WO2008032638A1 - Method of recycling zinc-containing converter dust - Google Patents

Method of recycling zinc-containing converter dust Download PDF

Info

Publication number
WO2008032638A1
WO2008032638A1 PCT/JP2007/067421 JP2007067421W WO2008032638A1 WO 2008032638 A1 WO2008032638 A1 WO 2008032638A1 JP 2007067421 W JP2007067421 W JP 2007067421W WO 2008032638 A1 WO2008032638 A1 WO 2008032638A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
zinc
mass
converter
content
Prior art date
Application number
PCT/JP2007/067421
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromichi Takesue
Masaru Sadachika
Saburo Sato
Original Assignee
Astec Irie Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Irie Co., Ltd. filed Critical Astec Irie Co., Ltd.
Priority to JP2008512635A priority Critical patent/JP4750846B2/en
Publication of WO2008032638A1 publication Critical patent/WO2008032638A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • C21C5/40Offtakes or separating apparatus for converter waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/248Binding; Briquetting ; Granulating of metal scrap or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/28Obtaining zinc or zinc oxide from muffle furnace residues
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2200/00Recycling of non-gaseous waste material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • C21C2007/0062Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires with introduction of alloying or treating agents under a compacted form different from a wire, e.g. briquette, pellet
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2200/00Recycling of waste material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention divides the zinc-containing converter dust generated in the converter process during the production of steel into a dust component with a low zinc content and a dust component with a high zinc content, and efficiently recycles it into a blast furnace, converter or electric furnace.
  • the present invention relates to a method for recycling zinc-containing converter dust.
  • converter dust recovered by an exhaust gas recovery system (OG recovery system) for non-combustion converters has been recycled as blast furnace raw material through a sintering process.
  • Blast-furnace recycling of such converter dust can be performed without problems for converter dust with a low zinc content (1% by mass or less).
  • OG recovery system exhaust gas recovery system
  • converter dust having a high zinc content is used as a blast furnace raw material, there is a problem of causing operational troubles such as shelves.
  • FIG. 4 shows an example of a conventional dezincification method for converter dust.
  • the strike is conveyed to the coarse particle separator 42, where coarse particles having a large particle size (coarse dust) are separated.
  • the zinc-containing fine dust that has passed through the coarse separator 42 is concentrated by the thickener 43 and then dehydrated by the filter press 44.
  • the zinc-containing fine dust thus obtained is subjected to drying treatment 45, molding 46, and dezincing treatment 47.
  • the dezincing treatment 47 is performed, for example, by reducing iron oxide in the dust at 1100 to 1300 ° C in a rotary reduction furnace and simultaneously reducing the contained zinc and separating and recovering the vaporized metallic zinc (for example, Japan). (See Japanese Laid-Open Patent Publication No. 2001-294942).
  • the converter gas discharged from the non-combustion dust collector 41 is accumulated in the gas holder.
  • Japanese Patent Laid-Open No. 2004-122024 and Japanese Patent Laid-Open No. 2005-21841 propose a method for separating zinc dust from converter dust with low zinc content! It has been.
  • wet cyclones with different classification performance are provided in at least two stages in series, and slurry containing converter dust is separated into overflow and underflow by the previous wet cyclone. Thereafter, a method is disclosed in which this underflow is further separated into an overflow and an underflow by a subsequent wet cyclone.
  • This pre-stage wet cyclone can capture only dust with large particles in the slurry by underflow, thus avoiding the risk of piping clogging without increasing the solid fraction of underflow.
  • more than half of the zinc is recovered on the overflow side, while most of the iron is removed. Since it is collected in the underflow, zinc and iron in the slurry can be separated efficiently.
  • the dust in the underflow separated by the subsequent wet cyclone is reused as a sintering raw material.
  • the use of recovered dust cannot be further expanded without mentioning that it is reused as another raw material, ie, converter raw material or electric furnace raw material. This is thought to be due to the fact that further processing is necessary to reuse the collected dust as converter raw material or electric furnace raw material, and the processing conditions are not in place at present.
  • the dust is simply dried, it takes time to remove the moisture, resulting in a reduction in dust processing efficiency. Even if the drying process is performed, if the entire amount is charged into a converter or an electric furnace as it is, the amount of dust scattered increases and the working environment deteriorates.
  • landfill processing must be performed.
  • Japanese Patent Application Laid-Open No. 2005-21841 discloses a slurry containing converter dust, a slurry containing dust having a high zinc content and a slurry containing dust having a low zinc content by a wet separation device. Is disclosed.
  • this method is a method of obtaining zinc product raw materials and metal raw materials from converter dust, before separating the slurry containing converter dust with a wet separator, the pH of the slurry is adjusted, The yield is increased. Thus, since it is not a method of actively removing zinc from the slurry, a large amount of zinc may remain in the separated dust having a low zinc content.
  • the present invention has been made in view of the power and the circumstances, and is generated in the converter process during the production of steel. It is possible to reduce the cost required for the dezincing process by separating the zinc-containing converter dust into low dust content and high dust content and efficiently recycling them to a blast furnace, converter or electric furnace. It aims to provide a method for recycling zinc-containing converter dust.
  • the coarse particles are separated from the converter dust collected by the wet dust collector, and the zinc content is A first step of obtaining fine lead-containing dust containing 5 mass% or more and 10 mass% or less and having an iron content of 50 mass% or more and 90 mass% or less;
  • the zinc-containing fine-grained dust is produced by a hydrocyclone, and the average particle size is in the range of 8,1 to 25 m, and the zinc content is 1% by mass or less.
  • Average particle size Force S l ⁇ m or more and 5 111 or less, high zinc content fine dust containing more than 1% by mass of zinc and containing more iron oxide than the above fine dust A second step of separating into
  • the intermediate fine dust is not subjected to dezincing treatment, and is added with a binder to be agglomerated for use as a converter raw material or an electric furnace raw material by pressing, and a third step;
  • the fine dust is dried and then dezinced and used as it is as a blast furnace raw material or as agglomerated material as a converter raw material.
  • the zinc-containing fine-grained dust described above is obtained by trapping and solidifying gaseous metallic zinc on the surface of the fine-grained dust. This is because metallic zinc has a low boiling point and therefore exists in a gaseous state in the converter. For this reason, the zinc-containing fine particle dust has a smaller zinc particle size, and the higher the ratio of the surface area to the mass, the higher the zinc content.
  • by classifying zinc-containing fine dust with a hydrocyclone it becomes possible to separate into medium fine dust having a large average particle size and fine dust having a small average particle size. For this reason, the separated medium fine dust becomes low-zincaceous (zinc content is 1% by mass or less) and can be recycled without dezincing treatment.
  • the zinc-containing fine-grain dust has an oxide film formed on its surface as oxygen permeates from the surface. Note that the thickness of the oxide film is almost equal regardless of the particle size under the same conditions. It becomes constant. For this reason, in the zinc-containing fine dust, the particle size of the fine dust becomes small, and the content ratio of iron oxide increases as the ratio of the surface area to the mass increases. Therefore, fine grain dust contains more iron oxide than medium fine dust.
  • the medium fine dust has a high metallic iron content and low zinc content, so it can be recycled as a converter raw material or an electric furnace raw material after it has been agglomerated, so it can be recycled in a blast furnace. Rather than doing so, it is possible to reduce energy costs.
  • the medium fine dust When producing agglomerates from medium fine dust, the medium fine dust is pressed at high pressure and a binder is added to the medium fine dust, maintaining the shape when agglomerated. it can. As a result, workability at the time of transporting the agglomerates is improved, and it is possible to reliably prevent dangers such as a steam explosion and dust scattering when charging into the converter or electric furnace.
  • Medium-fine dust can be agglomerated for use as converter raw material or electric furnace raw material by adding a binder without dezincing treatment and pressing it. Cost can be reduced.
  • the power to perform dezincing treatment Medium-fine grained dust that does not require dezincing treatment has been separated in advance, so the amount of processing is reduced and the processing cost required for dezincing treatment is reduced. I can plan.
  • a part of the medium fine dust separated in the second step is dried without dezincing treatment. It is preferably used as a blast furnace raw material.
  • the processing efficiency of the medium fine dust that does not need to be agglomerated can be improved.
  • the press treatment in the third step is performed so that the water content of the medium fine dust separated by the hydrocyclone is 10% by mass or more and 15% by mass.
  • the agglomerate is prepared by adjusting to the following, adding the binder and kneading, and then placing the mixture in an extrusion-type press apparatus and extruding under pressure. In this way, the moisture content of the medium fine dust is adjusted to 10% by mass or more and 15% by mass or less, so that the moisture content of the medium fine dust is reduced and agglomeration using a simple extrusion press is possible. Become capable.
  • the press treatment in the third step is performed so that the water content of the medium fine dust separated by the hydrocyclone is 30% by mass or more and 60% by mass. It is preferable to produce the plate-like agglomerate by adjusting with the following, adding the binder and stirring, and then molding with a high-pressure filter press squeezed at a pressure of 5 MPa to 20 MPa.
  • the medium fine dust whose water content is adjusted to 30% by mass or more and 60% by mass or less is sent to the high pressure filter press, so that the filling operation of the medium fine dust to the high pressure filter press can be carried out smoothly.
  • the medium fine dust has good dewatering efficiency
  • the fine dust is separated! / ,! and the fine dust is removed with the high pressure filter press.
  • the moisture content of the dehydrated cake can be lowered, the agglomerates can be densified, the powdering rate can be reduced, and the efficiency of the recycling work can be improved.
  • a binder is added to the medium fine dust! /, So the shape when agglomerated can be maintained.
  • a part of the medium fine dust separated in the second step is not dezinced and is directly dried after drying. It is preferable to use a raw material for a converter or an electric furnace.
  • the medium fine dust separated by the hydrocyclone has a property close to that of coarse dust with a high content of metallic iron with a low zinc content. Therefore, it contains metal iron at a higher content than medium fine dust, and it can treat medium fine dust in the same way as coarse dust currently used effectively in applications such as recycling. .
  • the power S can be greatly reduced.
