インコーポレイテッド 研磨パッドの付加製造

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068068B1 (ko) * 2002-07-22 2011-09-28 아사히 가라스 가부시키가이샤 반도체용 연마제, 그 제조 방법 및 연마 방법
US9358659B2 (en) 2013-03-04 2016-06-07 Cabot Microelectronics Corporation Composition and method for polishing glass
TWI517935B (zh) 2013-04-16 2016-01-21 國立台灣科技大學 氣體添加硏磨液的供應系統及其方法
CN104726028A (zh) * 2013-12-18 2015-06-24 安集微电子(上海)有限公司 一种化学机械抛光液及其使用方法
CN104130714B (zh) * 2014-07-01 2015-10-28 蚌埠市高华电子有限公司 一种含有磨料的适用于金属的混合抛光液及其制备方法
JP6268069B2 (ja) * 2014-09-12 2018-01-24 信越化学工業株式会社 研磨組成物及び研磨方法
JP2018506176A (ja) * 2014-12-16 2018-03-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ゲルマニウムを含む基板の高効率研磨のための化学機械研磨(cmp)組成物
KR102500452B1 (ko) * 2018-03-27 2023-02-16 후지필름 가부시키가이샤 연마액, 화학적 기계적 연마 방법
CN113004799A (zh) * 2019-12-19 2021-06-22 安集微电子科技(上海)股份有限公司 一种化学机械抛光液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112561A (ja) 1997-04-28 1999-01-19 Seimi Chem Co Ltd 半導体用研磨剤および半導体用研磨剤の製造方法
JP2000160137A (ja) 1998-11-30 2000-06-13 Hitachi Chem Co Ltd 研磨剤及び基板の研磨法
JP2001035818A (ja) 1999-07-16 2001-02-09 Seimi Chem Co Ltd 半導体用研磨剤
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
JP2005038924A (ja) * 2003-07-16 2005-02-10 Sanyo Chem Ind Ltd Cmpプロセス用研磨液
JP2006278522A (ja) * 2005-03-28 2006-10-12 Seimi Chem Co Ltd 半導体集積回路装置用研磨剤、研磨方法および半導体集積回路装置の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840623A (en) * 1995-10-04 1998-11-24 Advanced Micro Devices, Inc. Efficient and economical method of planarization of multilevel metallization structures in integrated circuits using CMP
FR2761629B1 (fr) * 1997-04-07 1999-06-18 Hoechst France Nouveau procede de polissage mecano-chimique de couches de materiaux semi-conducteurs a base de polysilicium ou d'oxyde de silicium dope
US6099604A (en) * 1997-08-21 2000-08-08 Micron Technology, Inc. Slurry with chelating agent for chemical-mechanical polishing of a semiconductor wafer and methods related thereto
JPH11181403A (ja) * 1997-12-18 1999-07-06 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
JP2001185514A (ja) * 1999-12-27 2001-07-06 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
TWI228538B (en) * 2000-10-23 2005-03-01 Kao Corp Polishing composition
JP5017574B2 (ja) 2001-05-25 2012-09-05 エア プロダクツ アンド ケミカルズ インコーポレイテッド 酸化セリウム研磨剤及び基板の製造方法
KR101068068B1 (ko) * 2002-07-22 2011-09-28 아사히 가라스 가부시키가이샤 반도체용 연마제, 그 제조 방법 및 연마 방법
JP2004247542A (ja) * 2003-02-14 2004-09-02 Kao Corp 精密部品用基板の製造方法
KR100539983B1 (ko) * 2003-05-15 2006-01-10 학교법인 한양학원 Cmp용 세리아 연마제 및 그 제조 방법
JP4718107B2 (ja) * 2003-05-20 2011-07-06 株式会社荏原製作所 基板保持装置及び研磨装置
US20050189322A1 (en) * 2004-02-27 2005-09-01 Lane Sarah J. Compositions and methods for chemical mechanical polishing silica and silicon nitride
JP2006041034A (ja) * 2004-07-23 2006-02-09 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
JP2006165142A (ja) * 2004-12-06 2006-06-22 Jsr Corp 化学機械研磨用水系分散体及び化学機械研磨方法
JP2006173411A (ja) * 2004-12-16 2006-06-29 Kao Corp 半導体基板用研磨液組成物
JP2006202968A (ja) * 2005-01-20 2006-08-03 Sharp Corp 半導体装置の製造方法
KR20070112453A (ko) * 2005-03-16 2007-11-26 아사히 가라스 가부시키가이샤 반도체 집적 회로 장치용 연마제, 연마 방법 및 반도체집적 회로 장치의 제조 방법
JP2006339594A (ja) * 2005-06-06 2006-12-14 Seimi Chem Co Ltd 半導体用研磨剤
US20060278614A1 (en) * 2005-06-08 2006-12-14 Cabot Microelectronics Corporation Polishing composition and method for defect improvement by reduced particle stiction on copper surface
US7265055B2 (en) * 2005-10-26 2007-09-04 Cabot Microelectronics Corporation CMP of copper/ruthenium substrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
JPH1112561A (ja) 1997-04-28 1999-01-19 Seimi Chem Co Ltd 半導体用研磨剤および半導体用研磨剤の製造方法
JP2000160137A (ja) 1998-11-30 2000-06-13 Hitachi Chem Co Ltd 研磨剤及び基板の研磨法
JP2001035818A (ja) 1999-07-16 2001-02-09 Seimi Chem Co Ltd 半導体用研磨剤
JP2005038924A (ja) * 2003-07-16 2005-02-10 Sanyo Chem Ind Ltd Cmpプロセス用研磨液
JP2006278522A (ja) * 2005-03-28 2006-10-12 Seimi Chem Co Ltd 半導体集積回路装置用研磨剤、研磨方法および半導体集積回路装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2063461A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2346069A1 (en) * 2008-11-07 2011-07-20 Asahi Glass Company Limited Abrasive, polishing method, method for manufacturing semiconductor integrated circuit device
EP2346069A4 (en) * 2008-11-07 2012-06-13 Asahi Glass Co Ltd ABRASIVE, POLISHING METHOD AND METHOD FOR PRODUCING AN INTEGRATED SEMICONDUCTOR SWITCHING
WO2013172111A1 (ja) 2012-05-18 2013-11-21 株式会社 フジミインコーポレーテッド 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
KR20150014967A (ko) 2012-05-18 2015-02-09 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 그것을 사용한 연마 방법 및 기판의 제조 방법
US9422454B2 (en) 2012-05-18 2016-08-23 Fujimi Incorporated Polishing composition, polishing method using same, and method for producing substrate
KR20160135194A (ko) 2014-03-20 2016-11-25 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물, 연마 방법 및 기판의 제조 방법
US10106704B2 (en) 2014-03-20 2018-10-23 Fujimi Incorporated Polishing composition, polishing method, and method for producing substrate
JP2022545469A (ja) * 2019-08-21 2022-10-27 アプライド マテリアルズ インコーポレイテッド 研磨パッドの付加製造
US11965103B2 (en) 2019-08-21 2024-04-23 Applied Materials, Inc. Additive manufacturing of polishing pads
CN114373807A (zh) * 2021-11-26 2022-04-19 江苏科来材料科技有限公司 一种晶硅电池的钝化结构及其制备方法