  • FIG. 1 is a schematic view of a lead-containing fine-grain dust separator used in a method for recycling zinc-containing converter dust according to an embodiment of the present invention.
  • FIG. 2 (A) and (B) are schematic process diagrams of the third process of the method for recycling zinc-containing converter dust, respectively.
  • FIG. 3 is a schematic process diagram of a third process and a fourth process according to a modification.
  • FIG. 4 is an explanatory view showing a conventional method for dezincing zinc-containing converter fine-grained dust.
  • the method for recycling zinc-containing converter dust includes zinc-containing converter dust (hereinafter simply referred to as converter dust) recovered by a wet dust collector. 1) to obtain zinc-containing fine dust from the second step, and to separate this zinc-containing fine dust into low-zinc medium fine dust and high-zinc fine dust, It has a third step of agglomerating the separated medium fine dust without dezincing, and a fourth step of dezincing the separated fine dust. This will be described in detail below.
  • converter dust zinc-containing converter dust
  • Zinc-containing converter dust discharged from the converter (not shown! /,) Charged with zinc-containing scrap is collected together with the generated OG gas in a wet dust collector, where OG gas is a gas component. Are separated.
  • This wet dust collector is a non-combustion type power installed in the upper part of the converter.
  • This coarse particle separator is designed to collect particles having a relatively high specific gravity and a large particle size (coarse particles). Particle size distribution: about 40-200 am, average particle size: about 100 ⁇ m)
  • the zinc-containing fine dust obtained by separating the coarse particles with a coarse separator has a zinc content of 0.5 mass% or more and 10 mass% or less, and an iron content of 50 mass% or more. 90% by mass or less. Note that zinc-containing fine dust particles with a zinc content of less than 0.5% by mass can be recycled in a blast furnace without dezincing treatment. On the other hand, the zinc content of zinc-containing fine dust does not exceed 10% by mass.
  • the particle size distribution of the zinc-containing fine dust is, for example, about 0 ⁇ !-80 m, and the particle size is 10
  • zinc-containing fine-grained dust has a higher zinc content than conventional converter dust, and a higher iron content than blast furnace dust.
  • the collected water containing the fine zinc-containing dust is further supplied to the thickener 10 to be concentrated and processed into a slurry, and then the first slurry receiving tank 12 is supplied by the pressure pump 11. Sent to.
  • the zinc-containing fine-grain dust in the slurry sent to the first slurry receiving tank 12 is a first mechanical stirrer provided in the first slurry receiving tank 12 and having a stirring blade and a motor for driving the stirring blade. Stirred by 13 and uniformly dispersed in the first slurry receiving tank 12.
  • the treated product in which the zinc-containing fine dust is dispersed is conveyed to a water cyclone (also referred to as a liquid cyclone) 15 by a first slurry pump 14. Then, the zinc-containing fine dust in the treated product is separated into a low-zinc medium fine dust and a high-zinc fine dust by the hydrocyclone 15.
  • the hydrocyclone 15 is a conventionally known one, and separates the fine lead-containing fine dust into medium fine dust and fine dust using centrifugal separation.
  • the separated medium fine particle dust has an average particle size in the range of 8 111 to 25 111 (for example, the particle size distribution is about 5 to 80 111), and the zinc content is 1% by mass. (Preferably 0.5% by mass) or less.
  • Fine-grained dust has an average particle size in the range of 1 m to 5 m (for example, a particle size distribution of about 0.1 to 20 111), and the zinc content exceeds 1% by mass (medium fine).
  • the content of zinc in the granular dust is 0.5% by mass or less, it exceeds 0.5% by mass), and contains more iron oxide than the medium fine dust.
  • Table 1 shows the analysis results of the dust collected from the overflow pipe 16 and the dust collected from the underflow pipe 17.
  • the results of this analysis are based on a classification test (d 2011) using a WARMAN 6C hydrocyclone (spigot diameter 30 mm) as the hydrocyclone and the pump (first slurry pump) flow rate at 0.4 m 3 / min. m) [0024] [Table 1]
  • the hydrocyclone 15 underflow pipe 17 has 70% by mass of particles with a particle size exceeding 20 111, and the zinc content is 0.5% by classification with hydrocyclone 15
  • the dust with a low content of 70% by mass and metallic iron content of 70% by mass is separated and recovered.
  • the particle size is less than 20 in by classification with hydrocyclone 15. High-zinc dust that contains mainly particles and has a zinc content exceeding 1% by mass is separated and recovered!
  • the dust having a large particle size has a small amount of zinc attached, while the dust having a small particle size has a large amount of zinc attached.
  • the zinc content of the zinc-containing fine dust having a particle size of 20 Hm or more is 0.4% by mass, while that of the zinc-containing fine dust having a particle size of less than 20 in.
  • the zinc content was 2.8% by mass.
  • the medium fine dust has a zinc content of 1% by mass or less, and the zinc contained does not affect the molten steel components in the converter. It can be used for converter recycling or electric furnace recycling.
  • medium fine dust has a high moisture content (about 30% by mass), and if it is inserted into a converter or electric furnace without drying, it may cause a steam explosion or abnormal combustion.
  • the medium fine dust since the medium fine dust has a small average particle size, it may be pulverized and scattered when it is charged into a converter or electric furnace in the state of fine particles. For this reason, after adding a binder to the medium fine dust and making it into an agglomerate by press treatment, it is charged into a converter or electric furnace.
  • the slurry-like medium fine dust recovered from the underflow pipe 17 of the hydrocyclone 15 is conveyed to a stirring rotary dryer and kneaded with a binder as shown in Fig. 2 (A). .
  • the kneaded product of the medium fine dust and the binder is dried until the water content becomes about 10% by mass or more and 15% by mass or less, and then put into an extrusion press. Then, it is pressure-extruded by an extrusion-type press device, further dried as necessary, and agglomerated.
  • the water content of the above-mentioned medium fine dust may be adjusted before adding the solder, or may be adjusted after adding the binder.
  • the agglomerate (dust cake) thus obtained is charged into the converter as a converter raw material through, for example, a scrap chute. Moreover, it is charged into the electric furnace as the electric furnace raw material.
  • the shape and size of the agglomerate, the type and addition amount of the binder, the agglomeration conditions such as the pressing pressure are not particularly limited as long as pulverization can be suppressed during charging into the converter or electric furnace. .
  • cement, lime, bentonite, etc. are used as the binder, and this is added, for example, to about 5% by mass of medium fine dust, and the press pressure is set to 5 MPa, so that the powdering rate is 5 mass% or less. Can be suppressed.
  • the moisture content of the agglomerate must be kept below a certain level in order to prevent steam explosion and abnormal combustion during charging into the converter or electric furnace.
  • the amount of agglomerate charged into a 300-ton converter is 1 ton or less per time
  • the 1S charge that can be used as it is after pressing exceeds 1 ton per time Further drying is required.
  • extrusion-type press apparatus is a conventionally well-known apparatus which extrudes a kneaded material from an opening part, it is not limited to this.
  • the slurry-like medium-sized dust collected from the underflow pipe 17 of the hydrocyclone 15 is conveyed to a slurry tank (not shown) in the form of a slurry as shown in FIG. 2 (B).
  • a slurry tank (not shown) in the form of a slurry as shown in FIG. 2 (B).
  • water content 60 wt% or less than 30% by mass here preferably, the lower limit 40% by mass, still more 4 5 mass 0/0, the upper limit 55 mass 0/0
  • This slurry-like medium-sized dust is further mixed with a binder (for example, about 5 to 15% by mass), stirred, conveyed to a high-pressure filter press that squeezes at a pressure of 5 MPa to 20 MPa, and removed. Molded by water treatment.
  • a plate-like agglomerate (dust cake) having a moisture content of about 15% by mass and a thickness of 20 to 40 mm (in this example, about 30 mm) is obtained. Since this agglomerate is dense and can reduce the powdering rate, the work efficiency can be improved.
  • the medium fine dust is blocked from the atmosphere by the water coexisting in the slurry, so that the metallic iron contained in the medium fine dust is agglomerated without being oxidized. Is done.
  • the agglomerate is then further dried as necessary (moisture content, for example, 2-5% by mass) and charged into the converter or electric furnace.
  • the agglomeration conditions such as the shape and size of the agglomerate, the type and amount of binder added, and the pressing pressure are not particularly limited as long as pulverization can be suppressed during charging into the converter or electric furnace.
  • the above-described high-pressure filter press is limited to this as long as the above-described press pressure can be achieved, which is a conventionally known device that pressurizes while filling slurry-like medium fine dust between adjacent filters. It is not a thing.
  • medium fine dust is agglomerated and used as a converter raw material or an electric furnace raw material.
  • medium fine dust with a zinc content of 1% by mass or less corresponds to 20% by mass of zinc-containing fine dust, and the proportion of this dust to the blast furnace raw material is as small as several mass%. Even if it is inserted into the blast furnace without any treatment, operational troubles such as shelves will not occur.
  • a part of medium fine dust (for example, about 5 to 95 mass% of all medium fine dust separated by hydrocyclone 15) is dried without dezincing treatment as shown in Fig. 3. And after forming, it may be charged into the blast furnace as a blast furnace raw material (may be used as a sintering raw material for the blast furnace).
  • the fine particle dust separated by the hydrocyclone 15 is sent to the second slurry receiving tank 18, and then the second slurry receiving tank 18 is provided with the second dust receiving tank 18.
  • the mixture is stirred by the mechanical stirrer 19 and conveyed to the filter press 21 by the second slurry pump 20 while preventing sedimentation of fine dust.
  • the fine-grained dust is dehydrated by a filter press 21 and dried until the water content (water content) becomes about 10% by mass, followed by molding and dezincing treatment.
  • this dezincing treatment zinc is vaporized and iron oxide is reduced to metal iron (M—Fe), so that it is directly used for blast furnace recycling as a blast furnace raw material.
  • the molding and dezincing treatment can be performed by any method disclosed in, for example, Japanese Patent Application Laid-Open No. 7-70662 or Japanese Patent Application Laid-Open No. 8-260066.
  • the fine particle dust can be made into an agglomerate by using the above-mentioned medium fine particle agglomeration treatment, and used as a converter raw material.
  • the present invention has been described. However, the present invention is not limited to this embodiment, and modifications can be made without changing the gist of the invention.
  • the case where the method for recycling zinc-containing converter dust of the present invention is configured by combining some or all of the examples is also included in the scope of the present invention.
  • medium fine dust is mixed with lime powder, coatas, powdered ore, etc., and charged into a sintering machine, and then charged into a blast furnace as sintered ore. May be.
  • the medium fine dust for example, about 5 to 30% by mass of the total medium fine dust
  • It can also be used as a converter raw material or an electric furnace raw material in the same manner as coarse dust.
  • the third step and the fourth step may be performed simultaneously in parallel or may be performed first.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Manufacture Of Iron (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

A method comprising: a first step in which coarse particles are separated from a converter dust recovered with a wet type dust collector to obtain a zinc-containing fine-particle dust having a zinc content of 0.5-10 mass% and an iron content of 50-90 mass%; a second step in which the dust is separated by a water cyclone (15) into a low-zinc-content medium-fine-particle dust having an average particle diameter of 8-25 µm and a zinc content of 1 mass% or lower and a high-zinc-content microfine-particle dust having an average particle diameter of 1-5 µm and a zinc content higher than 1 mass% and containing more iron oxide than the medium-fine-particle dust; a third step in which the medium-fine-particle dust, without undergoing a zinc elimination treatment, is mixed with a binder and pressed to form a mass for use as a converter feed material or electric-furnace feed material; and a fourth step in which the microfine-particle dust is dried and subsequently subjected to a zinc elimination treatment and the resultant dust is used as it is as a blast-furnace feed material or is converted to a mass for use as a converter feed material.

Description

明 細 書  Specification
含亜鉛転炉ダストのリサイクル方法  Recycling method of zinc-containing converter dust
技術分野  Technical field
[0001] 本発明は、鉄鋼の生産時に転炉工程で発生する含亜鉛の転炉ダストから亜鉛含有 率の低いダスト分と高いダスト分に分けて、高炉又は転炉もしくは電炉へ効率良くリサ イタルする含亜鉛転炉ダストのリサイクル方法に関する。  [0001] The present invention divides the zinc-containing converter dust generated in the converter process during the production of steel into a dust component with a low zinc content and a dust component with a high zinc content, and efficiently recycles it into a blast furnace, converter or electric furnace. The present invention relates to a method for recycling zinc-containing converter dust.
背景技術  Background art
[0002] 自動車用鋼板等に用いられている亜鉛メツキ鋼板の生産量は、ここ 10年急激に増加 しており、それに伴い亜鉛メツキ鋼板スクラップを転炉に入れて溶解し、再使用する 量も増加している。そのため、転炉から発生するダストに多くの亜鉛が含まれるように なった。  [0002] The production volume of zinc-plated steel sheets used in automotive steel sheets has increased rapidly over the past 10 years, and along with that, the amount of zinc-plated steel sheet scraps put into a converter and melted and reused is also increasing. It has increased. Therefore, much zinc is contained in the dust generated from the converter.
従来、非燃焼式の転炉用の排ガス回収システム(OG回収システム)で回収された転 炉ダストは、焼結工程を経て高炉原料としてリサイクルされてきた。このような転炉ダス トの高炉リサイクルは、亜鉛の含有率が低い(1質量%以下)転炉ダストについては問 題なく行うことが可能である。し力、しながら、前述のように、亜鉛の含有率が高い転炉 ダストを高炉原料として使用すると、棚掛等の操業トラブルの原因となるという問題が ある。  Conventionally, converter dust recovered by an exhaust gas recovery system (OG recovery system) for non-combustion converters has been recycled as blast furnace raw material through a sintering process. Blast-furnace recycling of such converter dust can be performed without problems for converter dust with a low zinc content (1% by mass or less). However, as described above, when converter dust having a high zinc content is used as a blast furnace raw material, there is a problem of causing operational troubles such as shelves.
また、含亜鉛転炉ダストの転炉へのリサイクルも一部行われている力 転炉から発生 する転炉ダストの全量を転炉に投入すると、再度発生する転炉ダスト中への亜鉛分 の濃縮が進み、最終的に溶鋼成分に影響を及ぼす限界濃度 (8質量%程度と言わ れている)を超えると、転炉へのリサイクルも困難になるという問題があった。  In addition, if the entire amount of converter dust generated from a power converter, in which zinc-containing converter dust is partially recycled to the converter, is input to the converter, the zinc content in the converter dust generated again is reduced. When the concentration progresses and exceeds the limit concentration (which is said to be about 8% by mass) that ultimately affects the molten steel components, there is a problem that recycling to the converter becomes difficult.
[0003] そのため、亜鉛を含有する細粒ダストは、鉄分の含有率が高い(70質量%程度)にも かかわらず埋立処分されている。しかし、埋立地の枯渴ゃ埋立処理費の高騰等のた め、近い将来、埋立処理ができなくなると言われている。 [0003] Therefore, fine dust containing zinc is disposed of in landfill despite the high iron content (about 70% by mass). However, it is said that landfill disposal will not be possible in the near future due to soaring landfill disposal costs.
このような事情から、転炉ダスト中の亜鉛を分離回収する脱亜鉛処理方法に関する 提案がなされている。図 4に従来の転炉ダストの脱亜鉛処理方法の一例を示す。転 炉の上方に設けられた非燃焼式集塵装置 41で集塵水に捕集された含亜鉛転炉ダ ストは、粗粒分離機 42に搬送され、ここで粒径の大きな粗粒分 (粗粒ダスト)が分離さ れる。粗粒分離機 42を通過した含亜鉛細粒ダストは、シックナー 43で濃縮された後 フィルタープレス 44で脱水される。こうして得られる含亜鉛細粒ダストについて、乾燥 処理 45、成型 46、及び脱亜鉛処理 47を行う。脱亜鉛処理 47は、例えば、回転還元 炉中 1100〜1300°Cでダスト中の酸化鉄を還元すると同時に含まれる亜鉛を還元し 、気化した金属亜鉛を分離回収することにより行われる(例えば、 日本国特開 2001 — 294942号公報参照)。なお、非燃焼式集塵装置 41から排出される転炉ガスは、 ガスホールダ一に蓄積される。 Under these circumstances, proposals have been made regarding a dezincification method for separating and recovering zinc in converter dust. Fig. 4 shows an example of a conventional dezincification method for converter dust. A zinc-containing converter that was collected in the collected water by a non-combustion dust collector 41 provided above the converter. The strike is conveyed to the coarse particle separator 42, where coarse particles having a large particle size (coarse dust) are separated. The zinc-containing fine dust that has passed through the coarse separator 42 is concentrated by the thickener 43 and then dehydrated by the filter press 44. The zinc-containing fine dust thus obtained is subjected to drying treatment 45, molding 46, and dezincing treatment 47. The dezincing treatment 47 is performed, for example, by reducing iron oxide in the dust at 1100 to 1300 ° C in a rotary reduction furnace and simultaneously reducing the contained zinc and separating and recovering the vaporized metallic zinc (for example, Japan). (See Japanese Laid-Open Patent Publication No. 2001-294942). The converter gas discharged from the non-combustion dust collector 41 is accumulated in the gas holder.
[0004] 上記した前記従来の転炉ダストの脱亜鉛処理方法は、脱亜鉛効率が高く転炉ダスト 中の酸化鉄も同時に還元されるため、転炉ダストの高炉又は転炉でのリサイクルにも 好都合である。 [0004] The above-described conventional method for dezincing converter dust has high dezincing efficiency, and iron oxide in the converter dust is also reduced at the same time. Therefore, converter dust can be recycled in a blast furnace or converter. Convenient.
しかし、多大な設備建設費を要すると共に、処理コストも高いという問題を有している However, it has a problem that it requires a lot of equipment construction costs and high processing costs.
Yes
また、前記脱亜鉛処理の前段階において、脱亜鉛処理を行うことなく高炉又は転炉 でリサイクル可能な亜鉛含有率の低!/、ダストを、転炉ダストから安価かつ選択的に分 離回収することが実現できれば、脱亜鉛処理の対象となる転炉ダストの量を減少させ ること力 Sできるため、脱亜鉛処理設備の小型化や処理コストの低減が可能になる。  In addition, in the previous stage of the dezincing process, low zinc content that can be recycled in a blast furnace or converter without dezincing process is collected at low cost and selectively from converter dust. If this can be achieved, it is possible to reduce the amount of converter dust that is the target of dezincing treatment, and thus it is possible to reduce the size of dezincing treatment equipment and reduce treatment costs.
[0005] そこで、例えば、 日本国特開 2004— 122024号公報、及び日本国特開 2005— 21 841号公報には、転炉ダストから亜鉛含有率の低!/、ダストを分離する方法が提案さ れている。 [0005] Therefore, for example, Japanese Patent Laid-Open No. 2004-122024 and Japanese Patent Laid-Open No. 2005-21841 propose a method for separating zinc dust from converter dust with low zinc content! It has been.
この日本国特開 2004— 122024号公報には、分級性能が異なる湿式サイクロンを 直列に少なくとも 2段備え、転炉ダストを含むスラリーを、前段の湿式サイクロンでォ 一バーフローとアンダーフローに分離した後、このアンダーフローを後段の湿式サイ クロンで更に、オーバーフローとアンダーフローに分離する方法が開示されている。 この前段の湿式サイクロンにより、スラリー中の粒子が大きなダストのみをアンダーフ ローで捕捉できるため、アンダーフローの固相率を高めることなぐ配管の閉塞の危 険を回避できる。また、分離されたアンダーフローを、後段の湿式サイクロンで処理す ることにより、亜鉛の半分以上はオーバーフロー側に回収され、一方、大部分の鉄は アンダーフローに捕集されるため、スラリー中の亜鉛と鉄を効率よく分離することがで きる。 In Japanese Patent Laid-Open No. 2004-122024, wet cyclones with different classification performance are provided in at least two stages in series, and slurry containing converter dust is separated into overflow and underflow by the previous wet cyclone. Thereafter, a method is disclosed in which this underflow is further separated into an overflow and an underflow by a subsequent wet cyclone. This pre-stage wet cyclone can capture only dust with large particles in the slurry by underflow, thus avoiding the risk of piping clogging without increasing the solid fraction of underflow. In addition, by treating the separated underflow with a subsequent wet cyclone, more than half of the zinc is recovered on the overflow side, while most of the iron is removed. Since it is collected in the underflow, zinc and iron in the slurry can be separated efficiently.
[0006] このとき、後段の湿式サイクロンで分離されたアンダーフロー中のダストは、焼結原料 として再利用されている。しかし、他の原料、即ち転炉原料又は電炉原料として再利 用することについての記載はなぐ回収されたダストの使用用途を更に広げることが できない。これは、回収したダストを、転炉原料又は電炉原料として再利用するには、 更なる処理が必要となり、現時点ではその処理条件が整っていないためだと考えら れる。  [0006] At this time, the dust in the underflow separated by the subsequent wet cyclone is reused as a sintering raw material. However, the use of recovered dust cannot be further expanded without mentioning that it is reused as another raw material, ie, converter raw material or electric furnace raw material. This is thought to be due to the fact that further processing is necessary to reuse the collected dust as converter raw material or electric furnace raw material, and the processing conditions are not in place at present.
例えば、ダストを単に乾燥処理するだけでは、水分の除去に時間を要し、ダストの処 理効率の低下を招く。なお、乾燥処理したとしても、その全量をそのまま転炉又は電 炉へ装入する場合には、粉塵が飛散する量が多くなり、作業環境が悪化する問題が ある。  For example, if the dust is simply dried, it takes time to remove the moisture, resulting in a reduction in dust processing efficiency. Even if the drying process is performed, if the entire amount is charged into a converter or an electric furnace as it is, the amount of dust scattered increases and the working environment deteriorates.
ここで、ダストの処理効率を高めるため、乾燥処理に要する時間を短縮することも考 えられるが、この場合、転炉又は電炉へ装入する際に水蒸気爆発が発生する恐れも ある。  Here, in order to increase the dust processing efficiency, it is conceivable to shorten the time required for the drying process. In this case, however, steam explosion may occur when charging the converter or electric furnace.
このため、今後回収されるダスト量が増大し、焼結原料として再利用できる量を超える 場合は、前記したように、埋立処理をしなければならなくなる。  For this reason, when the amount of dust collected in the future increases and exceeds the amount that can be reused as a sintering raw material, as described above, landfill processing must be performed.
[0007] また、 日本国特開 2005— 21841号公報には、転炉ダストを含むスラリーを、湿式分 離装置によって亜鉛含有率の高いダストを含むスラリーと、亜鉛含有率の低いダスト を含むスラリーに分離する方法が開示されている。 [0007] Further, Japanese Patent Application Laid-Open No. 2005-21841 discloses a slurry containing converter dust, a slurry containing dust having a high zinc content and a slurry containing dust having a low zinc content by a wet separation device. Is disclosed.
しかし、この方法は、転炉ダストから、亜鉛製品原料や金属原料を得る方法であるた め、転炉ダストを含むスラリーを湿式分離装置で分離する前に、スラリーの pHを調整 し、亜鉛の収率を上げている。このように、スラリー中から亜鉛を積極的に除去しようと する方法ではないため、分離した亜鉛含有率の低いダスト中にも、多くの亜鉛が残存 する恐れがある。  However, since this method is a method of obtaining zinc product raw materials and metal raw materials from converter dust, before separating the slurry containing converter dust with a wet separator, the pH of the slurry is adjusted, The yield is increased. Thus, since it is not a method of actively removing zinc from the slurry, a large amount of zinc may remain in the separated dust having a low zinc content.
従って、分離した亜鉛含有率の低いダストに脱亜鉛処理を行うことなぐこれを高炉、 転炉、又は電炉の原料として使用することには問題がある。  Therefore, there is a problem in using it as a raw material for a blast furnace, converter, or electric furnace without dezincing the separated dust having a low zinc content.
[0008] 本発明は力、かる事情に鑑みてなされたもので、鉄鋼の生産時に転炉工程で発生す る含亜鉛転炉ダストから、亜鉛含有率の低いダスト分と高いダスト分に分けて、高炉 又は転炉もしくは電炉へ効率良くリサイクルすることにより、脱亜鉛処理に要するコス トを低減させることが可能な含亜鉛転炉ダストのリサイクル方法を提供することを目的 とする。 [0008] The present invention has been made in view of the power and the circumstances, and is generated in the converter process during the production of steel. It is possible to reduce the cost required for the dezincing process by separating the zinc-containing converter dust into low dust content and high dust content and efficiently recycling them to a blast furnace, converter or electric furnace. It aims to provide a method for recycling zinc-containing converter dust.
発明の開示  Disclosure of the invention
[0009] 前記目的に沿う本発明に係る含亜鉛転炉ダストのリサイクル方法にお!/、ては、湿式 集塵装置によって回収された転炉ダストから粗粒分を分離し、亜鉛含有率が 0. 5質 量%以上 10質量%以下、かつ鉄分含有率が 50質量%以上 90質量%以下の含亜 鉛細粒ダストを得る第 1工程と、  [0009] In the method for recycling zinc-containing converter dust according to the present invention in line with the above object, the coarse particles are separated from the converter dust collected by the wet dust collector, and the zinc content is A first step of obtaining fine lead-containing dust containing 5 mass% or more and 10 mass% or less and having an iron content of 50 mass% or more and 90 mass% or less;
前記含亜鉛細粒ダストを水サイクロンにより、平均粒径が 8 ,1 m以上 25 m以下の範 囲にあって、亜鉛の含有率が 1質量%以下の低亜鉛質の中細粒ダストと、平均粒径 力 S l ^ m以上 5 111以下の範囲にあって、亜鉛の含有率が 1質量%を超え、かつ前 記中細粒ダストより多くの酸化鉄を含む高亜鉛質の微細粒ダストに分離する第 2工程 と、  The zinc-containing fine-grained dust is produced by a hydrocyclone, and the average particle size is in the range of 8,1 to 25 m, and the zinc content is 1% by mass or less. Average particle size Force S l ^ m or more and 5 111 or less, high zinc content fine dust containing more than 1% by mass of zinc and containing more iron oxide than the above fine dust A second step of separating into
前記中細粒ダストは脱亜鉛処理をしないで、バインダーを加えてプレス処理によって 、転炉原料もしくは電炉原料として使用される塊成物にする第 3工程と、  The intermediate fine dust is not subjected to dezincing treatment, and is added with a binder to be agglomerated for use as a converter raw material or an electric furnace raw material by pressing, and a third step;
前記微細粒ダストは、乾燥後、脱亜鉛処理を行い、そのまま高炉原料とし、又は塊成 物にして転炉原料とする第 4工程とを有する。  The fine dust is dried and then dezinced and used as it is as a blast furnace raw material or as agglomerated material as a converter raw material.
[0010] 上記した含亜鉛細粒ダストは、細粒ダストの表面に、気体状態の金属亜鉛が捕捉さ れ固化したものである。これは、金属亜鉛が低沸点であるため、転炉中では気体状 態で存在していることによる。このため、含亜鉛細粒ダストは、細粒ダストの粒径が小 さくなり、質量に対する表面積の割合が高くなるほど、亜鉛の含有率が高くなる。 なお、含亜鉛細粒ダストを水サイクロンにより分級することにより、平均粒径が大きな 中細粒ダストと、平均粒径が小さな微細粒ダストとに分離することが可能になる。 このため、分離された中細粒ダストは、低亜鉛質(亜鉛の含有率が 1質量%以下)の ものとなり、脱亜鉛処理を行うことなくリサイクルに供することができる。 [0010] The zinc-containing fine-grained dust described above is obtained by trapping and solidifying gaseous metallic zinc on the surface of the fine-grained dust. This is because metallic zinc has a low boiling point and therefore exists in a gaseous state in the converter. For this reason, the zinc-containing fine particle dust has a smaller zinc particle size, and the higher the ratio of the surface area to the mass, the higher the zinc content. In addition, by classifying zinc-containing fine dust with a hydrocyclone, it becomes possible to separate into medium fine dust having a large average particle size and fine dust having a small average particle size. For this reason, the separated medium fine dust becomes low-zincaceous (zinc content is 1% by mass or less) and can be recycled without dezincing treatment.
[0011] また、含亜鉛細粒ダストは、表面から酸素が浸透することにより、その表面に酸化被 膜が形成される。なお、酸化被膜の厚さは、同一の条件下では粒径によらずほぼ一 定となる。このため、含亜鉛細粒ダストは、細粒ダストの粒径が小さくなり、質量に対 する表面積の割合が高くなるほど、酸化鉄の含有率が高くなる。従って、微細粒ダス トは、中細粒ダストよりも酸化鉄を多く含む。 [0011] In addition, the zinc-containing fine-grain dust has an oxide film formed on its surface as oxygen permeates from the surface. Note that the thickness of the oxide film is almost equal regardless of the particle size under the same conditions. It becomes constant. For this reason, in the zinc-containing fine dust, the particle size of the fine dust becomes small, and the content ratio of iron oxide increases as the ratio of the surface area to the mass increases. Therefore, fine grain dust contains more iron oxide than medium fine dust.
このように、中細粒ダストは、金属鉄の含有率が高ぐし力、も低亜鉛質であるため、塊 成物とした後、転炉原料もしくは電炉原料としてリサイクルできるので、高炉でリサイク ルするよりも、エネルギーコストを低減することが可能になる。  In this way, the medium fine dust has a high metallic iron content and low zinc content, so it can be recycled as a converter raw material or an electric furnace raw material after it has been agglomerated, so it can be recycled in a blast furnace. Rather than doing so, it is possible to reduce energy costs.
[0012] また、中細粒ダストから塊成物を製造するに際しては、中細粒ダストが高圧でプレス 処理され、しかも中細粒ダストにバインダーが加えられるため、塊成した際の形状を 維持できる。これにより、塊成物の搬送時の作業性が良好になると共に、転炉又は電 炉へ装入する際の水蒸気爆発や粉塵の飛散等の危険を確実に防止することができ このように、中細粒ダストは、脱亜鉛処理をしないで、バインダーを加えてプレス処理 によって転炉原料もしくは電炉原料として使用される塊成物にできるため、脱亜鉛処 理に要する多大な設備建設費及び処理コストを低減することが可能になる。 [0012] When producing agglomerates from medium fine dust, the medium fine dust is pressed at high pressure and a binder is added to the medium fine dust, maintaining the shape when agglomerated. it can. As a result, workability at the time of transporting the agglomerates is improved, and it is possible to reliably prevent dangers such as a steam explosion and dust scattering when charging into the converter or electric furnace. Medium-fine dust can be agglomerated for use as converter raw material or electric furnace raw material by adding a binder without dezincing treatment and pressing it. Cost can be reduced.
一方、微細粒ダストについては、脱亜鉛処理が行われる力 脱亜鉛処理が不要な中 細粒ダストが予め分離されているので、処理量が低減され、脱亜鉛処理に要する処 理コストの低減が図れる。  On the other hand, with regard to fine-grained dust, the power to perform dezincing treatment Medium-fine grained dust that does not require dezincing treatment has been separated in advance, so the amount of processing is reduced and the processing cost required for dezincing treatment is reduced. I can plan.
[0013] 本発明に係る含亜鉛転炉ダストのリサイクル方法にお!/、て、前記第 2工程で分離され た前記中細粒ダストの一部は、脱亜鉛処理をしないで、乾燥して高炉原料として使用 されることが好ましい。  [0013] In the method for recycling zinc-containing converter dust according to the present invention !, a part of the medium fine dust separated in the second step is dried without dezincing treatment. It is preferably used as a blast furnace raw material.
このように、中細粒ダストを乾燥して高炉原料として使用することで、塊成物とする必 要がなぐ中細粒ダストの処理効率を向上できる。  Thus, by drying the medium fine dust and using it as a blast furnace raw material, the processing efficiency of the medium fine dust that does not need to be agglomerated can be improved.
[0014] 本発明に係る含亜鉛転炉ダストのリサイクル方法において、前記第 3工程におけるプ レス処理は、前記水サイクロンにより分離された前記中細粒ダストの含水率を 10質量 %以上 15質量%以下に調整すると共に、前記バインダーを加えて混練した後、押出 し式プレス装置に入れて加圧押出しして前記塊成物を製造することが好ましい。 このように、中細粒ダストの含水率を 10質量%以上 15質量%以下に調整するので、 中細粒ダストの含水率が低減され、簡易な押出し式プレス装置を用いた塊成化が可 能になる。 [0014] In the method for recycling zinc-containing converter dust according to the present invention, the press treatment in the third step is performed so that the water content of the medium fine dust separated by the hydrocyclone is 10% by mass or more and 15% by mass. It is preferable that the agglomerate is prepared by adjusting to the following, adding the binder and kneading, and then placing the mixture in an extrusion-type press apparatus and extruding under pressure. In this way, the moisture content of the medium fine dust is adjusted to 10% by mass or more and 15% by mass or less, so that the moisture content of the medium fine dust is reduced and agglomeration using a simple extrusion press is possible. Become capable.
[0015] 本発明に係る含亜鉛転炉ダストのリサイクル方法において、前記第 3工程におけるプ レス処理は、前記水サイクロンにより分離された前記中細粒ダストの含水率を 30質量 %以上 60質量%以下に調整すると共に、前記バインダーを加えて撹拌した後、 5M Pa以上 20MPa以下の圧力で圧搾する高圧フィルタープレスで成形することにより板 状の前記塊成物を製造することが好ましレ、。  [0015] In the method for recycling zinc-containing converter dust according to the present invention, the press treatment in the third step is performed so that the water content of the medium fine dust separated by the hydrocyclone is 30% by mass or more and 60% by mass. It is preferable to produce the plate-like agglomerate by adjusting with the following, adding the binder and stirring, and then molding with a high-pressure filter press squeezed at a pressure of 5 MPa to 20 MPa.
このように、含水率が 30質量%以上 60質量%以下に調整された中細粒ダストを高圧 フィルタープレスへ送るので、高圧フィルタープレスへの中細粒ダストの充填作業を スムーズに実施できる。  In this way, the medium fine dust whose water content is adjusted to 30% by mass or more and 60% by mass or less is sent to the high pressure filter press, so that the filling operation of the medium fine dust to the high pressure filter press can be carried out smoothly.
また、中細粒ダストは脱水効率がよいため、中細粒ダストを高圧フィルタープレスで圧 搾処理する際、微細粒ダストが分離されて!/、な!/、細粒ダストを高圧フィルタープレス で処理するよりも、脱水ケーキの含水率を低くでき、塊成物の緻密化が図れ、粉化率 を低減でき、リサイクル作業の能率を向上できる。更に、この中細粒ダストには、バイ ンダ一が添加されて!/、るので、塊成した際の形状を維持できる。  In addition, since the medium fine dust has good dewatering efficiency, when the medium fine dust is compressed with the high pressure filter press, the fine dust is separated! / ,! and the fine dust is removed with the high pressure filter press. Compared with the treatment, the moisture content of the dehydrated cake can be lowered, the agglomerates can be densified, the powdering rate can be reduced, and the efficiency of the recycling work can be improved. Furthermore, a binder is added to the medium fine dust! /, So the shape when agglomerated can be maintained.
[0016] 本発明に係る含亜鉛転炉ダストのリサイクル方法にお!/、て、前記第 2工程で分離され た前記中細粒ダストの一部は、脱亜鉛処理をしないで、乾燥後そのまま転炉原料又 は電炉原料とすることが好ましレ、。 [0016] In the method for recycling zinc-containing converter dust according to the present invention !, a part of the medium fine dust separated in the second step is not dezinced and is directly dried after drying. It is preferable to use a raw material for a converter or an electric furnace.
ここで、水サイクロンにより分離した中細粒ダストは、亜鉛含有率が低ぐ金属鉄の含 有率が高い粗粒ダストに近い性状を有している。そのため、金属鉄を中細粒ダストよ りも更に高い含有率で含んでおり、現在リサイクル等の用途において有効に利用され ている粗粒ダストと同様に、中細粒ダストを処理することができる。  Here, the medium fine dust separated by the hydrocyclone has a property close to that of coarse dust with a high content of metallic iron with a low zinc content. Therefore, it contains metal iron at a higher content than medium fine dust, and it can treat medium fine dust in the same way as coarse dust currently used effectively in applications such as recycling. .
従って、従来の脱亜鉛処理を伴う高炉でのリサイクルよりも、処理コストを大幅に低減 すること力 Sでさる。  Therefore, compared with the conventional recycling in a blast furnace with dezincing treatment, the power S can be greatly reduced.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の一実施例に係る含亜鉛転炉ダストのリサイクル方法に使用される含亜 鉛細粒ダスト分離装置の概略図である。  [0017] FIG. 1 is a schematic view of a lead-containing fine-grain dust separator used in a method for recycling zinc-containing converter dust according to an embodiment of the present invention.
[図 2] (A)、 (B)はそれぞれ同含亜鉛転炉ダストのリサイクル方法の第 3工程の概略 工程図である。 [図 3]変形例に係る第 3工程及び第 4工程の概略工程図である。 [FIG. 2] (A) and (B) are schematic process diagrams of the third process of the method for recycling zinc-containing converter dust, respectively. FIG. 3 is a schematic process diagram of a third process and a fourth process according to a modification.
[図 4]従来例に係る含亜鉛転炉細粒ダストの脱亜鉛処理方法を示す説明図である。 発明を実施するための最良の形態  FIG. 4 is an explanatory view showing a conventional method for dezincing zinc-containing converter fine-grained dust. BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本 発明の理解に供する。 [0018] Next, with reference to the accompanying drawings, an embodiment of the present invention will be described for understanding of the present invention.
図 1〜図 3に示すように、本発明の一実施例に係る含亜鉛転炉ダストのリサイクル方 法は、湿式集塵装置によって回収された含亜鉛転炉ダスト(以下、単に転炉ダストと も!/、う)から含亜鉛細粒ダストを得る第 1工程と、この含亜鉛細粒ダストを低亜鉛質の 中細粒ダストと高亜鉛質の微細粒ダストに分離する第 2工程と、分離された中細粒ダ ストを脱亜鉛処理することなく塊成物にする第 3工程と、分離された微細粒ダストを脱 亜鉛処理する第 4工程とを有している。以下、詳しく説明する。  As shown in FIGS. 1 to 3, the method for recycling zinc-containing converter dust according to one embodiment of the present invention includes zinc-containing converter dust (hereinafter simply referred to as converter dust) recovered by a wet dust collector. 1) to obtain zinc-containing fine dust from the second step, and to separate this zinc-containing fine dust into low-zinc medium fine dust and high-zinc fine dust, It has a third step of agglomerating the separated medium fine dust without dezincing, and a fourth step of dezincing the separated fine dust. This will be described in detail below.
[0019] まず、第 1工程について説明する。 [0019] First, the first step will be described.
含亜鉛スクラップを装入した転炉(図示しな!/、)から排出される含亜鉛転炉ダストは、 発生する OGガスと共に湿式集塵装置に捕集され、ここで気体分である OGガスが分 離される。この湿式集塵装置は、転炉上部に設置された非燃焼式のものである力 こ れに限定されるものではなレ、。  Zinc-containing converter dust discharged from the converter (not shown! /,) Charged with zinc-containing scrap is collected together with the generated OG gas in a wet dust collector, where OG gas is a gas component. Are separated. This wet dust collector is a non-combustion type power installed in the upper part of the converter.
そして、湿式集塵装置に捕集された含亜鉛転炉ダストを含む集塵水は、樋を経由し て粗粒分離機に搬送される。この粗粒分離機は、相対的に高比重で粒径の高い粒 子(粗粒分)を回収するようになっており、これにより、転炉ダストから粒径の高い粗粒 分 (例えば、粒度分布: 40〜200 a m程度、平均粒径 : 100 ^ m程度)が分離される Then, the collected water containing the zinc-containing converter dust collected by the wet dust collector is transported to the coarse-grain separator via the soot. This coarse particle separator is designed to collect particles having a relatively high specific gravity and a large particle size (coarse particles). Particle size distribution: about 40-200 am, average particle size: about 100 ^ m)
Yes
[0020] 粗粒分離機で粗粒分を分離して得られる含亜鉛細粒ダストは、亜鉛含有率が 0. 5質 量%以上 10質量%以下で、かつ鉄分含有率が 50質量%以上 90質量%以下のもの である。なお、亜鉛含有率が 0. 5質量%未満の含亜鉛細粒ダストは、脱亜鉛処理を 行うことなく高炉でリサイクルを行うことが可能である。一方、含亜鉛細粒ダストの亜鉛 含有率は 10質量%を超えることはない。  [0020] The zinc-containing fine dust obtained by separating the coarse particles with a coarse separator has a zinc content of 0.5 mass% or more and 10 mass% or less, and an iron content of 50 mass% or more. 90% by mass or less. Note that zinc-containing fine dust particles with a zinc content of less than 0.5% by mass can be recycled in a blast furnace without dezincing treatment. On the other hand, the zinc content of zinc-containing fine dust does not exceed 10% by mass.
また、含亜鉛細粒ダストの粒度分布は、例えば 0·;!〜 80 m程度であり、粒径が 10 In addition, the particle size distribution of the zinc-containing fine dust is, for example, about 0 · !!-80 m, and the particle size is 10
〃 m以下のものが全質量の 80%を占めている。 このように、含亜鉛細粒ダストは、従来の転炉ダストよりも亜鉛含有率が高ぐし力、も高 炉ダストよりも鉄分含有率が高い。 以下 m or less account for 80% of the total mass. Thus, zinc-containing fine-grained dust has a higher zinc content than conventional converter dust, and a higher iron content than blast furnace dust.
この含亜鉛細粒ダストを含む集塵水は、図 1に示すように、更にシックナー 10へ供給 されて濃縮され、スラリー状に処理された後、圧送ポンプ 11で第 1のスラリー受入れタ ンク 12へ送られる。  As shown in FIG. 1, the collected water containing the fine zinc-containing dust is further supplied to the thickener 10 to be concentrated and processed into a slurry, and then the first slurry receiving tank 12 is supplied by the pressure pump 11. Sent to.
[0021] 次に、第 2工程について説明する。 [0021] Next, the second step will be described.
第 1のスラリー受入れタンク 12へ送られたスラリー中の含亜鉛細粒ダストは、第 1のス ラリー受入れタンク 12内に設けられ撹拌羽根及びそれを駆動するモータを有する第 1の機械式撹拌機 13により撹拌され、第 1のスラリー受入れタンク 12内で均一に分散 される。  The zinc-containing fine-grain dust in the slurry sent to the first slurry receiving tank 12 is a first mechanical stirrer provided in the first slurry receiving tank 12 and having a stirring blade and a motor for driving the stirring blade. Stirred by 13 and uniformly dispersed in the first slurry receiving tank 12.
含亜鉛細粒ダストが分散された処理物は、第 1のスラリーポンプ 14により、水サイクロ ン (液体サイクロンともいう) 15に搬送される。そして、処理物中の含亜鉛細粒ダストは 、水サイクロン 15により、低亜鉛質の中細粒ダストと高亜鉛質の微細粒ダストに分離 される。この水サイクロン 15とは、従来公知のものであり、遠心分離を利用して、含亜 鉛細粒ダストを中細粒ダストと微細粒ダストに分離するものである。  The treated product in which the zinc-containing fine dust is dispersed is conveyed to a water cyclone (also referred to as a liquid cyclone) 15 by a first slurry pump 14. Then, the zinc-containing fine dust in the treated product is separated into a low-zinc medium fine dust and a high-zinc fine dust by the hydrocyclone 15. The hydrocyclone 15 is a conventionally known one, and separates the fine lead-containing fine dust into medium fine dust and fine dust using centrifugal separation.
[0022] この分離された中細粒ダストは、平均粒径が 8 111以上 25 111以下(例えば、粒度分 布が 5〜80 111程度)の範囲にあって、亜鉛の含有率が 1質量% (好ましくは、 0. 5 質量%)以下のものである。 [0022] The separated medium fine particle dust has an average particle size in the range of 8 111 to 25 111 (for example, the particle size distribution is about 5 to 80 111), and the zinc content is 1% by mass. (Preferably 0.5% by mass) or less.
また、微細粒ダストは、平均粒径が 1 m以上 5 m以下(例えば、粒度分布が 0. 1 〜20 111程度)の範囲にあって、亜鉛の含有率が 1質量%を超え(中細粒ダストの亜 鉛の含有率が 0. 5質量%以下の場合は、 0. 5質量%を超え)、かつ中細粒ダストより 多くの酸化鉄を含んでいる。  Fine-grained dust has an average particle size in the range of 1 m to 5 m (for example, a particle size distribution of about 0.1 to 20 111), and the zinc content exceeds 1% by mass (medium fine). When the content of zinc in the granular dust is 0.5% by mass or less, it exceeds 0.5% by mass), and contains more iron oxide than the medium fine dust.
[0023] 水サイクロン 15により分離された微細粒ダストの大部分はオーバーフロー管 16から、 中細粒ダストの大部分はアンダーフロー管 17から、それぞれ回収される。 [0023] Most of the fine particle dust separated by the hydrocyclone 15 is recovered from the overflow pipe 16, and most of the medium fine particle dust is recovered from the underflow pipe 17.
ここで、オーバーフロー管 16から回収されたダストと、アンダーフロー管 17から回収さ れたダストの分析結果を、表 1に示す。なお、この分析結果は、水サイクロンとして W ARMAN 6C型液体サイクロン(スピゴット径 30mm)を使用し、ポンプ(第 1のスラリ 一ポンプ)流量を 0. 4m3/分にして、分級試験(d 2011 m)を行って得た結果であ [0024] [表 1] Here, Table 1 shows the analysis results of the dust collected from the overflow pipe 16 and the dust collected from the underflow pipe 17. The results of this analysis are based on a classification test (d 2011) using a WARMAN 6C hydrocyclone (spigot diameter 30 mm) as the hydrocyclone and the pump (first slurry pump) flow rate at 0.4 m 3 / min. m) [0024] [Table 1]
Figure imgf000011_0001
Figure imgf000011_0001
[0025] この表 1中の「M— Fe」は金属鉄を、「T Fe」は全鉄をそれぞれ表す。  [0025] In Table 1, "M-Fe" represents metallic iron and "T Fe" represents total iron.
表 1から明らかなように、水サイクロン 15のアンダーフロー管 17からは、水サイクロン 1 5による分級により、粒径が 20 111を超える粒子を 70質量%有し、亜鉛含有率が 0. 5質量%と低ぐかつ金属鉄の含有率が 70質量%と高いダストが分離回収されてい また、水サイクロン 15のオーバーフロー管 16からは、水サイクロン 15による分級によ り、粒径が 20 in以下の粒子を主体とし、亜鉛含有率が 1質量%を超える高亜鉛質 のダストが分離回収されて!/、る。  As is clear from Table 1, the hydrocyclone 15 underflow pipe 17 has 70% by mass of particles with a particle size exceeding 20 111, and the zinc content is 0.5% by classification with hydrocyclone 15 The dust with a low content of 70% by mass and metallic iron content of 70% by mass is separated and recovered. Also, from the overflow pipe 16 of hydrocyclone 15, the particle size is less than 20 in by classification with hydrocyclone 15. High-zinc dust that contains mainly particles and has a zinc content exceeding 1% by mass is separated and recovered!
[0026] このように、粒径が大きなダストには、亜鉛の付着量が少なぐ一方、粒径が小さなダ ストには、亜鉛の付着量が多くなつている。 [0026] As described above, the dust having a large particle size has a small amount of zinc attached, while the dust having a small particle size has a large amount of zinc attached.
ここで、粒径の大小と亜鉛の付着量との関係について調査した結果について説明す る。なお、試験は、転炉から湿式集塵装置によって回収された後、粗粒分離機により 粗粒分が分離された含亜鉛細粒ダスト(亜鉛含有率 2. 46%)を乾燥処理して使用し た。そして、この乾燥処理したものを、篩分級法により、粒径が 20 m以上のものと 2 0 m未満のものに分級し、その質量分配率と亜鉛含有率の分析を行った。  Here, the results of an investigation on the relationship between the size of the particle size and the amount of zinc adhered will be described. In the test, zinc-containing fine dust (zinc content 2.46%), which was collected from the converter by a wet dust collector and separated by a coarse separator, was used after drying. did. Then, the dried product was classified into a particle size of 20 m or more and less than 20 m by a sieve classification method, and the mass distribution ratio and the zinc content were analyzed.
この分析結果を表 2に示す。  The results of this analysis are shown in Table 2.
[0027] [表 2] 粒径 質量 己率 ¾ ^有率[0027] [Table 2] Particle size Mass Self-rate ¾ ^ Proportion
2 0 μ 満 8 5質量% 2. 8質量0 /0 2 0 mu full 8 5% 2.8 mass 0/0
2 0 μ πι以上 1 5質量0 /0 0. 4質量0 /0 2 0 μ πι least 1 5 mass 0/0 0.4 mass 0/0
[0028] 表 2から明らかなように、粒径 20 H m以上の含亜鉛細粒ダストの亜鉛含有率は 0. 4 質量%であり、一方、粒径 20 in未満の含亜鉛細粒ダストの亜鉛含有率は 2. 8質 量%であった。 [0028] As is apparent from Table 2, the zinc content of the zinc-containing fine dust having a particle size of 20 Hm or more is 0.4% by mass, while that of the zinc-containing fine dust having a particle size of less than 20 in. The zinc content was 2.8% by mass.
この結果は、表 1に示すオーバーフローとアンダーフロー力、ら得られる各ダストの亜 鉛含有率と対応している。  This result corresponds to the overflow and underflow forces shown in Table 1, and the zinc content of each dust obtained.
即ち、粒径が大きなダストには、亜鉛の付着量が少なぐまた、粒径が小さなダストに は、亜鉛の付着量が多くなつて!/、ることを確認できた。  In other words, it was confirmed that the amount of zinc attached to the dust having a large particle size was small, and that the amount of zinc attached to the dust having a small particle size was large!
[0029] 以上のことから、中細粒ダストは、亜鉛含有率が 1質量%以下であり、含有される亜鉛 が転炉中の溶鋼成分に影響を及ぼすことはないため、脱亜鉛処理を行うことなく転炉 リサイクル又は電炉リサイクルに供することができる。 [0029] From the above, the medium fine dust has a zinc content of 1% by mass or less, and the zinc contained does not affect the molten steel components in the converter. It can be used for converter recycling or electric furnace recycling.
し力、し、中細粒ダストは含水率が高く(約 30質量%)、これを乾燥せずに転炉又は電 炉へ装入すると、水蒸気爆発や異常燃焼等を引き起こす恐れがある。また、中細粒 ダストは平均粒径が小さいため、乾燥したものを細粒状のままの状態で、転炉又は電 炉に装入すると、粉化し飛散する恐れがある。このため、中細粒ダストにバインダーを 加えてプレス処理によって塊成物とした後、転炉又は電炉へ装入する。  However, medium fine dust has a high moisture content (about 30% by mass), and if it is inserted into a converter or electric furnace without drying, it may cause a steam explosion or abnormal combustion. In addition, since the medium fine dust has a small average particle size, it may be pulverized and scattered when it is charged into a converter or electric furnace in the state of fine particles. For this reason, after adding a binder to the medium fine dust and making it into an agglomerate by press treatment, it is charged into a converter or electric furnace.
以下、中細粒ダストの塊成化処理を行う第 3工程について、図 2 (A)、(B)を参照しな 力 ¾説明する。  Hereinafter, the third step of performing the agglomeration treatment of the medium fine dust will be described with reference to FIGS. 2 (A) and 2 (B).
[0030] 水サイクロン 15のアンダーフロー管 17から回収されたスラリー状の中細粒ダストは、 図 2 (A)に示すように、撹拌型回転乾燥機に搬送され、バインダーを加えて混練され る。また、中細粒ダストとバインダーの混練物は、含水率が 10質量%以上 15質量% 以下程度になるまで乾燥された後、押出し式プレス装置に入れられる。そして、押出 し式プレス装置により加圧押出しされ、必要に応じて更に乾燥処理され、塊成化され る。なお、上記した中細粒ダストの含水率は、ノ^ンダ一を加える前に調整してもよく 、またバインダーを添加した後に調整してもよい。 [0030] The slurry-like medium fine dust recovered from the underflow pipe 17 of the hydrocyclone 15 is conveyed to a stirring rotary dryer and kneaded with a binder as shown in Fig. 2 (A). . The kneaded product of the medium fine dust and the binder is dried until the water content becomes about 10% by mass or more and 15% by mass or less, and then put into an extrusion press. Then, it is pressure-extruded by an extrusion-type press device, further dried as necessary, and agglomerated. The The water content of the above-mentioned medium fine dust may be adjusted before adding the solder, or may be adjusted after adding the binder.
こうして得られた塊成物(ダストケーキ)は、転炉原料として、例えばスクラップシュート を介して転炉中に装入される。また、電炉原料として、電炉中に装入される。  The agglomerate (dust cake) thus obtained is charged into the converter as a converter raw material through, for example, a scrap chute. Moreover, it is charged into the electric furnace as the electric furnace raw material.
[0031] ここで、塊成物の形状及び大きさ、バインダーの種類及び添加量、プレス圧等の塊成 条件は、転炉又は電炉への装入時に粉化が抑制できれば、特に制限はない。 [0031] Here, the shape and size of the agglomerate, the type and addition amount of the binder, the agglomeration conditions such as the pressing pressure are not particularly limited as long as pulverization can be suppressed during charging into the converter or electric furnace. .
なお、バインダーとして、例えば、セメント、石灰、ベントナイト等を使用し、これを中細 粒ダストの例えば 5質量%程度添加し、プレス圧を 5MPaとすることで、粉化率を 5質 量%以下に抑制することができる。  In addition, for example, cement, lime, bentonite, etc. are used as the binder, and this is added, for example, to about 5% by mass of medium fine dust, and the press pressure is set to 5 MPa, so that the powdering rate is 5 mass% or less. Can be suppressed.
また、転炉又は電炉への装入の際に水蒸気爆発や異常燃焼を防止するため、塊成 物の水分含量を一定量以下にする必要がある。例えば、 300トン転炉中への塊成物 の装入量が、 1回あたり 1トン以下である場合には、プレス後そのまま使用可能である 1S 装入量が 1回あたり 1トンを超える場合には、更に乾燥が必要となる。  In addition, the moisture content of the agglomerate must be kept below a certain level in order to prevent steam explosion and abnormal combustion during charging into the converter or electric furnace. For example, when the amount of agglomerate charged into a 300-ton converter is 1 ton or less per time, the 1S charge that can be used as it is after pressing exceeds 1 ton per time Further drying is required.
なお、前記した押出し式プレス装置とは、混練物を開口部から押し出す従来公知の 装置であるが、これに限定されるものではない。  In addition, although the above-described extrusion-type press apparatus is a conventionally well-known apparatus which extrudes a kneaded material from an opening part, it is not limited to this.
[0032] また、水サイクロン 15のアンダーフロー管 17から回収されたスラリー状の中細粒ダス トは、図 2 (B)に示すように、スラリー状のままスラリー槽(図示しない)へ搬送され、こ こで含水率が 30質量%以上 60質量%以下 (好ましくは、下限を 40質量%、更には 4 5質量0 /0、上限を 55質量0 /0)になるように加水される。このスラリー状の中細粒ダスト には、更にバインダーが添加(例えば、 5〜; 15質量%程度)されて撹拌され、プレス 圧 5MPa以上 20MPa以下の圧力で圧搾する高圧フィルタープレスへ搬送され、脱 水処理されて成形される。 [0032] In addition, the slurry-like medium-sized dust collected from the underflow pipe 17 of the hydrocyclone 15 is conveyed to a slurry tank (not shown) in the form of a slurry as shown in FIG. 2 (B). , water content 60 wt% or less than 30% by mass here (preferably, the lower limit 40% by mass, still more 4 5 mass 0/0, the upper limit 55 mass 0/0) is hydrolyzed to become. This slurry-like medium-sized dust is further mixed with a binder (for example, about 5 to 15% by mass), stirred, conveyed to a high-pressure filter press that squeezes at a pressure of 5 MPa to 20 MPa, and removed. Molded by water treatment.
これにより、含水率が 15質量%程度で、厚みが 20〜40mm (本実施例では、 30mm 程度)の板状の塊成物(ダストケーキ)が得られる。この塊成物は、緻密であり、粉化 率を低減できるため、作業能率の向上が図れる。  Thereby, a plate-like agglomerate (dust cake) having a moisture content of about 15% by mass and a thickness of 20 to 40 mm (in this example, about 30 mm) is obtained. Since this agglomerate is dense and can reduce the powdering rate, the work efficiency can be improved.
[0033] なお、この高圧フィルタープレスにおいて、中細粒ダストは、スラリー中に共存する水 により大気から遮断されるため、中細粒ダスト中に含まれる金属鉄が酸化を受けるこ となく塊成される。その後、塊成物は、必要に応じて更に乾燥処理 (含水率が、例え ば、 2〜5質量%程度)され、転炉又は電炉へ装入される。 [0033] In this high pressure filter press, the medium fine dust is blocked from the atmosphere by the water coexisting in the slurry, so that the metallic iron contained in the medium fine dust is agglomerated without being oxidized. Is done. The agglomerate is then further dried as necessary (moisture content, for example, 2-5% by mass) and charged into the converter or electric furnace.
この場合も、塊成物の形状及び大きさ、バインダーの種類及び添加量、プレス圧等 の塊成条件は、転炉又は電炉への装入時に粉化が抑制できれば特に制限はない。 なお、前記した高圧フィルタープレスは、隣り合うフィルタ一間にスラリー状の中細粒 ダストを充填しながら加圧する従来公知の装置である力 前記したプレス圧を達成で きれば、これに限定されるものではない。  In this case as well, the agglomeration conditions such as the shape and size of the agglomerate, the type and amount of binder added, and the pressing pressure are not particularly limited as long as pulverization can be suppressed during charging into the converter or electric furnace. The above-described high-pressure filter press is limited to this as long as the above-described press pressure can be achieved, which is a conventionally known device that pressurizes while filling slurry-like medium fine dust between adjacent filters. It is not a thing.
[0034] 以上に示した実施例においては、中細粒ダストを塊成物にして、転炉原料又は電炉 原料として使用した場合について説明した。しかし、亜鉛の含有率が 1質量%以下の 中細粒ダストは、含亜鉛細粒ダストの 20質量%に相当し、このダストの高炉原料に対 する割合は数質量%と小さいため、脱亜鉛処理を行うことなく高炉へ装入しても、棚 掛等の操業トラブルを引き起こすことがない。 [0034] In the examples described above, the case has been described in which medium fine dust is agglomerated and used as a converter raw material or an electric furnace raw material. However, medium fine dust with a zinc content of 1% by mass or less corresponds to 20% by mass of zinc-containing fine dust, and the proportion of this dust to the blast furnace raw material is as small as several mass%. Even if it is inserted into the blast furnace without any treatment, operational troubles such as shelves will not occur.
従って、中細粒ダストの一部(水サイクロン 15により分離された全中細粒ダストの例え ば、 5〜95質量%程度)を、図 3に示すように、脱亜鉛処理を行うことなぐ乾燥及び 成型を行った後に、高炉原料として高炉に装入してもよい(高炉の焼結原料として使 用してもよい)。  Therefore, a part of medium fine dust (for example, about 5 to 95 mass% of all medium fine dust separated by hydrocyclone 15) is dried without dezincing treatment as shown in Fig. 3. And after forming, it may be charged into the blast furnace as a blast furnace raw material (may be used as a sintering raw material for the blast furnace).
[0035] 続いて、第 4工程について説明する。 [0035] Next, the fourth step will be described.
前記した水サイクロン 15により分離された微細粒ダストは、図 1、図 3に示すように、第 2のスラリー受入れタンク 18へ送られた後、第 2のスラリー受入れタンク 18に設けた第 2の機械式撹拌機 19により撹拌され、微細粒ダストの沈降が防止されながら、第 2の スラリーポンプ 20によりフィルタープレス 21に搬送される。  As shown in FIGS. 1 and 3, the fine particle dust separated by the hydrocyclone 15 is sent to the second slurry receiving tank 18, and then the second slurry receiving tank 18 is provided with the second dust receiving tank 18. The mixture is stirred by the mechanical stirrer 19 and conveyed to the filter press 21 by the second slurry pump 20 while preventing sedimentation of fine dust.
この微細粒ダストは、図 3に示すように、フィルタープレス 21により脱水処理され、水 分含量 (含水率)が 10質量%程度になるまで乾燥された後、成型及び脱亜鉛処理が 行われる。この脱亜鉛処理により、亜鉛が気化されると共に、酸化鉄は還元されて金 属鉄 (M— Fe)となるため、そのまま高炉原料として、高炉リサイクルに供される。なお 、成型及び脱亜鉛処理は、例えば、 日本国特開平 7— 70662号公報、又は日本国 特開平 8— 260066号公報等に開示された任意の方法により行うことができる。 また、微細粒ダストについても、前記した中細粒ダストの塊成化処理を使用して塊成 物にし、転炉原料とすることもできる。 [0036] 以上、本発明の実施例を説明したが、本発明は、この実施例に限定されるものでは なぐ発明の要旨を変更しない範囲での変更は可能であり、前記した実施例や変形 例の一部又は全部を組み合わせて、本発明の含亜鉛転炉ダストのリサイクル方法を 構成する場合も本発明の権利範囲に含まれる。 As shown in FIG. 3, the fine-grained dust is dehydrated by a filter press 21 and dried until the water content (water content) becomes about 10% by mass, followed by molding and dezincing treatment. By this dezincing treatment, zinc is vaporized and iron oxide is reduced to metal iron (M—Fe), so that it is directly used for blast furnace recycling as a blast furnace raw material. The molding and dezincing treatment can be performed by any method disclosed in, for example, Japanese Patent Application Laid-Open No. 7-70662 or Japanese Patent Application Laid-Open No. 8-260066. Also, the fine particle dust can be made into an agglomerate by using the above-mentioned medium fine particle agglomeration treatment, and used as a converter raw material. As described above, the embodiment of the present invention has been described. However, the present invention is not limited to this embodiment, and modifications can be made without changing the gist of the invention. The case where the method for recycling zinc-containing converter dust of the present invention is configured by combining some or all of the examples is also included in the scope of the present invention.
例えば、前記実施例の含亜鉛転炉ダストのリサイクル方法において、中細粒ダストを 、石灰粉、コータス、粉鉱石等と混合して焼結機に装入し、焼結鉱として高炉に装入 してもよい。  For example, in the method for recycling zinc-containing converter dust of the above embodiment, medium fine dust is mixed with lime powder, coatas, powdered ore, etc., and charged into a sintering machine, and then charged into a blast furnace as sintered ore. May be.
また、中細粒ダストの一部(全中細粒ダストの例えば、 5〜30質量%程度)を、脱亜鉛 処理することなぐ含水率が例えば 2〜5質量%になるまで乾燥した後、そのまま、粗 粒ダストと同様に転炉原料又は電炉原料とすることもできる。  In addition, after drying a part of the medium fine dust (for example, about 5 to 30% by mass of the total medium fine dust) until the water content becomes 2 to 5% by mass without dezincing, It can also be used as a converter raw material or an electric furnace raw material in the same manner as coarse dust.
そして、第 3工程と第 4工程は、同時に並行して行ってもよぐまたいずれを先に行つ てもよい。  The third step and the fourth step may be performed simultaneously in parallel or may be performed first.
産業上の利用可能性  Industrial applicability
[0037] 鉄鋼の生産時に転炉工程で発生する含亜鉛の転炉ダストから亜鉛含有率の低いダ スト分と高いダスト分に分けることにより、亜鉛含有率の低いダスト分については、処 理費と設備費が高くなる脱亜鉛処理を行うことなぐ高炉又は転炉もしくは電炉へ安 価に効率良くリサイクルできる。また、亜鉛含有率の高いダスト分については、脱亜鉛 処理が不要な亜鉛含有率の低!/、ダスト分が予め分離されて!/、るので、処理量が低減 され、脱亜鉛処理に要する処理コストの低減が図れる。 [0037] By separating the zinc-containing converter dust generated in the converter process during the production of steel into a dust with a low zinc content and a dust with a high zinc content, In addition, it can be efficiently and efficiently recycled to a blast furnace, converter, or electric furnace without dezincing, which increases equipment costs. In addition, the dust content with a high zinc content is low because the zinc content does not need to be dezinced and the dust content is separated in advance! Processing costs can be reduced.

Claims

請求の範囲 The scope of the claims
[1] 湿式集塵装置によって回収された転炉ダストから粗粒分を分離し、亜鉛含有率が 0.  [1] Separation of coarse particles from converter dust recovered by wet dust collector, with a zinc content of 0.
5質量%以上 10質量%以下、かつ鉄分含有率が 50質量%以上 90質量%以下の含 亜鉛細粒ダストを得る第 1工程と、  A first step of obtaining zinc-containing fine-grained dust having a content of 5% by mass to 10% by mass and an iron content of 50% by mass to 90% by mass;
前記含亜鉛細粒ダストを水サイクロンにより、平均粒径が 8 ,1 m以上 25 m以下の範 囲にあって、亜鉛の含有率が 1質量%以下の低亜鉛質の中細粒ダストと、平均粒径 力 S l ^ m以上 5 111以下の範囲にあって、亜鉛の含有率が 1質量%を超え、かつ前 記中細粒ダストより多くの酸化鉄を含む高亜鉛質の微細粒ダストに分離する第 2工程 と、  The zinc-containing fine-grained dust is produced by a hydrocyclone, and the average particle size is in the range of 8,1 to 25 m, and the zinc content is 1% by mass or less. Average particle size Force S l ^ m or more and 5 111 or less, high zinc content fine dust containing more than 1% by mass of zinc and containing more iron oxide than the above fine dust A second step of separating into
前記中細粒ダストは脱亜鉛処理をしないで、バインダーを加えてプレス処理によって 、転炉原料もしくは電炉原料として使用される塊成物にする第 3工程と、  The intermediate fine dust is not subjected to dezincing treatment, and is added with a binder to be agglomerated for use as a converter raw material or an electric furnace raw material by pressing, and a third step;
前記微細粒ダストは、乾燥後、脱亜鉛処理を行い、そのまま高炉原料とし、又は塊成 物にして転炉原料とする第 4工程とを有することを特徴とする含亜鉛転炉ダストのリサ イタル方法。  The fine-grained dust is subjected to a dezincing treatment after drying and used as a blast furnace raw material as it is, or a fourth step as an agglomerated raw material to be used as a converter raw material. Method.
[2] 請求項 1記載の含亜鉛転炉ダストのリサイクル方法において、前記第 2工程で分離さ れた前記中細粒ダストの一部は、脱亜鉛処理をしないで、乾燥して高炉原料として使 用されることを特徴とする含亜鉛転炉ダストのリサイクル方法。  [2] In the method for recycling zinc-containing converter dust according to claim 1, a part of the medium fine dust separated in the second step is dried and used as a blast furnace raw material without dezincing treatment. A method for recycling zinc-containing converter dust characterized by being used.
[3] 請求項 1記載の含亜鉛転炉ダストのリサイクル方法において、前記第 3工程における プレス処理は、前記水サイクロンにより分離された前記中細粒ダストの含水率を 10質 量%以上 15質量%以下に調整すると共に、前記バインダーを加えて混練した後、押 出し式プレス装置に入れて加圧押出しして前記塊成物を製造することを特徴とする 含亜鉛転炉ダストのリサイクル方法。  [3] In the method for recycling zinc-containing converter dust according to claim 1, in the press treatment in the third step, the moisture content of the medium fine dust separated by the hydrocyclone is 10% by mass or more and 15% by mass. The zinc-containing converter dust recycling method is characterized in that the agglomerate is produced by adjusting the content to less than or equal to% and kneading by adding the binder and then placing the mixture in an extrusion press and extruding under pressure.
[4] 請求項 1記載の含亜鉛転炉ダストのリサイクル方法において、前記第 3工程における プレス処理は、前記水サイクロンにより分離された前記中細粒ダストの含水率を 30質 量%以上 60質量%以下に調整すると共に、前記バインダーを加えて撹拌した後、 5 MPa以上 20MPa以下の圧力で圧搾する高圧フィルタープレスで成形することにより 板状の前記塊成物を製造することを特徴とする含亜鉛転炉ダストのリサイクル方法。  [4] In the method for recycling zinc-containing converter dust according to claim 1, in the press treatment in the third step, the moisture content of the medium fine dust separated by the hydrocyclone is 30% by mass or more and 60% by mass. The plate-like agglomerate is produced by forming with a high-pressure filter press that is squeezed at a pressure of 5 MPa or more and 20 MPa or less after the binder is added and stirred. Recycling method for zinc converter dust.
[5] 請求項 1記載の含亜鉛転炉ダストのリサイクル方法において、前記第 2工程で分離さ れた前記中細粒ダストの一部は、脱亜鉛処理をしないで、乾燥後そのまま転炉原料 又は電炉原料とすることを特徴とする含亜鉛転炉ダストのリサイクル方法。 [5] In the method for recycling zinc-containing converter dust according to claim 1, separated in the second step. A method for recycling zinc-containing converter dust, characterized in that a part of the medium fine-grained dust is not subjected to dezincing treatment, but is used as a converter raw material or an electric furnace raw material as it is after drying.
PCT/JP2007/067421 2006-09-14 2007-09-06 Method of recycling zinc-containing converter dust WO2008032638A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008512635A JP4750846B2 (en) 2006-09-14 2007-09-06 Recycling method of zinc-containing converter dust

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006249654 2006-09-14
JP2006-249654 2006-09-14

Publications (1)

Publication Number Publication Date
WO2008032638A1 true WO2008032638A1 (en) 2008-03-20

Family

ID=39183699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067421 WO2008032638A1 (en) 2006-09-14 2007-09-06 Method of recycling zinc-containing converter dust

Country Status (3)

Country Link
JP (1) JP4750846B2 (en)
CN (1) CN101144122B (en)
WO (1) WO2008032638A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144784A (en) * 2011-01-13 2012-08-02 Astec Irie Co Ltd Method for agglomerating metal iron-containing dust, and agglomerated material
CN103170180A (en) * 2013-02-17 2013-06-26 宝钢集团新疆八一钢铁有限公司 Water saving process for dry emission of tailings
JP2013237902A (en) * 2012-05-15 2013-11-28 Kobe Steel Ltd Dust recycle method
JP2014508853A (en) * 2011-01-04 2014-04-10 サンタナ ロペス ゴメス,ギリェルメ System and method for reclaiming steelmaking converter exhaust residue and product produced thereby
CN104930865A (en) * 2015-06-05 2015-09-23 浙江大学 Energy-saving blast furnace system utilizing waste heat and excessive pressure to supply oxygen-enriched air itself
US10155998B2 (en) 2013-08-12 2018-12-18 Astec Irie Co., Ltd. Method for recycling-processing of dust generated in converter furnace, and method for manufacturing steel
JP2020023735A (en) * 2018-08-08 2020-02-13 Jfeスチール株式会社 Method for predicting wet classification characteristic of valuable component-containing dust and wet classification method
EP3733883A4 (en) * 2018-03-20 2020-12-16 JFE Steel Corporation Granulated material, method for producing granulated material, and method for producing sintered ore
JP2021110005A (en) * 2020-01-10 2021-08-02 日本製鉄株式会社 Production method for non-burning carbon-containing block ore for blast furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385779A (en) * 2018-04-23 2019-10-29 严瑞山 A kind of dry powder compound stalk forming device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266805A (en) * 1975-01-28 1977-06-02 Nippon Steel Corp Overall treatment of metal-containing powdered material
JP2002241848A (en) * 2001-02-09 2002-08-28 Astec Irie Co Ltd Method for recycling dust developed in converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381406A (en) * 1976-12-28 1978-07-18 Nippon Steel Corp Treating method for secondary ash of blast furnace
JPH07316622A (en) * 1994-05-26 1995-12-05 Astec Irie:Kk Method for solidifying converter dust
CN1067439C (en) * 1998-07-31 2001-06-20 宝山钢铁(集团)公司 Treatment method for high zinc containing iron dust

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266805A (en) * 1975-01-28 1977-06-02 Nippon Steel Corp Overall treatment of metal-containing powdered material
JP2002241848A (en) * 2001-02-09 2002-08-28 Astec Irie Co Ltd Method for recycling dust developed in converter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508853A (en) * 2011-01-04 2014-04-10 サンタナ ロペス ゴメス,ギリェルメ System and method for reclaiming steelmaking converter exhaust residue and product produced thereby
JP2012144784A (en) * 2011-01-13 2012-08-02 Astec Irie Co Ltd Method for agglomerating metal iron-containing dust, and agglomerated material
JP2013237902A (en) * 2012-05-15 2013-11-28 Kobe Steel Ltd Dust recycle method
CN103170180A (en) * 2013-02-17 2013-06-26 宝钢集团新疆八一钢铁有限公司 Water saving process for dry emission of tailings
US10155998B2 (en) 2013-08-12 2018-12-18 Astec Irie Co., Ltd. Method for recycling-processing of dust generated in converter furnace, and method for manufacturing steel
CN104930865A (en) * 2015-06-05 2015-09-23 浙江大学 Energy-saving blast furnace system utilizing waste heat and excessive pressure to supply oxygen-enriched air itself
EP3733883A4 (en) * 2018-03-20 2020-12-16 JFE Steel Corporation Granulated material, method for producing granulated material, and method for producing sintered ore
AU2019238604B2 (en) * 2018-03-20 2022-03-24 Jfe Steel Corporation Granulated material, method for producing granulated material, and method for producing sintered ore
JP2020023735A (en) * 2018-08-08 2020-02-13 Jfeスチール株式会社 Method for predicting wet classification characteristic of valuable component-containing dust and wet classification method
JP2021110005A (en) * 2020-01-10 2021-08-02 日本製鉄株式会社 Production method for non-burning carbon-containing block ore for blast furnace
JP7368726B2 (en) 2020-01-10 2023-10-25 日本製鉄株式会社 Method for producing unfired coal-containing agglomerated ore for blast furnaces

Also Published As

Publication number Publication date
CN101144122B (en) 2010-06-23
CN101144122A (en) 2008-03-19
JPWO2008032638A1 (en) 2010-01-21
JP4750846B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4750846B2 (en) Recycling method of zinc-containing converter dust
JP6179898B2 (en) System, method and apparatus for recycle of steelmaking converter exhaust residue
JP7163026B2 (en) Methods for treating and removing electrical and electronic waste for the purpose of recovering components contained in the electrical and electronic waste
EP3112482B1 (en) Method for manufacturing hematite for ironmaking
EP0958385B1 (en) Method of agglomerating oil-containing steel mill waste
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
WO2010032513A1 (en) Method of concentrating nickel in saprolite ore
CN112642580B (en) Disposal method for gradient utilization of steel slag
CN103316764A (en) Method for recycling titanium dioxide from titanium dioxide acidolysis sludge
WO2015105472A1 (en) Method for comprehensive treatment of slurries from metallurgical and mining-enrichment enterprises
JPH0797638A (en) Treatment of dust kinds produced in iron works
WO2022014115A1 (en) Method for compression of aqueous slurry containing solid foreign matter and paper dust, and treatment method of waste gypsum board
JP5163387B2 (en) Method for nickel concentration of saprolite ore
JP5858189B2 (en) Method for producing hematite for iron making
RU2721240C1 (en) Method for de-zincing of blast-furnace process slurries
RU2373294C2 (en) Manufacturing method of brickets for metallurgic production on basis of industrial waste containing oxidised iron-bearing material
CN108350521B (en) Dust treatment device and treatment method of briquetting equipment
RU2566706C2 (en) Complex processing of metallurgical and mining slimes
US11286540B2 (en) Method of processing a pyrite-containing slurry
CN113481376B (en) Method for sorting, recovering and treating copper and nickel in copper smelting furnace slag
RU92014U1 (en) LINE FOR PREPARATION OF WET IRON-CONTAINING Sludge from METALLURGICAL PRODUCTION FOR GRAINING
JP2004122024A (en) Zinc-containing slurry treatment apparatus and treatment method
Vidyadhar et al. Reduction of phosphorous content in LD slag through spiral concentrator for industrial utilization
JPS62224641A (en) Treatment of dust and sludge
CA3197138A1 (en) System and method for separating material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2008512635

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806862

Country of ref document: EP

Kind code of ref document: A1