Also Published As

Publication number Publication date
TWI384059B (zh) 2013-02-01
EP2063461A4 (en) 2010-06-02
KR20090051224A (ko) 2009-05-21
JPWO2008032681A1 (ja) 2010-01-28
CN101517709A (zh) 2009-08-26
JP5157908B2 (ja) 2013-03-06
TW200900488A (en) 2009-01-01
KR101349983B1 (ko) 2014-01-13
CN101517709B (zh) 2011-05-25
EP2063461A1 (en) 2009-05-27
US20090181539A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5157908B2 (ja) 半導体集積回路装置用研磨剤、研磨方法および半導体集積回路装置の製造方法
US8030213B2 (en) Polishing compound for semiconductor integrated circuit device, polishing method and method for producing semiconductor integrated circuit device
US7695345B2 (en) Polishing compound for semiconductor integrated circuit device, polishing method and method for producing semiconductor integrated circuit device
KR100988749B1 (ko) 반도체용 연마제, 그 제조 방법 및 연마 방법
WO2010052990A1 (ja) 研磨剤、研磨方法および半導体集積回路装置の製造方法
KR20120102792A (ko) Cmp용 연마액 및 이것을 사용한 연마 방법
KR20080012864A (ko) 반도체용 연마제
US20090176373A1 (en) Polishing agent for semiconductor integrated circuit device, polishing method, and method for manufacturing semiconductor integrated circuit device
JP5186707B2 (ja) Cmp研磨剤、cmp研磨剤用添加液及びこれらを用いた基板の研磨方法
JP2010272733A (ja) 研磨剤及びこの研磨剤を用いた基板の研磨方法
JP2003158101A (ja) Cmp研磨剤及び製造方法
JP2005286160A (ja) Cmp研磨剤及び基板の研磨方法
JP4878728B2 (ja) Cmp研磨剤および基板の研磨方法
JP2007073596A (ja) 研磨剤、その製造方法、研磨方法および半導体集積回路装置の製造方法
TW201634655A (zh) 研磨劑與研磨方法、及研磨用添加液
JP2011233748A (ja) 基板の研磨方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034048.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534333

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007807012

Country of ref document: EP

Ref document number: 1020097005253

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE